]> git.ipfire.org Git - thirdparty/openssl.git/blob - ssl/t1_lib.c
Fix safestack issues in ssl.h
[thirdparty/openssl.git] / ssl / t1_lib.c
1 /*
2 * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 /* We need access to the deprecated low level HMAC APIs */
11 #define OPENSSL_SUPPRESS_DEPRECATED
12
13 #include <stdio.h>
14 #include <stdlib.h>
15 #include <openssl/objects.h>
16 #include <openssl/evp.h>
17 #include <openssl/hmac.h>
18 #include <openssl/core_names.h>
19 #include <openssl/ocsp.h>
20 #include <openssl/conf.h>
21 #include <openssl/x509v3.h>
22 #include <openssl/dh.h>
23 #include <openssl/bn.h>
24 #include <openssl/provider.h>
25 #include "internal/nelem.h"
26 #include "internal/evp.h"
27 #include "internal/tlsgroups.h"
28 #include "ssl_local.h"
29 #include <openssl/ct.h>
30
31 DEFINE_STACK_OF(X509)
32 DEFINE_STACK_OF(X509_NAME)
33
34 static const SIGALG_LOOKUP *find_sig_alg(SSL *s, X509 *x, EVP_PKEY *pkey);
35 static int tls12_sigalg_allowed(const SSL *s, int op, const SIGALG_LOOKUP *lu);
36
37 SSL3_ENC_METHOD const TLSv1_enc_data = {
38 tls1_enc,
39 tls1_mac,
40 tls1_setup_key_block,
41 tls1_generate_master_secret,
42 tls1_change_cipher_state,
43 tls1_final_finish_mac,
44 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
45 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
46 tls1_alert_code,
47 tls1_export_keying_material,
48 0,
49 ssl3_set_handshake_header,
50 tls_close_construct_packet,
51 ssl3_handshake_write
52 };
53
54 SSL3_ENC_METHOD const TLSv1_1_enc_data = {
55 tls1_enc,
56 tls1_mac,
57 tls1_setup_key_block,
58 tls1_generate_master_secret,
59 tls1_change_cipher_state,
60 tls1_final_finish_mac,
61 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
62 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
63 tls1_alert_code,
64 tls1_export_keying_material,
65 SSL_ENC_FLAG_EXPLICIT_IV,
66 ssl3_set_handshake_header,
67 tls_close_construct_packet,
68 ssl3_handshake_write
69 };
70
71 SSL3_ENC_METHOD const TLSv1_2_enc_data = {
72 tls1_enc,
73 tls1_mac,
74 tls1_setup_key_block,
75 tls1_generate_master_secret,
76 tls1_change_cipher_state,
77 tls1_final_finish_mac,
78 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
79 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
80 tls1_alert_code,
81 tls1_export_keying_material,
82 SSL_ENC_FLAG_EXPLICIT_IV | SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF
83 | SSL_ENC_FLAG_TLS1_2_CIPHERS,
84 ssl3_set_handshake_header,
85 tls_close_construct_packet,
86 ssl3_handshake_write
87 };
88
89 SSL3_ENC_METHOD const TLSv1_3_enc_data = {
90 tls13_enc,
91 tls1_mac,
92 tls13_setup_key_block,
93 tls13_generate_master_secret,
94 tls13_change_cipher_state,
95 tls13_final_finish_mac,
96 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
97 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
98 tls13_alert_code,
99 tls13_export_keying_material,
100 SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF,
101 ssl3_set_handshake_header,
102 tls_close_construct_packet,
103 ssl3_handshake_write
104 };
105
106 long tls1_default_timeout(void)
107 {
108 /*
109 * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for
110 * http, the cache would over fill
111 */
112 return (60 * 60 * 2);
113 }
114
115 int tls1_new(SSL *s)
116 {
117 if (!ssl3_new(s))
118 return 0;
119 if (!s->method->ssl_clear(s))
120 return 0;
121
122 return 1;
123 }
124
125 void tls1_free(SSL *s)
126 {
127 OPENSSL_free(s->ext.session_ticket);
128 ssl3_free(s);
129 }
130
131 int tls1_clear(SSL *s)
132 {
133 if (!ssl3_clear(s))
134 return 0;
135
136 if (s->method->version == TLS_ANY_VERSION)
137 s->version = TLS_MAX_VERSION_INTERNAL;
138 else
139 s->version = s->method->version;
140
141 return 1;
142 }
143
144 #if !defined(OPENSSL_NO_DH) || !defined(OPENSSL_NO_EC)
145 /* Legacy NID to group_id mapping. Only works for groups we know about */
146 static struct {
147 int nid;
148 uint16_t group_id;
149 } nid_to_group[] = {
150 {NID_sect163k1, OSSL_TLS_GROUP_ID_sect163k1},
151 {NID_sect163r1, OSSL_TLS_GROUP_ID_sect163r1},
152 {NID_sect163r2, OSSL_TLS_GROUP_ID_sect163r2},
153 {NID_sect193r1, OSSL_TLS_GROUP_ID_sect193r1},
154 {NID_sect193r2, OSSL_TLS_GROUP_ID_sect193r2},
155 {NID_sect233k1, OSSL_TLS_GROUP_ID_sect233k1},
156 {NID_sect233r1, OSSL_TLS_GROUP_ID_sect233r1},
157 {NID_sect239k1, OSSL_TLS_GROUP_ID_sect239k1},
158 {NID_sect283k1, OSSL_TLS_GROUP_ID_sect283k1},
159 {NID_sect283r1, OSSL_TLS_GROUP_ID_sect283r1},
160 {NID_sect409k1, OSSL_TLS_GROUP_ID_sect409k1},
161 {NID_sect409r1, OSSL_TLS_GROUP_ID_sect409r1},
162 {NID_sect571k1, OSSL_TLS_GROUP_ID_sect571k1},
163 {NID_sect571r1, OSSL_TLS_GROUP_ID_sect571r1},
164 {NID_secp160k1, OSSL_TLS_GROUP_ID_secp160k1},
165 {NID_secp160r1, OSSL_TLS_GROUP_ID_secp160r1},
166 {NID_secp160r2, OSSL_TLS_GROUP_ID_secp160r2},
167 {NID_secp192k1, OSSL_TLS_GROUP_ID_secp192k1},
168 {NID_X9_62_prime192v1, OSSL_TLS_GROUP_ID_secp192r1},
169 {NID_secp224k1, OSSL_TLS_GROUP_ID_secp224k1},
170 {NID_secp224r1, OSSL_TLS_GROUP_ID_secp224r1},
171 {NID_secp256k1, OSSL_TLS_GROUP_ID_secp256k1},
172 {NID_X9_62_prime256v1, OSSL_TLS_GROUP_ID_secp256r1},
173 {NID_secp384r1, OSSL_TLS_GROUP_ID_secp384r1},
174 {NID_secp521r1, OSSL_TLS_GROUP_ID_secp521r1},
175 {NID_brainpoolP256r1, OSSL_TLS_GROUP_ID_brainpoolP256r1},
176 {NID_brainpoolP384r1, OSSL_TLS_GROUP_ID_brainpoolP384r1},
177 {NID_brainpoolP512r1, OSSL_TLS_GROUP_ID_brainpoolP512r1},
178 {EVP_PKEY_X25519, OSSL_TLS_GROUP_ID_x25519},
179 {EVP_PKEY_X448, OSSL_TLS_GROUP_ID_x448},
180 {NID_id_tc26_gost_3410_2012_256_paramSetA, 0x0022},
181 {NID_id_tc26_gost_3410_2012_256_paramSetB, 0x0023},
182 {NID_id_tc26_gost_3410_2012_256_paramSetC, 0x0024},
183 {NID_id_tc26_gost_3410_2012_256_paramSetD, 0x0025},
184 {NID_id_tc26_gost_3410_2012_512_paramSetA, 0x0026},
185 {NID_id_tc26_gost_3410_2012_512_paramSetB, 0x0027},
186 {NID_id_tc26_gost_3410_2012_512_paramSetC, 0x0028},
187 {NID_ffdhe2048, OSSL_TLS_GROUP_ID_ffdhe2048},
188 {NID_ffdhe3072, OSSL_TLS_GROUP_ID_ffdhe3072},
189 {NID_ffdhe4096, OSSL_TLS_GROUP_ID_ffdhe4096},
190 {NID_ffdhe6144, OSSL_TLS_GROUP_ID_ffdhe6144},
191 {NID_ffdhe8192, OSSL_TLS_GROUP_ID_ffdhe8192}
192 };
193 #endif
194
195 #ifndef OPENSSL_NO_EC
196 static const unsigned char ecformats_default[] = {
197 TLSEXT_ECPOINTFORMAT_uncompressed,
198 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime,
199 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2
200 };
201 #endif /* !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_DH) */
202
203 /* The default curves */
204 #if !defined(OPENSSL_NO_DH) || !defined(OPENSSL_NO_EC)
205 static const uint16_t supported_groups_default[] = {
206 # ifndef OPENSSL_NO_EC
207 29, /* X25519 (29) */
208 23, /* secp256r1 (23) */
209 30, /* X448 (30) */
210 25, /* secp521r1 (25) */
211 24, /* secp384r1 (24) */
212 # endif
213 # ifndef OPENSSL_NO_GOST
214 34, /* GC256A (34) */
215 35, /* GC256B (35) */
216 36, /* GC256C (36) */
217 37, /* GC256D (37) */
218 38, /* GC512A (38) */
219 39, /* GC512B (39) */
220 40, /* GC512C (40) */
221 # endif
222 # ifndef OPENSSL_NO_DH
223 0x100, /* ffdhe2048 (0x100) */
224 0x101, /* ffdhe3072 (0x101) */
225 0x102, /* ffdhe4096 (0x102) */
226 0x103, /* ffdhe6144 (0x103) */
227 0x104, /* ffdhe8192 (0x104) */
228 # endif
229 };
230 #endif /* !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_DH) */
231
232 #ifndef OPENSSL_NO_EC
233 static const uint16_t suiteb_curves[] = {
234 TLSEXT_curve_P_256,
235 TLSEXT_curve_P_384
236 };
237 #endif
238
239 struct provider_group_data_st {
240 SSL_CTX *ctx;
241 OSSL_PROVIDER *provider;
242 };
243
244 #define TLS_GROUP_LIST_MALLOC_BLOCK_SIZE 10
245 static OSSL_CALLBACK add_provider_groups;
246 static int add_provider_groups(const OSSL_PARAM params[], void *data)
247 {
248 struct provider_group_data_st *pgd = data;
249 SSL_CTX *ctx = pgd->ctx;
250 OSSL_PROVIDER *provider = pgd->provider;
251 const OSSL_PARAM *p;
252 TLS_GROUP_INFO *ginf = NULL;
253 EVP_KEYMGMT *keymgmt;
254 unsigned int gid;
255 int ret = 0;
256
257 if (ctx->group_list_max_len == ctx->group_list_len) {
258 TLS_GROUP_INFO *tmp = NULL;
259
260 if (ctx->group_list_max_len == 0)
261 tmp = OPENSSL_malloc(sizeof(TLS_GROUP_INFO)
262 * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
263 else
264 tmp = OPENSSL_realloc(ctx->group_list,
265 (ctx->group_list_max_len
266 + TLS_GROUP_LIST_MALLOC_BLOCK_SIZE)
267 * sizeof(TLS_GROUP_INFO));
268 if (tmp == NULL) {
269 SSLerr(0, ERR_R_MALLOC_FAILURE);
270 return 0;
271 }
272 ctx->group_list = tmp;
273 memset(tmp + ctx->group_list_max_len,
274 0,
275 sizeof(TLS_GROUP_INFO) * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
276 ctx->group_list_max_len += TLS_GROUP_LIST_MALLOC_BLOCK_SIZE;
277 }
278
279 ginf = &ctx->group_list[ctx->group_list_len];
280
281 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME);
282 if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
283 SSLerr(0, ERR_R_PASSED_INVALID_ARGUMENT);
284 goto err;
285 }
286 ginf->tlsname = OPENSSL_strdup(p->data);
287 if (ginf->tlsname == NULL) {
288 SSLerr(0, ERR_R_MALLOC_FAILURE);
289 goto err;
290 }
291
292 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME_INTERNAL);
293 if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
294 SSLerr(0, ERR_R_PASSED_INVALID_ARGUMENT);
295 goto err;
296 }
297 ginf->realname = OPENSSL_strdup(p->data);
298 if (ginf->realname == NULL) {
299 SSLerr(0, ERR_R_MALLOC_FAILURE);
300 goto err;
301 }
302
303 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ID);
304 if (p == NULL || !OSSL_PARAM_get_uint(p, &gid) || gid > UINT16_MAX) {
305 SSLerr(0, ERR_R_PASSED_INVALID_ARGUMENT);
306 goto err;
307 }
308 ginf->group_id = (uint16_t)gid;
309
310 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ALG);
311 if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
312 SSLerr(0, ERR_R_PASSED_INVALID_ARGUMENT);
313 goto err;
314 }
315 ginf->algorithm = OPENSSL_strdup(p->data);
316 if (ginf->algorithm == NULL) {
317 SSLerr(0, ERR_R_MALLOC_FAILURE);
318 goto err;
319 }
320
321 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_SECURITY_BITS);
322 if (p == NULL || !OSSL_PARAM_get_uint(p, &ginf->secbits)) {
323 SSLerr(0, ERR_R_PASSED_INVALID_ARGUMENT);
324 goto err;
325 }
326
327 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_TLS);
328 if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mintls)) {
329 SSLerr(0, ERR_R_PASSED_INVALID_ARGUMENT);
330 goto err;
331 }
332
333 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_TLS);
334 if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxtls)) {
335 SSLerr(0, ERR_R_PASSED_INVALID_ARGUMENT);
336 goto err;
337 }
338
339 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_DTLS);
340 if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mindtls)) {
341 SSLerr(0, ERR_R_PASSED_INVALID_ARGUMENT);
342 goto err;
343 }
344
345 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_DTLS);
346 if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxdtls)) {
347 SSLerr(0, ERR_R_PASSED_INVALID_ARGUMENT);
348 goto err;
349 }
350 /*
351 * Now check that the algorithm is actually usable for our property query
352 * string. Regardless of the result we still return success because we have
353 * successfully processed this group, even though we may decide not to use
354 * it.
355 */
356 ret = 1;
357 keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, ginf->algorithm, ctx->propq);
358 if (keymgmt != NULL) {
359 /*
360 * We have successfully fetched the algorithm - however if the provider
361 * doesn't match this one then we ignore it.
362 *
363 * Note: We're cheating a little here. Technically if the same algorithm
364 * is available from more than one provider then it is undefined which
365 * implementation you will get back. Theoretically this could be
366 * different every time...we assume here that you'll always get the
367 * same one back if you repeat the exact same fetch. Is this a reasonable
368 * assumption to make (in which case perhaps we should document this
369 * behaviour)?
370 */
371 if (EVP_KEYMGMT_provider(keymgmt) == provider) {
372 /* We have a match - so we will use this group */
373 ctx->group_list_len++;
374 ginf = NULL;
375 }
376 EVP_KEYMGMT_free(keymgmt);
377 }
378 err:
379 if (ginf != NULL) {
380 OPENSSL_free(ginf->tlsname);
381 OPENSSL_free(ginf->realname);
382 OPENSSL_free(ginf->algorithm);
383 ginf->tlsname = ginf->realname = NULL;
384 }
385 return ret;
386 }
387
388 static int discover_provider_groups(OSSL_PROVIDER *provider, void *vctx)
389 {
390 struct provider_group_data_st pgd;
391
392 pgd.ctx = vctx;
393 pgd.provider = provider;
394 return OSSL_PROVIDER_get_capabilities(provider, "TLS-GROUP",
395 add_provider_groups, &pgd);
396 }
397
398 int ssl_load_groups(SSL_CTX *ctx)
399 {
400 return OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_groups, ctx);
401 }
402
403 static uint16_t tls1_group_name2id(SSL_CTX *ctx, const char *name)
404 {
405 size_t i;
406 int nid = NID_undef;
407
408 /* See if we can identify a nid for this name */
409 #ifndef OPENSSL_NO_EC
410 nid = EC_curve_nist2nid(name);
411 #endif
412 if (nid == NID_undef)
413 nid = OBJ_sn2nid(name);
414 if (nid == NID_undef)
415 nid = OBJ_ln2nid(name);
416
417 for (i = 0; i < ctx->group_list_len; i++) {
418 if (strcmp(ctx->group_list[i].tlsname, name) == 0
419 || (nid != NID_undef
420 && nid == tls1_group_id2nid(ctx->group_list[i].group_id,
421 0)))
422 return ctx->group_list[i].group_id;
423 }
424
425 return 0;
426 }
427
428 const TLS_GROUP_INFO *tls1_group_id_lookup(SSL_CTX *ctx, uint16_t group_id)
429 {
430 size_t i;
431
432 for (i = 0; i < ctx->group_list_len; i++) {
433 if (ctx->group_list[i].group_id == group_id)
434 return &ctx->group_list[i];
435 }
436
437 return NULL;
438 }
439
440 #if !defined(OPENSSL_NO_DH) || !defined(OPENSSL_NO_EC)
441 int tls1_group_id2nid(uint16_t group_id, int include_unknown)
442 {
443 size_t i;
444
445 if (group_id == 0)
446 return NID_undef;
447
448 /*
449 * Return well known Group NIDs - for backwards compatibility. This won't
450 * work for groups we don't know about.
