]> git.ipfire.org Git - thirdparty/openssl.git/blob - ssl/t1_lib.c
Fix a Travis failure
[thirdparty/openssl.git] / ssl / t1_lib.c
1 /*
2 * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the OpenSSL license (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 #include <stdio.h>
11 #include <stdlib.h>
12 #include <openssl/objects.h>
13 #include <openssl/evp.h>
14 #include <openssl/hmac.h>
15 #include <openssl/ocsp.h>
16 #include <openssl/conf.h>
17 #include <openssl/x509v3.h>
18 #include <openssl/dh.h>
19 #include <openssl/bn.h>
20 #include "ssl_locl.h"
21 #include <openssl/ct.h>
22
23 static int tls_decrypt_ticket(SSL *s, const unsigned char *tick, size_t ticklen,
24 const unsigned char *sess_id, size_t sesslen,
25 SSL_SESSION **psess);
26
27 SSL3_ENC_METHOD const TLSv1_enc_data = {
28 tls1_enc,
29 tls1_mac,
30 tls1_setup_key_block,
31 tls1_generate_master_secret,
32 tls1_change_cipher_state,
33 tls1_final_finish_mac,
34 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
35 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
36 tls1_alert_code,
37 tls1_export_keying_material,
38 0,
39 ssl3_set_handshake_header,
40 tls_close_construct_packet,
41 ssl3_handshake_write
42 };
43
44 SSL3_ENC_METHOD const TLSv1_1_enc_data = {
45 tls1_enc,
46 tls1_mac,
47 tls1_setup_key_block,
48 tls1_generate_master_secret,
49 tls1_change_cipher_state,
50 tls1_final_finish_mac,
51 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
52 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
53 tls1_alert_code,
54 tls1_export_keying_material,
55 SSL_ENC_FLAG_EXPLICIT_IV,
56 ssl3_set_handshake_header,
57 tls_close_construct_packet,
58 ssl3_handshake_write
59 };
60
61 SSL3_ENC_METHOD const TLSv1_2_enc_data = {
62 tls1_enc,
63 tls1_mac,
64 tls1_setup_key_block,
65 tls1_generate_master_secret,
66 tls1_change_cipher_state,
67 tls1_final_finish_mac,
68 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
69 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
70 tls1_alert_code,
71 tls1_export_keying_material,
72 SSL_ENC_FLAG_EXPLICIT_IV | SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF
73 | SSL_ENC_FLAG_TLS1_2_CIPHERS,
74 ssl3_set_handshake_header,
75 tls_close_construct_packet,
76 ssl3_handshake_write
77 };
78
79 SSL3_ENC_METHOD const TLSv1_3_enc_data = {
80 tls13_enc,
81 tls1_mac,
82 tls13_setup_key_block,
83 tls13_generate_master_secret,
84 tls13_change_cipher_state,
85 tls13_final_finish_mac,
86 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
87 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
88 tls13_alert_code,
89 tls1_export_keying_material,
90 SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF,
91 ssl3_set_handshake_header,
92 tls_close_construct_packet,
93 ssl3_handshake_write
94 };
95
96 long tls1_default_timeout(void)
97 {
98 /*
99 * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for
100 * http, the cache would over fill
101 */
102 return (60 * 60 * 2);
103 }
104
105 int tls1_new(SSL *s)
106 {
107 if (!ssl3_new(s))
108 return (0);
109 s->method->ssl_clear(s);
110 return (1);
111 }
112
113 void tls1_free(SSL *s)
114 {
115 OPENSSL_free(s->ext.session_ticket);
116 ssl3_free(s);
117 }
118
119 void tls1_clear(SSL *s)
120 {
121 ssl3_clear(s);
122 if (s->method->version == TLS_ANY_VERSION)
123 s->version = TLS_MAX_VERSION;
124 else
125 s->version = s->method->version;
126 }
127
128 #ifndef OPENSSL_NO_EC
129
130 typedef struct {
131 int nid; /* Curve NID */
132 int secbits; /* Bits of security (from SP800-57) */
133 unsigned int flags; /* Flags: currently just field type */
134 } tls_curve_info;
135
136 /*
137 * Table of curve information.
138 * Do not delete entries or reorder this array! It is used as a lookup
139 * table: the index of each entry is one less than the TLS curve id.
140 */
141 static const tls_curve_info nid_list[] = {
142 {NID_sect163k1, 80, TLS_CURVE_CHAR2}, /* sect163k1 (1) */
143 {NID_sect163r1, 80, TLS_CURVE_CHAR2}, /* sect163r1 (2) */
144 {NID_sect163r2, 80, TLS_CURVE_CHAR2}, /* sect163r2 (3) */
145 {NID_sect193r1, 80, TLS_CURVE_CHAR2}, /* sect193r1 (4) */
146 {NID_sect193r2, 80, TLS_CURVE_CHAR2}, /* sect193r2 (5) */
147 {NID_sect233k1, 112, TLS_CURVE_CHAR2}, /* sect233k1 (6) */
148 {NID_sect233r1, 112, TLS_CURVE_CHAR2}, /* sect233r1 (7) */
149 {NID_sect239k1, 112, TLS_CURVE_CHAR2}, /* sect239k1 (8) */
150 {NID_sect283k1, 128, TLS_CURVE_CHAR2}, /* sect283k1 (9) */
151 {NID_sect283r1, 128, TLS_CURVE_CHAR2}, /* sect283r1 (10) */
152 {NID_sect409k1, 192, TLS_CURVE_CHAR2}, /* sect409k1 (11) */
153 {NID_sect409r1, 192, TLS_CURVE_CHAR2}, /* sect409r1 (12) */
154 {NID_sect571k1, 256, TLS_CURVE_CHAR2}, /* sect571k1 (13) */
155 {NID_sect571r1, 256, TLS_CURVE_CHAR2}, /* sect571r1 (14) */
156 {NID_secp160k1, 80, TLS_CURVE_PRIME}, /* secp160k1 (15) */
157 {NID_secp160r1, 80, TLS_CURVE_PRIME}, /* secp160r1 (16) */
158 {NID_secp160r2, 80, TLS_CURVE_PRIME}, /* secp160r2 (17) */
159 {NID_secp192k1, 80, TLS_CURVE_PRIME}, /* secp192k1 (18) */
160 {NID_X9_62_prime192v1, 80, TLS_CURVE_PRIME}, /* secp192r1 (19) */
161 {NID_secp224k1, 112, TLS_CURVE_PRIME}, /* secp224k1 (20) */
162 {NID_secp224r1, 112, TLS_CURVE_PRIME}, /* secp224r1 (21) */
163 {NID_secp256k1, 128, TLS_CURVE_PRIME}, /* secp256k1 (22) */
164 {NID_X9_62_prime256v1, 128, TLS_CURVE_PRIME}, /* secp256r1 (23) */
165 {NID_secp384r1, 192, TLS_CURVE_PRIME}, /* secp384r1 (24) */
166 {NID_secp521r1, 256, TLS_CURVE_PRIME}, /* secp521r1 (25) */
167 {NID_brainpoolP256r1, 128, TLS_CURVE_PRIME}, /* brainpoolP256r1 (26) */
168 {NID_brainpoolP384r1, 192, TLS_CURVE_PRIME}, /* brainpoolP384r1 (27) */
169 {NID_brainpoolP512r1, 256, TLS_CURVE_PRIME}, /* brainpool512r1 (28) */
170 {NID_X25519, 128, TLS_CURVE_CUSTOM}, /* X25519 (29) */
171 };
172
173 static const unsigned char ecformats_default[] = {
174 TLSEXT_ECPOINTFORMAT_uncompressed,
175 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime,
176 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2
177 };
178
179 /* The default curves */
180 static const unsigned char eccurves_default[] = {
181 0, 29, /* X25519 (29) */
182 0, 23, /* secp256r1 (23) */
183 0, 25, /* secp521r1 (25) */
184 0, 24, /* secp384r1 (24) */
185 };
186
187 static const unsigned char eccurves_all[] = {
188 0, 29, /* X25519 (29) */
189 0, 23, /* secp256r1 (23) */
190 0, 25, /* secp521r1 (25) */
191 0, 24, /* secp384r1 (24) */
192 0, 26, /* brainpoolP256r1 (26) */
193 0, 27, /* brainpoolP384r1 (27) */
194 0, 28, /* brainpool512r1 (28) */
195
196 /*
197 * Remaining curves disabled by default but still permitted if set
198 * via an explicit callback or parameters.
199 */
200 0, 22, /* secp256k1 (22) */
201 0, 14, /* sect571r1 (14) */
202 0, 13, /* sect571k1 (13) */
203 0, 11, /* sect409k1 (11) */
204 0, 12, /* sect409r1 (12) */
205 0, 9, /* sect283k1 (9) */
206 0, 10, /* sect283r1 (10) */
207 0, 20, /* secp224k1 (20) */
208 0, 21, /* secp224r1 (21) */
209 0, 18, /* secp192k1 (18) */
210 0, 19, /* secp192r1 (19) */
211 0, 15, /* secp160k1 (15) */
212 0, 16, /* secp160r1 (16) */
213 0, 17, /* secp160r2 (17) */
214 0, 8, /* sect239k1 (8) */
215 0, 6, /* sect233k1 (6) */
216 0, 7, /* sect233r1 (7) */
217 0, 4, /* sect193r1 (4) */
218 0, 5, /* sect193r2 (5) */
219 0, 1, /* sect163k1 (1) */
220 0, 2, /* sect163r1 (2) */
221 0, 3, /* sect163r2 (3) */
222 };
223
224 static const unsigned char suiteb_curves[] = {
225 0, TLSEXT_curve_P_256,
226 0, TLSEXT_curve_P_384
227 };
228
229 int tls1_ec_curve_id2nid(int curve_id, unsigned int *pflags)
230 {
231 const tls_curve_info *cinfo;
232 /* ECC curves from RFC 4492 and RFC 7027 */
233 if ((curve_id < 1) || ((unsigned int)curve_id > OSSL_NELEM(nid_list)))
234 return 0;
235 cinfo = nid_list + curve_id - 1;
236 if (pflags)
237 *pflags = cinfo->flags;
238 return cinfo->nid;
239 }
240
241 int tls1_ec_nid2curve_id(int nid)
242 {
243 size_t i;
244 for (i = 0; i < OSSL_NELEM(nid_list); i++) {
245 if (nid_list[i].nid == nid)
246 return (int)(i + 1);
247 }
248 return 0;
249 }
250
251 /*
252 * Get curves list, if "sess" is set return client curves otherwise
253 * preferred list.
254 * Sets |num_curves| to the number of curves in the list, i.e.,
255 * the length of |pcurves| is 2 * num_curves.
256 * Returns 1 on success and 0 if the client curves list has invalid format.
257 * The latter indicates an internal error: we should not be accepting such
258 * lists in the first place.
259 * TODO(emilia): we should really be storing the curves list in explicitly
260 * parsed form instead. (However, this would affect binary compatibility
261 * so cannot happen in the 1.0.x series.)
