]> git.ipfire.org Git - thirdparty/openssl.git/blob - ssl/t1_lib.c
Add OSSL_NELEM macro.
[thirdparty/openssl.git] / ssl / t1_lib.c
1 /* ssl/t1_lib.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young's, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word 'cryptographic' can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58 /* ====================================================================
59 * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without
62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in
70 * the documentation and/or other materials provided with the
71 * distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 * software must display the following acknowledgment:
75 * "This product includes software developed by the OpenSSL Project
76 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 * endorse or promote products derived from this software without
80 * prior written permission. For written permission, please contact
81 * openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 * nor may "OpenSSL" appear in their names without prior written
85 * permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 * acknowledgment:
89 * "This product includes software developed by the OpenSSL Project
90 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ====================================================================
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com). This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */
111
112 #include <stdio.h>
113 #include <openssl/objects.h>
114 #include <openssl/evp.h>
115 #include <openssl/hmac.h>
116 #include <openssl/ocsp.h>
117 #include <openssl/rand.h>
118 #ifndef OPENSSL_NO_DH
119 # include <openssl/dh.h>
120 # include <openssl/bn.h>
121 #endif
122 #include "ssl_locl.h"
123
124 const char tls1_version_str[] = "TLSv1" OPENSSL_VERSION_PTEXT;
125
126 #ifndef OPENSSL_NO_TLSEXT
127 static int tls_decrypt_ticket(SSL *s, const unsigned char *tick, int ticklen,
128 const unsigned char *sess_id, int sesslen,
129 SSL_SESSION **psess);
130 static int ssl_check_clienthello_tlsext_early(SSL *s);
131 int ssl_check_serverhello_tlsext(SSL *s);
132 #endif
133
134 SSL3_ENC_METHOD const TLSv1_enc_data = {
135 tls1_enc,
136 tls1_mac,
137 tls1_setup_key_block,
138 tls1_generate_master_secret,
139 tls1_change_cipher_state,
140 tls1_final_finish_mac,
141 TLS1_FINISH_MAC_LENGTH,
142 tls1_cert_verify_mac,
143 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
144 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
145 tls1_alert_code,
146 tls1_export_keying_material,
147 0,
148 SSL3_HM_HEADER_LENGTH,
149 ssl3_set_handshake_header,
150 ssl3_handshake_write
151 };
152
153 SSL3_ENC_METHOD const TLSv1_1_enc_data = {
154 tls1_enc,
155 tls1_mac,
156 tls1_setup_key_block,
157 tls1_generate_master_secret,
158 tls1_change_cipher_state,
159 tls1_final_finish_mac,
160 TLS1_FINISH_MAC_LENGTH,
161 tls1_cert_verify_mac,
162 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
163 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
164 tls1_alert_code,
165 tls1_export_keying_material,
166 SSL_ENC_FLAG_EXPLICIT_IV,
167 SSL3_HM_HEADER_LENGTH,
168 ssl3_set_handshake_header,
169 ssl3_handshake_write
170 };
171
172 SSL3_ENC_METHOD const TLSv1_2_enc_data = {
173 tls1_enc,
174 tls1_mac,
175 tls1_setup_key_block,
176 tls1_generate_master_secret,
177 tls1_change_cipher_state,
178 tls1_final_finish_mac,
179 TLS1_FINISH_MAC_LENGTH,
180 tls1_cert_verify_mac,
181 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
182 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
183 tls1_alert_code,
184 tls1_export_keying_material,
185 SSL_ENC_FLAG_EXPLICIT_IV | SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF
186 | SSL_ENC_FLAG_TLS1_2_CIPHERS,
187 SSL3_HM_HEADER_LENGTH,
188 ssl3_set_handshake_header,
189 ssl3_handshake_write
190 };
191
192 long tls1_default_timeout(void)
193 {
194 /*
195 * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for
196 * http, the cache would over fill
197 */
198 return (60 * 60 * 2);
199 }
200
201 int tls1_new(SSL *s)
202 {
203 if (!ssl3_new(s))
204 return (0);
205 s->method->ssl_clear(s);
206 return (1);
207 }
208
209 void tls1_free(SSL *s)
210 {
211 #ifndef OPENSSL_NO_TLSEXT
212 OPENSSL_free(s->tlsext_session_ticket);
213 #endif /* OPENSSL_NO_TLSEXT */
214 ssl3_free(s);
215 }
216
217 void tls1_clear(SSL *s)
218 {
219 ssl3_clear(s);
220 s->version = s->method->version;
221 }
222
223 #ifndef OPENSSL_NO_EC
224
225 typedef struct {
226 int nid; /* Curve NID */
227 int secbits; /* Bits of security (from SP800-57) */
228 unsigned int flags; /* Flags: currently just field type */
229 } tls_curve_info;
230
231 # define TLS_CURVE_CHAR2 0x1
232 # define TLS_CURVE_PRIME 0x0
233
234 static const tls_curve_info nid_list[] = {
235 {NID_sect163k1, 80, TLS_CURVE_CHAR2}, /* sect163k1 (1) */
236 {NID_sect163r1, 80, TLS_CURVE_CHAR2}, /* sect163r1 (2) */
237 {NID_sect163r2, 80, TLS_CURVE_CHAR2}, /* sect163r2 (3) */
238 {NID_sect193r1, 80, TLS_CURVE_CHAR2}, /* sect193r1 (4) */
239 {NID_sect193r2, 80, TLS_CURVE_CHAR2}, /* sect193r2 (5) */
240 {NID_sect233k1, 112, TLS_CURVE_CHAR2}, /* sect233k1 (6) */
241 {NID_sect233r1, 112, TLS_CURVE_CHAR2}, /* sect233r1 (7) */
242 {NID_sect239k1, 112, TLS_CURVE_CHAR2}, /* sect239k1 (8) */
243 {NID_sect283k1, 128, TLS_CURVE_CHAR2}, /* sect283k1 (9) */
244 {NID_sect283r1, 128, TLS_CURVE_CHAR2}, /* sect283r1 (10) */
245 {NID_sect409k1, 192, TLS_CURVE_CHAR2}, /* sect409k1 (11) */
246 {NID_sect409r1, 192, TLS_CURVE_CHAR2}, /* sect409r1 (12) */
247 {NID_sect571k1, 256, TLS_CURVE_CHAR2}, /* sect571k1 (13) */
248 {NID_sect571r1, 256, TLS_CURVE_CHAR2}, /* sect571r1 (14) */
249 {NID_secp160k1, 80, TLS_CURVE_PRIME}, /* secp160k1 (15) */
250 {NID_secp160r1, 80, TLS_CURVE_PRIME}, /* secp160r1 (16) */
251 {NID_secp160r2, 80, TLS_CURVE_PRIME}, /* secp160r2 (17) */
252 {NID_secp192k1, 80, TLS_CURVE_PRIME}, /* secp192k1 (18) */
253 {NID_X9_62_prime192v1, 80, TLS_CURVE_PRIME}, /* secp192r1 (19) */
254 {NID_secp224k1, 112, TLS_CURVE_PRIME}, /* secp224k1 (20) */
255 {NID_secp224r1, 112, TLS_CURVE_PRIME}, /* secp224r1 (21) */
256 {NID_secp256k1, 128, TLS_CURVE_PRIME}, /* secp256k1 (22) */
257 {NID_X9_62_prime256v1, 128, TLS_CURVE_PRIME}, /* secp256r1 (23) */
258 {NID_secp384r1, 192, TLS_CURVE_PRIME}, /* secp384r1 (24) */
259 {NID_secp521r1, 256, TLS_CURVE_PRIME}, /* secp521r1 (25) */
260 {NID_brainpoolP256r1, 128, TLS_CURVE_PRIME}, /* brainpoolP256r1 (26) */
261 {NID_brainpoolP384r1, 192, TLS_CURVE_PRIME}, /* brainpoolP384r1 (27) */
262 {NID_brainpoolP512r1, 256, TLS_CURVE_PRIME}, /* brainpool512r1 (28) */
263 };
264
265 static const unsigned char ecformats_default[] = {
266 TLSEXT_ECPOINTFORMAT_uncompressed,
267 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime,
268 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2
269 };
270
271 static const unsigned char eccurves_default[] = {
272 0, 14, /* sect571r1 (14) */
273 0, 13, /* sect571k1 (13) */
274 0, 25, /* secp521r1 (25) */
275 0, 28, /* brainpool512r1 (28) */
276 0, 11, /* sect409k1 (11) */
277 0, 12, /* sect409r1 (12) */
278 0, 27, /* brainpoolP384r1 (27) */
279 0, 24, /* secp384r1 (24) */
280 0, 9, /* sect283k1 (9) */
281 0, 10, /* sect283r1 (10) */
282 0, 26, /* brainpoolP256r1 (26) */
283 0, 22, /* secp256k1 (22) */
284 0, 23, /* secp256r1 (23) */
285 0, 8, /* sect239k1 (8) */
286 0, 6, /* sect233k1 (6) */
287 0, 7, /* sect233r1 (7) */
288 0, 20, /* secp224k1 (20) */
289 0, 21, /* secp224r1 (21) */
290 0, 4, /* sect193r1 (4) */
291 0, 5, /* sect193r2 (5) */
292 0, 18, /* secp192k1 (18) */
293 0, 19, /* secp192r1 (19) */
294 0, 1, /* sect163k1 (1) */
295 0, 2, /* sect163r1 (2) */
296 0, 3, /* sect163r2 (3) */
297 0, 15, /* secp160k1 (15) */
298 0, 16, /* secp160r1 (16) */
299 0, 17, /* secp160r2 (17) */
300 };
301
302 static const unsigned char suiteb_curves[] = {
303 0, TLSEXT_curve_P_256,
304 0, TLSEXT_curve_P_384
305 };
306
307 int tls1_ec_curve_id2nid(int curve_id)
308 {
309 /* ECC curves from RFC 4492 and RFC 7027 */
310 if ((curve_id < 1) || ((unsigned int)curve_id > OSSL_NELEM(nid_list)))
311 return 0;
312 return nid_list[curve_id - 1].nid;
313 }
314
315 int tls1_ec_nid2curve_id(int nid)
316 {
317 /* ECC curves from RFC 4492 and RFC 7027 */
318 switch (nid) {
319 case NID_sect163k1: /* sect163k1 (1) */
320 return 1;
321 case NID_sect163r1: /* sect163r1 (2) */
322 return 2;
323 case NID_sect163r2: /* sect163r2 (3) */
324 return 3;
325 case NID_sect193r1: /* sect193r1 (4) */
326 return 4;
327 case NID_sect193r2: /* sect193r2 (5) */
328 return 5;
329 case NID_sect233k1: /* sect233k1 (6) */
330 return 6;
331 case NID_sect233r1: /* sect233r1 (7) */
332 return 7;
333 case NID_sect239k1: /* sect239k1 (8) */
334 return 8;
335 case NID_sect283k1: /* sect283k1 (9) */
336 return 9;
337 case NID_sect283r1: /* sect283r1 (10) */
338 return 10;
339 case NID_sect409k1: /* sect409k1 (11) */
340 return 11;
341 case NID_sect409r1: /* sect409r1 (12) */
342 return 12;
343 case NID_sect571k1: /* sect571k1 (13) */
344 return 13;
345 case NID_sect571r1: /* sect571r1 (14) */
346 return 14;
347 case NID_secp160k1: /* secp160k1 (15) */
348 return 15;
349 case NID_secp160r1: /* secp160r1 (16) */
350 return 16;
351 case NID_secp160r2: /* secp160r2 (17) */
352 return 17;
353 case NID_secp192k1: /* secp192k1 (18) */
354 return 18;
355 case NID_X9_62_prime192v1: /* secp192r1 (19) */
356 return 19;
357 case NID_secp224k1: /* secp224k1 (20) */
358 return 20;
359 case NID_secp224r1: /* secp224r1 (21) */
360 return 21;
361 case NID_secp256k1: /* secp256k1 (22) */
362 return 22;
363 case NID_X9_62_prime256v1: /* secp256r1 (23) */
364 return 23;
365 case NID_secp384r1: /* secp384r1 (24) */
366 return 24;
367 case NID_secp521r1: /* secp521r1 (25) */
368 return 25;
369 case NID_brainpoolP256r1: /* brainpoolP256r1 (26) */
370 return 26;
371 case NID_brainpoolP384r1: /* brainpoolP384r1 (27) */
372 return 27;
373 case NID_brainpoolP512r1: /* brainpool512r1 (28) */
374 return 28;
375 default:
376 return 0;
377 }
378 }
379
380 /*
381 * Get curves list, if "sess" is set return client curves otherwise
382 * preferred list.