451 */
452 for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
453 {
454 if (nid_to_group[i].group_id == group_id)
455 return nid_to_group[i].nid;
456 }
457 if (!include_unknown)
458 return NID_undef;
459 return TLSEXT_nid_unknown | (int)group_id;
460 }
461
462 static uint16_t tls1_nid2group_id(int nid)
463 {
464 size_t i;
465
466 /*
467 * Return well known Group ids - for backwards compatibility. This won't
468 * work for groups we don't know about.
469 */
470 for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
471 {
472 if (nid_to_group[i].nid == nid)
473 return nid_to_group[i].group_id;
474 }
475
476 return 0;
477 }
478 #endif /* !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_DH) */
479
480 /*
481 * Set *pgroups to the supported groups list and *pgroupslen to
482 * the number of groups supported.
483 */
484 void tls1_get_supported_groups(SSL *s, const uint16_t **pgroups,
485 size_t *pgroupslen)
486 {
487 #if !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_DH)
488 /* For Suite B mode only include P-256, P-384 */
489 switch (tls1_suiteb(s)) {
490 # ifndef OPENSSL_NO_EC
491 case SSL_CERT_FLAG_SUITEB_128_LOS:
492 *pgroups = suiteb_curves;
493 *pgroupslen = OSSL_NELEM(suiteb_curves);
494 break;
495
496 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
497 *pgroups = suiteb_curves;
498 *pgroupslen = 1;
499 break;
500
501 case SSL_CERT_FLAG_SUITEB_192_LOS:
502 *pgroups = suiteb_curves + 1;
503 *pgroupslen = 1;
504 break;
505 # endif
506
507 default:
508 if (s->ext.supportedgroups == NULL) {
509 *pgroups = supported_groups_default;
510 *pgroupslen = OSSL_NELEM(supported_groups_default);
511 } else {
512 *pgroups = s->ext.supportedgroups;
513 *pgroupslen = s->ext.supportedgroups_len;
514 }
515 break;
516 }
517 #else
518 *pgroups = NULL;
519 *pgroupslen = 0;
520 #endif /* !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_DH) */
521 }
522
523 int tls_valid_group(SSL *s, uint16_t group_id, int minversion, int maxversion)
524 {
525 const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(s->ctx, group_id);
526 int ret;
527
528 if (ginfo == NULL)
529 return 0;
530
531 if (SSL_IS_DTLS(s)) {
532 if (ginfo->mindtls < 0 || ginfo->maxdtls < 0)
533 return 0;
534 if (ginfo->maxdtls == 0)
535 ret = 1;
536 else
537 ret = DTLS_VERSION_LE(minversion, ginfo->maxdtls);
538 if (ginfo->mindtls > 0)
539 ret &= DTLS_VERSION_GE(maxversion, ginfo->mindtls);
540 } else {
541 if (ginfo->mintls < 0 || ginfo->maxtls < 0)
542 return 0;
543 if (ginfo->maxtls == 0)
544 ret = 1;
545 else
546 ret = (minversion <= ginfo->maxtls);
547 if (ginfo->mintls > 0)
548 ret &= (maxversion >= ginfo->mintls);
549 }
550
551 return ret;
552 }
553
554 /* See if group is allowed by security callback */
555 int tls_group_allowed(SSL *s, uint16_t group, int op)
556 {
557 const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(s->ctx, group);
558 unsigned char gtmp[2];
559
560 if (ginfo == NULL)
561 return 0;
562
563 gtmp[0] = group >> 8;
564 gtmp[1] = group & 0xff;
565 return ssl_security(s, op, ginfo->secbits,
566 tls1_group_id2nid(ginfo->group_id, 0), (void *)gtmp);
567 }
568
569 /* Return 1 if "id" is in "list" */
570 static int tls1_in_list(uint16_t id, const uint16_t *list, size_t listlen)
571 {
572 size_t i;
573 for (i = 0; i < listlen; i++)
574 if (list[i] == id)
575 return 1;
576 return 0;
577 }
578
579 /*-
580 * For nmatch >= 0, return the id of the |nmatch|th shared group or 0
581 * if there is no match.
582 * For nmatch == -1, return number of matches
583 * For nmatch == -2, return the id of the group to use for
584 * a tmp key, or 0 if there is no match.
585 */
586 uint16_t tls1_shared_group(SSL *s, int nmatch)
587 {
588 const uint16_t *pref, *supp;
589 size_t num_pref, num_supp, i;
590 int k;
591
592 /* Can't do anything on client side */
593 if (s->server == 0)
594 return 0;
595 if (nmatch == -2) {
596 if (tls1_suiteb(s)) {
597 /*
598 * For Suite B ciphersuite determines curve: we already know
599 * these are acceptable due to previous checks.
600 */
601 unsigned long cid = s->s3.tmp.new_cipher->id;
602
603 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
604 return TLSEXT_curve_P_256;
605 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
606 return TLSEXT_curve_P_384;
607 /* Should never happen */
608 return 0;
609 }
610 /* If not Suite B just return first preference shared curve */
611 nmatch = 0;
612 }
613 /*
614 * If server preference set, our groups are the preference order
615 * otherwise peer decides.
616 */
617 if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) {
618 tls1_get_supported_groups(s, &pref, &num_pref);
619 tls1_get_peer_groups(s, &supp, &num_supp);
620 } else {
621 tls1_get_peer_groups(s, &pref, &num_pref);
622 tls1_get_supported_groups(s, &supp, &num_supp);
623 }
624
625 for (k = 0, i = 0; i < num_pref; i++) {
626 uint16_t id = pref[i];
627
628 if (!tls1_in_list(id, supp, num_supp)
629 || !tls_group_allowed(s, id, SSL_SECOP_CURVE_SHARED))
630 continue;
631 if (nmatch == k)
632 return id;
633 k++;
634 }
635 if (nmatch == -1)
636 return k;
637 /* Out of range (nmatch > k). */
638 return 0;
639 }
640
641 int tls1_set_groups(uint16_t **pext, size_t *pextlen,
642 int *groups, size_t ngroups)
643 {
644 #if !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_DH)
645 uint16_t *glist;
646 size_t i;
647 /*
648 * Bitmap of groups included to detect duplicates: two variables are added
649 * to detect duplicates as some values are more than 32.
650 */
651 unsigned long *dup_list = NULL;
652 unsigned long dup_list_egrp = 0;
653 unsigned long dup_list_dhgrp = 0;
654
655 if (ngroups == 0) {
656 SSLerr(SSL_F_TLS1_SET_GROUPS, SSL_R_BAD_LENGTH);
657 return 0;
658 }
659 if ((glist = OPENSSL_malloc(ngroups * sizeof(*glist))) == NULL) {
660 SSLerr(SSL_F_TLS1_SET_GROUPS, ERR_R_MALLOC_FAILURE);
661 return 0;
662 }
663 for (i = 0; i < ngroups; i++) {
664 unsigned long idmask;
665 uint16_t id;
666 id = tls1_nid2group_id(groups[i]);
667 if ((id & 0x00FF) >= (sizeof(unsigned long) * 8))
668 goto err;
669 idmask = 1L << (id & 0x00FF);
670 dup_list = (id < 0x100) ? &dup_list_egrp : &dup_list_dhgrp;
671 if (!id || ((*dup_list) & idmask))
672 goto err;
673 *dup_list |= idmask;
674 glist[i] = id;
675 }
676 OPENSSL_free(*pext);
677 *pext = glist;
678 *pextlen = ngroups;
679 return 1;
680 err:
681 OPENSSL_free(glist);
682 return 0;
683 #else
684 return 0;
685 #endif /* !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_DH) */
686 }
687
688 /* TODO(3.0): An arbitrary amount for now. Take another look at this */
689 # define MAX_GROUPLIST 40
690
691 typedef struct {
692 SSL_CTX *ctx;
693 size_t gidcnt;
694 uint16_t gid_arr[MAX_GROUPLIST];
695 } gid_cb_st;
696
697 static int gid_cb(const char *elem, int len, void *arg)
698 {
699 gid_cb_st *garg = arg;
700 size_t i;
701 uint16_t gid = 0;
702 char etmp[20];
703
704 if (elem == NULL)
705 return 0;
706 if (garg->gidcnt == MAX_GROUPLIST)
707 return 0;
708 if (len > (int)(sizeof(etmp) - 1))
709 return 0;
710 memcpy(etmp, elem, len);
711 etmp[len] = 0;
712
713 gid = tls1_group_name2id(garg->ctx, etmp);
714 if (gid == 0)
715 return 0;
716 for (i = 0; i < garg->gidcnt; i++)
717 if (garg->gid_arr[i] == gid)
718 return 0;
719 garg->gid_arr[garg->gidcnt++] = gid;
720 return 1;
721 }
722
723 /* Set groups based on a colon separated list */
724 int tls1_set_groups_list(SSL_CTX *ctx, uint16_t **pext, size_t *pextlen,
725 const char *str)
726 {
727 gid_cb_st gcb;
728 uint16_t *tmparr;
729
730 gcb.gidcnt = 0;
731 gcb.ctx = ctx;
732 if (!CONF_parse_list(str, ':', 1, gid_cb, &gcb))
733 return 0;
734 if (pext == NULL)
735 return 1;
736
737 /*
738 * gid_cb ensurse there are no duplicates so we can just go ahead and set
739 * the result
740 */
741 tmparr = OPENSSL_memdup(gcb.gid_arr, gcb.gidcnt * sizeof(*tmparr));
742 if (tmparr == NULL)
743 return 0;
744 *pext = tmparr;
745 *pextlen = gcb.gidcnt;
746 return 1;
747 }
748
749 /* Check a group id matches preferences */
750 int tls1_check_group_id(SSL *s, uint16_t group_id, int check_own_groups)
751 {
752 const uint16_t *groups;
753 size_t groups_len;
754
755 if (group_id == 0)
756 return 0;
757
758 /* Check for Suite B compliance */
759 if (tls1_suiteb(s) && s->s3.tmp.new_cipher != NULL) {
760 unsigned long cid = s->s3.tmp.new_cipher->id;
761
762 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) {
763 if (group_id != TLSEXT_curve_P_256)
764 return 0;
765 } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) {
766 if (group_id != TLSEXT_curve_P_384)
767 return 0;
768 } else {
769 /* Should never happen */
770 return 0;
771 }
772 }
773
774 if (check_own_groups) {
775 /* Check group is one of our preferences */
776 tls1_get_supported_groups(s, &groups, &groups_len);
777 if (!tls1_in_list(group_id, groups, groups_len))
778 return 0;
779 }
780
781 if (!tls_group_allowed(s, group_id, SSL_SECOP_CURVE_CHECK))
782 return 0;
783
784 /* For clients, nothing more to check */
785 if (!s->server)
786 return 1;
787
788 /* Check group is one of peers preferences */
789 tls1_get_peer_groups(s, &groups, &groups_len);
790
791 /*
792 * RFC 4492 does not require the supported elliptic curves extension
793 * so if it is not sent we can just choose any curve.
794 * It is invalid to send an empty list in the supported groups
795 * extension, so groups_len == 0 always means no extension.
796 */
797 if (groups_len == 0)
798 return 1;
799 return tls1_in_list(group_id, groups, groups_len);
800 }
801
802 #ifndef OPENSSL_NO_EC
803 void tls1_get_formatlist(SSL *s, const unsigned char **pformats,
804 size_t *num_formats)
805 {
806 /*
807 * If we have a custom point format list use it otherwise use default
808 */
809 if (s->ext.ecpointformats) {
810 *pformats = s->ext.ecpointformats;
811 *num_formats = s->ext.ecpointformats_len;
812 } else {
813 *pformats = ecformats_default;
814 /* For Suite B we don't support char2 fields */
815 if (tls1_suiteb(s))
816 *num_formats = sizeof(ecformats_default) - 1;
817 else
818 *num_formats = sizeof(ecformats_default);
819 }
820 }
821
822 /* Check a key is compatible with compression extension */
823 static int tls1_check_pkey_comp(SSL *s, EVP_PKEY *pkey)
824 {
825 const EC_KEY *ec;
826 const EC_GROUP *grp;
827 unsigned char comp_id;
828 size_t i;
829
830 /* If not an EC key nothing to check */
831 if (!EVP_PKEY_is_a(pkey, "EC"))
832 return 1;
833 ec = EVP_PKEY_get0_EC_KEY(pkey);
834 grp = EC_KEY_get0_group(ec);
835
836 /* Get required compression id */
837 if (EC_KEY_get_conv_form(ec) == POINT_CONVERSION_UNCOMPRESSED) {
838 comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;
839 } else if (SSL_IS_TLS13(s)) {
840 /*
841 * ec_point_formats extension is not used in TLSv1.3 so we ignore
842 * this check.
843 */
844 return 1;
845 } else {
846 int field_type = EC_GROUP_get_field_type(grp);
847
848 if (field_type == NID_X9_62_prime_field)
849 comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime;
850 else if (field_type == NID_X9_62_characteristic_two_field)
851 comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2;
852 else
853 return 0;
854 }
855 /*
856 * If point formats extension present check it, otherwise everything is
857 * supported (see RFC4492).
858 */
859 if (s->ext.peer_ecpointformats == NULL)
860 return 1;
861
862 for (i = 0; i < s->ext.peer_ecpointformats_len; i++) {
863 if (s->ext.peer_ecpointformats[i] == comp_id)
864 return 1;
865 }
866 return 0;
867 }
868
869 /* Return group id of a key */
870 static uint16_t tls1_get_group_id(EVP_PKEY *pkey)
871 {
872 int curve_nid = evp_pkey_get_EC_KEY_curve_nid(pkey);
873
874 if (curve_nid == NID_undef)
875 return 0;
876 return tls1_nid2group_id(curve_nid);
877 }
878
879 /*
880 * Check cert parameters compatible with extensions: currently just checks EC
881 * certificates have compatible curves and compression.
882 */
883 static int tls1_check_cert_param(SSL *s, X509 *x, int check_ee_md)
884 {
885 uint16_t group_id;
886 EVP_PKEY *pkey;
887 pkey = X509_get0_pubkey(x);
888 if (pkey == NULL)
889 return 0;
890 /* If not EC nothing to do */
891 if (!EVP_PKEY_is_a(pkey, "EC"))
892 return 1;
893 /* Check compression */
894 if (!tls1_check_pkey_comp(s, pkey))
895 return 0;
896 group_id = tls1_get_group_id(pkey);
897 /*
898 * For a server we allow the certificate to not be in our list of supported
899 * groups.
900 */
901 if (!tls1_check_group_id(s, group_id, !s->server))
902 return 0;
903 /*
904 * Special case for suite B. We *MUST* sign using SHA256+P-256 or
905 * SHA384+P-384.
906 */
907 if (check_ee_md && tls1_suiteb(s)) {
908 int check_md;
909 size_t i;
910
911 /* Check to see we have necessary signing algorithm */
912 if (group_id == TLSEXT_curve_P_256)
913 check_md = NID_ecdsa_with_SHA256;
914 else if (group_id == TLSEXT_curve_P_384)
915 check_md = NID_ecdsa_with_SHA384;
916 else
917 return 0; /* Should never happen */
918 for (i = 0; i < s->shared_sigalgslen; i++) {
919 if (check_md == s->shared_sigalgs[i]->sigandhash)
920 return 1;;
921 }
922 return 0;
923 }
924 return 1;
925 }
926
927 /*
928 * tls1_check_ec_tmp_key - Check EC temporary key compatibility
929 * @s: SSL connection
930 * @cid: Cipher ID we're considering using
931 *
932 * Checks that the kECDHE cipher suite we're considering using
933 * is compatible with the client extensions.