262 */
263 int tls1_get_curvelist(SSL *s, int sess, const unsigned char **pcurves,
264 size_t *num_curves)
265 {
266 size_t pcurveslen = 0;
267 if (sess) {
268 *pcurves = s->session->ext.supportedgroups;
269 pcurveslen = s->session->ext.supportedgroups_len;
270 } else {
271 /* For Suite B mode only include P-256, P-384 */
272 switch (tls1_suiteb(s)) {
273 case SSL_CERT_FLAG_SUITEB_128_LOS:
274 *pcurves = suiteb_curves;
275 pcurveslen = sizeof(suiteb_curves);
276 break;
277
278 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
279 *pcurves = suiteb_curves;
280 pcurveslen = 2;
281 break;
282
283 case SSL_CERT_FLAG_SUITEB_192_LOS:
284 *pcurves = suiteb_curves + 2;
285 pcurveslen = 2;
286 break;
287 default:
288 *pcurves = s->ext.supportedgroups;
289 pcurveslen = s->ext.supportedgroups_len;
290 }
291 if (!*pcurves) {
292 *pcurves = eccurves_default;
293 pcurveslen = sizeof(eccurves_default);
294 }
295 }
296
297 /* We do not allow odd length arrays to enter the system. */
298 if (pcurveslen & 1) {
299 SSLerr(SSL_F_TLS1_GET_CURVELIST, ERR_R_INTERNAL_ERROR);
300 *num_curves = 0;
301 return 0;
302 } else {
303 *num_curves = pcurveslen / 2;
304 return 1;
305 }
306 }
307
308 /* See if curve is allowed by security callback */
309 int tls_curve_allowed(SSL *s, const unsigned char *curve, int op)
310 {
311 const tls_curve_info *cinfo;
312 if (curve[0])
313 return 1;
314 if ((curve[1] < 1) || ((size_t)curve[1] > OSSL_NELEM(nid_list)))
315 return 0;
316 cinfo = &nid_list[curve[1] - 1];
317 # ifdef OPENSSL_NO_EC2M
318 if (cinfo->flags & TLS_CURVE_CHAR2)
319 return 0;
320 # endif
321 return ssl_security(s, op, cinfo->secbits, cinfo->nid, (void *)curve);
322 }
323
324 /* Check a curve is one of our preferences */
325 int tls1_check_curve(SSL *s, const unsigned char *p, size_t len)
326 {
327 const unsigned char *curves;
328 size_t num_curves, i;
329 unsigned int suiteb_flags = tls1_suiteb(s);
330 if (len != 3 || p[0] != NAMED_CURVE_TYPE)
331 return 0;
332 /* Check curve matches Suite B preferences */
333 if (suiteb_flags) {
334 unsigned long cid = s->s3->tmp.new_cipher->id;
335 if (p[1])
336 return 0;
337 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) {
338 if (p[2] != TLSEXT_curve_P_256)
339 return 0;
340 } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) {
341 if (p[2] != TLSEXT_curve_P_384)
342 return 0;
343 } else /* Should never happen */
344 return 0;
345 }
346 if (!tls1_get_curvelist(s, 0, &curves, &num_curves))
347 return 0;
348 for (i = 0; i < num_curves; i++, curves += 2) {
349 if (p[1] == curves[0] && p[2] == curves[1])
350 return tls_curve_allowed(s, p + 1, SSL_SECOP_CURVE_CHECK);
351 }
352 return 0;
353 }
354
355 /*-
356 * For nmatch >= 0, return the NID of the |nmatch|th shared group or NID_undef
357 * if there is no match.
358 * For nmatch == -1, return number of matches
359 * For nmatch == -2, return the NID of the group to use for
360 * an EC tmp key, or NID_undef if there is no match.
361 */
362 int tls1_shared_group(SSL *s, int nmatch)
363 {
364 const unsigned char *pref, *supp;
365 size_t num_pref, num_supp, i, j;
366 int k;
367 /* Can't do anything on client side */
368 if (s->server == 0)
369 return -1;
370 if (nmatch == -2) {
371 if (tls1_suiteb(s)) {
372 /*
373 * For Suite B ciphersuite determines curve: we already know
374 * these are acceptable due to previous checks.
375 */
376 unsigned long cid = s->s3->tmp.new_cipher->id;
377 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
378 return NID_X9_62_prime256v1; /* P-256 */
379 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
380 return NID_secp384r1; /* P-384 */
381 /* Should never happen */
382 return NID_undef;
383 }
384 /* If not Suite B just return first preference shared curve */
385 nmatch = 0;
386 }
387 /*
388 * Avoid truncation. tls1_get_curvelist takes an int
389 * but s->options is a long...
390 */
391 if (!tls1_get_curvelist
392 (s, (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) != 0, &supp,
393 &num_supp))
394 /* In practice, NID_undef == 0 but let's be precise. */
395 return nmatch == -1 ? 0 : NID_undef;
396 if (!tls1_get_curvelist
397 (s, !(s->options & SSL_OP_CIPHER_SERVER_PREFERENCE), &pref, &num_pref))
398 return nmatch == -1 ? 0 : NID_undef;
399
400 /*
401 * If the client didn't send the elliptic_curves extension all of them
402 * are allowed.
403 */
404 if (num_supp == 0 && (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) != 0) {
405 supp = eccurves_all;
406 num_supp = sizeof(eccurves_all) / 2;
407 } else if (num_pref == 0 &&
408 (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) == 0) {
409 pref = eccurves_all;
410 num_pref = sizeof(eccurves_all) / 2;
411 }
412
413 k = 0;
414 for (i = 0; i < num_pref; i++, pref += 2) {
415 const unsigned char *tsupp = supp;
416 for (j = 0; j < num_supp; j++, tsupp += 2) {
417 if (pref[0] == tsupp[0] && pref[1] == tsupp[1]) {
418 if (!tls_curve_allowed(s, pref, SSL_SECOP_CURVE_SHARED))
419 continue;
420 if (nmatch == k) {
421 int id = (pref[0] << 8) | pref[1];
422 return tls1_ec_curve_id2nid(id, NULL);
423 }
424 k++;
425 }
426 }
427 }
428 if (nmatch == -1)
429 return k;
430 /* Out of range (nmatch > k). */
431 return NID_undef;
432 }
433
434 int tls1_set_groups(unsigned char **pext, size_t *pextlen,
435 int *groups, size_t ngroups)
436 {
437 unsigned char *glist, *p;
438 size_t i;
439 /*
440 * Bitmap of groups included to detect duplicates: only works while group
441 * ids < 32
442 */
443 unsigned long dup_list = 0;
444 glist = OPENSSL_malloc(ngroups * 2);
445 if (glist == NULL)
446 return 0;
447 for (i = 0, p = glist; i < ngroups; i++) {
448 unsigned long idmask;
449 int id;
450 /* TODO(TLS1.3): Convert for DH groups */
451 id = tls1_ec_nid2curve_id(groups[i]);
452 idmask = 1L << id;
453 if (!id || (dup_list & idmask)) {
454 OPENSSL_free(glist);
455 return 0;
456 }
457 dup_list |= idmask;
458 s2n(id, p);
459 }
460 OPENSSL_free(*pext);
461 *pext = glist;
462 *pextlen = ngroups * 2;
463 return 1;
464 }
465
466 # define MAX_CURVELIST 28
467
468 typedef struct {
469 size_t nidcnt;
470 int nid_arr[MAX_CURVELIST];
471 } nid_cb_st;
472
473 static int nid_cb(const char *elem, int len, void *arg)
474 {
475 nid_cb_st *narg = arg;
476 size_t i;
477 int nid;
478 char etmp[20];
479 if (elem == NULL)
480 return 0;
481 if (narg->nidcnt == MAX_CURVELIST)
482 return 0;
483 if (len > (int)(sizeof(etmp) - 1))
484 return 0;
485 memcpy(etmp, elem, len);
486 etmp[len] = 0;
487 nid = EC_curve_nist2nid(etmp);
488 if (nid == NID_undef)
489 nid = OBJ_sn2nid(etmp);
490 if (nid == NID_undef)
491 nid = OBJ_ln2nid(etmp);
492 if (nid == NID_undef)
493 return 0;
494 for (i = 0; i < narg->nidcnt; i++)
495 if (narg->nid_arr[i] == nid)
496 return 0;
497 narg->nid_arr[narg->nidcnt++] = nid;
498 return 1;
499 }
500
501 /* Set groups based on a colon separate list */
502 int tls1_set_groups_list(unsigned char **pext, size_t *pextlen, const char *str)
503 {
504 nid_cb_st ncb;
505 ncb.nidcnt = 0;
506 if (!CONF_parse_list(str, ':', 1, nid_cb, &ncb))
507 return 0;
508 if (pext == NULL)
509 return 1;
510 return tls1_set_groups(pext, pextlen, ncb.nid_arr, ncb.nidcnt);
511 }
512
513 /* For an EC key set TLS id and required compression based on parameters */
514 static int tls1_set_ec_id(unsigned char *curve_id, unsigned char *comp_id,
515 EC_KEY *ec)
516 {
517 int id;
518 const EC_GROUP *grp;
519 if (!ec)
520 return 0;
521 /* Determine if it is a prime field */
522 grp = EC_KEY_get0_group(ec);
523 if (!grp)
524 return 0;
525 /* Determine curve ID */
526 id = EC_GROUP_get_curve_name(grp);
527 id = tls1_ec_nid2curve_id(id);
528 /* If no id return error: we don't support arbitrary explicit curves */
529 if (id == 0)
530 return 0;
531 curve_id[0] = 0;
532 curve_id[1] = (unsigned char)id;
533 if (comp_id) {
534 if (EC_KEY_get0_public_key(ec) == NULL)
535 return 0;
536 if (EC_KEY_get_conv_form(ec) == POINT_CONVERSION_UNCOMPRESSED) {
537 *comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;
538 } else {
539 if ((nid_list[id - 1].flags & TLS_CURVE_TYPE) == TLS_CURVE_PRIME)
540 *comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime;
541 else
542 *comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2;
543 }
544 }
545 return 1;
546 }
547
548 /* Check an EC key is compatible with extensions */
549 static int tls1_check_ec_key(SSL *s,
550 unsigned char *curve_id, unsigned char *comp_id)
551 {
552 const unsigned char *pformats, *pcurves;
553 size_t num_formats, num_curves, i;
554 int j;
555 /*
556 * If point formats extension present check it, otherwise everything is
557 * supported (see RFC4492).
558 */
559 if (comp_id && s->session->ext.ecpointformats) {
560 pformats = s->session->ext.ecpointformats;
561 num_formats = s->session->ext.ecpointformats_len;
562 for (i = 0; i < num_formats; i++, pformats++) {
563 if (*comp_id == *pformats)
564 break;
565 }
566 if (i == num_formats)
567 return 0;
568 }
569 if (!curve_id)
570 return 1;
571 /* Check curve is consistent with client and server preferences */
572 for (j = 0; j <= 1; j++) {
573 if (!tls1_get_curvelist(s, j, &pcurves, &num_curves))
574 return 0;
575 if (j == 1 && num_curves == 0) {
576 /*
577 * If we've not received any curves then skip this check.
578 * RFC 4492 does not require the supported elliptic curves extension
579 * so if it is not sent we can just choose any curve.