383 * Sets |num_curves| to the number of curves in the list, i.e.,
384 * the length of |pcurves| is 2 * num_curves.
385 * Returns 1 on success and 0 if the client curves list has invalid format.
386 * The latter indicates an internal error: we should not be accepting such
387 * lists in the first place.
388 * TODO(emilia): we should really be storing the curves list in explicitly
389 * parsed form instead. (However, this would affect binary compatibility
390 * so cannot happen in the 1.0.x series.)
391 */
392 static int tls1_get_curvelist(SSL *s, int sess,
393 const unsigned char **pcurves,
394 size_t *num_curves)
395 {
396 size_t pcurveslen = 0;
397 if (sess) {
398 *pcurves = s->session->tlsext_ellipticcurvelist;
399 pcurveslen = s->session->tlsext_ellipticcurvelist_length;
400 } else {
401 /* For Suite B mode only include P-256, P-384 */
402 switch (tls1_suiteb(s)) {
403 case SSL_CERT_FLAG_SUITEB_128_LOS:
404 *pcurves = suiteb_curves;
405 pcurveslen = sizeof(suiteb_curves);
406 break;
407
408 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
409 *pcurves = suiteb_curves;
410 pcurveslen = 2;
411 break;
412
413 case SSL_CERT_FLAG_SUITEB_192_LOS:
414 *pcurves = suiteb_curves + 2;
415 pcurveslen = 2;
416 break;
417 default:
418 *pcurves = s->tlsext_ellipticcurvelist;
419 pcurveslen = s->tlsext_ellipticcurvelist_length;
420 }
421 if (!*pcurves) {
422 *pcurves = eccurves_default;
423 pcurveslen = sizeof(eccurves_default);
424 }
425 }
426
427 /* We do not allow odd length arrays to enter the system. */
428 if (pcurveslen & 1) {
429 SSLerr(SSL_F_TLS1_GET_CURVELIST, ERR_R_INTERNAL_ERROR);
430 *num_curves = 0;
431 return 0;
432 } else {
433 *num_curves = pcurveslen / 2;
434 return 1;
435 }
436 }
437
438 /* See if curve is allowed by security callback */
439 static int tls_curve_allowed(SSL *s, const unsigned char *curve, int op)
440 {
441 const tls_curve_info *cinfo;
442 if (curve[0])
443 return 1;
444 if ((curve[1] < 1) || ((size_t)curve[1] > OSSL_NELEM(nid_list)))
445 return 0;
446 cinfo = &nid_list[curve[1] - 1];
447 # ifdef OPENSSL_NO_EC2M
448 if (cinfo->flags & TLS_CURVE_CHAR2)
449 return 0;
450 # endif
451 return ssl_security(s, op, cinfo->secbits, cinfo->nid, (void *)curve);
452 }
453
454 /* Check a curve is one of our preferences */
455 int tls1_check_curve(SSL *s, const unsigned char *p, size_t len)
456 {
457 const unsigned char *curves;
458 size_t num_curves, i;
459 unsigned int suiteb_flags = tls1_suiteb(s);
460 if (len != 3 || p[0] != NAMED_CURVE_TYPE)
461 return 0;
462 /* Check curve matches Suite B preferences */
463 if (suiteb_flags) {
464 unsigned long cid = s->s3->tmp.new_cipher->id;
465 if (p[1])
466 return 0;
467 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) {
468 if (p[2] != TLSEXT_curve_P_256)
469 return 0;
470 } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) {
471 if (p[2] != TLSEXT_curve_P_384)
472 return 0;
473 } else /* Should never happen */
474 return 0;
475 }
476 if (!tls1_get_curvelist(s, 0, &curves, &num_curves))
477 return 0;
478 for (i = 0; i < num_curves; i++, curves += 2) {
479 if (p[1] == curves[0] && p[2] == curves[1])
480 return tls_curve_allowed(s, p + 1, SSL_SECOP_CURVE_CHECK);
481 }
482 return 0;
483 }
484
485 /*-
486 * Return |nmatch|th shared curve or NID_undef if there is no match.
487 * For nmatch == -1, return number of matches
488 * For nmatch == -2, return the NID of the curve to use for
489 * an EC tmp key, or NID_undef if there is no match.
490 */
491 int tls1_shared_curve(SSL *s, int nmatch)
492 {
493 const unsigned char *pref, *supp;
494 size_t num_pref, num_supp, i, j;
495 int k;
496 /* Can't do anything on client side */
497 if (s->server == 0)
498 return -1;
499 if (nmatch == -2) {
500 if (tls1_suiteb(s)) {
501 /*
502 * For Suite B ciphersuite determines curve: we already know
503 * these are acceptable due to previous checks.
504 */
505 unsigned long cid = s->s3->tmp.new_cipher->id;
506 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
507 return NID_X9_62_prime256v1; /* P-256 */
508 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
509 return NID_secp384r1; /* P-384 */
510 /* Should never happen */
511 return NID_undef;
512 }
513 /* If not Suite B just return first preference shared curve */
514 nmatch = 0;
515 }
516 /*
517 * Avoid truncation. tls1_get_curvelist takes an int
518 * but s->options is a long...
519 */
520 if (!tls1_get_curvelist
521 (s, (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) != 0, &supp,
522 &num_supp))
523 /* In practice, NID_undef == 0 but let's be precise. */
524 return nmatch == -1 ? 0 : NID_undef;
525 if (!tls1_get_curvelist
526 (s, !(s->options & SSL_OP_CIPHER_SERVER_PREFERENCE), &pref,
527 &num_pref))
528 return nmatch == -1 ? 0 : NID_undef;
529 k = 0;
530 for (i = 0; i < num_pref; i++, pref += 2) {
531 const unsigned char *tsupp = supp;
532 for (j = 0; j < num_supp; j++, tsupp += 2) {
533 if (pref[0] == tsupp[0] && pref[1] == tsupp[1]) {
534 if (!tls_curve_allowed(s, pref, SSL_SECOP_CURVE_SHARED))
535 continue;
536 if (nmatch == k) {
537 int id = (pref[0] << 8) | pref[1];
538 return tls1_ec_curve_id2nid(id);
539 }
540 k++;
541 }
542 }
543 }
544 if (nmatch == -1)
545 return k;
546 /* Out of range (nmatch > k). */
547 return NID_undef;
548 }
549
550 int tls1_set_curves(unsigned char **pext, size_t *pextlen,
551 int *curves, size_t ncurves)
552 {
553 unsigned char *clist, *p;
554 size_t i;
555 /*
556 * Bitmap of curves included to detect duplicates: only works while curve
557 * ids < 32
558 */
559 unsigned long dup_list = 0;
560 clist = OPENSSL_malloc(ncurves * 2);
561 if (!clist)
562 return 0;
563 for (i = 0, p = clist; i < ncurves; i++) {
564 unsigned long idmask;
565 int id;
566 id = tls1_ec_nid2curve_id(curves[i]);
567 idmask = 1L << id;
568 if (!id || (dup_list & idmask)) {
569 OPENSSL_free(clist);
570 return 0;
571 }
572 dup_list |= idmask;
573 s2n(id, p);
574 }
575 OPENSSL_free(*pext);
576 *pext = clist;
577 *pextlen = ncurves * 2;
578 return 1;
579 }
580
581 # define MAX_CURVELIST 28
582
583 typedef struct {
584 size_t nidcnt;
585 int nid_arr[MAX_CURVELIST];
586 } nid_cb_st;
587
588 static int nid_cb(const char *elem, int len, void *arg)
589 {
590 nid_cb_st *narg = arg;
591 size_t i;
592 int nid;
593 char etmp[20];
594 if (elem == NULL)
595 return 0;
596 if (narg->nidcnt == MAX_CURVELIST)
597 return 0;
598 if (len > (int)(sizeof(etmp) - 1))
599 return 0;
600 memcpy(etmp, elem, len);
601 etmp[len] = 0;
602 nid = EC_curve_nist2nid(etmp);
603 if (nid == NID_undef)
604 nid = OBJ_sn2nid(etmp);
605 if (nid == NID_undef)
606 nid = OBJ_ln2nid(etmp);
607 if (nid == NID_undef)
608 return 0;
609 for (i = 0; i < narg->nidcnt; i++)
610 if (narg->nid_arr[i] == nid)
611 return 0;
612 narg->nid_arr[narg->nidcnt++] = nid;
613 return 1;
614 }
615
616 /* Set curves based on a colon separate list */
617 int tls1_set_curves_list(unsigned char **pext, size_t *pextlen,
618 const char *str)
619 {
620 nid_cb_st ncb;
621 ncb.nidcnt = 0;
622 if (!CONF_parse_list(str, ':', 1, nid_cb, &ncb))
623 return 0;
624 if (pext == NULL)
625 return 1;
626 return tls1_set_curves(pext, pextlen, ncb.nid_arr, ncb.nidcnt);
627 }
628
629 /* For an EC key set TLS id and required compression based on parameters */
630 static int tls1_set_ec_id(unsigned char *curve_id, unsigned char *comp_id,
631 EC_KEY *ec)
632 {
633 int is_prime, id;
634 const EC_GROUP *grp;
635 const EC_METHOD *meth;
636 if (!ec)
637 return 0;
638 /* Determine if it is a prime field */
639 grp = EC_KEY_get0_group(ec);
640 if (!grp)
641 return 0;
642 meth = EC_GROUP_method_of(grp);
643 if (!meth)
644 return 0;
645 if (EC_METHOD_get_field_type(meth) == NID_X9_62_prime_field)
646 is_prime = 1;
647 else
648 is_prime = 0;
649 /* Determine curve ID */
650 id = EC_GROUP_get_curve_name(grp);
651 id = tls1_ec_nid2curve_id(id);
652 /* If we have an ID set it, otherwise set arbitrary explicit curve */
653 if (id) {
654 curve_id[0] = 0;
655 curve_id[1] = (unsigned char)id;
656 } else {
657 curve_id[0] = 0xff;
658 if (is_prime)
659 curve_id[1] = 0x01;
660 else
661 curve_id[1] = 0x02;
662 }
663 if (comp_id) {
664 if (EC_KEY_get0_public_key(ec) == NULL)
665 return 0;
666 if (EC_KEY_get_conv_form(ec) == POINT_CONVERSION_COMPRESSED) {
667 if (is_prime)
668 *comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime;
669 else
670 *comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2;
671 } else
672 *comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;
673 }
674 return 1;
675 }
676
677 /* Check an EC key is compatible with extensions */
678 static int tls1_check_ec_key(SSL *s,
679 unsigned char *curve_id, unsigned char *comp_id)
680 {
681 const unsigned char *pformats, *pcurves;
682 size_t num_formats, num_curves, i;
683 int j;
684 /*
685 * If point formats extension present check it, otherwise everything is
686 * supported (see RFC4492).