934 *
935 * Returns 0 when the cipher can't be used or 1 when it can.
936 */
937 int tls1_check_ec_tmp_key(SSL *s, unsigned long cid)
938 {
939 /* If not Suite B just need a shared group */
940 if (!tls1_suiteb(s))
941 return tls1_shared_group(s, 0) != 0;
942 /*
943 * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other
944 * curves permitted.
945 */
946 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
947 return tls1_check_group_id(s, TLSEXT_curve_P_256, 1);
948 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
949 return tls1_check_group_id(s, TLSEXT_curve_P_384, 1);
950
951 return 0;
952 }
953
954 #else
955
956 static int tls1_check_cert_param(SSL *s, X509 *x, int set_ee_md)
957 {
958 return 1;
959 }
960
961 #endif /* OPENSSL_NO_EC */
962
963 /* Default sigalg schemes */
964 static const uint16_t tls12_sigalgs[] = {
965 #ifndef OPENSSL_NO_EC
966 TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
967 TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
968 TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
969 TLSEXT_SIGALG_ed25519,
970 TLSEXT_SIGALG_ed448,
971 #endif
972
973 TLSEXT_SIGALG_rsa_pss_pss_sha256,
974 TLSEXT_SIGALG_rsa_pss_pss_sha384,
975 TLSEXT_SIGALG_rsa_pss_pss_sha512,
976 TLSEXT_SIGALG_rsa_pss_rsae_sha256,
977 TLSEXT_SIGALG_rsa_pss_rsae_sha384,
978 TLSEXT_SIGALG_rsa_pss_rsae_sha512,
979
980 TLSEXT_SIGALG_rsa_pkcs1_sha256,
981 TLSEXT_SIGALG_rsa_pkcs1_sha384,
982 TLSEXT_SIGALG_rsa_pkcs1_sha512,
983
984 #ifndef OPENSSL_NO_EC
985 TLSEXT_SIGALG_ecdsa_sha224,
986 TLSEXT_SIGALG_ecdsa_sha1,
987 #endif
988 TLSEXT_SIGALG_rsa_pkcs1_sha224,
989 TLSEXT_SIGALG_rsa_pkcs1_sha1,
990 #ifndef OPENSSL_NO_DSA
991 TLSEXT_SIGALG_dsa_sha224,
992 TLSEXT_SIGALG_dsa_sha1,
993
994 TLSEXT_SIGALG_dsa_sha256,
995 TLSEXT_SIGALG_dsa_sha384,
996 TLSEXT_SIGALG_dsa_sha512,
997 #endif
998 #ifndef OPENSSL_NO_GOST
999 TLSEXT_SIGALG_gostr34102012_256_intrinsic,
1000 TLSEXT_SIGALG_gostr34102012_512_intrinsic,
1001 TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
1002 TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
1003 TLSEXT_SIGALG_gostr34102001_gostr3411,
1004 #endif
1005 };
1006
1007 #ifndef OPENSSL_NO_EC
1008 static const uint16_t suiteb_sigalgs[] = {
1009 TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1010 TLSEXT_SIGALG_ecdsa_secp384r1_sha384
1011 };
1012 #endif
1013
1014 static const SIGALG_LOOKUP sigalg_lookup_tbl[] = {
1015 #ifndef OPENSSL_NO_EC
1016 {"ecdsa_secp256r1_sha256", TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1017 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1018 NID_ecdsa_with_SHA256, NID_X9_62_prime256v1, 1},
1019 {"ecdsa_secp384r1_sha384", TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
1020 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1021 NID_ecdsa_with_SHA384, NID_secp384r1, 1},
1022 {"ecdsa_secp521r1_sha512", TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
1023 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1024 NID_ecdsa_with_SHA512, NID_secp521r1, 1},
1025 {"ed25519", TLSEXT_SIGALG_ed25519,
1026 NID_undef, -1, EVP_PKEY_ED25519, SSL_PKEY_ED25519,
1027 NID_undef, NID_undef, 1},
1028 {"ed448", TLSEXT_SIGALG_ed448,
1029 NID_undef, -1, EVP_PKEY_ED448, SSL_PKEY_ED448,
1030 NID_undef, NID_undef, 1},
1031 {NULL, TLSEXT_SIGALG_ecdsa_sha224,
1032 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1033 NID_ecdsa_with_SHA224, NID_undef, 1},
1034 {NULL, TLSEXT_SIGALG_ecdsa_sha1,
1035 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1036 NID_ecdsa_with_SHA1, NID_undef, 1},
1037 #endif
1038 {"rsa_pss_rsae_sha256", TLSEXT_SIGALG_rsa_pss_rsae_sha256,
1039 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1040 NID_undef, NID_undef, 1},
1041 {"rsa_pss_rsae_sha384", TLSEXT_SIGALG_rsa_pss_rsae_sha384,
1042 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1043 NID_undef, NID_undef, 1},
1044 {"rsa_pss_rsae_sha512", TLSEXT_SIGALG_rsa_pss_rsae_sha512,
1045 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1046 NID_undef, NID_undef, 1},
1047 {"rsa_pss_pss_sha256", TLSEXT_SIGALG_rsa_pss_pss_sha256,
1048 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1049 NID_undef, NID_undef, 1},
1050 {"rsa_pss_pss_sha384", TLSEXT_SIGALG_rsa_pss_pss_sha384,
1051 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1052 NID_undef, NID_undef, 1},
1053 {"rsa_pss_pss_sha512", TLSEXT_SIGALG_rsa_pss_pss_sha512,
1054 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1055 NID_undef, NID_undef, 1},
1056 {"rsa_pkcs1_sha256", TLSEXT_SIGALG_rsa_pkcs1_sha256,
1057 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1058 NID_sha256WithRSAEncryption, NID_undef, 1},
1059 {"rsa_pkcs1_sha384", TLSEXT_SIGALG_rsa_pkcs1_sha384,
1060 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1061 NID_sha384WithRSAEncryption, NID_undef, 1},
1062 {"rsa_pkcs1_sha512", TLSEXT_SIGALG_rsa_pkcs1_sha512,
1063 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1064 NID_sha512WithRSAEncryption, NID_undef, 1},
1065 {"rsa_pkcs1_sha224", TLSEXT_SIGALG_rsa_pkcs1_sha224,
1066 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1067 NID_sha224WithRSAEncryption, NID_undef, 1},
1068 {"rsa_pkcs1_sha1", TLSEXT_SIGALG_rsa_pkcs1_sha1,
1069 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1070 NID_sha1WithRSAEncryption, NID_undef, 1},
1071 #ifndef OPENSSL_NO_DSA
1072 {NULL, TLSEXT_SIGALG_dsa_sha256,
1073 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1074 NID_dsa_with_SHA256, NID_undef, 1},
1075 {NULL, TLSEXT_SIGALG_dsa_sha384,
1076 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1077 NID_undef, NID_undef, 1},
1078 {NULL, TLSEXT_SIGALG_dsa_sha512,
1079 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1080 NID_undef, NID_undef, 1},
1081 {NULL, TLSEXT_SIGALG_dsa_sha224,
1082 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1083 NID_undef, NID_undef, 1},
1084 {NULL, TLSEXT_SIGALG_dsa_sha1,
1085 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1086 NID_dsaWithSHA1, NID_undef, 1},
1087 #endif
1088 #ifndef OPENSSL_NO_GOST
1089 {NULL, TLSEXT_SIGALG_gostr34102012_256_intrinsic,
1090 NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
1091 NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
1092 NID_undef, NID_undef, 1},
1093 {NULL, TLSEXT_SIGALG_gostr34102012_512_intrinsic,
1094 NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
1095 NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
1096 NID_undef, NID_undef, 1},
1097 {NULL, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
1098 NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
1099 NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
1100 NID_undef, NID_undef, 1},
1101 {NULL, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
1102 NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
1103 NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
1104 NID_undef, NID_undef, 1},
1105 {NULL, TLSEXT_SIGALG_gostr34102001_gostr3411,
1106 NID_id_GostR3411_94, SSL_MD_GOST94_IDX,
1107 NID_id_GostR3410_2001, SSL_PKEY_GOST01,
1108 NID_undef, NID_undef, 1}
1109 #endif
1110 };
1111 /* Legacy sigalgs for TLS < 1.2 RSA TLS signatures */
1112 static const SIGALG_LOOKUP legacy_rsa_sigalg = {
1113 "rsa_pkcs1_md5_sha1", 0,
1114 NID_md5_sha1, SSL_MD_MD5_SHA1_IDX,
1115 EVP_PKEY_RSA, SSL_PKEY_RSA,
1116 NID_undef, NID_undef, 1
1117 };
1118
1119 /*
1120 * Default signature algorithm values used if signature algorithms not present.
1121 * From RFC5246. Note: order must match certificate index order.
1122 */
1123 static const uint16_t tls_default_sigalg[] = {
1124 TLSEXT_SIGALG_rsa_pkcs1_sha1, /* SSL_PKEY_RSA */
1125 0, /* SSL_PKEY_RSA_PSS_SIGN */
1126 TLSEXT_SIGALG_dsa_sha1, /* SSL_PKEY_DSA_SIGN */
1127 TLSEXT_SIGALG_ecdsa_sha1, /* SSL_PKEY_ECC */
1128 TLSEXT_SIGALG_gostr34102001_gostr3411, /* SSL_PKEY_GOST01 */
1129 TLSEXT_SIGALG_gostr34102012_256_intrinsic, /* SSL_PKEY_GOST12_256 */
1130 TLSEXT_SIGALG_gostr34102012_512_intrinsic, /* SSL_PKEY_GOST12_512 */
1131 0, /* SSL_PKEY_ED25519 */
1132 0, /* SSL_PKEY_ED448 */
1133 };
1134
1135 int ssl_setup_sig_algs(SSL_CTX *ctx)
1136 {
1137 size_t i;
1138 const SIGALG_LOOKUP *lu;
1139 SIGALG_LOOKUP *cache
1140 = OPENSSL_malloc(sizeof(*lu) * OSSL_NELEM(sigalg_lookup_tbl));
1141 EVP_PKEY *tmpkey = EVP_PKEY_new();
1142 int ret = 0;
1143
1144 if (cache == NULL || tmpkey == NULL)
1145 goto err;
1146
1147 ERR_set_mark();
1148 for (i = 0, lu = sigalg_lookup_tbl;
1149 i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) {
1150 EVP_PKEY_CTX *pctx;
1151
1152 cache[i] = *lu;
1153
1154 /*
1155 * Check hash is available.
1156 * TODO(3.0): This test is not perfect. A provider could have support
1157 * for a signature scheme, but not a particular hash. However the hash
1158 * could be available from some other loaded provider. In that case it
1159 * could be that the signature is available, and the hash is available
1160 * independently - but not as a combination. We ignore this for now.
1161 */
1162 if (lu->hash != NID_undef
1163 && ctx->ssl_digest_methods[lu->hash_idx] == NULL) {
1164 cache[i].enabled = 0;
1165 continue;
1166 }
1167
1168 if (!EVP_PKEY_set_type(tmpkey, lu->sig)) {
1169 cache[i].enabled = 0;
1170 continue;
1171 }
1172 pctx = EVP_PKEY_CTX_new_from_pkey(ctx->libctx, tmpkey, ctx->propq);
1173 /* If unable to create pctx we assume the sig algorithm is unavailable */
1174 if (pctx == NULL)
1175 cache[i].enabled = 0;
1176 EVP_PKEY_CTX_free(pctx);
1177 }
1178 ERR_pop_to_mark();
1179 ctx->sigalg_lookup_cache = cache;
1180 cache = NULL;
1181
1182 ret = 1;
1183 err:
1184 OPENSSL_free(cache);
1185 EVP_PKEY_free(tmpkey);
1186 return ret;
1187 }
1188
1189 /* Lookup TLS signature algorithm */
1190 static const SIGALG_LOOKUP *tls1_lookup_sigalg(const SSL *s, uint16_t sigalg)
1191 {
1192 size_t i;
1193 const SIGALG_LOOKUP *lu;
1194
1195 for (i = 0, lu = s->ctx->sigalg_lookup_cache;
1196 /* cache should have the same number of elements as sigalg_lookup_tbl */
1197 i < OSSL_NELEM(sigalg_lookup_tbl);
1198 lu++, i++) {
1199 if (lu->sigalg == sigalg)
1200 return lu;
1201 }
1202 return NULL;
1203 }
1204 /* Lookup hash: return 0 if invalid or not enabled */
1205 int tls1_lookup_md(SSL_CTX *ctx, const SIGALG_LOOKUP *lu, const EVP_MD **pmd)
1206 {
1207 const EVP_MD *md;
1208 if (lu == NULL)
1209 return 0;
1210 /* lu->hash == NID_undef means no associated digest */
1211 if (lu->hash == NID_undef) {
1212 md = NULL;
1213 } else {
1214 md = ssl_md(ctx, lu->hash_idx);
1215 if (md == NULL)
1216 return 0;
1217 }
1218 if (pmd)
1219 *pmd = md;
1220 return 1;
1221 }
1222
1223 /*
1224 * Check if key is large enough to generate RSA-PSS signature.
1225 *
1226 * The key must greater than or equal to 2 * hash length + 2.
1227 * SHA512 has a hash length of 64 bytes, which is incompatible
1228 * with a 128 byte (1024 bit) key.
1229 */
1230 #define RSA_PSS_MINIMUM_KEY_SIZE(md) (2 * EVP_MD_size(md) + 2)
1231 static int rsa_pss_check_min_key_size(SSL_CTX *ctx, const EVP_PKEY *pkey,
1232 const SIGALG_LOOKUP *lu)
1233 {
1234 const EVP_MD *md;
1235
1236 if (pkey == NULL)
1237 return 0;
1238 if (!tls1_lookup_md(ctx, lu, &md) || md == NULL)
1239 return 0;
1240 if (EVP_PKEY_size(pkey) < RSA_PSS_MINIMUM_KEY_SIZE(md))
1241 return 0;
1242 return 1;
1243 }
1244
1245 /*
1246 * Returns a signature algorithm when the peer did not send a list of supported
1247 * signature algorithms. The signature algorithm is fixed for the certificate
1248 * type. |idx| is a certificate type index (SSL_PKEY_*). When |idx| is -1 the
1249 * certificate type from |s| will be used.
1250 * Returns the signature algorithm to use, or NULL on error.
1251 */
1252 static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL *s, int idx)
1253 {
1254 if (idx == -1) {
1255 if (s->server) {
1256 size_t i;
1257
1258 /* Work out index corresponding to ciphersuite */
1259 for (i = 0; i < SSL_PKEY_NUM; i++) {
1260 const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(i);
1261
1262 if (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) {
1263 idx = i;
1264 break;
1265 }
1266 }
1267
1268 /*
1269 * Some GOST ciphersuites allow more than one signature algorithms
1270 * */
1271 if (idx == SSL_PKEY_GOST01 && s->s3.tmp.new_cipher->algorithm_auth != SSL_aGOST01) {
1272 int real_idx;
1273
1274 for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST01;
1275 real_idx--) {
1276 if (s->cert->pkeys[real_idx].privatekey != NULL) {
1277 idx = real_idx;
1278 break;
1279 }
1280 }
1281 }
1282 /*
1283 * As both SSL_PKEY_GOST12_512 and SSL_PKEY_GOST12_256 indices can be used
1284 * with new (aGOST12-only) ciphersuites, we should find out which one is available really.
1285 */
1286 else if (idx == SSL_PKEY_GOST12_256) {
1287 int real_idx;
1288
1289 for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST12_256;
1290 real_idx--) {
1291 if (s->cert->pkeys[real_idx].privatekey != NULL) {
1292 idx = real_idx;
1293 break;
1294 }
1295 }
1296 }
1297 } else {
1298 idx = s->cert->key - s->cert->pkeys;
1299 }
1300 }
1301 if (idx < 0 || idx >= (int)OSSL_NELEM(tls_default_sigalg))
1302 return NULL;
1303 if (SSL_USE_SIGALGS(s) || idx != SSL_PKEY_RSA) {
1304 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, tls_default_sigalg[idx]);
1305
1306 if (!tls1_lookup_md(s->ctx, lu, NULL))
1307 return NULL;
1308 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
1309 return NULL;
1310 return lu;
1311 }
1312 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, &legacy_rsa_sigalg))
1313 return NULL;
1314 return &legacy_rsa_sigalg;
1315 }
1316 /* Set peer sigalg based key type */
1317 int tls1_set_peer_legacy_sigalg(SSL *s, const EVP_PKEY *pkey)
1318 {
1319 size_t idx;
1320 const SIGALG_LOOKUP *lu;
1321
1322 if (ssl_cert_lookup_by_pkey(pkey, &idx) == NULL)
1323 return 0;
1324 lu = tls1_get_legacy_sigalg(s, idx);
1325 if (lu == NULL)
1326 return 0;
1327 s->s3.tmp.peer_sigalg = lu;
1328 return 1;
1329 }
1330
1331 size_t tls12_get_psigalgs(SSL *s, int sent, const uint16_t **psigs)
1332 {
1333 /*
1334 * If Suite B mode use Suite B sigalgs only, ignore any other
1335 * preferences.