580 * It is invalid to send an empty list in the elliptic curves
581 * extension, so num_curves == 0 always means no extension.
582 */
583 break;
584 }
585 for (i = 0; i < num_curves; i++, pcurves += 2) {
586 if (pcurves[0] == curve_id[0] && pcurves[1] == curve_id[1])
587 break;
588 }
589 if (i == num_curves)
590 return 0;
591 /* For clients can only check sent curve list */
592 if (!s->server)
593 break;
594 }
595 return 1;
596 }
597
598 void tls1_get_formatlist(SSL *s, const unsigned char **pformats,
599 size_t *num_formats)
600 {
601 /*
602 * If we have a custom point format list use it otherwise use default
603 */
604 if (s->ext.ecpointformats) {
605 *pformats = s->ext.ecpointformats;
606 *num_formats = s->ext.ecpointformats_len;
607 } else {
608 *pformats = ecformats_default;
609 /* For Suite B we don't support char2 fields */
610 if (tls1_suiteb(s))
611 *num_formats = sizeof(ecformats_default) - 1;
612 else
613 *num_formats = sizeof(ecformats_default);
614 }
615 }
616
617 /*
618 * Check cert parameters compatible with extensions: currently just checks EC
619 * certificates have compatible curves and compression.
620 */
621 static int tls1_check_cert_param(SSL *s, X509 *x, int set_ee_md)
622 {
623 unsigned char comp_id, curve_id[2];
624 EVP_PKEY *pkey;
625 int rv;
626 pkey = X509_get0_pubkey(x);
627 if (!pkey)
628 return 0;
629 /* If not EC nothing to do */
630 if (EVP_PKEY_id(pkey) != EVP_PKEY_EC)
631 return 1;
632 rv = tls1_set_ec_id(curve_id, &comp_id, EVP_PKEY_get0_EC_KEY(pkey));
633 if (!rv)
634 return 0;
635 /*
636 * Can't check curve_id for client certs as we don't have a supported
637 * curves extension.
638 */
639 rv = tls1_check_ec_key(s, s->server ? curve_id : NULL, &comp_id);
640 if (!rv)
641 return 0;
642 /*
643 * Special case for suite B. We *MUST* sign using SHA256+P-256 or
644 * SHA384+P-384, adjust digest if necessary.
645 */
646 if (set_ee_md && tls1_suiteb(s)) {
647 int check_md;
648 size_t i;
649 CERT *c = s->cert;
650 if (curve_id[0])
651 return 0;
652 /* Check to see we have necessary signing algorithm */
653 if (curve_id[1] == TLSEXT_curve_P_256)
654 check_md = NID_ecdsa_with_SHA256;
655 else if (curve_id[1] == TLSEXT_curve_P_384)
656 check_md = NID_ecdsa_with_SHA384;
657 else
658 return 0; /* Should never happen */
659 for (i = 0; i < c->shared_sigalgslen; i++)
660 if (check_md == c->shared_sigalgs[i].signandhash_nid)
661 break;
662 if (i == c->shared_sigalgslen)
663 return 0;
664 if (set_ee_md == 2) {
665 if (check_md == NID_ecdsa_with_SHA256)
666 s->s3->tmp.md[SSL_PKEY_ECC] = EVP_sha256();
667 else
668 s->s3->tmp.md[SSL_PKEY_ECC] = EVP_sha384();
669 }
670 }
671 return rv;
672 }
673
674 # ifndef OPENSSL_NO_EC
675 /*
676 * tls1_check_ec_tmp_key - Check EC temporary key compatibility
677 * @s: SSL connection
678 * @cid: Cipher ID we're considering using
679 *
680 * Checks that the kECDHE cipher suite we're considering using
681 * is compatible with the client extensions.
682 *
683 * Returns 0 when the cipher can't be used or 1 when it can.
684 */
685 int tls1_check_ec_tmp_key(SSL *s, unsigned long cid)
686 {
687 /*
688 * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other
689 * curves permitted.
690 */
691 if (tls1_suiteb(s)) {
692 unsigned char curve_id[2];
693 /* Curve to check determined by ciphersuite */
694 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
695 curve_id[1] = TLSEXT_curve_P_256;
696 else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
697 curve_id[1] = TLSEXT_curve_P_384;
698 else
699 return 0;
700 curve_id[0] = 0;
701 /* Check this curve is acceptable */
702 if (!tls1_check_ec_key(s, curve_id, NULL))
703 return 0;
704 return 1;
705 }
706 /* Need a shared curve */
707 if (tls1_shared_group(s, 0))
708 return 1;
709 return 0;
710 }
711 # endif /* OPENSSL_NO_EC */
712
713 #else
714
715 static int tls1_check_cert_param(SSL *s, X509 *x, int set_ee_md)
716 {
717 return 1;
718 }
719
720 #endif /* OPENSSL_NO_EC */
721
722 /* Default sigalg schemes */
723 static const unsigned int tls12_sigalgs[] = {
724 #ifndef OPENSSL_NO_EC
725 TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
726 TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
727 TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
728 #endif
729
730 TLSEXT_SIGALG_rsa_pss_sha256,
731 TLSEXT_SIGALG_rsa_pss_sha384,
732 TLSEXT_SIGALG_rsa_pss_sha512,
733
734 TLSEXT_SIGALG_rsa_pkcs1_sha256,
735 TLSEXT_SIGALG_rsa_pkcs1_sha384,
736 TLSEXT_SIGALG_rsa_pkcs1_sha512,
737
738 TLSEXT_SIGALG_dsa_sha256,
739 TLSEXT_SIGALG_dsa_sha384,
740 TLSEXT_SIGALG_dsa_sha512
741 };
742
743 #ifndef OPENSSL_NO_EC
744 static const unsigned int suiteb_sigalgs[] = {
745 TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
746 TLSEXT_SIGALG_ecdsa_secp384r1_sha384
747 };
748 #endif
749
750 typedef struct sigalg_lookup_st {
751 unsigned int sigalg;
752 int hash;
753 int sig;
754 } SIGALG_LOOKUP;
755
756 static SIGALG_LOOKUP sigalg_lookup_tbl[] = {
757 {TLSEXT_SIGALG_ecdsa_secp256r1_sha256, NID_sha256, EVP_PKEY_EC},
758 {TLSEXT_SIGALG_ecdsa_secp384r1_sha384, NID_sha384, EVP_PKEY_EC},
759 {TLSEXT_SIGALG_ecdsa_secp521r1_sha512, NID_sha512, EVP_PKEY_EC},
760 {TLSEXT_SIGALG_ecdsa_sha1, NID_sha1, EVP_PKEY_EC},
761 /*
762 * PSS must appear before PKCS1 so that we prefer that when signing where
763 * possible
764 */
765 {TLSEXT_SIGALG_rsa_pss_sha256, NID_sha256, EVP_PKEY_RSA},
766 {TLSEXT_SIGALG_rsa_pss_sha384, NID_sha384, EVP_PKEY_RSA},
767 {TLSEXT_SIGALG_rsa_pss_sha512, NID_sha512, EVP_PKEY_RSA},
768 {TLSEXT_SIGALG_rsa_pkcs1_sha256, NID_sha256, EVP_PKEY_RSA},
769 {TLSEXT_SIGALG_rsa_pkcs1_sha384, NID_sha384, EVP_PKEY_RSA},
770 {TLSEXT_SIGALG_rsa_pkcs1_sha512, NID_sha512, EVP_PKEY_RSA},
771 {TLSEXT_SIGALG_rsa_pkcs1_sha1, NID_sha1, EVP_PKEY_RSA},
772 {TLSEXT_SIGALG_dsa_sha256, NID_sha256, EVP_PKEY_DSA},
773 {TLSEXT_SIGALG_dsa_sha384, NID_sha384, EVP_PKEY_DSA},
774 {TLSEXT_SIGALG_dsa_sha512, NID_sha512, EVP_PKEY_DSA},
775 {TLSEXT_SIGALG_dsa_sha1, NID_sha1, EVP_PKEY_DSA},
776 {TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256, NID_id_GostR3411_2012_256, NID_id_GostR3410_2012_256},
777 {TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512, NID_id_GostR3411_2012_512, NID_id_GostR3410_2012_512},
778 {TLSEXT_SIGALG_gostr34102001_gostr3411, NID_id_GostR3411_94, NID_id_GostR3410_2001}
779 };
780
781 static int tls_sigalg_get_hash(unsigned int sigalg)
782 {
783 size_t i;
784 SIGALG_LOOKUP *curr;
785
786 for (i = 0, curr = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
787 i++, curr++) {
788 if (curr->sigalg == sigalg)
789 return curr->hash;
790 }
791
792 return 0;
793 }
794
795 static int tls_sigalg_get_sig(unsigned int sigalg)
796 {
797 size_t i;
798 SIGALG_LOOKUP *curr;
799
800 for (i = 0, curr = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
801 i++, curr++) {
802 if (curr->sigalg == sigalg)
803 return curr->sig;
804 }
805
806 return 0;
807 }
808
809 size_t tls12_get_psigalgs(SSL *s, const unsigned int **psigs)
810 {
811 /*
812 * If Suite B mode use Suite B sigalgs only, ignore any other
813 * preferences.
814 */
815 #ifndef OPENSSL_NO_EC
816 switch (tls1_suiteb(s)) {
817 case SSL_CERT_FLAG_SUITEB_128_LOS:
818 *psigs = suiteb_sigalgs;
819 return sizeof(suiteb_sigalgs);
820
821 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
822 *psigs = suiteb_sigalgs;
823 return 2;
824
825 case SSL_CERT_FLAG_SUITEB_192_LOS:
826 *psigs = suiteb_sigalgs + 2;
827 return 2;
828 }
829 #endif
830 /* If server use client authentication sigalgs if not NULL */
831 if (s->server && s->cert->client_sigalgs) {
832 *psigs = s->cert->client_sigalgs;
833 return s->cert->client_sigalgslen;
834 } else if (s->cert->conf_sigalgs) {
835 *psigs = s->cert->conf_sigalgs;
836 return s->cert->conf_sigalgslen;
837 } else {
838 *psigs = tls12_sigalgs;
839 return OSSL_NELEM(tls12_sigalgs);
840 }
841 }
842
843 /*
844 * Check signature algorithm is consistent with sent supported signature
845 * algorithms and if so return relevant digest.