687 */
688 if (comp_id && s->session->tlsext_ecpointformatlist) {
689 pformats = s->session->tlsext_ecpointformatlist;
690 num_formats = s->session->tlsext_ecpointformatlist_length;
691 for (i = 0; i < num_formats; i++, pformats++) {
692 if (*comp_id == *pformats)
693 break;
694 }
695 if (i == num_formats)
696 return 0;
697 }
698 if (!curve_id)
699 return 1;
700 /* Check curve is consistent with client and server preferences */
701 for (j = 0; j <= 1; j++) {
702 if (!tls1_get_curvelist(s, j, &pcurves, &num_curves))
703 return 0;
704 if (j == 1 && num_curves == 0) {
705 /*
706 * If we've not received any curves then skip this check.
707 * RFC 4492 does not require the supported elliptic curves extension
708 * so if it is not sent we can just choose any curve.
709 * It is invalid to send an empty list in the elliptic curves
710 * extension, so num_curves == 0 always means no extension.
711 */
712 break;
713 }
714 for (i = 0; i < num_curves; i++, pcurves += 2) {
715 if (pcurves[0] == curve_id[0] && pcurves[1] == curve_id[1])
716 break;
717 }
718 if (i == num_curves)
719 return 0;
720 /* For clients can only check sent curve list */
721 if (!s->server)
722 break;
723 }
724 return 1;
725 }
726
727 static void tls1_get_formatlist(SSL *s, const unsigned char **pformats,
728 size_t *num_formats)
729 {
730 /*
731 * If we have a custom point format list use it otherwise use default
732 */
733 if (s->tlsext_ecpointformatlist) {
734 *pformats = s->tlsext_ecpointformatlist;
735 *num_formats = s->tlsext_ecpointformatlist_length;
736 } else {
737 *pformats = ecformats_default;
738 /* For Suite B we don't support char2 fields */
739 if (tls1_suiteb(s))
740 *num_formats = sizeof(ecformats_default) - 1;
741 else
742 *num_formats = sizeof(ecformats_default);
743 }
744 }
745
746 /*
747 * Check cert parameters compatible with extensions: currently just checks EC
748 * certificates have compatible curves and compression.
749 */
750 static int tls1_check_cert_param(SSL *s, X509 *x, int set_ee_md)
751 {
752 unsigned char comp_id, curve_id[2];
753 EVP_PKEY *pkey;
754 int rv;
755 pkey = X509_get_pubkey(x);
756 if (!pkey)
757 return 0;
758 /* If not EC nothing to do */
759 if (pkey->type != EVP_PKEY_EC) {
760 EVP_PKEY_free(pkey);
761 return 1;
762 }
763 rv = tls1_set_ec_id(curve_id, &comp_id, pkey->pkey.ec);
764 EVP_PKEY_free(pkey);
765 if (!rv)
766 return 0;
767 /*
768 * Can't check curve_id for client certs as we don't have a supported
769 * curves extension.
770 */
771 rv = tls1_check_ec_key(s, s->server ? curve_id : NULL, &comp_id);
772 if (!rv)
773 return 0;
774 /*
775 * Special case for suite B. We *MUST* sign using SHA256+P-256 or
776 * SHA384+P-384, adjust digest if necessary.
777 */
778 if (set_ee_md && tls1_suiteb(s)) {
779 int check_md;
780 size_t i;
781 CERT *c = s->cert;
782 if (curve_id[0])
783 return 0;
784 /* Check to see we have necessary signing algorithm */
785 if (curve_id[1] == TLSEXT_curve_P_256)
786 check_md = NID_ecdsa_with_SHA256;
787 else if (curve_id[1] == TLSEXT_curve_P_384)
788 check_md = NID_ecdsa_with_SHA384;
789 else
790 return 0; /* Should never happen */
791 for (i = 0; i < c->shared_sigalgslen; i++)
792 if (check_md == c->shared_sigalgs[i].signandhash_nid)
793 break;
794 if (i == c->shared_sigalgslen)
795 return 0;
796 if (set_ee_md == 2) {
797 if (check_md == NID_ecdsa_with_SHA256)
798 c->pkeys[SSL_PKEY_ECC].digest = EVP_sha256();
799 else
800 c->pkeys[SSL_PKEY_ECC].digest = EVP_sha384();
801 }
802 }
803 return rv;
804 }
805
806 # ifndef OPENSSL_NO_EC
807 /* Check EC temporary key is compatible with client extensions */
808 int tls1_check_ec_tmp_key(SSL *s, unsigned long cid)
809 {
810 unsigned char curve_id[2];
811 EC_KEY *ec = s->cert->ecdh_tmp;
812 # ifdef OPENSSL_SSL_DEBUG_BROKEN_PROTOCOL
813 /* Allow any curve: not just those peer supports */
814 if (s->cert->cert_flags & SSL_CERT_FLAG_BROKEN_PROTOCOL)
815 return 1;
816 # endif
817 /*
818 * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other
819 * curves permitted.
820 */
821 if (tls1_suiteb(s)) {
822 /* Curve to check determined by ciphersuite */
823 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
824 curve_id[1] = TLSEXT_curve_P_256;
825 else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
826 curve_id[1] = TLSEXT_curve_P_384;
827 else
828 return 0;
829 curve_id[0] = 0;
830 /* Check this curve is acceptable */
831 if (!tls1_check_ec_key(s, curve_id, NULL))
832 return 0;
833 /* If auto or setting curve from callback assume OK */
834 if (s->cert->ecdh_tmp_auto || s->cert->ecdh_tmp_cb)
835 return 1;
836 /* Otherwise check curve is acceptable */
837 else {
838 unsigned char curve_tmp[2];
839 if (!ec)
840 return 0;
841 if (!tls1_set_ec_id(curve_tmp, NULL, ec))
842 return 0;
843 if (!curve_tmp[0] || curve_tmp[1] == curve_id[1])
844 return 1;
845 return 0;
846 }
847
848 }
849 if (s->cert->ecdh_tmp_auto) {
850 /* Need a shared curve */
851 if (tls1_shared_curve(s, 0))
852 return 1;
853 else
854 return 0;
855 }
856 if (!ec) {
857 if (s->cert->ecdh_tmp_cb)
858 return 1;
859 else
860 return 0;
861 }
862 if (!tls1_set_ec_id(curve_id, NULL, ec))
863 return 0;
864 /* Set this to allow use of invalid curves for testing */
865 # if 0
866 return 1;
867 # else
868 return tls1_check_ec_key(s, curve_id, NULL);
869 # endif
870 }
871 # endif /* OPENSSL_NO_EC */
872
873 #else
874
875 static int tls1_check_cert_param(SSL *s, X509 *x, int set_ee_md)
876 {
877 return 1;
878 }
879
880 #endif /* OPENSSL_NO_EC */
881
882 #ifndef OPENSSL_NO_TLSEXT
883
884 /*
885 * List of supported signature algorithms and hashes. Should make this
886 * customisable at some point, for now include everything we support.
887 */
888
889 # ifdef OPENSSL_NO_RSA
890 # define tlsext_sigalg_rsa(md) /* */
891 # else
892 # define tlsext_sigalg_rsa(md) md, TLSEXT_signature_rsa,
893 # endif
894
895 # ifdef OPENSSL_NO_DSA
896 # define tlsext_sigalg_dsa(md) /* */
897 # else
898 # define tlsext_sigalg_dsa(md) md, TLSEXT_signature_dsa,
899 # endif
900
901 # ifdef OPENSSL_NO_EC
902 # define tlsext_sigalg_ecdsa(md) /* */
903 # else
904 # define tlsext_sigalg_ecdsa(md) md, TLSEXT_signature_ecdsa,
905 # endif
906
907 # define tlsext_sigalg(md) \
908 tlsext_sigalg_rsa(md) \
909 tlsext_sigalg_dsa(md) \
910 tlsext_sigalg_ecdsa(md)
911
912 static const unsigned char tls12_sigalgs[] = {
913 tlsext_sigalg(TLSEXT_hash_sha512)
914 tlsext_sigalg(TLSEXT_hash_sha384)
915 tlsext_sigalg(TLSEXT_hash_sha256)
916 tlsext_sigalg(TLSEXT_hash_sha224)
917 tlsext_sigalg(TLSEXT_hash_sha1)
918 };
919
920 # ifndef OPENSSL_NO_EC
921 static const unsigned char suiteb_sigalgs[] = {
922 tlsext_sigalg_ecdsa(TLSEXT_hash_sha256)
923 tlsext_sigalg_ecdsa(TLSEXT_hash_sha384)
924 };
925 # endif
926 size_t tls12_get_psigalgs(SSL *s, const unsigned char **psigs)
927 {
928 /*
929 * If Suite B mode use Suite B sigalgs only, ignore any other
930 * preferences.