1336 */
1337 #ifndef OPENSSL_NO_EC
1338 switch (tls1_suiteb(s)) {
1339 case SSL_CERT_FLAG_SUITEB_128_LOS:
1340 *psigs = suiteb_sigalgs;
1341 return OSSL_NELEM(suiteb_sigalgs);
1342
1343 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
1344 *psigs = suiteb_sigalgs;
1345 return 1;
1346
1347 case SSL_CERT_FLAG_SUITEB_192_LOS:
1348 *psigs = suiteb_sigalgs + 1;
1349 return 1;
1350 }
1351 #endif
1352 /*
1353 * We use client_sigalgs (if not NULL) if we're a server
1354 * and sending a certificate request or if we're a client and
1355 * determining which shared algorithm to use.
1356 */
1357 if ((s->server == sent) && s->cert->client_sigalgs != NULL) {
1358 *psigs = s->cert->client_sigalgs;
1359 return s->cert->client_sigalgslen;
1360 } else if (s->cert->conf_sigalgs) {
1361 *psigs = s->cert->conf_sigalgs;
1362 return s->cert->conf_sigalgslen;
1363 } else {
1364 *psigs = tls12_sigalgs;
1365 return OSSL_NELEM(tls12_sigalgs);
1366 }
1367 }
1368
1369 #ifndef OPENSSL_NO_EC
1370 /*
1371 * Called by servers only. Checks that we have a sig alg that supports the
1372 * specified EC curve.
1373 */
1374 int tls_check_sigalg_curve(const SSL *s, int curve)
1375 {
1376 const uint16_t *sigs;
1377 size_t siglen, i;
1378
1379 if (s->cert->conf_sigalgs) {
1380 sigs = s->cert->conf_sigalgs;
1381 siglen = s->cert->conf_sigalgslen;
1382 } else {
1383 sigs = tls12_sigalgs;
1384 siglen = OSSL_NELEM(tls12_sigalgs);
1385 }
1386
1387 for (i = 0; i < siglen; i++) {
1388 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, sigs[i]);
1389
1390 if (lu == NULL)
1391 continue;
1392 if (lu->sig == EVP_PKEY_EC
1393 && lu->curve != NID_undef
1394 && curve == lu->curve)
1395 return 1;
1396 }
1397
1398 return 0;
1399 }
1400 #endif
1401
1402 /*
1403 * Return the number of security bits for the signature algorithm, or 0 on
1404 * error.
1405 */
1406 static int sigalg_security_bits(SSL_CTX *ctx, const SIGALG_LOOKUP *lu)
1407 {
1408 const EVP_MD *md = NULL;
1409 int secbits = 0;
1410
1411 if (!tls1_lookup_md(ctx, lu, &md))
1412 return 0;
1413 if (md != NULL)
1414 {
1415 int md_type = EVP_MD_type(md);
1416
1417 /* Security bits: half digest bits */
1418 secbits = EVP_MD_size(md) * 4;
1419 /*
1420 * SHA1 and MD5 are known to be broken. Reduce security bits so that
1421 * they're no longer accepted at security level 1. The real values don't
1422 * really matter as long as they're lower than 80, which is our
1423 * security level 1.
1424 * https://eprint.iacr.org/2020/014 puts a chosen-prefix attack for
1425 * SHA1 at 2^63.4 and MD5+SHA1 at 2^67.2
1426 * https://documents.epfl.ch/users/l/le/lenstra/public/papers/lat.pdf
1427 * puts a chosen-prefix attack for MD5 at 2^39.
1428 */
1429 if (md_type == NID_sha1)
1430 secbits = 64;
1431 else if (md_type == NID_md5_sha1)
1432 secbits = 67;
1433 else if (md_type == NID_md5)
1434 secbits = 39;
1435 } else {
1436 /* Values from https://tools.ietf.org/html/rfc8032#section-8.5 */
1437 if (lu->sigalg == TLSEXT_SIGALG_ed25519)
1438 secbits = 128;
1439 else if (lu->sigalg == TLSEXT_SIGALG_ed448)
1440 secbits = 224;
1441 }
1442 return secbits;
1443 }
1444
1445 /*
1446 * Check signature algorithm is consistent with sent supported signature
1447 * algorithms and if so set relevant digest and signature scheme in
1448 * s.
1449 */
1450 int tls12_check_peer_sigalg(SSL *s, uint16_t sig, EVP_PKEY *pkey)
1451 {
1452 const uint16_t *sent_sigs;
1453 const EVP_MD *md = NULL;
1454 char sigalgstr[2];
1455 size_t sent_sigslen, i, cidx;
1456 int pkeyid = -1;
1457 const SIGALG_LOOKUP *lu;
1458 int secbits = 0;
1459
1460 pkeyid = EVP_PKEY_id(pkey);
1461 /* Should never happen */
1462 if (pkeyid == -1)
1463 return -1;
1464 if (SSL_IS_TLS13(s)) {
1465 /* Disallow DSA for TLS 1.3 */
1466 if (pkeyid == EVP_PKEY_DSA) {
1467 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_TLS12_CHECK_PEER_SIGALG,
1468 SSL_R_WRONG_SIGNATURE_TYPE);
1469 return 0;
1470 }
1471 /* Only allow PSS for TLS 1.3 */
1472 if (pkeyid == EVP_PKEY_RSA)
1473 pkeyid = EVP_PKEY_RSA_PSS;
1474 }
1475 lu = tls1_lookup_sigalg(s, sig);
1476 /*
1477 * Check sigalgs is known. Disallow SHA1/SHA224 with TLS 1.3. Check key type
1478 * is consistent with signature: RSA keys can be used for RSA-PSS
1479 */
1480 if (lu == NULL
1481 || (SSL_IS_TLS13(s) && (lu->hash == NID_sha1 || lu->hash == NID_sha224))
1482 || (pkeyid != lu->sig
1483 && (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) {
1484 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_TLS12_CHECK_PEER_SIGALG,
1485 SSL_R_WRONG_SIGNATURE_TYPE);
1486 return 0;
1487 }
1488 /* Check the sigalg is consistent with the key OID */
1489 if (!ssl_cert_lookup_by_nid(EVP_PKEY_id(pkey), &cidx)
1490 || lu->sig_idx != (int)cidx) {
1491 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_TLS12_CHECK_PEER_SIGALG,
1492 SSL_R_WRONG_SIGNATURE_TYPE);
1493 return 0;
1494 }
1495
1496 #ifndef OPENSSL_NO_EC
1497 if (pkeyid == EVP_PKEY_EC) {
1498
1499 /* Check point compression is permitted */
1500 if (!tls1_check_pkey_comp(s, pkey)) {
1501 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
1502 SSL_F_TLS12_CHECK_PEER_SIGALG,
1503 SSL_R_ILLEGAL_POINT_COMPRESSION);
1504 return 0;
1505 }
1506
1507 /* For TLS 1.3 or Suite B check curve matches signature algorithm */
1508 if (SSL_IS_TLS13(s) || tls1_suiteb(s)) {
1509 int curve = evp_pkey_get_EC_KEY_curve_nid(pkey);
1510
1511 if (lu->curve != NID_undef && curve != lu->curve) {
1512 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
1513 SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_CURVE);
1514 return 0;
1515 }
1516 }
1517 if (!SSL_IS_TLS13(s)) {
1518 /* Check curve matches extensions */
1519 if (!tls1_check_group_id(s, tls1_get_group_id(pkey), 1)) {
1520 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
1521 SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_CURVE);
1522 return 0;
1523 }
1524 if (tls1_suiteb(s)) {
1525 /* Check sigalg matches a permissible Suite B value */
1526 if (sig != TLSEXT_SIGALG_ecdsa_secp256r1_sha256
1527 && sig != TLSEXT_SIGALG_ecdsa_secp384r1_sha384) {
1528 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
1529 SSL_F_TLS12_CHECK_PEER_SIGALG,
1530 SSL_R_WRONG_SIGNATURE_TYPE);
1531 return 0;
1532 }
1533 }
1534 }
1535 } else if (tls1_suiteb(s)) {
1536 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS12_CHECK_PEER_SIGALG,
1537 SSL_R_WRONG_SIGNATURE_TYPE);
1538 return 0;
1539 }
1540 #endif
1541
1542 /* Check signature matches a type we sent */
1543 sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
1544 for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
1545 if (sig == *sent_sigs)
1546 break;
1547 }
1548 /* Allow fallback to SHA1 if not strict mode */
1549 if (i == sent_sigslen && (lu->hash != NID_sha1
1550 || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) {
1551 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS12_CHECK_PEER_SIGALG,
1552 SSL_R_WRONG_SIGNATURE_TYPE);
1553 return 0;
1554 }
1555 if (!tls1_lookup_md(s->ctx, lu, &md)) {
1556 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS12_CHECK_PEER_SIGALG,
1557 SSL_R_UNKNOWN_DIGEST);
1558 return 0;
1559 }
1560 /*
1561 * Make sure security callback allows algorithm. For historical
1562 * reasons we have to pass the sigalg as a two byte char array.
1563 */
1564 sigalgstr[0] = (sig >> 8) & 0xff;
1565 sigalgstr[1] = sig & 0xff;
1566 secbits = sigalg_security_bits(s->ctx, lu);
1567 if (secbits == 0 ||
1568 !ssl_security(s, SSL_SECOP_SIGALG_CHECK, secbits,
1569 md != NULL ? EVP_MD_type(md) : NID_undef,
1570 (void *)sigalgstr)) {
1571 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS12_CHECK_PEER_SIGALG,
1572 SSL_R_WRONG_SIGNATURE_TYPE);
1573 return 0;
1574 }
1575 /* Store the sigalg the peer uses */
1576 s->s3.tmp.peer_sigalg = lu;
1577 return 1;
1578 }
1579
1580 int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid)
1581 {
1582 if (s->s3.tmp.peer_sigalg == NULL)
1583 return 0;
1584 *pnid = s->s3.tmp.peer_sigalg->sig;
1585 return 1;
1586 }
1587
1588 int SSL_get_signature_type_nid(const SSL *s, int *pnid)
1589 {
1590 if (s->s3.tmp.sigalg == NULL)
1591 return 0;
1592 *pnid = s->s3.tmp.sigalg->sig;
1593 return 1;
1594 }
1595
1596 /*
1597 * Set a mask of disabled algorithms: an algorithm is disabled if it isn't
1598 * supported, doesn't appear in supported signature algorithms, isn't supported
1599 * by the enabled protocol versions or by the security level.
1600 *
1601 * This function should only be used for checking which ciphers are supported
1602 * by the client.
1603 *
1604 * Call ssl_cipher_disabled() to check that it's enabled or not.
1605 */
1606 int ssl_set_client_disabled(SSL *s)
1607 {
1608 s->s3.tmp.mask_a = 0;
1609 s->s3.tmp.mask_k = 0;
1610 ssl_set_sig_mask(&s->s3.tmp.mask_a, s, SSL_SECOP_SIGALG_MASK);
1611 if (ssl_get_min_max_version(s, &s->s3.tmp.min_ver,
1612 &s->s3.tmp.max_ver, NULL) != 0)
1613 return 0;
1614 #ifndef OPENSSL_NO_PSK
1615 /* with PSK there must be client callback set */
1616 if (!s->psk_client_callback) {
1617 s->s3.tmp.mask_a |= SSL_aPSK;
1618 s->s3.tmp.mask_k |= SSL_PSK;
1619 }
1620 #endif /* OPENSSL_NO_PSK */
1621 #ifndef OPENSSL_NO_SRP
1622 if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) {
1623 s->s3.tmp.mask_a |= SSL_aSRP;
1624 s->s3.tmp.mask_k |= SSL_kSRP;
1625 }
1626 #endif
1627 return 1;
1628 }
1629
1630 /*
1631 * ssl_cipher_disabled - check that a cipher is disabled or not
1632 * @s: SSL connection that you want to use the cipher on
1633 * @c: cipher to check
1634 * @op: Security check that you want to do
1635 * @ecdhe: If set to 1 then TLSv1 ECDHE ciphers are also allowed in SSLv3
1636 *
1637 * Returns 1 when it's disabled, 0 when enabled.
1638 */
1639 int ssl_cipher_disabled(const SSL *s, const SSL_CIPHER *c, int op, int ecdhe)
1640 {
1641 if (c->algorithm_mkey & s->s3.tmp.mask_k
1642 || c->algorithm_auth & s->s3.tmp.mask_a)
1643 return 1;
1644 if (s->s3.tmp.max_ver == 0)
1645 return 1;
1646 if (!SSL_IS_DTLS(s)) {
1647 int min_tls = c->min_tls;
1648
1649 /*
1650 * For historical reasons we will allow ECHDE to be selected by a server
1651 * in SSLv3 if we are a client
1652 */
1653 if (min_tls == TLS1_VERSION && ecdhe
1654 && (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0)
1655 min_tls = SSL3_VERSION;
1656
1657 if ((min_tls > s->s3.tmp.max_ver) || (c->max_tls < s->s3.tmp.min_ver))
1658 return 1;
1659 }
1660 if (SSL_IS_DTLS(s) && (DTLS_VERSION_GT(c->min_dtls, s->s3.tmp.max_ver)
1661 || DTLS_VERSION_LT(c->max_dtls, s->s3.tmp.min_ver)))
1662 return 1;
1663
1664 return !ssl_security(s, op, c->strength_bits, 0, (void *)c);
1665 }
1666
1667 int tls_use_ticket(SSL *s)
1668 {
1669 if ((s->options & SSL_OP_NO_TICKET))
1670 return 0;
1671 return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL);
1672 }
1673
1674 int tls1_set_server_sigalgs(SSL *s)
1675 {
1676 size_t i;
1677
1678 /* Clear any shared signature algorithms */
1679 OPENSSL_free(s->shared_sigalgs);
1680 s->shared_sigalgs = NULL;
1681 s->shared_sigalgslen = 0;
1682 /* Clear certificate validity flags */
1683 for (i = 0; i < SSL_PKEY_NUM; i++)
1684 s->s3.tmp.valid_flags[i] = 0;
1685 /*
1686 * If peer sent no signature algorithms check to see if we support
1687 * the default algorithm for each certificate type
1688 */
1689 if (s->s3.tmp.peer_cert_sigalgs == NULL
1690 && s->s3.tmp.peer_sigalgs == NULL) {
1691 const uint16_t *sent_sigs;
1692 size_t sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
1693
1694 for (i = 0; i < SSL_PKEY_NUM; i++) {
1695 const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, i);
1696 size_t j;
1697
1698 if (lu == NULL)
1699 continue;
1700 /* Check default matches a type we sent */
1701 for (j = 0; j < sent_sigslen; j++) {
1702 if (lu->sigalg == sent_sigs[j]) {
1703 s->s3.tmp.valid_flags[i] = CERT_PKEY_SIGN;
1704 break;
1705 }
1706 }
1707 }
1708 return 1;
1709 }
1710
1711 if (!tls1_process_sigalgs(s)) {
1712 SSLfatal(s, SSL_AD_INTERNAL_ERROR,
1713 SSL_F_TLS1_SET_SERVER_SIGALGS, ERR_R_INTERNAL_ERROR);
1714 return 0;
1715 }
1716 if (s->shared_sigalgs != NULL)
1717 return 1;
1718
1719 /* Fatal error if no shared signature algorithms */
1720 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS1_SET_SERVER_SIGALGS,
1721 SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS);
1722 return 0;
1723 }
1724
1725 /*-
1726 * Gets the ticket information supplied by the client if any.
1727 *
1728 * hello: The parsed ClientHello data
1729 * ret: (output) on return, if a ticket was decrypted, then this is set to
1730 * point to the resulting session.
1731 */
1732 SSL_TICKET_STATUS tls_get_ticket_from_client(SSL *s, CLIENTHELLO_MSG *hello,
1733 SSL_SESSION **ret)
1734 {
1735 size_t size;
1736 RAW_EXTENSION *ticketext;
1737
1738 *ret = NULL;
1739 s->ext.ticket_expected = 0;
1740
1741 /*
1742 * If tickets disabled or not supported by the protocol version
1743 * (e.g. TLSv1.3) behave as if no ticket present to permit stateful
1744 * resumption.