846 */
847 int tls12_check_peer_sigalg(const EVP_MD **pmd, SSL *s, unsigned int sig,
848 EVP_PKEY *pkey)
849 {
850 const unsigned int *sent_sigs;
851 char sigalgstr[2];
852 size_t sent_sigslen, i;
853 int pkeyid = EVP_PKEY_id(pkey);
854 /* Should never happen */
855 if (pkeyid == -1)
856 return -1;
857 /* Check key type is consistent with signature */
858 if (pkeyid != tls_sigalg_get_sig(sig)) {
859 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_SIGNATURE_TYPE);
860 return 0;
861 }
862 #ifndef OPENSSL_NO_EC
863 if (pkeyid == EVP_PKEY_EC) {
864 unsigned char curve_id[2], comp_id;
865 /* Check compression and curve matches extensions */
866 if (!tls1_set_ec_id(curve_id, &comp_id, EVP_PKEY_get0_EC_KEY(pkey)))
867 return 0;
868 if (!s->server && !tls1_check_ec_key(s, curve_id, &comp_id)) {
869 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_CURVE);
870 return 0;
871 }
872 /* If Suite B only P-384+SHA384 or P-256+SHA-256 allowed */
873 if (tls1_suiteb(s)) {
874 if (curve_id[0])
875 return 0;
876 if (curve_id[1] == TLSEXT_curve_P_256) {
877 if (tls_sigalg_get_hash(sig) != NID_sha256) {
878 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG,
879 SSL_R_ILLEGAL_SUITEB_DIGEST);
880 return 0;
881 }
882 } else if (curve_id[1] == TLSEXT_curve_P_384) {
883 if (tls_sigalg_get_hash(sig) != NID_sha384) {
884 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG,
885 SSL_R_ILLEGAL_SUITEB_DIGEST);
886 return 0;
887 }
888 } else
889 return 0;
890 }
891 } else if (tls1_suiteb(s))
892 return 0;
893 #endif
894
895 /* Check signature matches a type we sent */
896 sent_sigslen = tls12_get_psigalgs(s, &sent_sigs);
897 for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
898 if (sig == *sent_sigs)
899 break;
900 }
901 /* Allow fallback to SHA1 if not strict mode */
902 if (i == sent_sigslen
903 && (tls_sigalg_get_hash(sig) != NID_sha1
904 || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) {
905 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_SIGNATURE_TYPE);
906 return 0;
907 }
908 *pmd = tls12_get_hash(tls_sigalg_get_hash(sig));
909 if (*pmd == NULL) {
910 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_UNKNOWN_DIGEST);
911 return 0;
912 }
913 /*
914 * Make sure security callback allows algorithm. For historical reasons we
915 * have to pass the sigalg as a two byte char array.
916 */
917 sigalgstr[0] = (sig >> 8) & 0xff;
918 sigalgstr[1] = sig & 0xff;
919 if (!ssl_security(s, SSL_SECOP_SIGALG_CHECK,
920 EVP_MD_size(*pmd) * 4, EVP_MD_type(*pmd),
921 (void *)sigalgstr)) {
922 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_SIGNATURE_TYPE);
923 return 0;
924 }
925 /*
926 * Store the digest used so applications can retrieve it if they wish.
927 */
928 s->s3->tmp.peer_md = *pmd;
929 return 1;
930 }
931
932 /*
933 * Set a mask of disabled algorithms: an algorithm is disabled if it isn't
934 * supported, doesn't appear in supported signature algorithms, isn't supported
935 * by the enabled protocol versions or by the security level.
936 *
937 * This function should only be used for checking which ciphers are supported
938 * by the client.
939 *
940 * Call ssl_cipher_disabled() to check that it's enabled or not.
941 */
942 void ssl_set_client_disabled(SSL *s)
943 {
944 s->s3->tmp.mask_a = 0;
945 s->s3->tmp.mask_k = 0;
946 ssl_set_sig_mask(&s->s3->tmp.mask_a, s, SSL_SECOP_SIGALG_MASK);
947 ssl_get_client_min_max_version(s, &s->s3->tmp.min_ver, &s->s3->tmp.max_ver);
948 #ifndef OPENSSL_NO_PSK
949 /* with PSK there must be client callback set */
950 if (!s->psk_client_callback) {
951 s->s3->tmp.mask_a |= SSL_aPSK;
952 s->s3->tmp.mask_k |= SSL_PSK;
953 }
954 #endif /* OPENSSL_NO_PSK */
955 #ifndef OPENSSL_NO_SRP
956 if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) {
957 s->s3->tmp.mask_a |= SSL_aSRP;
958 s->s3->tmp.mask_k |= SSL_kSRP;
959 }
960 #endif
961 }
962
963 /*
964 * ssl_cipher_disabled - check that a cipher is disabled or not
965 * @s: SSL connection that you want to use the cipher on
966 * @c: cipher to check
967 * @op: Security check that you want to do
968 *
969 * Returns 1 when it's disabled, 0 when enabled.
970 */
971 int ssl_cipher_disabled(SSL *s, const SSL_CIPHER *c, int op)
972 {
973 if (c->algorithm_mkey & s->s3->tmp.mask_k
974 || c->algorithm_auth & s->s3->tmp.mask_a)
975 return 1;
976 if (s->s3->tmp.max_ver == 0)
977 return 1;
978 if (!SSL_IS_DTLS(s) && ((c->min_tls > s->s3->tmp.max_ver)
979 || (c->max_tls < s->s3->tmp.min_ver)))
980 return 1;
981 if (SSL_IS_DTLS(s) && (DTLS_VERSION_GT(c->min_dtls, s->s3->tmp.max_ver)
982 || DTLS_VERSION_LT(c->max_dtls, s->s3->tmp.min_ver)))
983 return 1;
984
985 return !ssl_security(s, op, c->strength_bits, 0, (void *)c);
986 }
987
988 int tls_use_ticket(SSL *s)
989 {
990 if ((s->options & SSL_OP_NO_TICKET) || SSL_IS_TLS13(s))
991 return 0;
992 return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL);
993 }
994
995 /* Initialise digests to default values */
996 void ssl_set_default_md(SSL *s)
997 {
998 const EVP_MD **pmd = s->s3->tmp.md;
999 #ifndef OPENSSL_NO_DSA
1000 pmd[SSL_PKEY_DSA_SIGN] = ssl_md(SSL_MD_SHA1_IDX);
1001 #endif
1002 #ifndef OPENSSL_NO_RSA
1003 if (SSL_USE_SIGALGS(s))
1004 pmd[SSL_PKEY_RSA_SIGN] = ssl_md(SSL_MD_SHA1_IDX);
1005 else
1006 pmd[SSL_PKEY_RSA_SIGN] = ssl_md(SSL_MD_MD5_SHA1_IDX);
1007 pmd[SSL_PKEY_RSA_ENC] = pmd[SSL_PKEY_RSA_SIGN];
1008 #endif
1009 #ifndef OPENSSL_NO_EC
1010 pmd[SSL_PKEY_ECC] = ssl_md(SSL_MD_SHA1_IDX);
1011 #endif
1012 #ifndef OPENSSL_NO_GOST
1013 pmd[SSL_PKEY_GOST01] = ssl_md(SSL_MD_GOST94_IDX);
1014 pmd[SSL_PKEY_GOST12_256] = ssl_md(SSL_MD_GOST12_256_IDX);
1015 pmd[SSL_PKEY_GOST12_512] = ssl_md(SSL_MD_GOST12_512_IDX);
1016 #endif
1017 }
1018
1019 int tls1_set_server_sigalgs(SSL *s)
1020 {
1021 int al;
1022 size_t i;
1023
1024 /* Clear any shared signature algorithms */
1025 OPENSSL_free(s->cert->shared_sigalgs);
1026 s->cert->shared_sigalgs = NULL;
1027 s->cert->shared_sigalgslen = 0;
1028 /* Clear certificate digests and validity flags */
1029 for (i = 0; i < SSL_PKEY_NUM; i++) {
1030 s->s3->tmp.md[i] = NULL;
1031 s->s3->tmp.valid_flags[i] = 0;
1032 }
1033
1034 /* If sigalgs received process it. */
1035 if (s->s3->tmp.peer_sigalgs) {
1036 if (!tls1_process_sigalgs(s)) {
1037 SSLerr(SSL_F_TLS1_SET_SERVER_SIGALGS, ERR_R_MALLOC_FAILURE);
1038 al = SSL_AD_INTERNAL_ERROR;
1039 goto err;
1040 }
1041 /* Fatal error is no shared signature algorithms */
1042 if (!s->cert->shared_sigalgs) {
1043 SSLerr(SSL_F_TLS1_SET_SERVER_SIGALGS,
1044 SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS);
1045 al = SSL_AD_ILLEGAL_PARAMETER;
1046 goto err;
1047 }
1048 } else {
1049 ssl_set_default_md(s);
1050 }
1051 return 1;
1052 err:
1053 ssl3_send_alert(s, SSL3_AL_FATAL, al);
1054 return 0;
1055 }
1056
1057 /*-
1058 * Gets the ticket information supplied by the client if any.
1059 *
1060 * hello: The parsed ClientHello data
1061 * ret: (output) on return, if a ticket was decrypted, then this is set to
1062 * point to the resulting session.
1063 *
1064 * If s->tls_session_secret_cb is set then we are expecting a pre-shared key
1065 * ciphersuite, in which case we have no use for session tickets and one will
1066 * never be decrypted, nor will s->ext.ticket_expected be set to 1.
1067 *
1068 * Returns:
1069 * -1: fatal error, either from parsing or decrypting the ticket.
1070 * 0: no ticket was found (or was ignored, based on settings).
1071 * 1: a zero length extension was found, indicating that the client supports
1072 * session tickets but doesn't currently have one to offer.
1073 * 2: either s->tls_session_secret_cb was set, or a ticket was offered but
1074 * couldn't be decrypted because of a non-fatal error.
1075 * 3: a ticket was successfully decrypted and *ret was set.
1076 *
1077 * Side effects:
1078 * Sets s->ext.ticket_expected to 1 if the server will have to issue
1079 * a new session ticket to the client because the client indicated support
1080 * (and s->tls_session_secret_cb is NULL) but the client either doesn't have
1081 * a session ticket or we couldn't use the one it gave us, or if
1082 * s->ctx->ext.ticket_key_cb asked to renew the client's ticket.
1083 * Otherwise, s->ext.ticket_expected is set to 0.
1084 */
1085 int tls_get_ticket_from_client(SSL *s, CLIENTHELLO_MSG *hello,
1086 SSL_SESSION **ret)
1087 {
1088 int retv;
1089 size_t size;
1090 RAW_EXTENSION *ticketext;
1091
1092 *ret = NULL;
1093 s->ext.ticket_expected = 0;
1094
1095 /*
1096 * If tickets disabled or not supported by the protocol version
1097 * (e.g. TLSv1.3) behave as if no ticket present to permit stateful
1098 * resumption.
1099 */
1100 if (s->version <= SSL3_VERSION || !tls_use_ticket(s))
1101 return 0;
1102
1103 ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket];
1104 if (!ticketext->present)
1105 return 0;
1106
1107 size = PACKET_remaining(&ticketext->data);
1108 if (size == 0) {
1109 /*
1110 * The client will accept a ticket but doesn't currently have
1111 * one.
1112 */
1113 s->ext.ticket_expected = 1;
1114 return 1;
1115 }
1116 if (s->ext.session_secret_cb) {
1117 /*
1118 * Indicate that the ticket couldn't be decrypted rather than
1119 * generating the session from ticket now, trigger
1120 * abbreviated handshake based on external mechanism to
1121 * calculate the master secret later.
1122 */
1123 return 2;
1124 }
1125
1126 retv = tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size,
1127 hello->session_id, hello->session_id_len, ret);
1128 switch (retv) {
1129 case 2: /* ticket couldn't be decrypted */
1130 s->ext.ticket_expected = 1;
1131 return 2;
1132
1133 case 3: /* ticket was decrypted */
1134 return 3;
1135
1136 case 4: /* ticket decrypted but need to renew */
1137 s->ext.ticket_expected = 1;
1138 return 3;
1139
1140 default: /* fatal error */
1141 return -1;
1142 }
1143 }
1144
1145 /*-
1146 * tls_decrypt_ticket attempts to decrypt a session ticket.