931 */
932 # ifndef OPENSSL_NO_EC
933 switch (tls1_suiteb(s)) {
934 case SSL_CERT_FLAG_SUITEB_128_LOS:
935 *psigs = suiteb_sigalgs;
936 return sizeof(suiteb_sigalgs);
937
938 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
939 *psigs = suiteb_sigalgs;
940 return 2;
941
942 case SSL_CERT_FLAG_SUITEB_192_LOS:
943 *psigs = suiteb_sigalgs + 2;
944 return 2;
945 }
946 # endif
947 /* If server use client authentication sigalgs if not NULL */
948 if (s->server && s->cert->client_sigalgs) {
949 *psigs = s->cert->client_sigalgs;
950 return s->cert->client_sigalgslen;
951 } else if (s->cert->conf_sigalgs) {
952 *psigs = s->cert->conf_sigalgs;
953 return s->cert->conf_sigalgslen;
954 } else {
955 *psigs = tls12_sigalgs;
956 return sizeof(tls12_sigalgs);
957 }
958 }
959
960 /*
961 * Check signature algorithm is consistent with sent supported signature
962 * algorithms and if so return relevant digest.
963 */
964 int tls12_check_peer_sigalg(const EVP_MD **pmd, SSL *s,
965 const unsigned char *sig, EVP_PKEY *pkey)
966 {
967 const unsigned char *sent_sigs;
968 size_t sent_sigslen, i;
969 int sigalg = tls12_get_sigid(pkey);
970 /* Should never happen */
971 if (sigalg == -1)
972 return -1;
973 /* Check key type is consistent with signature */
974 if (sigalg != (int)sig[1]) {
975 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_SIGNATURE_TYPE);
976 return 0;
977 }
978 # ifndef OPENSSL_NO_EC
979 if (pkey->type == EVP_PKEY_EC) {
980 unsigned char curve_id[2], comp_id;
981 /* Check compression and curve matches extensions */
982 if (!tls1_set_ec_id(curve_id, &comp_id, pkey->pkey.ec))
983 return 0;
984 if (!s->server && !tls1_check_ec_key(s, curve_id, &comp_id)) {
985 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_CURVE);
986 return 0;
987 }
988 /* If Suite B only P-384+SHA384 or P-256+SHA-256 allowed */
989 if (tls1_suiteb(s)) {
990 if (curve_id[0])
991 return 0;
992 if (curve_id[1] == TLSEXT_curve_P_256) {
993 if (sig[0] != TLSEXT_hash_sha256) {
994 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG,
995 SSL_R_ILLEGAL_SUITEB_DIGEST);
996 return 0;
997 }
998 } else if (curve_id[1] == TLSEXT_curve_P_384) {
999 if (sig[0] != TLSEXT_hash_sha384) {
1000 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG,
1001 SSL_R_ILLEGAL_SUITEB_DIGEST);
1002 return 0;
1003 }
1004 } else
1005 return 0;
1006 }
1007 } else if (tls1_suiteb(s))
1008 return 0;
1009 # endif
1010
1011 /* Check signature matches a type we sent */
1012 sent_sigslen = tls12_get_psigalgs(s, &sent_sigs);
1013 for (i = 0; i < sent_sigslen; i += 2, sent_sigs += 2) {
1014 if (sig[0] == sent_sigs[0] && sig[1] == sent_sigs[1])
1015 break;
1016 }
1017 /* Allow fallback to SHA1 if not strict mode */
1018 if (i == sent_sigslen
1019 && (sig[0] != TLSEXT_hash_sha1
1020 || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) {
1021 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_SIGNATURE_TYPE);
1022 return 0;
1023 }
1024 *pmd = tls12_get_hash(sig[0]);
1025 if (*pmd == NULL) {
1026 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_UNKNOWN_DIGEST);
1027 return 0;
1028 }
1029 /* Make sure security callback allows algorithm */
1030 if (!ssl_security(s, SSL_SECOP_SIGALG_CHECK,
1031 EVP_MD_size(*pmd) * 4, EVP_MD_type(*pmd),
1032 (void *)sig)) {
1033 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_SIGNATURE_TYPE);
1034 return 0;
1035 }
1036 /*
1037 * Store the digest used so applications can retrieve it if they wish.
1038 */
1039 if (s->session && s->session->sess_cert)
1040 s->session->sess_cert->peer_key->digest = *pmd;
1041 return 1;
1042 }
1043
1044 /*
1045 * Get a mask of disabled algorithms: an algorithm is disabled if it isn't
1046 * supported or doesn't appear in supported signature algorithms. Unlike
1047 * ssl_cipher_get_disabled this applies to a specific session and not global
1048 * settings.
1049 */
1050 void ssl_set_client_disabled(SSL *s)
1051 {
1052 CERT *c = s->cert;
1053 c->mask_a = 0;
1054 c->mask_k = 0;
1055 /* Don't allow TLS 1.2 only ciphers if we don't suppport them */
1056 if (!SSL_CLIENT_USE_TLS1_2_CIPHERS(s))
1057 c->mask_ssl = SSL_TLSV1_2;
1058 else
1059 c->mask_ssl = 0;
1060 ssl_set_sig_mask(&c->mask_a, s, SSL_SECOP_SIGALG_MASK);
1061 /*
1062 * Disable static DH if we don't include any appropriate signature
1063 * algorithms.
1064 */
1065 if (c->mask_a & SSL_aRSA)
1066 c->mask_k |= SSL_kDHr | SSL_kECDHr;
1067 if (c->mask_a & SSL_aDSS)
1068 c->mask_k |= SSL_kDHd;
1069 if (c->mask_a & SSL_aECDSA)
1070 c->mask_k |= SSL_kECDHe;
1071 # ifndef OPENSSL_NO_KRB5
1072 if (!kssl_tgt_is_available(s->kssl_ctx)) {
1073 c->mask_a |= SSL_aKRB5;
1074 c->mask_k |= SSL_kKRB5;
1075 }
1076 # endif
1077 # ifndef OPENSSL_NO_PSK
1078 /* with PSK there must be client callback set */
1079 if (!s->psk_client_callback) {
1080 c->mask_a |= SSL_aPSK;
1081 c->mask_k |= SSL_kPSK;
1082 }
1083 # endif /* OPENSSL_NO_PSK */
1084 # ifndef OPENSSL_NO_SRP
1085 if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) {
1086 c->mask_a |= SSL_aSRP;
1087 c->mask_k |= SSL_kSRP;
1088 }
1089 # endif
1090 c->valid = 1;
1091 }
1092
1093 int ssl_cipher_disabled(SSL *s, const SSL_CIPHER *c, int op)
1094 {
1095 CERT *ct = s->cert;
1096 if (c->algorithm_ssl & ct->mask_ssl || c->algorithm_mkey & ct->mask_k
1097 || c->algorithm_auth & ct->mask_a)
1098 return 1;
1099 return !ssl_security(s, op, c->strength_bits, 0, (void *)c);
1100 }
1101
1102 static int tls_use_ticket(SSL *s)
1103 {
1104 if (s->options & SSL_OP_NO_TICKET)
1105 return 0;
1106 return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL);
1107 }
1108
1109 unsigned char *ssl_add_clienthello_tlsext(SSL *s, unsigned char *buf,
1110 unsigned char *limit, int *al)
1111 {
1112 int extdatalen = 0;
1113 unsigned char *orig = buf;
1114 unsigned char *ret = buf;
1115 # ifndef OPENSSL_NO_EC
1116 /* See if we support any ECC ciphersuites */
1117 int using_ecc = 0;
1118 if (s->version >= TLS1_VERSION || SSL_IS_DTLS(s)) {
1119 int i;
1120 unsigned long alg_k, alg_a;
1121 STACK_OF(SSL_CIPHER) *cipher_stack = SSL_get_ciphers(s);
1122
1123 for (i = 0; i < sk_SSL_CIPHER_num(cipher_stack); i++) {
1124 SSL_CIPHER *c = sk_SSL_CIPHER_value(cipher_stack, i);
1125
1126 alg_k = c->algorithm_mkey;
1127 alg_a = c->algorithm_auth;
1128 if ((alg_k & (SSL_kECDHE | SSL_kECDHr | SSL_kECDHe)
1129 || (alg_a & SSL_aECDSA))) {
1130 using_ecc = 1;
1131 break;
1132 }
1133 }
1134 }
1135 # endif
1136
1137 ret += 2;
1138
1139 if (ret >= limit)
1140 return NULL; /* this really never occurs, but ... */
1141
1142 /* Add RI if renegotiating */
1143 if (s->renegotiate) {
1144 int el;
1145
1146 if (!ssl_add_clienthello_renegotiate_ext(s, 0, &el, 0)) {
1147 SSLerr(SSL_F_SSL_ADD_CLIENTHELLO_TLSEXT, ERR_R_INTERNAL_ERROR);
1148 return NULL;
1149 }
1150
1151 if ((limit - ret - 4 - el) < 0)
1152 return NULL;
1153
1154 s2n(TLSEXT_TYPE_renegotiate, ret);
1155 s2n(el, ret);
1156
1157 if (!ssl_add_clienthello_renegotiate_ext(s, ret, &el, el)) {
1158 SSLerr(SSL_F_SSL_ADD_CLIENTHELLO_TLSEXT, ERR_R_INTERNAL_ERROR);
1159 return NULL;
1160 }
1161
1162 ret += el;
1163 }
1164 /* Only add RI for SSLv3 */
1165 if (s->client_version == SSL3_VERSION)
1166 goto done;
1167
1168 if (s->tlsext_hostname != NULL) {
1169 /* Add TLS extension servername to the Client Hello message */
1170 unsigned long size_str;
1171 long lenmax;
1172
1173 /*-
1174 * check for enough space.