1745 */
1746 if (s->version <= SSL3_VERSION || !tls_use_ticket(s))
1747 return SSL_TICKET_NONE;
1748
1749 ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket];
1750 if (!ticketext->present)
1751 return SSL_TICKET_NONE;
1752
1753 size = PACKET_remaining(&ticketext->data);
1754
1755 return tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size,
1756 hello->session_id, hello->session_id_len, ret);
1757 }
1758
1759 /*-
1760 * tls_decrypt_ticket attempts to decrypt a session ticket.
1761 *
1762 * If s->tls_session_secret_cb is set and we're not doing TLSv1.3 then we are
1763 * expecting a pre-shared key ciphersuite, in which case we have no use for
1764 * session tickets and one will never be decrypted, nor will
1765 * s->ext.ticket_expected be set to 1.
1766 *
1767 * Side effects:
1768 * Sets s->ext.ticket_expected to 1 if the server will have to issue
1769 * a new session ticket to the client because the client indicated support
1770 * (and s->tls_session_secret_cb is NULL) but the client either doesn't have
1771 * a session ticket or we couldn't use the one it gave us, or if
1772 * s->ctx->ext.ticket_key_cb asked to renew the client's ticket.
1773 * Otherwise, s->ext.ticket_expected is set to 0.
1774 *
1775 * etick: points to the body of the session ticket extension.
1776 * eticklen: the length of the session tickets extension.
1777 * sess_id: points at the session ID.
1778 * sesslen: the length of the session ID.
1779 * psess: (output) on return, if a ticket was decrypted, then this is set to
1780 * point to the resulting session.
1781 */
1782 SSL_TICKET_STATUS tls_decrypt_ticket(SSL *s, const unsigned char *etick,
1783 size_t eticklen, const unsigned char *sess_id,
1784 size_t sesslen, SSL_SESSION **psess)
1785 {
1786 SSL_SESSION *sess = NULL;
1787 unsigned char *sdec;
1788 const unsigned char *p;
1789 int slen, renew_ticket = 0, declen;
1790 SSL_TICKET_STATUS ret = SSL_TICKET_FATAL_ERR_OTHER;
1791 size_t mlen;
1792 unsigned char tick_hmac[EVP_MAX_MD_SIZE];
1793 SSL_HMAC *hctx = NULL;
1794 EVP_CIPHER_CTX *ctx = NULL;
1795 SSL_CTX *tctx = s->session_ctx;
1796
1797 if (eticklen == 0) {
1798 /*
1799 * The client will accept a ticket but doesn't currently have
1800 * one (TLSv1.2 and below), or treated as a fatal error in TLSv1.3
1801 */
1802 ret = SSL_TICKET_EMPTY;
1803 goto end;
1804 }
1805 if (!SSL_IS_TLS13(s) && s->ext.session_secret_cb) {
1806 /*
1807 * Indicate that the ticket couldn't be decrypted rather than
1808 * generating the session from ticket now, trigger
1809 * abbreviated handshake based on external mechanism to
1810 * calculate the master secret later.
1811 */
1812 ret = SSL_TICKET_NO_DECRYPT;
1813 goto end;
1814 }
1815
1816 /* Need at least keyname + iv */
1817 if (eticklen < TLSEXT_KEYNAME_LENGTH + EVP_MAX_IV_LENGTH) {
1818 ret = SSL_TICKET_NO_DECRYPT;
1819 goto end;
1820 }
1821
1822 /* Initialize session ticket encryption and HMAC contexts */
1823 hctx = ssl_hmac_new(tctx);
1824 if (hctx == NULL) {
1825 ret = SSL_TICKET_FATAL_ERR_MALLOC;
1826 goto end;
1827 }
1828 ctx = EVP_CIPHER_CTX_new();
1829 if (ctx == NULL) {
1830 ret = SSL_TICKET_FATAL_ERR_MALLOC;
1831 goto end;
1832 }
1833 #ifndef OPENSSL_NO_DEPRECATED_3_0
1834 if (tctx->ext.ticket_key_evp_cb != NULL || tctx->ext.ticket_key_cb != NULL)
1835 #else
1836 if (tctx->ext.ticket_key_evp_cb != NULL)
1837 #endif
1838 {
1839 unsigned char *nctick = (unsigned char *)etick;
1840 int rv = 0;
1841
1842 if (tctx->ext.ticket_key_evp_cb != NULL)
1843 rv = tctx->ext.ticket_key_evp_cb(s, nctick,
1844 nctick + TLSEXT_KEYNAME_LENGTH,
1845 ctx,
1846 ssl_hmac_get0_EVP_MAC_CTX(hctx),
1847 0);
1848 #ifndef OPENSSL_NO_DEPRECATED_3_0
1849 else if (tctx->ext.ticket_key_cb != NULL)
1850 /* if 0 is returned, write an empty ticket */
1851 rv = tctx->ext.ticket_key_cb(s, nctick,
1852 nctick + TLSEXT_KEYNAME_LENGTH,
1853 ctx, ssl_hmac_get0_HMAC_CTX(hctx), 0);
1854 #endif
1855 if (rv < 0) {
1856 ret = SSL_TICKET_FATAL_ERR_OTHER;
1857 goto end;
1858 }
1859 if (rv == 0) {
1860 ret = SSL_TICKET_NO_DECRYPT;
1861 goto end;
1862 }
1863 if (rv == 2)
1864 renew_ticket = 1;
1865 } else {
1866 EVP_CIPHER *aes256cbc = NULL;
1867
1868 /* Check key name matches */
1869 if (memcmp(etick, tctx->ext.tick_key_name,
1870 TLSEXT_KEYNAME_LENGTH) != 0) {
1871 ret = SSL_TICKET_NO_DECRYPT;
1872 goto end;
1873 }
1874
1875 aes256cbc = EVP_CIPHER_fetch(s->ctx->libctx, "AES-256-CBC",
1876 s->ctx->propq);
1877 if (aes256cbc == NULL
1878 || ssl_hmac_init(hctx, tctx->ext.secure->tick_hmac_key,
1879 sizeof(tctx->ext.secure->tick_hmac_key),
1880 "SHA256") <= 0
1881 || EVP_DecryptInit_ex(ctx, aes256cbc, NULL,
1882 tctx->ext.secure->tick_aes_key,
1883 etick + TLSEXT_KEYNAME_LENGTH) <= 0) {
1884 EVP_CIPHER_free(aes256cbc);
1885 ret = SSL_TICKET_FATAL_ERR_OTHER;
1886 goto end;
1887 }
1888 EVP_CIPHER_free(aes256cbc);
1889 if (SSL_IS_TLS13(s))
1890 renew_ticket = 1;
1891 }
1892 /*
1893 * Attempt to process session ticket, first conduct sanity and integrity
1894 * checks on ticket.
1895 */
1896 mlen = ssl_hmac_size(hctx);
1897 if (mlen == 0) {
1898 ret = SSL_TICKET_FATAL_ERR_OTHER;
1899 goto end;
1900 }
1901
1902 /* Sanity check ticket length: must exceed keyname + IV + HMAC */
1903 if (eticklen <=
1904 TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_iv_length(ctx) + mlen) {
1905 ret = SSL_TICKET_NO_DECRYPT;
1906 goto end;
1907 }
1908 eticklen -= mlen;
1909 /* Check HMAC of encrypted ticket */
1910 if (ssl_hmac_update(hctx, etick, eticklen) <= 0
1911 || ssl_hmac_final(hctx, tick_hmac, NULL, sizeof(tick_hmac)) <= 0) {
1912 ret = SSL_TICKET_FATAL_ERR_OTHER;
1913 goto end;
1914 }
1915
1916 if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) {
1917 ret = SSL_TICKET_NO_DECRYPT;
1918 goto end;
1919 }
1920 /* Attempt to decrypt session data */
1921 /* Move p after IV to start of encrypted ticket, update length */
1922 p = etick + TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_iv_length(ctx);
1923 eticklen -= TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_iv_length(ctx);
1924 sdec = OPENSSL_malloc(eticklen);
1925 if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p,
1926 (int)eticklen) <= 0) {
1927 OPENSSL_free(sdec);
1928 ret = SSL_TICKET_FATAL_ERR_OTHER;
1929 goto end;
1930 }
1931 if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) {
1932 OPENSSL_free(sdec);
1933 ret = SSL_TICKET_NO_DECRYPT;
1934 goto end;
1935 }
1936 slen += declen;
1937 p = sdec;
1938
1939 sess = d2i_SSL_SESSION(NULL, &p, slen);
1940 slen -= p - sdec;
1941 OPENSSL_free(sdec);
1942 if (sess) {
1943 /* Some additional consistency checks */
1944 if (slen != 0) {
1945 SSL_SESSION_free(sess);
1946 sess = NULL;
1947 ret = SSL_TICKET_NO_DECRYPT;
1948 goto end;
1949 }
1950 /*
1951 * The session ID, if non-empty, is used by some clients to detect
1952 * that the ticket has been accepted. So we copy it to the session
1953 * structure. If it is empty set length to zero as required by
1954 * standard.
1955 */
1956 if (sesslen) {
1957 memcpy(sess->session_id, sess_id, sesslen);
1958 sess->session_id_length = sesslen;
1959 }
1960 if (renew_ticket)
1961 ret = SSL_TICKET_SUCCESS_RENEW;
1962 else
1963 ret = SSL_TICKET_SUCCESS;
1964 goto end;
1965 }
1966 ERR_clear_error();
1967 /*
1968 * For session parse failure, indicate that we need to send a new ticket.
1969 */
1970 ret = SSL_TICKET_NO_DECRYPT;
1971
1972 end:
1973 EVP_CIPHER_CTX_free(ctx);
1974 ssl_hmac_free(hctx);
1975
1976 /*
1977 * If set, the decrypt_ticket_cb() is called unless a fatal error was
1978 * detected above. The callback is responsible for checking |ret| before it
1979 * performs any action
1980 */
1981 if (s->session_ctx->decrypt_ticket_cb != NULL
1982 && (ret == SSL_TICKET_EMPTY
1983 || ret == SSL_TICKET_NO_DECRYPT
1984 || ret == SSL_TICKET_SUCCESS
1985 || ret == SSL_TICKET_SUCCESS_RENEW)) {
1986 size_t keyname_len = eticklen;
1987 int retcb;
1988
1989 if (keyname_len > TLSEXT_KEYNAME_LENGTH)
1990 keyname_len = TLSEXT_KEYNAME_LENGTH;
1991 retcb = s->session_ctx->decrypt_ticket_cb(s, sess, etick, keyname_len,
1992 ret,
1993 s->session_ctx->ticket_cb_data);
1994 switch (retcb) {
1995 case SSL_TICKET_RETURN_ABORT:
1996 ret = SSL_TICKET_FATAL_ERR_OTHER;
1997 break;
1998
1999 case SSL_TICKET_RETURN_IGNORE:
2000 ret = SSL_TICKET_NONE;
2001 SSL_SESSION_free(sess);
2002 sess = NULL;
2003 break;
2004
2005 case SSL_TICKET_RETURN_IGNORE_RENEW:
2006 if (ret != SSL_TICKET_EMPTY && ret != SSL_TICKET_NO_DECRYPT)
2007 ret = SSL_TICKET_NO_DECRYPT;
2008 /* else the value of |ret| will already do the right thing */
2009 SSL_SESSION_free(sess);
2010 sess = NULL;
2011 break;
2012
2013 case SSL_TICKET_RETURN_USE:
2014 case SSL_TICKET_RETURN_USE_RENEW:
2015 if (ret != SSL_TICKET_SUCCESS
2016 && ret != SSL_TICKET_SUCCESS_RENEW)
2017 ret = SSL_TICKET_FATAL_ERR_OTHER;
2018 else if (retcb == SSL_TICKET_RETURN_USE)
2019 ret = SSL_TICKET_SUCCESS;
2020 else
2021 ret = SSL_TICKET_SUCCESS_RENEW;
2022 break;
2023
2024 default:
2025 ret = SSL_TICKET_FATAL_ERR_OTHER;
2026 }
2027 }
2028
2029 if (s->ext.session_secret_cb == NULL || SSL_IS_TLS13(s)) {
2030 switch (ret) {
2031 case SSL_TICKET_NO_DECRYPT:
2032 case SSL_TICKET_SUCCESS_RENEW:
2033 case SSL_TICKET_EMPTY:
2034 s->ext.ticket_expected = 1;
2035 }
2036 }
2037
2038 *psess = sess;
2039
2040 return ret;
2041 }
2042
2043 /* Check to see if a signature algorithm is allowed */
2044 static int tls12_sigalg_allowed(const SSL *s, int op, const SIGALG_LOOKUP *lu)
2045 {
2046 unsigned char sigalgstr[2];
2047 int secbits;
2048
2049 if (lu == NULL || !lu->enabled)
2050 return 0;
2051 /* DSA is not allowed in TLS 1.3 */
2052 if (SSL_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA)
2053 return 0;
2054 /* TODO(OpenSSL1.2) fully axe DSA/etc. in ClientHello per TLS 1.3 spec */
2055 if (!s->server && !SSL_IS_DTLS(s) && s->s3.tmp.min_ver >= TLS1_3_VERSION
2056 && (lu->sig == EVP_PKEY_DSA || lu->hash_idx == SSL_MD_SHA1_IDX
2057 || lu->hash_idx == SSL_MD_MD5_IDX
2058 || lu->hash_idx == SSL_MD_SHA224_IDX))
2059 return 0;
2060
2061 /* See if public key algorithm allowed */
2062 if (ssl_cert_is_disabled(lu->sig_idx))
2063 return 0;
2064
2065 if (lu->sig == NID_id_GostR3410_2012_256
2066 || lu->sig == NID_id_GostR3410_2012_512
2067 || lu->sig == NID_id_GostR3410_2001) {
2068 /* We never allow GOST sig algs on the server with TLSv1.3 */
2069 if (s->server && SSL_IS_TLS13(s))
2070 return 0;
2071 if (!s->server
2072 && s->method->version == TLS_ANY_VERSION
2073 && s->s3.tmp.max_ver >= TLS1_3_VERSION) {
2074 int i, num;
2075 STACK_OF(SSL_CIPHER) *sk;
2076
2077 /*
2078 * We're a client that could negotiate TLSv1.3. We only allow GOST
2079 * sig algs if we could negotiate TLSv1.2 or below and we have GOST
2080 * ciphersuites enabled.
2081 */
2082
2083 if (s->s3.tmp.min_ver >= TLS1_3_VERSION)
2084 return 0;
2085
2086 sk = SSL_get_ciphers(s);
2087 num = sk != NULL ? sk_SSL_CIPHER_num(sk) : 0;
2088 for (i = 0; i < num; i++) {
2089 const SSL_CIPHER *c;
2090
2091 c = sk_SSL_CIPHER_value(sk, i);
2092 /* Skip disabled ciphers */
2093 if (ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0))
2094 continue;
2095
2096 if ((c->algorithm_mkey & (SSL_kGOST | SSL_kGOST18)) != 0)
2097 break;
2098 }
2099 if (i == num)
2100 return 0;
2101 }
2102 }
2103
2104 /* Finally see if security callback allows it */
2105 secbits = sigalg_security_bits(s->ctx, lu);
2106 sigalgstr[0] = (lu->sigalg >> 8) & 0xff;
2107 sigalgstr[1] = lu->sigalg & 0xff;
2108 return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr);
2109 }
2110
2111 /*
2112 * Get a mask of disabled public key algorithms based on supported signature
2113 * algorithms. For example if no signature algorithm supports RSA then RSA is
2114 * disabled.
2115 */
2116
2117 void ssl_set_sig_mask(uint32_t *pmask_a, SSL *s, int op)
2118 {
2119 const uint16_t *sigalgs;
2120 size_t i, sigalgslen;
2121 uint32_t disabled_mask = SSL_aRSA | SSL_aDSS | SSL_aECDSA;
2122 /*
2123 * Go through all signature algorithms seeing if we support any
2124 * in disabled_mask.