1147 *
1148 * etick: points to the body of the session ticket extension.
1149 * eticklen: the length of the session tickets extension.
1150 * sess_id: points at the session ID.
1151 * sesslen: the length of the session ID.
1152 * psess: (output) on return, if a ticket was decrypted, then this is set to
1153 * point to the resulting session.
1154 *
1155 * Returns:
1156 * -2: fatal error, malloc failure.
1157 * -1: fatal error, either from parsing or decrypting the ticket.
1158 * 2: the ticket couldn't be decrypted.
1159 * 3: a ticket was successfully decrypted and *psess was set.
1160 * 4: same as 3, but the ticket needs to be renewed.
1161 */
1162 static int tls_decrypt_ticket(SSL *s, const unsigned char *etick,
1163 size_t eticklen, const unsigned char *sess_id,
1164 size_t sesslen, SSL_SESSION **psess)
1165 {
1166 SSL_SESSION *sess;
1167 unsigned char *sdec;
1168 const unsigned char *p;
1169 int slen, renew_ticket = 0, ret = -1, declen;
1170 size_t mlen;
1171 unsigned char tick_hmac[EVP_MAX_MD_SIZE];
1172 HMAC_CTX *hctx = NULL;
1173 EVP_CIPHER_CTX *ctx;
1174 SSL_CTX *tctx = s->initial_ctx;
1175
1176 /* Initialize session ticket encryption and HMAC contexts */
1177 hctx = HMAC_CTX_new();
1178 if (hctx == NULL)
1179 return -2;
1180 ctx = EVP_CIPHER_CTX_new();
1181 if (ctx == NULL) {
1182 ret = -2;
1183 goto err;
1184 }
1185 if (tctx->ext.ticket_key_cb) {
1186 unsigned char *nctick = (unsigned char *)etick;
1187 int rv = tctx->ext.ticket_key_cb(s, nctick, nctick + 16,
1188 ctx, hctx, 0);
1189 if (rv < 0)
1190 goto err;
1191 if (rv == 0) {
1192 ret = 2;
1193 goto err;
1194 }
1195 if (rv == 2)
1196 renew_ticket = 1;
1197 } else {
1198 /* Check key name matches */
1199 if (memcmp(etick, tctx->ext.tick_key_name,
1200 sizeof(tctx->ext.tick_key_name)) != 0) {
1201 ret = 2;
1202 goto err;
1203 }
1204 if (HMAC_Init_ex(hctx, tctx->ext.tick_hmac_key,
1205 sizeof(tctx->ext.tick_hmac_key),
1206 EVP_sha256(), NULL) <= 0
1207 || EVP_DecryptInit_ex(ctx, EVP_aes_256_cbc(), NULL,
1208 tctx->ext.tick_aes_key,
1209 etick + sizeof(tctx->ext.tick_key_name)) <=
1210 0) {
1211 goto err;
1212 }
1213 }
1214 /*
1215 * Attempt to process session ticket, first conduct sanity and integrity
1216 * checks on ticket.
1217 */
1218 mlen = HMAC_size(hctx);
1219 if (mlen == 0) {
1220 goto err;
1221 }
1222 /* Sanity check ticket length: must exceed keyname + IV + HMAC */
1223 if (eticklen <=
1224 TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_iv_length(ctx) + mlen) {
1225 ret = 2;
1226 goto err;
1227 }
1228 eticklen -= mlen;
1229 /* Check HMAC of encrypted ticket */
1230 if (HMAC_Update(hctx, etick, eticklen) <= 0
1231 || HMAC_Final(hctx, tick_hmac, NULL) <= 0) {
1232 goto err;
1233 }
1234 HMAC_CTX_free(hctx);
1235 if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) {
1236 EVP_CIPHER_CTX_free(ctx);
1237 return 2;
1238 }
1239 /* Attempt to decrypt session data */
1240 /* Move p after IV to start of encrypted ticket, update length */
1241 p = etick + 16 + EVP_CIPHER_CTX_iv_length(ctx);
1242 eticklen -= 16 + EVP_CIPHER_CTX_iv_length(ctx);
1243 sdec = OPENSSL_malloc(eticklen);
1244 if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p,
1245 (int)eticklen) <= 0) {
1246 EVP_CIPHER_CTX_free(ctx);
1247 OPENSSL_free(sdec);
1248 return -1;
1249 }
1250 if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) {
1251 EVP_CIPHER_CTX_free(ctx);
1252 OPENSSL_free(sdec);
1253 return 2;
1254 }
1255 slen += declen;
1256 EVP_CIPHER_CTX_free(ctx);
1257 ctx = NULL;
1258 p = sdec;
1259
1260 sess = d2i_SSL_SESSION(NULL, &p, slen);
1261 OPENSSL_free(sdec);
1262 if (sess) {
1263 /*
1264 * The session ID, if non-empty, is used by some clients to detect
1265 * that the ticket has been accepted. So we copy it to the session
1266 * structure. If it is empty set length to zero as required by
1267 * standard.
1268 */
1269 if (sesslen)
1270 memcpy(sess->session_id, sess_id, sesslen);
1271 sess->session_id_length = sesslen;
1272 *psess = sess;
1273 if (renew_ticket)
1274 return 4;
1275 else
1276 return 3;
1277 }
1278 ERR_clear_error();
1279 /*
1280 * For session parse failure, indicate that we need to send a new ticket.
1281 */
1282 return 2;
1283 err:
1284 EVP_CIPHER_CTX_free(ctx);
1285 HMAC_CTX_free(hctx);
1286 return ret;
1287 }
1288
1289 int tls12_get_sigandhash(SSL *s, WPACKET *pkt, const EVP_PKEY *pk,
1290 const EVP_MD *md, int *ispss)
1291 {
1292 int md_id, sig_id, tmpispss = 0;
1293 size_t i;
1294 SIGALG_LOOKUP *curr;
1295
1296 if (md == NULL)
1297 return 0;
1298 md_id = EVP_MD_type(md);
1299 sig_id = EVP_PKEY_id(pk);
1300 if (md_id == NID_undef)
1301 return 0;
1302
1303 for (i = 0, curr = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
1304 i++, curr++) {
1305 if (curr->hash == md_id && curr->sig == sig_id) {
1306 if (sig_id == EVP_PKEY_RSA) {
1307 tmpispss = SIGID_IS_PSS(curr->sigalg);
1308 if (!SSL_IS_TLS13(s) && tmpispss) {
1309 size_t j;
1310
1311 /*
1312 * Check peer actually sent a PSS sig id - it could have
1313 * been a PKCS1 sig id instead.
1314 */
1315 for (j = 0; j < s->cert->shared_sigalgslen; j++)
1316 if (s->cert->shared_sigalgs[j].rsigalg == curr->sigalg)
1317 break;
1318
1319 if (j == s->cert->shared_sigalgslen)
1320 continue;
1321 }
1322 }
1323 if (!WPACKET_put_bytes_u16(pkt, curr->sigalg))
1324 return 0;
1325 *ispss = tmpispss;
1326 return 1;
1327 }
1328 }
1329
1330 return 0;
1331 }
1332
1333 typedef struct {
1334 int nid;
1335 int secbits;
1336 int md_idx;
1337 } tls12_hash_info;
1338
1339 static const tls12_hash_info tls12_md_info[] = {
1340 {NID_md5, 64, SSL_MD_MD5_IDX},
1341 {NID_sha1, 80, SSL_MD_SHA1_IDX},
1342 {NID_sha224, 112, SSL_MD_SHA224_IDX},
1343 {NID_sha256, 128, SSL_MD_SHA256_IDX},
1344 {NID_sha384, 192, SSL_MD_SHA384_IDX},
1345 {NID_sha512, 256, SSL_MD_SHA512_IDX},
1346 {NID_id_GostR3411_94, 128, SSL_MD_GOST94_IDX},
1347 {NID_id_GostR3411_2012_256, 128, SSL_MD_GOST12_256_IDX},
1348 {NID_id_GostR3411_2012_512, 256, SSL_MD_GOST12_512_IDX},
1349 };
1350
1351 static const tls12_hash_info *tls12_get_hash_info(int hash_nid)
1352 {
1353 unsigned int i;
1354 if (hash_nid == NID_undef)
1355 return NULL;
1356
1357 for (i = 0; i < OSSL_NELEM(tls12_md_info); i++) {
1358 if (tls12_md_info[i].nid == hash_nid)
1359 return tls12_md_info + i;
1360 }
1361
1362 return NULL;
1363 }
1364
1365 const EVP_MD *tls12_get_hash(int hash_nid)
1366 {
1367 const tls12_hash_info *inf;
1368 if (hash_nid == NID_md5 && FIPS_mode())
1369 return NULL;
1370 inf = tls12_get_hash_info(hash_nid);
1371 if (!inf)
1372 return NULL;
1373 return ssl_md(inf->md_idx);
1374 }
1375
1376 static int tls12_get_pkey_idx(int sig_nid)
1377 {
1378 switch (sig_nid) {
1379 #ifndef OPENSSL_NO_RSA
1380 case EVP_PKEY_RSA:
1381 return SSL_PKEY_RSA_SIGN;
1382 #endif
1383 #ifndef OPENSSL_NO_DSA
1384 case EVP_PKEY_DSA:
1385 return SSL_PKEY_DSA_SIGN;
1386 #endif
1387 #ifndef OPENSSL_NO_EC
1388 case EVP_PKEY_EC:
1389 return SSL_PKEY_ECC;
1390 #endif
1391 #ifndef OPENSSL_NO_GOST
1392 case NID_id_GostR3410_2001:
1393 return SSL_PKEY_GOST01;
1394
1395 case NID_id_GostR3410_2012_256:
1396 return SSL_PKEY_GOST12_256;
1397
1398 case NID_id_GostR3410_2012_512:
1399 return SSL_PKEY_GOST12_512;
1400 #endif
1401 }
1402 return -1;
1403 }
1404
1405 /* Convert TLS 1.2 signature algorithm extension values into NIDs */
1406 static void tls1_lookup_sigalg(int *phash_nid, int *psign_nid,
1407 int *psignhash_nid, unsigned int data)
1408 {
1409 int sign_nid = NID_undef, hash_nid = NID_undef;
1410 if (!phash_nid && !psign_nid && !psignhash_nid)
1411 return;
1412 if (phash_nid || psignhash_nid) {
1413 hash_nid = tls_sigalg_get_hash(data);
1414 if (phash_nid)
1415 *phash_nid = hash_nid;
1416 }
1417 if (psign_nid || psignhash_nid) {
1418 sign_nid = tls_sigalg_get_sig(data);
1419 if (psign_nid)
1420 *psign_nid = sign_nid;
1421 }
1422 if (psignhash_nid) {
1423 if (sign_nid == NID_undef || hash_nid == NID_undef
1424 || OBJ_find_sigid_by_algs(psignhash_nid, hash_nid, sign_nid) <= 0)
1425 *psignhash_nid = NID_undef;
1426 }
1427 }
1428
1429 /* Check to see if a signature algorithm is allowed */
1430 static int tls12_sigalg_allowed(SSL *s, int op, unsigned int ptmp)
1431 {
1432 /* See if we have an entry in the hash table and it is enabled */
1433 const tls12_hash_info *hinf
1434 = tls12_get_hash_info(tls_sigalg_get_hash(ptmp));
1435 unsigned char sigalgstr[2];
1436
1437 if (hinf == NULL || ssl_md(hinf->md_idx) == NULL)
1438 return 0;
1439 /* See if public key algorithm allowed */
1440 if (tls12_get_pkey_idx(tls_sigalg_get_sig(ptmp)) == -1)
1441 return 0;
1442 /* Finally see if security callback allows it */
1443 sigalgstr[0] = (ptmp >> 8) & 0xff;
1444 sigalgstr[1] = ptmp & 0xff;
1445 return ssl_security(s, op, hinf->secbits, hinf->nid, (void *)sigalgstr);
1446 }
1447
1448 /*
1449 * Get a mask of disabled public key algorithms based on supported signature
1450 * algorithms. For example if no signature algorithm supports RSA then RSA is
1451 * disabled.