1175 * 4 for the servername type and entension length
1176 * 2 for servernamelist length
1177 * 1 for the hostname type
1178 * 2 for hostname length
1179 * + hostname length
1180 */
1181
1182 if ((lenmax = limit - ret - 9) < 0
1183 || (size_str =
1184 strlen(s->tlsext_hostname)) > (unsigned long)lenmax)
1185 return NULL;
1186
1187 /* extension type and length */
1188 s2n(TLSEXT_TYPE_server_name, ret);
1189 s2n(size_str + 5, ret);
1190
1191 /* length of servername list */
1192 s2n(size_str + 3, ret);
1193
1194 /* hostname type, length and hostname */
1195 *(ret++) = (unsigned char)TLSEXT_NAMETYPE_host_name;
1196 s2n(size_str, ret);
1197 memcpy(ret, s->tlsext_hostname, size_str);
1198 ret += size_str;
1199 }
1200 # ifndef OPENSSL_NO_SRP
1201 /* Add SRP username if there is one */
1202 if (s->srp_ctx.login != NULL) { /* Add TLS extension SRP username to the
1203 * Client Hello message */
1204
1205 int login_len = strlen(s->srp_ctx.login);
1206 if (login_len > 255 || login_len == 0) {
1207 SSLerr(SSL_F_SSL_ADD_CLIENTHELLO_TLSEXT, ERR_R_INTERNAL_ERROR);
1208 return NULL;
1209 }
1210
1211 /*-
1212 * check for enough space.
1213 * 4 for the srp type type and entension length
1214 * 1 for the srp user identity
1215 * + srp user identity length
1216 */
1217 if ((limit - ret - 5 - login_len) < 0)
1218 return NULL;
1219
1220 /* fill in the extension */
1221 s2n(TLSEXT_TYPE_srp, ret);
1222 s2n(login_len + 1, ret);
1223 (*ret++) = (unsigned char)login_len;
1224 memcpy(ret, s->srp_ctx.login, login_len);
1225 ret += login_len;
1226 }
1227 # endif
1228
1229 # ifndef OPENSSL_NO_EC
1230 if (using_ecc) {
1231 /*
1232 * Add TLS extension ECPointFormats to the ClientHello message
1233 */
1234 long lenmax;
1235 const unsigned char *pcurves, *pformats;
1236 size_t num_curves, num_formats, curves_list_len;
1237 size_t i;
1238 unsigned char *etmp;
1239
1240 tls1_get_formatlist(s, &pformats, &num_formats);
1241
1242 if ((lenmax = limit - ret - 5) < 0)
1243 return NULL;
1244 if (num_formats > (size_t)lenmax)
1245 return NULL;
1246 if (num_formats > 255) {
1247 SSLerr(SSL_F_SSL_ADD_CLIENTHELLO_TLSEXT, ERR_R_INTERNAL_ERROR);
1248 return NULL;
1249 }
1250
1251 s2n(TLSEXT_TYPE_ec_point_formats, ret);
1252 /* The point format list has 1-byte length. */
1253 s2n(num_formats + 1, ret);
1254 *(ret++) = (unsigned char)num_formats;
1255 memcpy(ret, pformats, num_formats);
1256 ret += num_formats;
1257
1258 /*
1259 * Add TLS extension EllipticCurves to the ClientHello message
1260 */
1261 pcurves = s->tlsext_ellipticcurvelist;
1262 if (!tls1_get_curvelist(s, 0, &pcurves, &num_curves))
1263 return NULL;
1264
1265 if ((lenmax = limit - ret - 6) < 0)
1266 return NULL;
1267 if (num_curves > (size_t)lenmax / 2)
1268 return NULL;
1269 if (num_curves > 65532 / 2) {
1270 SSLerr(SSL_F_SSL_ADD_CLIENTHELLO_TLSEXT, ERR_R_INTERNAL_ERROR);
1271 return NULL;
1272 }
1273
1274 s2n(TLSEXT_TYPE_elliptic_curves, ret);
1275 etmp = ret + 4;
1276 /* Copy curve ID if supported */
1277 for (i = 0; i < num_curves; i++, pcurves += 2) {
1278 if (tls_curve_allowed(s, pcurves, SSL_SECOP_CURVE_SUPPORTED)) {
1279 *etmp++ = pcurves[0];
1280 *etmp++ = pcurves[1];
1281 }
1282 }
1283
1284 curves_list_len = etmp - ret - 4;
1285
1286 s2n(curves_list_len + 2, ret);
1287 s2n(curves_list_len, ret);
1288 ret += curves_list_len;
1289 }
1290 # endif /* OPENSSL_NO_EC */
1291
1292 if (tls_use_ticket(s)) {
1293 int ticklen;
1294 if (!s->new_session && s->session && s->session->tlsext_tick)
1295 ticklen = s->session->tlsext_ticklen;
1296 else if (s->session && s->tlsext_session_ticket &&
1297 s->tlsext_session_ticket->data) {
1298 ticklen = s->tlsext_session_ticket->length;
1299 s->session->tlsext_tick = OPENSSL_malloc(ticklen);
1300 if (!s->session->tlsext_tick)
1301 return NULL;
1302 memcpy(s->session->tlsext_tick,
1303 s->tlsext_session_ticket->data, ticklen);
1304 s->session->tlsext_ticklen = ticklen;
1305 } else
1306 ticklen = 0;
1307 if (ticklen == 0 && s->tlsext_session_ticket &&
1308 s->tlsext_session_ticket->data == NULL)
1309 goto skip_ext;
1310 /*
1311 * Check for enough room 2 for extension type, 2 for len rest for
1312 * ticket
1313 */
1314 if ((long)(limit - ret - 4 - ticklen) < 0)
1315 return NULL;
1316 s2n(TLSEXT_TYPE_session_ticket, ret);
1317 s2n(ticklen, ret);
1318 if (ticklen) {
1319 memcpy(ret, s->session->tlsext_tick, ticklen);
1320 ret += ticklen;
1321 }
1322 }
1323 skip_ext:
1324
1325 if (SSL_USE_SIGALGS(s)) {
1326 size_t salglen;
1327 const unsigned char *salg;
1328 unsigned char *etmp;
1329 salglen = tls12_get_psigalgs(s, &salg);
1330 if ((size_t)(limit - ret) < salglen + 6)
1331 return NULL;
1332 s2n(TLSEXT_TYPE_signature_algorithms, ret);
1333 etmp = ret;
1334 /* Skip over lengths for now */
1335 ret += 4;
1336 salglen = tls12_copy_sigalgs(s, ret, salg, salglen);
1337 /* Fill in lengths */
1338 s2n(salglen + 2, etmp);
1339 s2n(salglen, etmp);
1340 ret += salglen;
1341 }
1342
1343 if (s->tlsext_status_type == TLSEXT_STATUSTYPE_ocsp) {
1344 int i;
1345 long extlen, idlen, itmp;
1346 OCSP_RESPID *id;
1347
1348 idlen = 0;
1349 for (i = 0; i < sk_OCSP_RESPID_num(s->tlsext_ocsp_ids); i++) {
1350 id = sk_OCSP_RESPID_value(s->tlsext_ocsp_ids, i);
1351 itmp = i2d_OCSP_RESPID(id, NULL);
1352 if (itmp <= 0)
1353 return NULL;
1354 idlen += itmp + 2;
1355 }
1356
1357 if (s->tlsext_ocsp_exts) {
1358 extlen = i2d_X509_EXTENSIONS(s->tlsext_ocsp_exts, NULL);
1359 if (extlen < 0)
1360 return NULL;
1361 } else
1362 extlen = 0;
1363
1364 if ((long)(limit - ret - 7 - extlen - idlen) < 0)
1365 return NULL;
1366 s2n(TLSEXT_TYPE_status_request, ret);
1367 if (extlen + idlen > 0xFFF0)
1368 return NULL;
1369 s2n(extlen + idlen + 5, ret);
1370 *(ret++) = TLSEXT_STATUSTYPE_ocsp;
1371 s2n(idlen, ret);
1372 for (i = 0; i < sk_OCSP_RESPID_num(s->tlsext_ocsp_ids); i++) {
1373 /* save position of id len */
1374 unsigned char *q = ret;
1375 id = sk_OCSP_RESPID_value(s->tlsext_ocsp_ids, i);
1376 /* skip over id len */
1377 ret += 2;
1378 itmp = i2d_OCSP_RESPID(id, &ret);
1379 /* write id len */
1380 s2n(itmp, q);
1381 }
1382 s2n(extlen, ret);
1383 if (extlen > 0)
1384 i2d_X509_EXTENSIONS(s->tlsext_ocsp_exts, &ret);
1385 }
1386 # ifndef OPENSSL_NO_HEARTBEATS
1387 /* Add Heartbeat extension */
1388 if ((limit - ret - 4 - 1) < 0)
1389 return NULL;
1390 s2n(TLSEXT_TYPE_heartbeat, ret);
1391 s2n(1, ret);
1392 /*-
1393 * Set mode:
1394 * 1: peer may send requests
1395 * 2: peer not allowed to send requests
1396 */
1397 if (s->tlsext_heartbeat & SSL_TLSEXT_HB_DONT_RECV_REQUESTS)
1398 *(ret++) = SSL_TLSEXT_HB_DONT_SEND_REQUESTS;
1399 else
1400 *(ret++) = SSL_TLSEXT_HB_ENABLED;
1401 # endif
1402
1403 # ifndef OPENSSL_NO_NEXTPROTONEG
1404 if (s->ctx->next_proto_select_cb && !s->s3->tmp.finish_md_len) {
1405 /*
1406 * The client advertises an emtpy extension to indicate its support
1407 * for Next Protocol Negotiation
1408 */
1409 if (limit - ret - 4 < 0)
1410 return NULL;
1411 s2n(TLSEXT_TYPE_next_proto_neg, ret);
1412 s2n(0, ret);
1413 }
1414 # endif
1415
1416 if (s->alpn_client_proto_list && !s->s3->tmp.finish_md_len) {
1417 if ((size_t)(limit - ret) < 6 + s->alpn_client_proto_list_len)
1418 return NULL;
1419 s2n(TLSEXT_TYPE_application_layer_protocol_negotiation, ret);
1420 s2n(2 + s->alpn_client_proto_list_len, ret);
1421 s2n(s->alpn_client_proto_list_len, ret);
1422 memcpy(ret, s->alpn_client_proto_list, s->alpn_client_proto_list_len);
1423 ret += s->alpn_client_proto_list_len;
1424 }
1425 # ifndef OPENSSL_NO_SRTP
1426 if (SSL_IS_DTLS(s) && SSL_get_srtp_profiles(s)) {
1427 int el;
1428
1429 /* Returns 0 on success!! */
1430 if (ssl_add_clienthello_use_srtp_ext(s, 0, &el, 0)) {
1431 SSLerr(SSL_F_SSL_ADD_CLIENTHELLO_TLSEXT, ERR_R_INTERNAL_ERROR);
1432 return NULL;
1433 }
1434
1435 if ((limit - ret - 4 - el) < 0)
1436 return NULL;
1437
1438 s2n(TLSEXT_TYPE_use_srtp, ret);
1439 s2n(el, ret);
1440
1441 if (ssl_add_clienthello_use_srtp_ext(s, ret, &el, el)) {
1442 SSLerr(SSL_F_SSL_ADD_CLIENTHELLO_TLSEXT, ERR_R_INTERNAL_ERROR);
1443 return NULL;
1444 }
1445 ret += el;
1446 }
1447 # endif
1448 custom_ext_init(&s->cert->cli_ext);
1449 /* Add custom TLS Extensions to ClientHello */
1450 if (!custom_ext_add(s, 0, &ret, limit, al))
1451 return NULL;
1452 # ifdef TLSEXT_TYPE_encrypt_then_mac
1453 s2n(TLSEXT_TYPE_encrypt_then_mac, ret);
1454 s2n(0, ret);
1455 # endif
1456 s2n(TLSEXT_TYPE_extended_master_secret, ret);
1457 s2n(0, ret);
1458
1459 /*
1460 * Add padding to workaround bugs in F5 terminators. See
1461 * https://tools.ietf.org/html/draft-agl-tls-padding-03 NB: because this
1462 * code works out the length of all existing extensions it MUST always
1463 * appear last.