2125 */
2126 sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs);
2127 for (i = 0; i < sigalgslen; i++, sigalgs++) {
2128 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *sigalgs);
2129 const SSL_CERT_LOOKUP *clu;
2130
2131 if (lu == NULL)
2132 continue;
2133
2134 clu = ssl_cert_lookup_by_idx(lu->sig_idx);
2135 if (clu == NULL)
2136 continue;
2137
2138 /* If algorithm is disabled see if we can enable it */
2139 if ((clu->amask & disabled_mask) != 0
2140 && tls12_sigalg_allowed(s, op, lu))
2141 disabled_mask &= ~clu->amask;
2142 }
2143 *pmask_a |= disabled_mask;
2144 }
2145
2146 int tls12_copy_sigalgs(SSL *s, WPACKET *pkt,
2147 const uint16_t *psig, size_t psiglen)
2148 {
2149 size_t i;
2150 int rv = 0;
2151
2152 for (i = 0; i < psiglen; i++, psig++) {
2153 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *psig);
2154
2155 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
2156 continue;
2157 if (!WPACKET_put_bytes_u16(pkt, *psig))
2158 return 0;
2159 /*
2160 * If TLS 1.3 must have at least one valid TLS 1.3 message
2161 * signing algorithm: i.e. neither RSA nor SHA1/SHA224
2162 */
2163 if (rv == 0 && (!SSL_IS_TLS13(s)
2164 || (lu->sig != EVP_PKEY_RSA
2165 && lu->hash != NID_sha1
2166 && lu->hash != NID_sha224)))
2167 rv = 1;
2168 }
2169 if (rv == 0)
2170 SSLerr(SSL_F_TLS12_COPY_SIGALGS, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
2171 return rv;
2172 }
2173
2174 /* Given preference and allowed sigalgs set shared sigalgs */
2175 static size_t tls12_shared_sigalgs(SSL *s, const SIGALG_LOOKUP **shsig,
2176 const uint16_t *pref, size_t preflen,
2177 const uint16_t *allow, size_t allowlen)
2178 {
2179 const uint16_t *ptmp, *atmp;
2180 size_t i, j, nmatch = 0;
2181 for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) {
2182 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *ptmp);
2183
2184 /* Skip disabled hashes or signature algorithms */
2185 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, lu))
2186 continue;
2187 for (j = 0, atmp = allow; j < allowlen; j++, atmp++) {
2188 if (*ptmp == *atmp) {
2189 nmatch++;
2190 if (shsig)
2191 *shsig++ = lu;
2192 break;
2193 }
2194 }
2195 }
2196 return nmatch;
2197 }
2198
2199 /* Set shared signature algorithms for SSL structures */
2200 static int tls1_set_shared_sigalgs(SSL *s)
2201 {
2202 const uint16_t *pref, *allow, *conf;
2203 size_t preflen, allowlen, conflen;
2204 size_t nmatch;
2205 const SIGALG_LOOKUP **salgs = NULL;
2206 CERT *c = s->cert;
2207 unsigned int is_suiteb = tls1_suiteb(s);
2208
2209 OPENSSL_free(s->shared_sigalgs);
2210 s->shared_sigalgs = NULL;
2211 s->shared_sigalgslen = 0;
2212 /* If client use client signature algorithms if not NULL */
2213 if (!s->server && c->client_sigalgs && !is_suiteb) {
2214 conf = c->client_sigalgs;
2215 conflen = c->client_sigalgslen;
2216 } else if (c->conf_sigalgs && !is_suiteb) {
2217 conf = c->conf_sigalgs;
2218 conflen = c->conf_sigalgslen;
2219 } else
2220 conflen = tls12_get_psigalgs(s, 0, &conf);
2221 if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) {
2222 pref = conf;
2223 preflen = conflen;
2224 allow = s->s3.tmp.peer_sigalgs;
2225 allowlen = s->s3.tmp.peer_sigalgslen;
2226 } else {
2227 allow = conf;
2228 allowlen = conflen;
2229 pref = s->s3.tmp.peer_sigalgs;
2230 preflen = s->s3.tmp.peer_sigalgslen;
2231 }
2232 nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen);
2233 if (nmatch) {
2234 if ((salgs = OPENSSL_malloc(nmatch * sizeof(*salgs))) == NULL) {
2235 SSLerr(SSL_F_TLS1_SET_SHARED_SIGALGS, ERR_R_MALLOC_FAILURE);
2236 return 0;
2237 }
2238 nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen);
2239 } else {
2240 salgs = NULL;
2241 }
2242 s->shared_sigalgs = salgs;
2243 s->shared_sigalgslen = nmatch;
2244 return 1;
2245 }
2246
2247 int tls1_save_u16(PACKET *pkt, uint16_t **pdest, size_t *pdestlen)
2248 {
2249 unsigned int stmp;
2250 size_t size, i;
2251 uint16_t *buf;
2252
2253 size = PACKET_remaining(pkt);
2254
2255 /* Invalid data length */
2256 if (size == 0 || (size & 1) != 0)
2257 return 0;
2258
2259 size >>= 1;
2260
2261 if ((buf = OPENSSL_malloc(size * sizeof(*buf))) == NULL) {
2262 SSLerr(SSL_F_TLS1_SAVE_U16, ERR_R_MALLOC_FAILURE);
2263 return 0;
2264 }
2265 for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++)
2266 buf[i] = stmp;
2267
2268 if (i != size) {
2269 OPENSSL_free(buf);
2270 return 0;
2271 }
2272
2273 OPENSSL_free(*pdest);
2274 *pdest = buf;
2275 *pdestlen = size;
2276
2277 return 1;
2278 }
2279
2280 int tls1_save_sigalgs(SSL *s, PACKET *pkt, int cert)
2281 {
2282 /* Extension ignored for inappropriate versions */
2283 if (!SSL_USE_SIGALGS(s))
2284 return 1;
2285 /* Should never happen */
2286 if (s->cert == NULL)
2287 return 0;
2288
2289 if (cert)
2290 return tls1_save_u16(pkt, &s->s3.tmp.peer_cert_sigalgs,
2291 &s->s3.tmp.peer_cert_sigalgslen);
2292 else
2293 return tls1_save_u16(pkt, &s->s3.tmp.peer_sigalgs,
2294 &s->s3.tmp.peer_sigalgslen);
2295
2296 }
2297
2298 /* Set preferred digest for each key type */
2299
2300 int tls1_process_sigalgs(SSL *s)
2301 {
2302 size_t i;
2303 uint32_t *pvalid = s->s3.tmp.valid_flags;
2304
2305 if (!tls1_set_shared_sigalgs(s))
2306 return 0;
2307
2308 for (i = 0; i < SSL_PKEY_NUM; i++)
2309 pvalid[i] = 0;
2310
2311 for (i = 0; i < s->shared_sigalgslen; i++) {
2312 const SIGALG_LOOKUP *sigptr = s->shared_sigalgs[i];
2313 int idx = sigptr->sig_idx;
2314
2315 /* Ignore PKCS1 based sig algs in TLSv1.3 */
2316 if (SSL_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA)
2317 continue;
2318 /* If not disabled indicate we can explicitly sign */
2319 if (pvalid[idx] == 0 && !ssl_cert_is_disabled(idx))
2320 pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
2321 }
2322 return 1;
2323 }
2324
2325 int SSL_get_sigalgs(SSL *s, int idx,
2326 int *psign, int *phash, int *psignhash,
2327 unsigned char *rsig, unsigned char *rhash)
2328 {
2329 uint16_t *psig = s->s3.tmp.peer_sigalgs;
2330 size_t numsigalgs = s->s3.tmp.peer_sigalgslen;
2331 if (psig == NULL || numsigalgs > INT_MAX)
2332 return 0;
2333 if (idx >= 0) {
2334 const SIGALG_LOOKUP *lu;
2335
2336 if (idx >= (int)numsigalgs)
2337 return 0;
2338 psig += idx;
2339 if (rhash != NULL)
2340 *rhash = (unsigned char)((*psig >> 8) & 0xff);
2341 if (rsig != NULL)
2342 *rsig = (unsigned char)(*psig & 0xff);
2343 lu = tls1_lookup_sigalg(s, *psig);
2344 if (psign != NULL)
2345 *psign = lu != NULL ? lu->sig : NID_undef;
2346 if (phash != NULL)
2347 *phash = lu != NULL ? lu->hash : NID_undef;
2348 if (psignhash != NULL)
2349 *psignhash = lu != NULL ? lu->sigandhash : NID_undef;
2350 }
2351 return (int)numsigalgs;
2352 }
2353
2354 int SSL_get_shared_sigalgs(SSL *s, int idx,
2355 int *psign, int *phash, int *psignhash,
2356 unsigned char *rsig, unsigned char *rhash)
2357 {
2358 const SIGALG_LOOKUP *shsigalgs;
2359 if (s->shared_sigalgs == NULL
2360 || idx < 0
2361 || idx >= (int)s->shared_sigalgslen
2362 || s->shared_sigalgslen > INT_MAX)
2363 return 0;
2364 shsigalgs = s->shared_sigalgs[idx];
2365 if (phash != NULL)
2366 *phash = shsigalgs->hash;
2367 if (psign != NULL)
2368 *psign = shsigalgs->sig;
2369 if (psignhash != NULL)
2370 *psignhash = shsigalgs->sigandhash;
2371 if (rsig != NULL)
2372 *rsig = (unsigned char)(shsigalgs->sigalg & 0xff);
2373 if (rhash != NULL)
2374 *rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff);
2375 return (int)s->shared_sigalgslen;
2376 }
2377
2378 /* Maximum possible number of unique entries in sigalgs array */
2379 #define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2)
2380
2381 typedef struct {
2382 size_t sigalgcnt;
2383 /* TLSEXT_SIGALG_XXX values */
2384 uint16_t sigalgs[TLS_MAX_SIGALGCNT];
2385 } sig_cb_st;
2386
2387 static void get_sigorhash(int *psig, int *phash, const char *str)
2388 {
2389 if (strcmp(str, "RSA") == 0) {
2390 *psig = EVP_PKEY_RSA;
2391 } else if (strcmp(str, "RSA-PSS") == 0 || strcmp(str, "PSS") == 0) {
2392 *psig = EVP_PKEY_RSA_PSS;
2393 } else if (strcmp(str, "DSA") == 0) {
2394 *psig = EVP_PKEY_DSA;
2395 } else if (strcmp(str, "ECDSA") == 0) {
2396 *psig = EVP_PKEY_EC;
2397 } else {
2398 *phash = OBJ_sn2nid(str);
2399 if (*phash == NID_undef)
2400 *phash = OBJ_ln2nid(str);
2401 }
2402 }
2403 /* Maximum length of a signature algorithm string component */
2404 #define TLS_MAX_SIGSTRING_LEN 40
2405
2406 static int sig_cb(const char *elem, int len, void *arg)
2407 {
2408 sig_cb_st *sarg = arg;
2409 size_t i;
2410 const SIGALG_LOOKUP *s;
2411 char etmp[TLS_MAX_SIGSTRING_LEN], *p;
2412 int sig_alg = NID_undef, hash_alg = NID_undef;
2413 if (elem == NULL)
2414 return 0;
2415 if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT)
2416 return 0;
2417 if (len > (int)(sizeof(etmp) - 1))
2418 return 0;
2419 memcpy(etmp, elem, len);
2420 etmp[len] = 0;
2421 p = strchr(etmp, '+');
2422 /*
2423 * We only allow SignatureSchemes listed in the sigalg_lookup_tbl;
2424 * if there's no '+' in the provided name, look for the new-style combined
2425 * name. If not, match both sig+hash to find the needed SIGALG_LOOKUP.
2426 * Just sig+hash is not unique since TLS 1.3 adds rsa_pss_pss_* and
2427 * rsa_pss_rsae_* that differ only by public key OID; in such cases
2428 * we will pick the _rsae_ variant, by virtue of them appearing earlier
2429 * in the table.
2430 */
2431 if (p == NULL) {
2432 for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
2433 i++, s++) {
2434 if (s->name != NULL && strcmp(etmp, s->name) == 0) {
2435 sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
2436 break;
2437 }
2438 }
2439 if (i == OSSL_NELEM(sigalg_lookup_tbl))
2440 return 0;
2441 } else {
2442 *p = 0;
2443 p++;
2444 if (*p == 0)
2445 return 0;
2446 get_sigorhash(&sig_alg, &hash_alg, etmp);
2447 get_sigorhash(&sig_alg, &hash_alg, p);
2448 if (sig_alg == NID_undef || hash_alg == NID_undef)
2449 return 0;
2450 for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
2451 i++, s++) {
2452 if (s->hash == hash_alg && s->sig == sig_alg) {
2453 sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
2454 break;
2455 }
2456 }
2457 if (i == OSSL_NELEM(sigalg_lookup_tbl))
2458 return 0;
2459 }
2460
2461 /* Reject duplicates */
2462 for (i = 0; i < sarg->sigalgcnt - 1; i++) {
2463 if (sarg->sigalgs[i] == sarg->sigalgs[sarg->sigalgcnt - 1]) {
2464 sarg->sigalgcnt--;
2465 return 0;
2466 }
2467 }
2468 return 1;
2469 }
2470
2471 /*
2472 * Set supported signature algorithms based on a colon separated list of the
2473 * form sig+hash e.g. RSA+SHA512:DSA+SHA512
2474 */
2475 int tls1_set_sigalgs_list(CERT *c, const char *str, int client)
2476 {
2477 sig_cb_st sig;
2478 sig.sigalgcnt = 0;
2479 if (!CONF_parse_list(str, ':', 1, sig_cb, &sig))
2480 return 0;
2481 if (c == NULL)
2482 return 1;
2483 return tls1_set_raw_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client);
2484 }
2485
2486 int tls1_set_raw_sigalgs(CERT *c, const uint16_t *psigs, size_t salglen,
2487 int client)
2488 {
2489 uint16_t *sigalgs;
2490
2491 if ((sigalgs = OPENSSL_malloc(salglen * sizeof(*sigalgs))) == NULL) {
2492 SSLerr(SSL_F_TLS1_SET_RAW_SIGALGS, ERR_R_MALLOC_FAILURE);
2493 return 0;
2494 }
2495 memcpy(sigalgs, psigs, salglen * sizeof(*sigalgs));
2496
2497 if (client) {
2498 OPENSSL_free(c->client_sigalgs);
2499 c->client_sigalgs = sigalgs;
2500 c->client_sigalgslen = salglen;
2501 } else {
2502 OPENSSL_free(c->conf_sigalgs);
2503 c->conf_sigalgs = sigalgs;
2504 c->conf_sigalgslen = salglen;
2505 }
2506
2507 return 1;
2508 }
2509
2510 int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client)
2511 {
2512 uint16_t *sigalgs, *sptr;
2513 size_t i;
2514
2515 if (salglen & 1)
2516 return 0;
2517 if ((sigalgs = OPENSSL_malloc((salglen / 2) * sizeof(*sigalgs))) == NULL) {
2518 SSLerr(SSL_F_TLS1_SET_SIGALGS, ERR_R_MALLOC_FAILURE);
2519 return 0;
2520 }
2521 for (i = 0, sptr = sigalgs; i < salglen; i += 2) {
2522 size_t j;
2523 const SIGALG_LOOKUP *curr;
2524 int md_id = *psig_nids++;
2525 int sig_id = *psig_nids++;
2526
2527 for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl);
2528 j++, curr++) {
2529 if (curr->hash == md_id && curr->sig == sig_id) {
2530 *sptr++ = curr->sigalg;
2531 break;
2532 }
2533 }
2534
2535 if (j == OSSL_NELEM(sigalg_lookup_tbl))
2536 goto err;
2537 }
2538
2539 if (client) {
2540 OPENSSL_free(c->client_sigalgs);
2541 c->client_sigalgs = sigalgs;
2542 c->client_sigalgslen = salglen / 2;
2543 } else {
2544 OPENSSL_free(c->conf_sigalgs);
2545 c->conf_sigalgs = sigalgs;
2546 c->conf_sigalgslen = salglen / 2;
2547 }
2548
2549 return 1;
2550
2551 err:
2552 OPENSSL_free(sigalgs);
2553 return 0;
2554 }
2555
2556 static int tls1_check_sig_alg(SSL *s, X509 *x, int default_nid)
2557 {
2558 int sig_nid, use_pc_sigalgs = 0;
2559 size_t i;
2560 const SIGALG_LOOKUP *sigalg;
2561 size_t sigalgslen;
2562 if (default_nid == -1)
2563 return 1;
2564 sig_nid = X509_get_signature_nid(x);
2565 if (default_nid)
2566 return sig_nid == default_nid ? 1 : 0;
2567
2568 if (SSL_IS_TLS13(s) && s->s3.tmp.peer_cert_sigalgs != NULL) {
2569 /*
2570 * If we're in TLSv1.3 then we only get here if we're checking the
2571 * chain. If the peer has specified peer_cert_sigalgs then we use them
2572 * otherwise we default to normal sigalgs.