1452 */
1453
1454 void ssl_set_sig_mask(uint32_t *pmask_a, SSL *s, int op)
1455 {
1456 const unsigned int *sigalgs;
1457 size_t i, sigalgslen;
1458 int have_rsa = 0, have_dsa = 0, have_ecdsa = 0;
1459 /*
1460 * Now go through all signature algorithms seeing if we support any for
1461 * RSA, DSA, ECDSA. Do this for all versions not just TLS 1.2. To keep
1462 * down calls to security callback only check if we have to.
1463 */
1464 sigalgslen = tls12_get_psigalgs(s, &sigalgs);
1465 for (i = 0; i < sigalgslen; i ++, sigalgs++) {
1466 switch (tls_sigalg_get_sig(*sigalgs)) {
1467 #ifndef OPENSSL_NO_RSA
1468 case EVP_PKEY_RSA:
1469 if (!have_rsa && tls12_sigalg_allowed(s, op, *sigalgs))
1470 have_rsa = 1;
1471 break;
1472 #endif
1473 #ifndef OPENSSL_NO_DSA
1474 case EVP_PKEY_DSA:
1475 if (!have_dsa && tls12_sigalg_allowed(s, op, *sigalgs))
1476 have_dsa = 1;
1477 break;
1478 #endif
1479 #ifndef OPENSSL_NO_EC
1480 case EVP_PKEY_EC:
1481 if (!have_ecdsa && tls12_sigalg_allowed(s, op, *sigalgs))
1482 have_ecdsa = 1;
1483 break;
1484 #endif
1485 }
1486 }
1487 if (!have_rsa)
1488 *pmask_a |= SSL_aRSA;
1489 if (!have_dsa)
1490 *pmask_a |= SSL_aDSS;
1491 if (!have_ecdsa)
1492 *pmask_a |= SSL_aECDSA;
1493 }
1494
1495 int tls12_copy_sigalgs(SSL *s, WPACKET *pkt,
1496 const unsigned int *psig, size_t psiglen)
1497 {
1498 size_t i;
1499
1500 for (i = 0; i < psiglen; i++, psig++) {
1501 if (tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, *psig)) {
1502 if (!WPACKET_put_bytes_u16(pkt, *psig))
1503 return 0;
1504 }
1505 }
1506 return 1;
1507 }
1508
1509 /* Given preference and allowed sigalgs set shared sigalgs */
1510 static size_t tls12_shared_sigalgs(SSL *s, TLS_SIGALGS *shsig,
1511 const unsigned int *pref, size_t preflen,
1512 const unsigned int *allow, size_t allowlen)
1513 {
1514 const unsigned int *ptmp, *atmp;
1515 size_t i, j, nmatch = 0;
1516 for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) {
1517 /* Skip disabled hashes or signature algorithms */
1518 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, *ptmp))
1519 continue;
1520 for (j = 0, atmp = allow; j < allowlen; j++, atmp++) {
1521 if (*ptmp == *atmp) {
1522 nmatch++;
1523 if (shsig) {
1524 shsig->rsigalg = *ptmp;
1525 tls1_lookup_sigalg(&shsig->hash_nid,
1526 &shsig->sign_nid,
1527 &shsig->signandhash_nid, *ptmp);
1528 shsig++;
1529 }
1530 break;
1531 }
1532 }
1533 }
1534 return nmatch;
1535 }
1536
1537 /* Set shared signature algorithms for SSL structures */
1538 static int tls1_set_shared_sigalgs(SSL *s)
1539 {
1540 const unsigned int *pref, *allow, *conf;
1541 size_t preflen, allowlen, conflen;
1542 size_t nmatch;
1543 TLS_SIGALGS *salgs = NULL;
1544 CERT *c = s->cert;
1545 unsigned int is_suiteb = tls1_suiteb(s);
1546
1547 OPENSSL_free(c->shared_sigalgs);
1548 c->shared_sigalgs = NULL;
1549 c->shared_sigalgslen = 0;
1550 /* If client use client signature algorithms if not NULL */
1551 if (!s->server && c->client_sigalgs && !is_suiteb) {
1552 conf = c->client_sigalgs;
1553 conflen = c->client_sigalgslen;
1554 } else if (c->conf_sigalgs && !is_suiteb) {
1555 conf = c->conf_sigalgs;
1556 conflen = c->conf_sigalgslen;
1557 } else
1558 conflen = tls12_get_psigalgs(s, &conf);
1559 if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) {
1560 pref = conf;
1561 preflen = conflen;
1562 allow = s->s3->tmp.peer_sigalgs;
1563 allowlen = s->s3->tmp.peer_sigalgslen;
1564 } else {
1565 allow = conf;
1566 allowlen = conflen;
1567 pref = s->s3->tmp.peer_sigalgs;
1568 preflen = s->s3->tmp.peer_sigalgslen;
1569 }
1570 nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen);
1571 if (nmatch) {
1572 salgs = OPENSSL_malloc(nmatch * sizeof(TLS_SIGALGS));
1573 if (salgs == NULL)
1574 return 0;
1575 nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen);
1576 } else {
1577 salgs = NULL;
1578 }
1579 c->shared_sigalgs = salgs;
1580 c->shared_sigalgslen = nmatch;
1581 return 1;
1582 }
1583
1584 /* Set preferred digest for each key type */
1585
1586 int tls1_save_sigalgs(SSL *s, PACKET *pkt)
1587 {
1588 CERT *c = s->cert;
1589 size_t size, i;
1590
1591 /* Extension ignored for inappropriate versions */
1592 if (!SSL_USE_SIGALGS(s))
1593 return 1;
1594 /* Should never happen */
1595 if (!c)
1596 return 0;
1597
1598 size = PACKET_remaining(pkt);
1599
1600 /* Invalid data length */
1601 if ((size & 1) != 0)
1602 return 0;
1603
1604 size >>= 1;
1605
1606 OPENSSL_free(s->s3->tmp.peer_sigalgs);
1607 s->s3->tmp.peer_sigalgs = OPENSSL_malloc(size
1608 * sizeof(*s->s3->tmp.peer_sigalgs));
1609 if (s->s3->tmp.peer_sigalgs == NULL)
1610 return 0;
1611 s->s3->tmp.peer_sigalgslen = size;
1612 for (i = 0; i < size && PACKET_get_net_2(pkt, &s->s3->tmp.peer_sigalgs[i]);
1613 i++)
1614 continue;
1615
1616 if (i != size)
1617 return 0;
1618
1619 return 1;
1620 }
1621
1622 int tls1_process_sigalgs(SSL *s)
1623 {
1624 int idx;
1625 size_t i;
1626 const EVP_MD *md;
1627 const EVP_MD **pmd = s->s3->tmp.md;
1628 uint32_t *pvalid = s->s3->tmp.valid_flags;
1629 CERT *c = s->cert;
1630 TLS_SIGALGS *sigptr;
1631 if (!tls1_set_shared_sigalgs(s))
1632 return 0;
1633
1634 for (i = 0, sigptr = c->shared_sigalgs;
1635 i < c->shared_sigalgslen; i++, sigptr++) {
1636 /* Ignore PKCS1 based sig algs in TLSv1.3 */
1637 if (SSL_IS_TLS13(s)
1638 && (sigptr->rsigalg == TLSEXT_SIGALG_rsa_pkcs1_sha1
1639 || sigptr->rsigalg == TLSEXT_SIGALG_rsa_pkcs1_sha256
1640 || sigptr->rsigalg == TLSEXT_SIGALG_rsa_pkcs1_sha384
1641 || sigptr->rsigalg == TLSEXT_SIGALG_rsa_pkcs1_sha512))
1642 continue;
1643 idx = tls12_get_pkey_idx(sigptr->sign_nid);
1644 if (idx > 0 && pmd[idx] == NULL) {
1645 md = tls12_get_hash(sigptr->hash_nid);
1646 pmd[idx] = md;
1647 pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN;
1648 if (idx == SSL_PKEY_RSA_SIGN) {
1649 pvalid[SSL_PKEY_RSA_ENC] = CERT_PKEY_EXPLICIT_SIGN;
1650 pmd[SSL_PKEY_RSA_ENC] = md;
1651 }
1652 }
1653
1654 }
1655 /*
1656 * In strict mode or TLS1.3 leave unset digests as NULL to indicate we can't
1657 * use the certificate for signing.
1658 */
1659 if (!(s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)
1660 && !SSL_IS_TLS13(s)) {
1661 /*
1662 * Set any remaining keys to default values. NOTE: if alg is not
1663 * supported it stays as NULL.