1464 */
1465 if (s->options & SSL_OP_TLSEXT_PADDING) {
1466 int hlen = ret - (unsigned char *)s->init_buf->data;
1467 /*
1468 * The code in s23_clnt.c to build ClientHello messages includes the
1469 * 5-byte record header in the buffer, while the code in s3_clnt.c
1470 * does not.
1471 */
1472 if (s->state == SSL23_ST_CW_CLNT_HELLO_A)
1473 hlen -= 5;
1474 if (hlen > 0xff && hlen < 0x200) {
1475 hlen = 0x200 - hlen;
1476 if (hlen >= 4)
1477 hlen -= 4;
1478 else
1479 hlen = 0;
1480
1481 s2n(TLSEXT_TYPE_padding, ret);
1482 s2n(hlen, ret);
1483 memset(ret, 0, hlen);
1484 ret += hlen;
1485 }
1486 }
1487
1488 done:
1489
1490 if ((extdatalen = ret - orig - 2) == 0)
1491 return orig;
1492
1493 s2n(extdatalen, orig);
1494 return ret;
1495 }
1496
1497 unsigned char *ssl_add_serverhello_tlsext(SSL *s, unsigned char *buf,
1498 unsigned char *limit, int *al)
1499 {
1500 int extdatalen = 0;
1501 unsigned char *orig = buf;
1502 unsigned char *ret = buf;
1503 # ifndef OPENSSL_NO_NEXTPROTONEG
1504 int next_proto_neg_seen;
1505 # endif
1506 # ifndef OPENSSL_NO_EC
1507 unsigned long alg_k = s->s3->tmp.new_cipher->algorithm_mkey;
1508 unsigned long alg_a = s->s3->tmp.new_cipher->algorithm_auth;
1509 int using_ecc = (alg_k & (SSL_kECDHE | SSL_kECDHr | SSL_kECDHe))
1510 || (alg_a & SSL_aECDSA);
1511 using_ecc = using_ecc && (s->session->tlsext_ecpointformatlist != NULL);
1512 # endif
1513
1514 ret += 2;
1515 if (ret >= limit)
1516 return NULL; /* this really never occurs, but ... */
1517
1518 if (s->s3->send_connection_binding) {
1519 int el;
1520
1521 if (!ssl_add_serverhello_renegotiate_ext(s, 0, &el, 0)) {
1522 SSLerr(SSL_F_SSL_ADD_SERVERHELLO_TLSEXT, ERR_R_INTERNAL_ERROR);
1523 return NULL;
1524 }
1525
1526 if ((limit - ret - 4 - el) < 0)
1527 return NULL;
1528
1529 s2n(TLSEXT_TYPE_renegotiate, ret);
1530 s2n(el, ret);
1531
1532 if (!ssl_add_serverhello_renegotiate_ext(s, ret, &el, el)) {
1533 SSLerr(SSL_F_SSL_ADD_SERVERHELLO_TLSEXT, ERR_R_INTERNAL_ERROR);
1534 return NULL;
1535 }
1536
1537 ret += el;
1538 }
1539
1540 /* Only add RI for SSLv3 */
1541 if (s->version == SSL3_VERSION)
1542 goto done;
1543
1544 if (!s->hit && s->servername_done == 1
1545 && s->session->tlsext_hostname != NULL) {
1546 if ((long)(limit - ret - 4) < 0)
1547 return NULL;
1548
1549 s2n(TLSEXT_TYPE_server_name, ret);
1550 s2n(0, ret);
1551 }
1552 # ifndef OPENSSL_NO_EC
1553 if (using_ecc) {
1554 const unsigned char *plist;
1555 size_t plistlen;
1556 /*
1557 * Add TLS extension ECPointFormats to the ServerHello message
1558 */
1559 long lenmax;
1560
1561 tls1_get_formatlist(s, &plist, &plistlen);
1562
1563 if ((lenmax = limit - ret - 5) < 0)
1564 return NULL;
1565 if (plistlen > (size_t)lenmax)
1566 return NULL;
1567 if (plistlen > 255) {
1568 SSLerr(SSL_F_SSL_ADD_SERVERHELLO_TLSEXT, ERR_R_INTERNAL_ERROR);
1569 return NULL;
1570 }
1571
1572 s2n(TLSEXT_TYPE_ec_point_formats, ret);
1573 s2n(plistlen + 1, ret);
1574 *(ret++) = (unsigned char)plistlen;
1575 memcpy(ret, plist, plistlen);
1576 ret += plistlen;
1577
1578 }
1579 /*
1580 * Currently the server should not respond with a SupportedCurves
1581 * extension
1582 */
1583 # endif /* OPENSSL_NO_EC */
1584
1585 if (s->tlsext_ticket_expected && tls_use_ticket(s)) {
1586 if ((long)(limit - ret - 4) < 0)
1587 return NULL;
1588 s2n(TLSEXT_TYPE_session_ticket, ret);
1589 s2n(0, ret);
1590 }
1591
1592 if (s->tlsext_status_expected) {
1593 if ((long)(limit - ret - 4) < 0)
1594 return NULL;
1595 s2n(TLSEXT_TYPE_status_request, ret);
1596 s2n(0, ret);
1597 }
1598
1599 # ifndef OPENSSL_NO_SRTP
1600 if (SSL_IS_DTLS(s) && s->srtp_profile) {
1601 int el;
1602
1603 /* Returns 0 on success!! */
1604 if (ssl_add_serverhello_use_srtp_ext(s, 0, &el, 0)) {
1605 SSLerr(SSL_F_SSL_ADD_SERVERHELLO_TLSEXT, ERR_R_INTERNAL_ERROR);
1606 return NULL;
1607 }
1608 if ((limit - ret - 4 - el) < 0)
1609 return NULL;
1610
1611 s2n(TLSEXT_TYPE_use_srtp, ret);
1612 s2n(el, ret);
1613
1614 if (ssl_add_serverhello_use_srtp_ext(s, ret, &el, el)) {
1615 SSLerr(SSL_F_SSL_ADD_SERVERHELLO_TLSEXT, ERR_R_INTERNAL_ERROR);
1616 return NULL;
1617 }
1618 ret += el;
1619 }
1620 # endif
1621
1622 if (((s->s3->tmp.new_cipher->id & 0xFFFF) == 0x80
1623 || (s->s3->tmp.new_cipher->id & 0xFFFF) == 0x81)
1624 && (SSL_get_options(s) & SSL_OP_CRYPTOPRO_TLSEXT_BUG)) {
1625 const unsigned char cryptopro_ext[36] = {
1626 0xfd, 0xe8, /* 65000 */
1627 0x00, 0x20, /* 32 bytes length */
1628 0x30, 0x1e, 0x30, 0x08, 0x06, 0x06, 0x2a, 0x85,
1629 0x03, 0x02, 0x02, 0x09, 0x30, 0x08, 0x06, 0x06,
1630 0x2a, 0x85, 0x03, 0x02, 0x02, 0x16, 0x30, 0x08,
1631 0x06, 0x06, 0x2a, 0x85, 0x03, 0x02, 0x02, 0x17
1632 };
1633 if (limit - ret < 36)
1634 return NULL;
1635 memcpy(ret, cryptopro_ext, 36);
1636 ret += 36;
1637
1638 }
1639 # ifndef OPENSSL_NO_HEARTBEATS
1640 /* Add Heartbeat extension if we've received one */
1641 if (s->tlsext_heartbeat & SSL_TLSEXT_HB_ENABLED) {
1642 if ((limit - ret - 4 - 1) < 0)
1643 return NULL;
1644 s2n(TLSEXT_TYPE_heartbeat, ret);
1645 s2n(1, ret);
1646 /*-
1647 * Set mode:
1648 * 1: peer may send requests
1649 * 2: peer not allowed to send requests
1650 */
1651 if (s->tlsext_heartbeat & SSL_TLSEXT_HB_DONT_RECV_REQUESTS)
1652 *(ret++) = SSL_TLSEXT_HB_DONT_SEND_REQUESTS;
1653 else
1654 *(ret++) = SSL_TLSEXT_HB_ENABLED;
1655
1656 }
1657 # endif
1658
1659 # ifndef OPENSSL_NO_NEXTPROTONEG
1660 next_proto_neg_seen = s->s3->next_proto_neg_seen;
1661 s->s3->next_proto_neg_seen = 0;
1662 if (next_proto_neg_seen && s->ctx->next_protos_advertised_cb) {
1663 const unsigned char *npa;
1664 unsigned int npalen;
1665 int r;
1666
1667 r = s->ctx->next_protos_advertised_cb(s, &npa, &npalen,
1668 s->
1669 ctx->next_protos_advertised_cb_arg);
1670 if (r == SSL_TLSEXT_ERR_OK) {
1671 if ((long)(limit - ret - 4 - npalen) < 0)
1672 return NULL;
1673 s2n(TLSEXT_TYPE_next_proto_neg, ret);
1674 s2n(npalen, ret);
1675 memcpy(ret, npa, npalen);
1676 ret += npalen;
1677 s->s3->next_proto_neg_seen = 1;
1678 }
1679 }
1680 # endif
1681 if (!custom_ext_add(s, 1, &ret, limit, al))
1682 return NULL;
1683 # ifdef TLSEXT_TYPE_encrypt_then_mac
1684 if (s->s3->flags & TLS1_FLAGS_ENCRYPT_THEN_MAC) {
1685 /*
1686 * Don't use encrypt_then_mac if AEAD or RC4 might want to disable
1687 * for other cases too.