2573 */
2574 sigalgslen = s->s3.tmp.peer_cert_sigalgslen;
2575 use_pc_sigalgs = 1;
2576 } else {
2577 sigalgslen = s->shared_sigalgslen;
2578 }
2579 for (i = 0; i < sigalgslen; i++) {
2580 sigalg = use_pc_sigalgs
2581 ? tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i])
2582 : s->shared_sigalgs[i];
2583 if (sigalg != NULL && sig_nid == sigalg->sigandhash)
2584 return 1;
2585 }
2586 return 0;
2587 }
2588
2589 /* Check to see if a certificate issuer name matches list of CA names */
2590 static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x)
2591 {
2592 const X509_NAME *nm;
2593 int i;
2594 nm = X509_get_issuer_name(x);
2595 for (i = 0; i < sk_X509_NAME_num(names); i++) {
2596 if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i)))
2597 return 1;
2598 }
2599 return 0;
2600 }
2601
2602 /*
2603 * Check certificate chain is consistent with TLS extensions and is usable by
2604 * server. This servers two purposes: it allows users to check chains before
2605 * passing them to the server and it allows the server to check chains before
2606 * attempting to use them.
2607 */
2608
2609 /* Flags which need to be set for a certificate when strict mode not set */
2610
2611 #define CERT_PKEY_VALID_FLAGS \
2612 (CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM)
2613 /* Strict mode flags */
2614 #define CERT_PKEY_STRICT_FLAGS \
2615 (CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \
2616 | CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE)
2617
2618 int tls1_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain,
2619 int idx)
2620 {
2621 int i;
2622 int rv = 0;
2623 int check_flags = 0, strict_mode;
2624 CERT_PKEY *cpk = NULL;
2625 CERT *c = s->cert;
2626 uint32_t *pvalid;
2627 unsigned int suiteb_flags = tls1_suiteb(s);
2628 /* idx == -1 means checking server chains */
2629 if (idx != -1) {
2630 /* idx == -2 means checking client certificate chains */
2631 if (idx == -2) {
2632 cpk = c->key;
2633 idx = (int)(cpk - c->pkeys);
2634 } else
2635 cpk = c->pkeys + idx;
2636 pvalid = s->s3.tmp.valid_flags + idx;
2637 x = cpk->x509;
2638 pk = cpk->privatekey;
2639 chain = cpk->chain;
2640 strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT;
2641 /* If no cert or key, forget it */
2642 if (!x || !pk)
2643 goto end;
2644 } else {
2645 size_t certidx;
2646
2647 if (!x || !pk)
2648 return 0;
2649
2650 if (ssl_cert_lookup_by_pkey(pk, &certidx) == NULL)
2651 return 0;
2652 idx = certidx;
2653 pvalid = s->s3.tmp.valid_flags + idx;
2654
2655 if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)
2656 check_flags = CERT_PKEY_STRICT_FLAGS;
2657 else
2658 check_flags = CERT_PKEY_VALID_FLAGS;
2659 strict_mode = 1;
2660 }
2661
2662 if (suiteb_flags) {
2663 int ok;
2664 if (check_flags)
2665 check_flags |= CERT_PKEY_SUITEB;
2666 ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags);
2667 if (ok == X509_V_OK)
2668 rv |= CERT_PKEY_SUITEB;
2669 else if (!check_flags)
2670 goto end;
2671 }
2672
2673 /*
2674 * Check all signature algorithms are consistent with signature
2675 * algorithms extension if TLS 1.2 or later and strict mode.
2676 */
2677 if (TLS1_get_version(s) >= TLS1_2_VERSION && strict_mode) {
2678 int default_nid;
2679 int rsign = 0;
2680 if (s->s3.tmp.peer_cert_sigalgs != NULL
2681 || s->s3.tmp.peer_sigalgs != NULL) {
2682 default_nid = 0;
2683 /* If no sigalgs extension use defaults from RFC5246 */
2684 } else {
2685 switch (idx) {
2686 case SSL_PKEY_RSA:
2687 rsign = EVP_PKEY_RSA;
2688 default_nid = NID_sha1WithRSAEncryption;
2689 break;
2690
2691 case SSL_PKEY_DSA_SIGN:
2692 rsign = EVP_PKEY_DSA;
2693 default_nid = NID_dsaWithSHA1;
2694 break;
2695
2696 case SSL_PKEY_ECC:
2697 rsign = EVP_PKEY_EC;
2698 default_nid = NID_ecdsa_with_SHA1;
2699 break;
2700
2701 case SSL_PKEY_GOST01:
2702 rsign = NID_id_GostR3410_2001;
2703 default_nid = NID_id_GostR3411_94_with_GostR3410_2001;
2704 break;
2705
2706 case SSL_PKEY_GOST12_256:
2707 rsign = NID_id_GostR3410_2012_256;
2708 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256;
2709 break;
2710
2711 case SSL_PKEY_GOST12_512:
2712 rsign = NID_id_GostR3410_2012_512;
2713 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512;
2714 break;
2715
2716 default:
2717 default_nid = -1;
2718 break;
2719 }
2720 }
2721 /*
2722 * If peer sent no signature algorithms extension and we have set
2723 * preferred signature algorithms check we support sha1.
2724 */
2725 if (default_nid > 0 && c->conf_sigalgs) {
2726 size_t j;
2727 const uint16_t *p = c->conf_sigalgs;
2728 for (j = 0; j < c->conf_sigalgslen; j++, p++) {
2729 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *p);
2730
2731 if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign)
2732 break;
2733 }
2734 if (j == c->conf_sigalgslen) {
2735 if (check_flags)
2736 goto skip_sigs;
2737 else
2738 goto end;
2739 }
2740 }
2741 /* Check signature algorithm of each cert in chain */
2742 if (SSL_IS_TLS13(s)) {
2743 /*
2744 * We only get here if the application has called SSL_check_chain(),
2745 * so check_flags is always set.
2746 */
2747 if (find_sig_alg(s, x, pk) != NULL)
2748 rv |= CERT_PKEY_EE_SIGNATURE;
2749 } else if (!tls1_check_sig_alg(s, x, default_nid)) {
2750 if (!check_flags)
2751 goto end;
2752 } else
2753 rv |= CERT_PKEY_EE_SIGNATURE;
2754 rv |= CERT_PKEY_CA_SIGNATURE;
2755 for (i = 0; i < sk_X509_num(chain); i++) {
2756 if (!tls1_check_sig_alg(s, sk_X509_value(chain, i), default_nid)) {
2757 if (check_flags) {
2758 rv &= ~CERT_PKEY_CA_SIGNATURE;
2759 break;
2760 } else
2761 goto end;
2762 }
2763 }
2764 }
2765 /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */
2766 else if (check_flags)
2767 rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE;
2768 skip_sigs:
2769 /* Check cert parameters are consistent */
2770 if (tls1_check_cert_param(s, x, 1))
2771 rv |= CERT_PKEY_EE_PARAM;
2772 else if (!check_flags)
2773 goto end;
2774 if (!s->server)
2775 rv |= CERT_PKEY_CA_PARAM;
2776 /* In strict mode check rest of chain too */
2777 else if (strict_mode) {
2778 rv |= CERT_PKEY_CA_PARAM;
2779 for (i = 0; i < sk_X509_num(chain); i++) {
2780 X509 *ca = sk_X509_value(chain, i);
2781 if (!tls1_check_cert_param(s, ca, 0)) {
2782 if (check_flags) {
2783 rv &= ~CERT_PKEY_CA_PARAM;
2784 break;
2785 } else
2786 goto end;
2787 }
2788 }
2789 }
2790 if (!s->server && strict_mode) {
2791 STACK_OF(X509_NAME) *ca_dn;
2792 int check_type = 0;
2793
2794 if (EVP_PKEY_is_a(pk, "RSA"))
2795 check_type = TLS_CT_RSA_SIGN;
2796 else if (EVP_PKEY_is_a(pk, "DSA"))
2797 check_type = TLS_CT_DSS_SIGN;
2798 else if (EVP_PKEY_is_a(pk, "EC"))
2799 check_type = TLS_CT_ECDSA_SIGN;
2800
2801 if (check_type) {
2802 const uint8_t *ctypes = s->s3.tmp.ctype;
2803 size_t j;
2804
2805 for (j = 0; j < s->s3.tmp.ctype_len; j++, ctypes++) {
2806 if (*ctypes == check_type) {
2807 rv |= CERT_PKEY_CERT_TYPE;
2808 break;
2809 }
2810 }
2811 if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags)
2812 goto end;
2813 } else {
2814 rv |= CERT_PKEY_CERT_TYPE;
2815 }
2816
2817 ca_dn = s->s3.tmp.peer_ca_names;
2818
2819 if (!sk_X509_NAME_num(ca_dn))
2820 rv |= CERT_PKEY_ISSUER_NAME;
2821
2822 if (!(rv & CERT_PKEY_ISSUER_NAME)) {
2823 if (ssl_check_ca_name(ca_dn, x))
2824 rv |= CERT_PKEY_ISSUER_NAME;
2825 }
2826 if (!(rv & CERT_PKEY_ISSUER_NAME)) {
2827 for (i = 0; i < sk_X509_num(chain); i++) {
2828 X509 *xtmp = sk_X509_value(chain, i);
2829 if (ssl_check_ca_name(ca_dn, xtmp)) {
2830 rv |= CERT_PKEY_ISSUER_NAME;
2831 break;
2832 }
2833 }
2834 }
2835 if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME))
2836 goto end;
2837 } else
2838 rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE;
2839
2840 if (!check_flags || (rv & check_flags) == check_flags)
2841 rv |= CERT_PKEY_VALID;
2842
2843 end:
2844
2845 if (TLS1_get_version(s) >= TLS1_2_VERSION)
2846 rv |= *pvalid & (CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN);
2847 else
2848 rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN;
2849
2850 /*
2851 * When checking a CERT_PKEY structure all flags are irrelevant if the
2852 * chain is invalid.
2853 */
2854 if (!check_flags) {
2855 if (rv & CERT_PKEY_VALID) {
2856 *pvalid = rv;
2857 } else {
2858 /* Preserve sign and explicit sign flag, clear rest */
2859 *pvalid &= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
2860 return 0;
2861 }
2862 }
2863 return rv;
2864 }
2865
2866 /* Set validity of certificates in an SSL structure */
2867 void tls1_set_cert_validity(SSL *s)
2868 {
2869 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA);
2870 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_PSS_SIGN);
2871 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN);
2872 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC);
2873 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01);
2874 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256);
2875 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512);
2876 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED25519);
2877 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED448);
2878 }
2879
2880 /* User level utility function to check a chain is suitable */
2881 int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain)
2882 {
2883 return tls1_check_chain(s, x, pk, chain, -1);
2884 }
2885
2886 #ifndef OPENSSL_NO_DH
2887 DH *ssl_get_auto_dh(SSL *s)
2888 {
2889 DH *dhp;
2890 BIGNUM *p, *g;
2891 int dh_secbits = 80;
2892 if (s->cert->dh_tmp_auto != 2) {
2893 if (s->s3.tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) {
2894 if (s->s3.tmp.new_cipher->strength_bits == 256)
2895 dh_secbits = 128;
2896 else
2897 dh_secbits = 80;
2898 } else {
2899 if (s->s3.tmp.cert == NULL)
2900 return NULL;
2901 dh_secbits = EVP_PKEY_security_bits(s->s3.tmp.cert->privatekey);
2902 }
2903 }
2904
2905 dhp = DH_new();
2906 if (dhp == NULL)
2907 return NULL;
2908 g = BN_new();
2909 if (g == NULL || !BN_set_word(g, 2)) {
2910 DH_free(dhp);
2911 BN_free(g);
2912 return NULL;
2913 }
2914 if (dh_secbits >= 192)
2915 p = BN_get_rfc3526_prime_8192(NULL);
2916 else if (dh_secbits >= 152)
2917 p = BN_get_rfc3526_prime_4096(NULL);
2918 else if (dh_secbits >= 128)
2919 p = BN_get_rfc3526_prime_3072(NULL);
2920 else if (dh_secbits >= 112)
2921 p = BN_get_rfc3526_prime_2048(NULL);
2922 else
2923 p = BN_get_rfc2409_prime_1024(NULL);
2924 if (p == NULL || !DH_set0_pqg(dhp, p, NULL, g)) {
2925 DH_free(dhp);
2926 BN_free(p);
2927 BN_free(g);
2928 return NULL;
2929 }
2930 return dhp;
2931 }
2932 #endif
2933
2934 static int ssl_security_cert_key(SSL *s, SSL_CTX *ctx, X509 *x, int op)
2935 {
2936 int secbits = -1;
2937 EVP_PKEY *pkey = X509_get0_pubkey(x);
2938 if (pkey) {
2939 /*
2940 * If no parameters this will return -1 and fail using the default
2941 * security callback for any non-zero security level. This will
2942 * reject keys which omit parameters but this only affects DSA and
2943 * omission of parameters is never (?) done in practice.
2944 */
2945 secbits = EVP_PKEY_security_bits(pkey);
2946 }
2947 if (s)
2948 return ssl_security(s, op, secbits, 0, x);
2949 else
2950 return ssl_ctx_security(ctx, op, secbits, 0, x);
2951 }
2952
2953 static int ssl_security_cert_sig(SSL *s, SSL_CTX *ctx, X509 *x, int op)
2954 {
2955 /* Lookup signature algorithm digest */
2956 int secbits, nid, pknid;
2957 /* Don't check signature if self signed */
2958 if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0)
2959 return 1;
2960 if (!X509_get_signature_info(x, &nid, &pknid, &secbits, NULL))
2961 secbits = -1;
2962 /* If digest NID not defined use signature NID */
2963 if (nid == NID_undef)
2964 nid = pknid;
2965 if (s)
2966 return ssl_security(s, op, secbits, nid, x);
2967 else
2968 return ssl_ctx_security(ctx, op, secbits, nid, x);
2969 }
2970
2971 int ssl_security_cert(SSL *s, SSL_CTX *ctx, X509 *x, int vfy, int is_ee)
2972 {
2973 if (vfy)
2974 vfy = SSL_SECOP_PEER;
2975 if (is_ee) {
2976 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy))
2977 return SSL_R_EE_KEY_TOO_SMALL;
2978 } else {
2979 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy))
2980 return SSL_R_CA_KEY_TOO_SMALL;
2981 }
2982 if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy))
2983 return SSL_R_CA_MD_TOO_WEAK;
2984 return 1;
2985 }
2986
2987 /*
2988 * Check security of a chain, if |sk| includes the end entity certificate then
2989 * |x| is NULL. If |vfy| is 1 then we are verifying a peer chain and not sending
2990 * one to the peer. Return values: 1 if ok otherwise error code to use
2991 */
2992
2993 int ssl_security_cert_chain(SSL *s, STACK_OF(X509) *sk, X509 *x, int vfy)
2994 {
2995 int rv, start_idx, i;
2996 if (x == NULL) {
2997 x = sk_X509_value(sk, 0);
2998 start_idx = 1;
2999 } else
3000 start_idx = 0;
3001
3002 rv = ssl_security_cert(s, NULL, x, vfy, 1);
3003 if (rv != 1)
3004 return rv;
3005
3006 for (i = start_idx; i < sk_X509_num(sk); i++) {
3007 x = sk_X509_value(sk, i);
3008 rv = ssl_security_cert(s, NULL, x, vfy, 0);
3009 if (rv != 1)
3010 return rv;
3011 }
3012 return 1;
3013 }
3014
3015 /*
3016 * For TLS 1.2 servers check if we have a certificate which can be used
3017 * with the signature algorithm "lu" and return index of certificate.
3018 */
3019
3020 static int tls12_get_cert_sigalg_idx(const SSL *s, const SIGALG_LOOKUP *lu)
3021 {
3022 int sig_idx = lu->sig_idx;
3023 const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(sig_idx);
3024
3025 /* If not recognised or not supported by cipher mask it is not suitable */
3026 if (clu == NULL
3027 || (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) == 0
3028 || (clu->nid == EVP_PKEY_RSA_PSS
3029 && (s->s3.tmp.new_cipher->algorithm_mkey & SSL_kRSA) != 0))
3030 return -1;
3031
3032 return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_VALID ? sig_idx : -1;
3033 }
3034
3035 /*
3036 * Checks the given cert against signature_algorithm_cert restrictions sent by
3037 * the peer (if any) as well as whether the hash from the sigalg is usable with
3038 * the key.