1664 */
1665 #ifndef OPENSSL_NO_DSA
1666 if (pmd[SSL_PKEY_DSA_SIGN] == NULL)
1667 pmd[SSL_PKEY_DSA_SIGN] = EVP_sha1();
1668 #endif
1669 #ifndef OPENSSL_NO_RSA
1670 if (pmd[SSL_PKEY_RSA_SIGN] == NULL) {
1671 pmd[SSL_PKEY_RSA_SIGN] = EVP_sha1();
1672 pmd[SSL_PKEY_RSA_ENC] = EVP_sha1();
1673 }
1674 #endif
1675 #ifndef OPENSSL_NO_EC
1676 if (pmd[SSL_PKEY_ECC] == NULL)
1677 pmd[SSL_PKEY_ECC] = EVP_sha1();
1678 #endif
1679 #ifndef OPENSSL_NO_GOST
1680 if (pmd[SSL_PKEY_GOST01] == NULL)
1681 pmd[SSL_PKEY_GOST01] = EVP_get_digestbynid(NID_id_GostR3411_94);
1682 if (pmd[SSL_PKEY_GOST12_256] == NULL)
1683 pmd[SSL_PKEY_GOST12_256] =
1684 EVP_get_digestbynid(NID_id_GostR3411_2012_256);
1685 if (pmd[SSL_PKEY_GOST12_512] == NULL)
1686 pmd[SSL_PKEY_GOST12_512] =
1687 EVP_get_digestbynid(NID_id_GostR3411_2012_512);
1688 #endif
1689 }
1690 return 1;
1691 }
1692
1693 int SSL_get_sigalgs(SSL *s, int idx,
1694 int *psign, int *phash, int *psignhash,
1695 unsigned char *rsig, unsigned char *rhash)
1696 {
1697 unsigned int *psig = s->s3->tmp.peer_sigalgs;
1698 size_t numsigalgs = s->s3->tmp.peer_sigalgslen;
1699 if (psig == NULL || numsigalgs > INT_MAX)
1700 return 0;
1701 if (idx >= 0) {
1702 if (idx >= (int)numsigalgs)
1703 return 0;
1704 psig += idx;
1705 if (rhash)
1706 *rhash = (unsigned char)((*psig >> 8) & 0xff);
1707 if (rsig)
1708 *rsig = (unsigned char)(*psig & 0xff);
1709 tls1_lookup_sigalg(phash, psign, psignhash, *psig);
1710 }
1711 return (int)numsigalgs;
1712 }
1713
1714 int SSL_get_shared_sigalgs(SSL *s, int idx,
1715 int *psign, int *phash, int *psignhash,
1716 unsigned char *rsig, unsigned char *rhash)
1717 {
1718 TLS_SIGALGS *shsigalgs = s->cert->shared_sigalgs;
1719 if (!shsigalgs || idx >= (int)s->cert->shared_sigalgslen
1720 || s->cert->shared_sigalgslen > INT_MAX)
1721 return 0;
1722 shsigalgs += idx;
1723 if (phash)
1724 *phash = shsigalgs->hash_nid;
1725 if (psign)
1726 *psign = shsigalgs->sign_nid;
1727 if (psignhash)
1728 *psignhash = shsigalgs->signandhash_nid;
1729 if (rsig)
1730 *rsig = (unsigned char)(shsigalgs->rsigalg & 0xff);
1731 if (rhash)
1732 *rhash = (unsigned char)((shsigalgs->rsigalg >> 8) & 0xff);
1733 return (int)s->cert->shared_sigalgslen;
1734 }
1735
1736 #define MAX_SIGALGLEN (TLSEXT_hash_num * TLSEXT_signature_num * 2)
1737
1738 typedef struct {
1739 size_t sigalgcnt;
1740 int sigalgs[MAX_SIGALGLEN];
1741 } sig_cb_st;
1742
1743 static void get_sigorhash(int *psig, int *phash, const char *str)
1744 {
1745 if (strcmp(str, "RSA") == 0) {
1746 *psig = EVP_PKEY_RSA;
1747 } else if (strcmp(str, "DSA") == 0) {
1748 *psig = EVP_PKEY_DSA;
1749 } else if (strcmp(str, "ECDSA") == 0) {
1750 *psig = EVP_PKEY_EC;
1751 } else {
1752 *phash = OBJ_sn2nid(str);
1753 if (*phash == NID_undef)
1754 *phash = OBJ_ln2nid(str);
1755 }
1756 }
1757
1758 static int sig_cb(const char *elem, int len, void *arg)
1759 {
1760 sig_cb_st *sarg = arg;
1761 size_t i;
1762 char etmp[20], *p;
1763 int sig_alg = NID_undef, hash_alg = NID_undef;
1764 if (elem == NULL)
1765 return 0;
1766 if (sarg->sigalgcnt == MAX_SIGALGLEN)
1767 return 0;
1768 if (len > (int)(sizeof(etmp) - 1))
1769 return 0;
1770 memcpy(etmp, elem, len);
1771 etmp[len] = 0;
1772 p = strchr(etmp, '+');
1773 if (!p)
1774 return 0;
1775 *p = 0;
1776 p++;
1777 if (!*p)
1778 return 0;
1779
1780 get_sigorhash(&sig_alg, &hash_alg, etmp);
1781 get_sigorhash(&sig_alg, &hash_alg, p);
1782
1783 if (sig_alg == NID_undef || hash_alg == NID_undef)
1784 return 0;
1785
1786 for (i = 0; i < sarg->sigalgcnt; i += 2) {
1787 if (sarg->sigalgs[i] == sig_alg && sarg->sigalgs[i + 1] == hash_alg)
1788 return 0;
1789 }
1790 sarg->sigalgs[sarg->sigalgcnt++] = hash_alg;
1791 sarg->sigalgs[sarg->sigalgcnt++] = sig_alg;
1792 return 1;
1793 }
1794
1795 /*
1796 * Set supported signature algorithms based on a colon separated list of the
1797 * form sig+hash e.g. RSA+SHA512:DSA+SHA512
1798 */
1799 int tls1_set_sigalgs_list(CERT *c, const char *str, int client)
1800 {
1801 sig_cb_st sig;
1802 sig.sigalgcnt = 0;
1803 if (!CONF_parse_list(str, ':', 1, sig_cb, &sig))
1804 return 0;
1805 if (c == NULL)
1806 return 1;
1807 return tls1_set_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client);
1808 }
1809
1810 /* TODO(TLS1.3): Needs updating to allow setting of TLS1.3 sig algs */
1811 int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client)
1812 {
1813 unsigned int *sigalgs, *sptr;
1814 size_t i;
1815
1816 if (salglen & 1)
1817 return 0;
1818 sigalgs = OPENSSL_malloc(salglen * sizeof(*sigalgs));
1819 if (sigalgs == NULL)
1820 return 0;
1821 /*
1822 * TODO(TLS1.3): Somehow we need to be able to set RSA-PSS as well as
1823 * RSA-PKCS1. For now we only allow setting of RSA-PKCS1
1824 */
1825 for (i = 0, sptr = sigalgs; i < salglen; i += 2) {
1826 size_t j;
1827 SIGALG_LOOKUP *curr;
1828 int md_id = *psig_nids++;
1829 int sig_id = *psig_nids++;
1830
1831 for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl);
1832 j++, curr++) {
1833 /* Skip setting PSS so we get PKCS1 by default */
1834 if (SIGID_IS_PSS(curr->sigalg))
1835 continue;
1836 if (curr->hash == md_id && curr->sig == sig_id) {
1837 *sptr++ = curr->sigalg;
1838 break;
1839 }
1840 }
1841
1842 if (j == OSSL_NELEM(sigalg_lookup_tbl))
1843 goto err;
1844 }
1845
1846 if (client) {
1847 OPENSSL_free(c->client_sigalgs);
1848 c->client_sigalgs = sigalgs;
1849 c->client_sigalgslen = salglen;
1850 } else {
1851 OPENSSL_free(c->conf_sigalgs);
1852 c->conf_sigalgs = sigalgs;
1853 c->conf_sigalgslen = salglen;
1854 }
1855
1856 return 1;
1857
1858 err:
1859 OPENSSL_free(sigalgs);
1860 return 0;
1861 }
1862
1863 static int tls1_check_sig_alg(CERT *c, X509 *x, int default_nid)
1864 {
1865 int sig_nid;
1866 size_t i;
1867 if (default_nid == -1)
1868 return 1;
1869 sig_nid = X509_get_signature_nid(x);
1870 if (default_nid)
1871 return sig_nid == default_nid ? 1 : 0;
1872 for (i = 0; i < c->shared_sigalgslen; i++)
1873 if (sig_nid == c->shared_sigalgs[i].signandhash_nid)
1874 return 1;
1875 return 0;
1876 }
1877
1878 /* Check to see if a certificate issuer name matches list of CA names */
1879 static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x)
1880 {
1881 X509_NAME *nm;
1882 int i;
1883 nm = X509_get_issuer_name(x);
1884 for (i = 0; i < sk_X509_NAME_num(names); i++) {
1885 if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i)))
1886 return 1;
1887 }
1888 return 0;
1889 }
1890
1891 /*
1892 * Check certificate chain is consistent with TLS extensions and is usable by
1893 * server. This servers two purposes: it allows users to check chains before
1894 * passing them to the server and it allows the server to check chains before
1895 * attempting to use them.
1896 */
1897
1898 /* Flags which need to be set for a certificate when stict mode not set */
1899
1900 #define CERT_PKEY_VALID_FLAGS \
1901 (CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM)
1902 /* Strict mode flags */
1903 #define CERT_PKEY_STRICT_FLAGS \
1904 (CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \
1905 | CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE)
1906
1907 int tls1_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain,
1908 int idx)
1909 {
1910 int i;
1911 int rv = 0;
1912 int check_flags = 0, strict_mode;
1913 CERT_PKEY *cpk = NULL;
1914 CERT *c = s->cert;
1915 uint32_t *pvalid;
1916 unsigned int suiteb_flags = tls1_suiteb(s);
1917 /* idx == -1 means checking server chains */
1918 if (idx != -1) {
1919 /* idx == -2 means checking client certificate chains */
1920 if (idx == -2) {
1921 cpk = c->key;
1922 idx = (int)(cpk - c->pkeys);
1923 } else
1924 cpk = c->pkeys + idx;
1925 pvalid = s->s3->tmp.valid_flags + idx;
1926 x = cpk->x509;
1927 pk = cpk->privatekey;
1928 chain = cpk->chain;
1929 strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT;
1930 /* If no cert or key, forget it */
1931 if (!x || !pk)
1932 goto end;
1933 } else {
1934 if (!x || !pk)
1935 return 0;
1936 idx = ssl_cert_type(x, pk);
1937 if (idx == -1)
1938 return 0;
1939 pvalid = s->s3->tmp.valid_flags + idx;
1940
1941 if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)
1942 check_flags = CERT_PKEY_STRICT_FLAGS;
1943 else
1944 check_flags = CERT_PKEY_VALID_FLAGS;
1945 strict_mode = 1;
1946 }
1947
1948 if (suiteb_flags) {
1949 int ok;
1950 if (check_flags)
1951 check_flags |= CERT_PKEY_SUITEB;
1952 ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags);
1953 if (ok == X509_V_OK)
1954 rv |= CERT_PKEY_SUITEB;
1955 else if (!check_flags)
1956 goto end;
1957 }
1958
1959 /*
1960 * Check all signature algorithms are consistent with signature
1961 * algorithms extension if TLS 1.2 or later and strict mode.
1962 */
1963 if (TLS1_get_version(s) >= TLS1_2_VERSION && strict_mode) {
1964 int default_nid;
1965 int rsign = 0;
1966 if (s->s3->tmp.peer_sigalgs)
1967 default_nid = 0;
1968 /* If no sigalgs extension use defaults from RFC5246 */
1969 else {
1970 switch (idx) {
1971 case SSL_PKEY_RSA_ENC:
1972 case SSL_PKEY_RSA_SIGN:
1973 rsign = EVP_PKEY_RSA;
1974 default_nid = NID_sha1WithRSAEncryption;
1975 break;
1976
1977 case SSL_PKEY_DSA_SIGN:
1978 rsign = EVP_PKEY_DSA;
1979 default_nid = NID_dsaWithSHA1;
1980 break;
1981
1982 case SSL_PKEY_ECC:
1983 rsign = EVP_PKEY_EC;
1984 default_nid = NID_ecdsa_with_SHA1;
1985 break;
1986
1987 case SSL_PKEY_GOST01:
1988 rsign = NID_id_GostR3410_2001;
1989 default_nid = NID_id_GostR3411_94_with_GostR3410_2001;
1990 break;
1991
1992 case SSL_PKEY_GOST12_256:
1993 rsign = NID_id_GostR3410_2012_256;
1994 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256;
1995 break;
1996
1997 case SSL_PKEY_GOST12_512:
1998 rsign = NID_id_GostR3410_2012_512;
1999 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512;
2000 break;
2001
2002 default:
2003 default_nid = -1;
2004 break;
2005 }
2006 }
2007 /*
2008 * If peer sent no signature algorithms extension and we have set
2009 * preferred signature algorithms check we support sha1.