1688 */
1689 if (s->s3->tmp.new_cipher->algorithm_mac == SSL_AEAD
1690 || s->s3->tmp.new_cipher->algorithm_enc == SSL_RC4)
1691 s->s3->flags &= ~TLS1_FLAGS_ENCRYPT_THEN_MAC;
1692 else {
1693 s2n(TLSEXT_TYPE_encrypt_then_mac, ret);
1694 s2n(0, ret);
1695 }
1696 }
1697 # endif
1698 if (!s->hit && s->session->flags & SSL_SESS_FLAG_EXTMS) {
1699 s2n(TLSEXT_TYPE_extended_master_secret, ret);
1700 s2n(0, ret);
1701 }
1702
1703 if (s->s3->alpn_selected) {
1704 const unsigned char *selected = s->s3->alpn_selected;
1705 unsigned len = s->s3->alpn_selected_len;
1706
1707 if ((long)(limit - ret - 4 - 2 - 1 - len) < 0)
1708 return NULL;
1709 s2n(TLSEXT_TYPE_application_layer_protocol_negotiation, ret);
1710 s2n(3 + len, ret);
1711 s2n(1 + len, ret);
1712 *ret++ = len;
1713 memcpy(ret, selected, len);
1714 ret += len;
1715 }
1716
1717 done:
1718
1719 if ((extdatalen = ret - orig - 2) == 0)
1720 return orig;
1721
1722 s2n(extdatalen, orig);
1723 return ret;
1724 }
1725
1726 /*
1727 * tls1_alpn_handle_client_hello is called to process the ALPN extension in a
1728 * ClientHello. data: the contents of the extension, not including the type
1729 * and length. data_len: the number of bytes in |data| al: a pointer to the
1730 * alert value to send in the event of a non-zero return. returns: 0 on
1731 * success.
1732 */
1733 static int tls1_alpn_handle_client_hello(SSL *s, const unsigned char *data,
1734 unsigned data_len, int *al)
1735 {
1736 unsigned i;
1737 unsigned proto_len;
1738 const unsigned char *selected;
1739 unsigned char selected_len;
1740 int r;
1741
1742 if (s->ctx->alpn_select_cb == NULL)
1743 return 0;
1744
1745 if (data_len < 2)
1746 goto parse_error;
1747
1748 /*
1749 * data should contain a uint16 length followed by a series of 8-bit,
1750 * length-prefixed strings.
1751 */
1752 i = ((unsigned)data[0]) << 8 | ((unsigned)data[1]);
1753 data_len -= 2;
1754 data += 2;
1755 if (data_len != i)
1756 goto parse_error;
1757
1758 if (data_len < 2)
1759 goto parse_error;
1760
1761 for (i = 0; i < data_len;) {
1762 proto_len = data[i];
1763 i++;
1764
1765 if (proto_len == 0)
1766 goto parse_error;
1767
1768 if (i + proto_len < i || i + proto_len > data_len)
1769 goto parse_error;
1770
1771 i += proto_len;
1772 }
1773
1774 r = s->ctx->alpn_select_cb(s, &selected, &selected_len, data, data_len,
1775 s->ctx->alpn_select_cb_arg);
1776 if (r == SSL_TLSEXT_ERR_OK) {
1777 OPENSSL_free(s->s3->alpn_selected);
1778 s->s3->alpn_selected = OPENSSL_malloc(selected_len);
1779 if (!s->s3->alpn_selected) {
1780 *al = SSL_AD_INTERNAL_ERROR;
1781 return -1;
1782 }
1783 memcpy(s->s3->alpn_selected, selected, selected_len);
1784 s->s3->alpn_selected_len = selected_len;
1785 }
1786 return 0;
1787
1788 parse_error:
1789 *al = SSL_AD_DECODE_ERROR;
1790 return -1;
1791 }
1792
1793 # ifndef OPENSSL_NO_EC
1794 /*-
1795 * ssl_check_for_safari attempts to fingerprint Safari using OS X
1796 * SecureTransport using the TLS extension block in |d|, of length |n|.
1797 * Safari, since 10.6, sends exactly these extensions, in this order:
1798 * SNI,
1799 * elliptic_curves
1800 * ec_point_formats
1801 *
1802 * We wish to fingerprint Safari because they broke ECDHE-ECDSA support in 10.8,
1803 * but they advertise support. So enabling ECDHE-ECDSA ciphers breaks them.
1804 * Sadly we cannot differentiate 10.6, 10.7 and 10.8.4 (which work), from
1805 * 10.8..10.8.3 (which don't work).
1806 */
1807 static void ssl_check_for_safari(SSL *s, const unsigned char *data,
1808 const unsigned char *d, int n)
1809 {
1810 unsigned short type, size;
1811 static const unsigned char kSafariExtensionsBlock[] = {
1812 0x00, 0x0a, /* elliptic_curves extension */
1813 0x00, 0x08, /* 8 bytes */
1814 0x00, 0x06, /* 6 bytes of curve ids */
1815 0x00, 0x17, /* P-256 */
1816 0x00, 0x18, /* P-384 */
1817 0x00, 0x19, /* P-521 */
1818
1819 0x00, 0x0b, /* ec_point_formats */
1820 0x00, 0x02, /* 2 bytes */
1821 0x01, /* 1 point format */
1822 0x00, /* uncompressed */
1823 };
1824
1825 /* The following is only present in TLS 1.2 */
1826 static const unsigned char kSafariTLS12ExtensionsBlock[] = {
1827 0x00, 0x0d, /* signature_algorithms */
1828 0x00, 0x0c, /* 12 bytes */
1829 0x00, 0x0a, /* 10 bytes */
1830 0x05, 0x01, /* SHA-384/RSA */
1831 0x04, 0x01, /* SHA-256/RSA */
1832 0x02, 0x01, /* SHA-1/RSA */
1833 0x04, 0x03, /* SHA-256/ECDSA */
1834 0x02, 0x03, /* SHA-1/ECDSA */
1835 };
1836
1837 if (data >= (d + n - 2))
1838 return;
1839 data += 2;
1840
1841 if (data > (d + n - 4))
1842 return;
1843 n2s(data, type);
1844 n2s(data, size);
1845
1846 if (type != TLSEXT_TYPE_server_name)
1847 return;
1848
1849 if (data + size > d + n)
1850 return;
1851 data += size;
1852
1853 if (TLS1_get_client_version(s) >= TLS1_2_VERSION) {
1854 const size_t len1 = sizeof(kSafariExtensionsBlock);
1855 const size_t len2 = sizeof(kSafariTLS12ExtensionsBlock);
1856
1857 if (data + len1 + len2 != d + n)
1858 return;
1859 if (memcmp(data, kSafariExtensionsBlock, len1) != 0)
1860 return;
1861 if (memcmp(data + len1, kSafariTLS12ExtensionsBlock, len2) != 0)
1862 return;
1863 } else {
1864 const size_t len = sizeof(kSafariExtensionsBlock);
1865
1866 if (data + len != d + n)
1867 return;
1868 if (memcmp(data, kSafariExtensionsBlock, len) != 0)
1869 return;
1870 }
1871
1872 s->s3->is_probably_safari = 1;
1873 }
1874 # endif /* !OPENSSL_NO_EC */
1875
1876 static int ssl_scan_clienthello_tlsext(SSL *s, unsigned char **p,
1877 unsigned char *d, int n, int *al)
1878 {
1879 unsigned short type;
1880 unsigned short size;
1881 unsigned short len;
1882 unsigned char *data = *p;
1883 int renegotiate_seen = 0;
1884
1885 s->servername_done = 0;
1886 s->tlsext_status_type = -1;
1887 # ifndef OPENSSL_NO_NEXTPROTONEG
1888 s->s3->next_proto_neg_seen = 0;
1889 # endif
1890
1891 OPENSSL_free(s->s3->alpn_selected);
1892 s->s3->alpn_selected = NULL;
1893 # ifndef OPENSSL_NO_HEARTBEATS
1894 s->tlsext_heartbeat &= ~(SSL_TLSEXT_HB_ENABLED |
1895 SSL_TLSEXT_HB_DONT_SEND_REQUESTS);
1896 # endif
1897
1898 # ifndef OPENSSL_NO_EC
1899 if (s->options & SSL_OP_SAFARI_ECDHE_ECDSA_BUG)
1900 ssl_check_for_safari(s, data, d, n);
1901 # endif /* !OPENSSL_NO_EC */
1902
1903 /* Clear any signature algorithms extension received */
1904 OPENSSL_free(s->cert->peer_sigalgs);
1905 s->cert->peer_sigalgs = NULL;
1906 # ifdef TLSEXT_TYPE_encrypt_then_mac
1907 s->s3->flags &= ~TLS1_FLAGS_ENCRYPT_THEN_MAC;
1908 # endif
1909
1910 # ifndef OPENSSL_NO_SRP
1911 OPENSSL_free(s->srp_ctx.login);
1912 s->srp_ctx.login = NULL;
1913 # endif
1914
1915 s->srtp_profile = NULL;
1916
1917 if (data >= (d + n - 2))
1918 goto ri_check;
1919 n2s(data, len);
1920
1921 if (data > (d + n - len))
1922 goto ri_check;
1923
1924 while (data <= (d + n - 4)) {
1925 n2s(data, type);
1926 n2s(data, size);
1927
1928 if (data + size > (d + n))
1929 goto ri_check;
1930 if (s->tlsext_debug_cb)
1931 s->tlsext_debug_cb(s, 0, type, data, size, s->tlsext_debug_arg);
1932 if (type == TLSEXT_TYPE_renegotiate) {
1933 if (!ssl_parse_clienthello_renegotiate_ext(s, data, size, al))
1934 return 0;
1935 renegotiate_seen = 1;
1936 } else if (s->version == SSL3_VERSION) {
1937 }
1938 /*-
1939 * The servername extension is treated as follows:
1940 *
1941 * - Only the hostname type is supported with a maximum length of 255.
1942 * - The servername is rejected if too long or if it contains zeros,
1943 * in which case an fatal alert is generated.
1944 * - The servername field is maintained together with the session cache.
1945 * - When a session is resumed, the servername call back invoked in order
1946 * to allow the application to position itself to the right context.
1947 * - The servername is acknowledged if it is new for a session or when
1948 * it is identical to a previously used for the same session.
1949 * Applications can control the behaviour. They can at any time
1950 * set a 'desirable' servername for a new SSL object. This can be the
1951 * case for example with HTTPS when a Host: header field is received and
1952 * a renegotiation is requested. In this case, a possible servername
1953 * presented in the new client hello is only acknowledged if it matches
1954 * the value of the Host: field.
1955 * - Applications must use SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION
1956 * if they provide for changing an explicit servername context for the
1957 * session, i.e. when the session has been established with a servername
1958 * extension.