3039 * Returns true if the cert is usable and false otherwise.
3040 */
3041 static int check_cert_usable(SSL *s, const SIGALG_LOOKUP *sig, X509 *x,
3042 EVP_PKEY *pkey)
3043 {
3044 const SIGALG_LOOKUP *lu;
3045 int mdnid, pknid, supported;
3046 size_t i;
3047
3048 /*
3049 * If the given EVP_PKEY cannot supporting signing with this sigalg,
3050 * the answer is simply 'no'.
3051 */
3052 ERR_set_mark();
3053 supported = EVP_PKEY_supports_digest_nid(pkey, sig->hash);
3054 ERR_pop_to_mark();
3055 if (supported == 0)
3056 return 0;
3057
3058 /*
3059 * The TLS 1.3 signature_algorithms_cert extension places restrictions
3060 * on the sigalg with which the certificate was signed (by its issuer).
3061 */
3062 if (s->s3.tmp.peer_cert_sigalgs != NULL) {
3063 if (!X509_get_signature_info(x, &mdnid, &pknid, NULL, NULL))
3064 return 0;
3065 for (i = 0; i < s->s3.tmp.peer_cert_sigalgslen; i++) {
3066 lu = tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i]);
3067 if (lu == NULL)
3068 continue;
3069
3070 /*
3071 * TODO this does not differentiate between the
3072 * rsa_pss_pss_* and rsa_pss_rsae_* schemes since we do not
3073 * have a chain here that lets us look at the key OID in the
3074 * signing certificate.
3075 */
3076 if (mdnid == lu->hash && pknid == lu->sig)
3077 return 1;
3078 }
3079 return 0;
3080 }
3081
3082 /*
3083 * Without signat_algorithms_cert, any certificate for which we have
3084 * a viable public key is permitted.
3085 */
3086 return 1;
3087 }
3088
3089 /*
3090 * Returns true if |s| has a usable certificate configured for use
3091 * with signature scheme |sig|.
3092 * "Usable" includes a check for presence as well as applying
3093 * the signature_algorithm_cert restrictions sent by the peer (if any).
3094 * Returns false if no usable certificate is found.
3095 */
3096 static int has_usable_cert(SSL *s, const SIGALG_LOOKUP *sig, int idx)
3097 {
3098 /* TLS 1.2 callers can override sig->sig_idx, but not TLS 1.3 callers. */
3099 if (idx == -1)
3100 idx = sig->sig_idx;
3101 if (!ssl_has_cert(s, idx))
3102 return 0;
3103
3104 return check_cert_usable(s, sig, s->cert->pkeys[idx].x509,
3105 s->cert->pkeys[idx].privatekey);
3106 }
3107
3108 /*
3109 * Returns true if the supplied cert |x| and key |pkey| is usable with the
3110 * specified signature scheme |sig|, or false otherwise.
3111 */
3112 static int is_cert_usable(SSL *s, const SIGALG_LOOKUP *sig, X509 *x,
3113 EVP_PKEY *pkey)
3114 {
3115 size_t idx;
3116
3117 if (ssl_cert_lookup_by_pkey(pkey, &idx) == NULL)
3118 return 0;
3119
3120 /* Check the key is consistent with the sig alg */
3121 if ((int)idx != sig->sig_idx)
3122 return 0;
3123
3124 return check_cert_usable(s, sig, x, pkey);
3125 }
3126
3127 /*
3128 * Find a signature scheme that works with the supplied certificate |x| and key
3129 * |pkey|. |x| and |pkey| may be NULL in which case we additionally look at our
3130 * available certs/keys to find one that works.
3131 */
3132 static const SIGALG_LOOKUP *find_sig_alg(SSL *s, X509 *x, EVP_PKEY *pkey)
3133 {
3134 const SIGALG_LOOKUP *lu = NULL;
3135 size_t i;
3136 #ifndef OPENSSL_NO_EC
3137 int curve = -1;
3138 #endif
3139 EVP_PKEY *tmppkey;
3140
3141 /* Look for a shared sigalgs matching possible certificates */
3142 for (i = 0; i < s->shared_sigalgslen; i++) {
3143 lu = s->shared_sigalgs[i];
3144
3145 /* Skip SHA1, SHA224, DSA and RSA if not PSS */
3146 if (lu->hash == NID_sha1
3147 || lu->hash == NID_sha224
3148 || lu->sig == EVP_PKEY_DSA
3149 || lu->sig == EVP_PKEY_RSA)
3150 continue;
3151 /* Check that we have a cert, and signature_algorithms_cert */
3152 if (!tls1_lookup_md(s->ctx, lu, NULL))
3153 continue;
3154 if ((pkey == NULL && !has_usable_cert(s, lu, -1))
3155 || (pkey != NULL && !is_cert_usable(s, lu, x, pkey)))
3156 continue;
3157
3158 tmppkey = (pkey != NULL) ? pkey
3159 : s->cert->pkeys[lu->sig_idx].privatekey;
3160
3161 if (lu->sig == EVP_PKEY_EC) {
3162 #ifndef OPENSSL_NO_EC
3163 if (curve == -1)
3164 curve = evp_pkey_get_EC_KEY_curve_nid(tmppkey);
3165 if (lu->curve != NID_undef && curve != lu->curve)
3166 continue;
3167 #else
3168 continue;
3169 #endif
3170 } else if (lu->sig == EVP_PKEY_RSA_PSS) {
3171 /* validate that key is large enough for the signature algorithm */
3172 if (!rsa_pss_check_min_key_size(s->ctx, tmppkey, lu))
3173 continue;
3174 }
3175 break;
3176 }
3177
3178 if (i == s->shared_sigalgslen)
3179 return NULL;
3180
3181 return lu;
3182 }
3183
3184 /*
3185 * Choose an appropriate signature algorithm based on available certificates
3186 * Sets chosen certificate and signature algorithm.
3187 *
3188 * For servers if we fail to find a required certificate it is a fatal error,
3189 * an appropriate error code is set and a TLS alert is sent.
3190 *
3191 * For clients fatalerrs is set to 0. If a certificate is not suitable it is not
3192 * a fatal error: we will either try another certificate or not present one
3193 * to the server. In this case no error is set.
3194 */
3195 int tls_choose_sigalg(SSL *s, int fatalerrs)
3196 {
3197 const SIGALG_LOOKUP *lu = NULL;
3198 int sig_idx = -1;
3199
3200 s->s3.tmp.cert = NULL;
3201 s->s3.tmp.sigalg = NULL;
3202
3203 if (SSL_IS_TLS13(s)) {
3204 lu = find_sig_alg(s, NULL, NULL);
3205 if (lu == NULL) {
3206 if (!fatalerrs)
3207 return 1;
3208 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS_CHOOSE_SIGALG,
3209 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3210 return 0;
3211 }
3212 } else {
3213 /* If ciphersuite doesn't require a cert nothing to do */
3214 if (!(s->s3.tmp.new_cipher->algorithm_auth & SSL_aCERT))
3215 return 1;
3216 if (!s->server && !ssl_has_cert(s, s->cert->key - s->cert->pkeys))
3217 return 1;
3218
3219 if (SSL_USE_SIGALGS(s)) {
3220 size_t i;
3221 if (s->s3.tmp.peer_sigalgs != NULL) {
3222 #ifndef OPENSSL_NO_EC
3223 int curve = -1;
3224
3225 /* For Suite B need to match signature algorithm to curve */
3226 if (tls1_suiteb(s))
3227 curve =
3228 evp_pkey_get_EC_KEY_curve_nid(s->cert->pkeys[SSL_PKEY_ECC]
3229 .privatekey);
3230 #endif
3231
3232 /*
3233 * Find highest preference signature algorithm matching
3234 * cert type
3235 */
3236 for (i = 0; i < s->shared_sigalgslen; i++) {
3237 lu = s->shared_sigalgs[i];
3238
3239 if (s->server) {
3240 if ((sig_idx = tls12_get_cert_sigalg_idx(s, lu)) == -1)
3241 continue;
3242 } else {
3243 int cc_idx = s->cert->key - s->cert->pkeys;
3244
3245 sig_idx = lu->sig_idx;
3246 if (cc_idx != sig_idx)
3247 continue;
3248 }
3249 /* Check that we have a cert, and sig_algs_cert */
3250 if (!has_usable_cert(s, lu, sig_idx))
3251 continue;
3252 if (lu->sig == EVP_PKEY_RSA_PSS) {
3253 /* validate that key is large enough for the signature algorithm */
3254 EVP_PKEY *pkey = s->cert->pkeys[sig_idx].privatekey;
3255
3256 if (!rsa_pss_check_min_key_size(s->ctx, pkey, lu))
3257 continue;
3258 }
3259 #ifndef OPENSSL_NO_EC
3260 if (curve == -1 || lu->curve == curve)
3261 #endif
3262 break;
3263 }
3264 #ifndef OPENSSL_NO_GOST
3265 /*
3266 * Some Windows-based implementations do not send GOST algorithms indication
3267 * in supported_algorithms extension, so when we have GOST-based ciphersuite,
3268 * we have to assume GOST support.
3269 */
3270 if (i == s->shared_sigalgslen && s->s3.tmp.new_cipher->algorithm_auth & (SSL_aGOST01 | SSL_aGOST12)) {
3271 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3272 if (!fatalerrs)
3273 return 1;
3274 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3275 SSL_F_TLS_CHOOSE_SIGALG,
3276 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3277 return 0;
3278 } else {
3279 i = 0;
3280 sig_idx = lu->sig_idx;
3281 }
3282 }
3283 #endif
3284 if (i == s->shared_sigalgslen) {
3285 if (!fatalerrs)
3286 return 1;
3287 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3288 SSL_F_TLS_CHOOSE_SIGALG,
3289 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3290 return 0;
3291 }
3292 } else {
3293 /*
3294 * If we have no sigalg use defaults
3295 */
3296 const uint16_t *sent_sigs;
3297 size_t sent_sigslen;
3298
3299 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3300 if (!fatalerrs)
3301 return 1;
3302 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CHOOSE_SIGALG,
3303 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3304 return 0;
3305 }
3306
3307 /* Check signature matches a type we sent */
3308 sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
3309 for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
3310 if (lu->sigalg == *sent_sigs
3311 && has_usable_cert(s, lu, lu->sig_idx))
3312 break;
3313 }
3314 if (i == sent_sigslen) {
3315 if (!fatalerrs)
3316 return 1;
3317 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
3318 SSL_F_TLS_CHOOSE_SIGALG,
3319 SSL_R_WRONG_SIGNATURE_TYPE);
3320 return 0;
3321 }
3322 }
3323 } else {
3324 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3325 if (!fatalerrs)
3326 return 1;
3327 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CHOOSE_SIGALG,
3328 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3329 return 0;
3330 }
3331 }
3332 }
3333 if (sig_idx == -1)
3334 sig_idx = lu->sig_idx;
3335 s->s3.tmp.cert = &s->cert->pkeys[sig_idx];
3336 s->cert->key = s->s3.tmp.cert;
3337 s->s3.tmp.sigalg = lu;
3338 return 1;
3339 }
3340
3341 int SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX *ctx, uint8_t mode)
3342 {
3343 if (mode != TLSEXT_max_fragment_length_DISABLED
3344 && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
3345 SSLerr(SSL_F_SSL_CTX_SET_TLSEXT_MAX_FRAGMENT_LENGTH,
3346 SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
3347 return 0;
3348 }
3349
3350 ctx->ext.max_fragment_len_mode = mode;
3351 return 1;
3352 }
3353
3354 int SSL_set_tlsext_max_fragment_length(SSL *ssl, uint8_t mode)
3355 {
3356 if (mode != TLSEXT_max_fragment_length_DISABLED
3357 && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
3358 SSLerr(SSL_F_SSL_SET_TLSEXT_MAX_FRAGMENT_LENGTH,
3359 SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
3360 return 0;
3361 }
3362
3363 ssl->ext.max_fragment_len_mode = mode;
3364 return 1;
3365 }
3366
3367 uint8_t SSL_SESSION_get_max_fragment_length(const SSL_SESSION *session)
3368 {
3369 return session->ext.max_fragment_len_mode;
3370 }
3371
3372 /*
3373 * Helper functions for HMAC access with legacy support included.
3374 */
3375 SSL_HMAC *ssl_hmac_new(const SSL_CTX *ctx)
3376 {
3377 SSL_HMAC *ret = OPENSSL_zalloc(sizeof(*ret));
3378 EVP_MAC *mac = NULL;
3379
3380 if (ret == NULL)
3381 return NULL;
3382 #ifndef OPENSSL_NO_DEPRECATED_3_0
3383 if (ctx->ext.ticket_key_evp_cb == NULL
3384 && ctx->ext.ticket_key_cb != NULL) {
3385 ret->old_ctx = HMAC_CTX_new();
3386 if (ret->old_ctx == NULL)
3387 goto err;
3388 return ret;
3389 }
3390 #endif
3391 mac = EVP_MAC_fetch(ctx->libctx, "HMAC", NULL);
3392 if (mac == NULL || (ret->ctx = EVP_MAC_CTX_new(mac)) == NULL)
3393 goto err;
3394 EVP_MAC_free(mac);
3395 return ret;
3396 err:
3397 EVP_MAC_CTX_free(ret->ctx);
3398 EVP_MAC_free(mac);
3399 OPENSSL_free(ret);
3400 return NULL;
3401 }
3402
3403 void ssl_hmac_free(SSL_HMAC *ctx)
3404 {
3405 if (ctx != NULL) {
3406 EVP_MAC_CTX_free(ctx->ctx);
3407 #ifndef OPENSSL_NO_DEPRECATED_3_0
3408 HMAC_CTX_free(ctx->old_ctx);
3409 #endif
3410 OPENSSL_free(ctx);
3411 }
3412 }
3413
3414 #ifndef OPENSSL_NO_DEPRECATED_3_0
3415 HMAC_CTX *ssl_hmac_get0_HMAC_CTX(SSL_HMAC *ctx)
3416 {
3417 return ctx->old_ctx;
3418 }
3419 #endif
3420
3421 EVP_MAC_CTX *ssl_hmac_get0_EVP_MAC_CTX(SSL_HMAC *ctx)
3422 {
3423 return ctx->ctx;
3424 }
3425
3426 int ssl_hmac_init(SSL_HMAC *ctx, void *key, size_t len, char *md)
3427 {
3428 OSSL_PARAM params[3], *p = params;
3429
3430 if (ctx->ctx != NULL) {
3431 *p++ = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, md, 0);
3432 *p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_KEY, key, len);
3433 *p = OSSL_PARAM_construct_end();
3434 if (EVP_MAC_CTX_set_params(ctx->ctx, params) && EVP_MAC_init(ctx->ctx))
3435 return 1;
3436 }
3437 #ifndef OPENSSL_NO_DEPRECATED_3_0
3438 if (ctx->old_ctx != NULL)
3439 return HMAC_Init_ex(ctx->old_ctx, key, len,
3440 EVP_get_digestbyname(md), NULL);
3441 #endif
3442 return 0;
3443 }
3444
3445 int ssl_hmac_update(SSL_HMAC *ctx, const unsigned char *data, size_t len)
3446 {
3447 if (ctx->ctx != NULL)
3448 return EVP_MAC_update(ctx->ctx, data, len);
3449 #ifndef OPENSSL_NO_DEPRECATED_3_0
3450 if (ctx->old_ctx != NULL)
3451 return HMAC_Update(ctx->old_ctx, data, len);
3452 #endif
3453 return 0;
3454 }
3455
3456 int ssl_hmac_final(SSL_HMAC *ctx, unsigned char *md, size_t *len,
3457 size_t max_size)
3458 {
3459 if (ctx->ctx != NULL)
3460 return EVP_MAC_final(ctx->ctx, md, len, max_size);
3461 #ifndef OPENSSL_NO_DEPRECATED_3_0
3462 if (ctx->old_ctx != NULL) {
3463 unsigned int l;
3464
3465 if (HMAC_Final(ctx->old_ctx, md, &l) > 0) {
3466 if (len != NULL)
3467 *len = l;
3468 return 1;
3469 }
3470 }
3471 #endif
3472 return 0;
3473 }
3474
3475 size_t ssl_hmac_size(const SSL_HMAC *ctx)
3476 {
3477 if (ctx->ctx != NULL)
3478 return EVP_MAC_size(ctx->ctx);
3479 #ifndef OPENSSL_NO_DEPRECATED_3_0
3480 if (ctx->old_ctx != NULL)
3481 return HMAC_size(ctx->old_ctx);
3482 #endif
3483 return 0;
3484 }
3485