2010 */
2011 if (default_nid > 0 && c->conf_sigalgs) {
2012 size_t j;
2013 const unsigned int *p = c->conf_sigalgs;
2014 for (j = 0; j < c->conf_sigalgslen; j++, p++) {
2015 if (tls_sigalg_get_hash(*p) == NID_sha1
2016 && tls_sigalg_get_sig(*p) == rsign)
2017 break;
2018 }
2019 if (j == c->conf_sigalgslen) {
2020 if (check_flags)
2021 goto skip_sigs;
2022 else
2023 goto end;
2024 }
2025 }
2026 /* Check signature algorithm of each cert in chain */
2027 if (!tls1_check_sig_alg(c, x, default_nid)) {
2028 if (!check_flags)
2029 goto end;
2030 } else
2031 rv |= CERT_PKEY_EE_SIGNATURE;
2032 rv |= CERT_PKEY_CA_SIGNATURE;
2033 for (i = 0; i < sk_X509_num(chain); i++) {
2034 if (!tls1_check_sig_alg(c, sk_X509_value(chain, i), default_nid)) {
2035 if (check_flags) {
2036 rv &= ~CERT_PKEY_CA_SIGNATURE;
2037 break;
2038 } else
2039 goto end;
2040 }
2041 }
2042 }
2043 /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */
2044 else if (check_flags)
2045 rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE;
2046 skip_sigs:
2047 /* Check cert parameters are consistent */
2048 if (tls1_check_cert_param(s, x, check_flags ? 1 : 2))
2049 rv |= CERT_PKEY_EE_PARAM;
2050 else if (!check_flags)
2051 goto end;
2052 if (!s->server)
2053 rv |= CERT_PKEY_CA_PARAM;
2054 /* In strict mode check rest of chain too */
2055 else if (strict_mode) {
2056 rv |= CERT_PKEY_CA_PARAM;
2057 for (i = 0; i < sk_X509_num(chain); i++) {
2058 X509 *ca = sk_X509_value(chain, i);
2059 if (!tls1_check_cert_param(s, ca, 0)) {
2060 if (check_flags) {
2061 rv &= ~CERT_PKEY_CA_PARAM;
2062 break;
2063 } else
2064 goto end;
2065 }
2066 }
2067 }
2068 if (!s->server && strict_mode) {
2069 STACK_OF(X509_NAME) *ca_dn;
2070 int check_type = 0;
2071 switch (EVP_PKEY_id(pk)) {
2072 case EVP_PKEY_RSA:
2073 check_type = TLS_CT_RSA_SIGN;
2074 break;
2075 case EVP_PKEY_DSA:
2076 check_type = TLS_CT_DSS_SIGN;
2077 break;
2078 case EVP_PKEY_EC:
2079 check_type = TLS_CT_ECDSA_SIGN;
2080 break;
2081 }
2082 if (check_type) {
2083 const unsigned char *ctypes;
2084 int ctypelen;
2085 if (c->ctypes) {
2086 ctypes = c->ctypes;
2087 ctypelen = (int)c->ctype_num;
2088 } else {
2089 ctypes = (unsigned char *)s->s3->tmp.ctype;
2090 ctypelen = s->s3->tmp.ctype_num;
2091 }
2092 for (i = 0; i < ctypelen; i++) {
2093 if (ctypes[i] == check_type) {
2094 rv |= CERT_PKEY_CERT_TYPE;
2095 break;
2096 }
2097 }
2098 if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags)
2099 goto end;
2100 } else
2101 rv |= CERT_PKEY_CERT_TYPE;
2102
2103 ca_dn = s->s3->tmp.ca_names;
2104
2105 if (!sk_X509_NAME_num(ca_dn))
2106 rv |= CERT_PKEY_ISSUER_NAME;
2107
2108 if (!(rv & CERT_PKEY_ISSUER_NAME)) {
2109 if (ssl_check_ca_name(ca_dn, x))
2110 rv |= CERT_PKEY_ISSUER_NAME;
2111 }
2112 if (!(rv & CERT_PKEY_ISSUER_NAME)) {
2113 for (i = 0; i < sk_X509_num(chain); i++) {
2114 X509 *xtmp = sk_X509_value(chain, i);
2115 if (ssl_check_ca_name(ca_dn, xtmp)) {
2116 rv |= CERT_PKEY_ISSUER_NAME;
2117 break;
2118 }
2119 }
2120 }
2121 if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME))
2122 goto end;
2123 } else
2124 rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE;
2125
2126 if (!check_flags || (rv & check_flags) == check_flags)
2127 rv |= CERT_PKEY_VALID;
2128
2129 end:
2130
2131 if (TLS1_get_version(s) >= TLS1_2_VERSION) {
2132 if (*pvalid & CERT_PKEY_EXPLICIT_SIGN)
2133 rv |= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
2134 else if (s->s3->tmp.md[idx] != NULL)
2135 rv |= CERT_PKEY_SIGN;
2136 } else
2137 rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN;
2138
2139 /*
2140 * When checking a CERT_PKEY structure all flags are irrelevant if the
2141 * chain is invalid.
2142 */
2143 if (!check_flags) {
2144 if (rv & CERT_PKEY_VALID)
2145 *pvalid = rv;
2146 else {
2147 /* Preserve explicit sign flag, clear rest */
2148 *pvalid &= CERT_PKEY_EXPLICIT_SIGN;
2149 return 0;
2150 }
2151 }
2152 return rv;
2153 }
2154
2155 /* Set validity of certificates in an SSL structure */
2156 void tls1_set_cert_validity(SSL *s)
2157 {
2158 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_ENC);
2159 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_SIGN);
2160 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN);
2161 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC);
2162 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01);
2163 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256);
2164 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512);
2165 }
2166
2167 /* User level utiity function to check a chain is suitable */
2168 int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain)
2169 {
2170 return tls1_check_chain(s, x, pk, chain, -1);
2171 }
2172
2173 #ifndef OPENSSL_NO_DH
2174 DH *ssl_get_auto_dh(SSL *s)
2175 {
2176 int dh_secbits = 80;
2177 if (s->cert->dh_tmp_auto == 2)
2178 return DH_get_1024_160();
2179 if (s->s3->tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) {
2180 if (s->s3->tmp.new_cipher->strength_bits == 256)
2181 dh_secbits = 128;
2182 else
2183 dh_secbits = 80;
2184 } else {
2185 CERT_PKEY *cpk = ssl_get_server_send_pkey(s);
2186 dh_secbits = EVP_PKEY_security_bits(cpk->privatekey);
2187 }
2188
2189 if (dh_secbits >= 128) {
2190 DH *dhp = DH_new();
2191 BIGNUM *p, *g;
2192 if (dhp == NULL)
2193 return NULL;
2194 g = BN_new();
2195 if (g != NULL)
2196 BN_set_word(g, 2);
2197 if (dh_secbits >= 192)
2198 p = BN_get_rfc3526_prime_8192(NULL);
2199 else
2200 p = BN_get_rfc3526_prime_3072(NULL);
2201 if (p == NULL || g == NULL || !DH_set0_pqg(dhp, p, NULL, g)) {
2202 DH_free(dhp);
2203 BN_free(p);
2204 BN_free(g);
2205 return NULL;
2206 }
2207 return dhp;
2208 }
2209 if (dh_secbits >= 112)
2210 return DH_get_2048_224();
2211 return DH_get_1024_160();
2212 }
2213 #endif
2214
2215 static int ssl_security_cert_key(SSL *s, SSL_CTX *ctx, X509 *x, int op)
2216 {
2217 int secbits = -1;
2218 EVP_PKEY *pkey = X509_get0_pubkey(x);
2219 if (pkey) {
2220 /*
2221 * If no parameters this will return -1 and fail using the default
2222 * security callback for any non-zero security level. This will
2223 * reject keys which omit parameters but this only affects DSA and
2224 * omission of parameters is never (?) done in practice.
2225 */
2226 secbits = EVP_PKEY_security_bits(pkey);
2227 }
2228 if (s)
2229 return ssl_security(s, op, secbits, 0, x);
2230 else
2231 return ssl_ctx_security(ctx, op, secbits, 0, x);
2232 }
2233
2234 static int ssl_security_cert_sig(SSL *s, SSL_CTX *ctx, X509 *x, int op)
2235 {
2236 /* Lookup signature algorithm digest */
2237 int secbits = -1, md_nid = NID_undef, sig_nid;
2238 /* Don't check signature if self signed */
2239 if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0)
2240 return 1;
2241 sig_nid = X509_get_signature_nid(x);
2242 if (sig_nid && OBJ_find_sigid_algs(sig_nid, &md_nid, NULL)) {
2243 const EVP_MD *md;
2244 if (md_nid && (md = EVP_get_digestbynid(md_nid)))
2245 secbits = EVP_MD_size(md) * 4;
2246 }
2247 if (s)
2248 return ssl_security(s, op, secbits, md_nid, x);
2249 else
2250 return ssl_ctx_security(ctx, op, secbits, md_nid, x);
2251 }
2252
2253 int ssl_security_cert(SSL *s, SSL_CTX *ctx, X509 *x, int vfy, int is_ee)
2254 {
2255 if (vfy)
2256 vfy = SSL_SECOP_PEER;
2257 if (is_ee) {
2258 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy))
2259 return SSL_R_EE_KEY_TOO_SMALL;
2260 } else {
2261 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy))
2262 return SSL_R_CA_KEY_TOO_SMALL;
2263 }
2264 if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy))
2265 return SSL_R_CA_MD_TOO_WEAK;
2266 return 1;
2267 }
2268
2269 /*
2270 * Check security of a chain, if sk includes the end entity certificate then
2271 * x is NULL. If vfy is 1 then we are verifying a peer chain and not sending
2272 * one to the peer. Return values: 1 if ok otherwise error code to use
2273 */
2274
2275 int ssl_security_cert_chain(SSL *s, STACK_OF(X509) *sk, X509 *x, int vfy)
2276 {
2277 int rv, start_idx, i;
2278 if (x == NULL) {
2279 x = sk_X509_value(sk, 0);
2280 start_idx = 1;
2281 } else
2282 start_idx = 0;
2283
2284 rv = ssl_security_cert(s, NULL, x, vfy, 1);
2285 if (rv != 1)
2286 return rv;
2287
2288 for (i = start_idx; i < sk_X509_num(sk); i++) {
2289 x = sk_X509_value(sk, i);
2290 rv = ssl_security_cert(s, NULL, x, vfy, 0);
2291 if (rv != 1)
2292 return rv;
2293 }
2294 return 1;
2295 }