1959 * - On session reconnect, the servername extension may be absent.
1960 *
1961 */
1962
1963 else if (type == TLSEXT_TYPE_server_name) {
1964 unsigned char *sdata;
1965 int servname_type;
1966 int dsize;
1967
1968 if (size < 2) {
1969 *al = SSL_AD_DECODE_ERROR;
1970 return 0;
1971 }
1972 n2s(data, dsize);
1973 size -= 2;
1974 if (dsize > size) {
1975 *al = SSL_AD_DECODE_ERROR;
1976 return 0;
1977 }
1978
1979 sdata = data;
1980 while (dsize > 3) {
1981 servname_type = *(sdata++);
1982 n2s(sdata, len);
1983 dsize -= 3;
1984
1985 if (len > dsize) {
1986 *al = SSL_AD_DECODE_ERROR;
1987 return 0;
1988 }
1989 if (s->servername_done == 0)
1990 switch (servname_type) {
1991 case TLSEXT_NAMETYPE_host_name:
1992 if (!s->hit) {
1993 if (s->session->tlsext_hostname) {
1994 *al = SSL_AD_DECODE_ERROR;
1995 return 0;
1996 }
1997 if (len > TLSEXT_MAXLEN_host_name) {
1998 *al = TLS1_AD_UNRECOGNIZED_NAME;
1999 return 0;
2000 }
2001 if ((s->session->tlsext_hostname =
2002 OPENSSL_malloc(len + 1)) == NULL) {
2003 *al = TLS1_AD_INTERNAL_ERROR;
2004 return 0;
2005 }
2006 memcpy(s->session->tlsext_hostname, sdata, len);
2007 s->session->tlsext_hostname[len] = '\0';
2008 if (strlen(s->session->tlsext_hostname) != len) {
2009 OPENSSL_free(s->session->tlsext_hostname);
2010 s->session->tlsext_hostname = NULL;
2011 *al = TLS1_AD_UNRECOGNIZED_NAME;
2012 return 0;
2013 }
2014 s->servername_done = 1;
2015
2016 } else
2017 s->servername_done = s->session->tlsext_hostname
2018 && strlen(s->session->tlsext_hostname) == len
2019 && strncmp(s->session->tlsext_hostname,
2020 (char *)sdata, len) == 0;
2021
2022 break;
2023
2024 default:
2025 break;
2026 }
2027
2028 dsize -= len;
2029 }
2030 if (dsize != 0) {
2031 *al = SSL_AD_DECODE_ERROR;
2032 return 0;
2033 }
2034
2035 }
2036 # ifndef OPENSSL_NO_SRP
2037 else if (type == TLSEXT_TYPE_srp) {
2038 if (size <= 0 || ((len = data[0])) != (size - 1)) {
2039 *al = SSL_AD_DECODE_ERROR;
2040 return 0;
2041 }
2042 if (s->srp_ctx.login != NULL) {
2043 *al = SSL_AD_DECODE_ERROR;
2044 return 0;
2045 }
2046 if ((s->srp_ctx.login = OPENSSL_malloc(len + 1)) == NULL)
2047 return -1;
2048 memcpy(s->srp_ctx.login, &data[1], len);
2049 s->srp_ctx.login[len] = '\0';
2050
2051 if (strlen(s->srp_ctx.login) != len) {
2052 *al = SSL_AD_DECODE_ERROR;
2053 return 0;
2054 }
2055 }
2056 # endif
2057
2058 # ifndef OPENSSL_NO_EC
2059 else if (type == TLSEXT_TYPE_ec_point_formats) {
2060 unsigned char *sdata = data;
2061 int ecpointformatlist_length = *(sdata++);
2062
2063 if (ecpointformatlist_length != size - 1 ||
2064 ecpointformatlist_length < 1) {
2065 *al = TLS1_AD_DECODE_ERROR;
2066 return 0;
2067 }
2068 if (!s->hit) {
2069 OPENSSL_free(s->session->tlsext_ecpointformatlist);
2070 s->session->tlsext_ecpointformatlist = NULL;
2071 s->session->tlsext_ecpointformatlist_length = 0;
2072 if ((s->session->tlsext_ecpointformatlist =
2073 OPENSSL_malloc(ecpointformatlist_length)) == NULL) {
2074 *al = TLS1_AD_INTERNAL_ERROR;
2075 return 0;
2076 }
2077 s->session->tlsext_ecpointformatlist_length =
2078 ecpointformatlist_length;
2079 memcpy(s->session->tlsext_ecpointformatlist, sdata,
2080 ecpointformatlist_length);
2081 }
2082 } else if (type == TLSEXT_TYPE_elliptic_curves) {
2083 unsigned char *sdata = data;
2084 int ellipticcurvelist_length = (*(sdata++) << 8);
2085 ellipticcurvelist_length += (*(sdata++));
2086
2087 if (ellipticcurvelist_length != size - 2 ||
2088 ellipticcurvelist_length < 1 ||
2089 /* Each NamedCurve is 2 bytes. */
2090 ellipticcurvelist_length & 1) {
2091 *al = TLS1_AD_DECODE_ERROR;
2092 return 0;
2093 }
2094 if (!s->hit) {
2095 if (s->session->tlsext_ellipticcurvelist) {
2096 *al = TLS1_AD_DECODE_ERROR;
2097 return 0;
2098 }
2099 s->session->tlsext_ellipticcurvelist_length = 0;
2100 if ((s->session->tlsext_ellipticcurvelist =
2101 OPENSSL_malloc(ellipticcurvelist_length)) == NULL) {
2102 *al = TLS1_AD_INTERNAL_ERROR;
2103 return 0;
2104 }
2105 s->session->tlsext_ellipticcurvelist_length =
2106 ellipticcurvelist_length;
2107 memcpy(s->session->tlsext_ellipticcurvelist, sdata,
2108 ellipticcurvelist_length);
2109 }
2110 }
2111 # endif /* OPENSSL_NO_EC */
2112 else if (type == TLSEXT_TYPE_session_ticket) {
2113 if (s->tls_session_ticket_ext_cb &&
2114 !s->tls_session_ticket_ext_cb(s, data, size,
2115 s->tls_session_ticket_ext_cb_arg))
2116 {
2117 *al = TLS1_AD_INTERNAL_ERROR;
2118 return 0;
2119 }
2120 } else if (type == TLSEXT_TYPE_signature_algorithms) {
2121 int dsize;
2122 if (s->cert->peer_sigalgs || size < 2) {
2123 *al = SSL_AD_DECODE_ERROR;
2124 return 0;
2125 }
2126 n2s(data, dsize);
2127 size -= 2;
2128 if (dsize != size || dsize & 1 || !dsize) {
2129 *al = SSL_AD_DECODE_ERROR;
2130 return 0;
2131 }
2132 if (!tls1_save_sigalgs(s, data, dsize)) {
2133 *al = SSL_AD_DECODE_ERROR;
2134 return 0;
2135 }
2136 } else if (type == TLSEXT_TYPE_status_request) {
2137
2138 if (size < 5) {
2139 *al = SSL_AD_DECODE_ERROR;
2140 return 0;
2141 }
2142
2143 s->tlsext_status_type = *data++;
2144 size--;
2145 if (s->tlsext_status_type == TLSEXT_STATUSTYPE_ocsp) {
2146 const unsigned char *sdata;
2147 int dsize;
2148 /* Read in responder_id_list */
2149 n2s(data, dsize);
2150 size -= 2;
2151 if (dsize > size) {
2152 *al = SSL_AD_DECODE_ERROR;
2153 return 0;
2154 }
2155 while (dsize > 0) {
2156 OCSP_RESPID *id;
2157 int idsize;
2158 if (dsize < 4) {
2159 *al = SSL_AD_DECODE_ERROR;
2160 return 0;
2161 }
2162 n2s(data, idsize);
2163 dsize -= 2 + idsize;
2164 size -= 2 + idsize;
2165 if (dsize < 0) {
2166 *al = SSL_AD_DECODE_ERROR;
2167 return 0;
2168 }
2169 sdata = data;
2170 data += idsize;
2171 id = d2i_OCSP_RESPID(NULL, &sdata, idsize);
2172 if (!id) {
2173 *al = SSL_AD_DECODE_ERROR;
2174 return 0;
2175 }
2176 if (data != sdata) {
2177 OCSP_RESPID_free(id);
2178 *al = SSL_AD_DECODE_ERROR;
2179 return 0;
2180 }
2181 if (!s->tlsext_ocsp_ids
2182 && !(s->tlsext_ocsp_ids =
2183 sk_OCSP_RESPID_new_null())) {
2184 OCSP_RESPID_free(id);
2185 *al = SSL_AD_INTERNAL_ERROR;
2186 return 0;
2187 }
2188 if (!sk_OCSP_RESPID_push(s->tlsext_ocsp_ids, id)) {
2189 OCSP_RESPID_free(id);
2190 *al = SSL_AD_INTERNAL_ERROR;
2191 return 0;
2192 }
2193 }
2194
2195 /* Read in request_extensions */
2196 if (size < 2) {
2197 *al = SSL_AD_DECODE_ERROR;
2198 return 0;
2199 }
2200 n2s(data, dsize);
2201 size -= 2;
2202 if (dsize != size) {
2203 *al = SSL_AD_DECODE_ERROR;
2204 return 0;
2205 }
2206 sdata = data;
2207 if (dsize > 0) {
2208 sk_X509_EXTENSION_pop_free(s->tlsext_ocsp_exts,
2209 X509_EXTENSION_free);
2210 s->tlsext_ocsp_exts =
2211 d2i_X509_EXTENSIONS(NULL, &sdata, dsize);
2212 if (!s->tlsext_ocsp_exts || (data + dsize != sdata)) {
2213 *al = SSL_AD_DECODE_ERROR;
2214 return 0;
2215 }
2216 }
2217 }
2218 /*
2219 * We don't know what to do with any other type * so ignore it.
2220 */
2221 else
2222 s->tlsext_status_type = -1;
2223 }
2224 # ifndef OPENSSL_NO_HEARTBEATS
2225 else if (type == TLSEXT_TYPE_heartbeat) {
2226 switch (data[0]) {
2227 case 0x01: /* Client allows us to send HB requests */
2228 s->tlsext_heartbeat |= SSL_TLSEXT_HB_ENABLED;
2229 break;
2230 case 0x02: /* Client doesn't accept HB requests */
2231 s->tlsext_heartbeat |= SSL_TLSEXT_HB_ENABLED;
2232 s->tlsext_heartbeat |= SSL_TLSEXT_HB_DONT_SEND_REQUESTS;
2233 break;
2234 default:
2235 *al = SSL_AD_ILLEGAL_PARAMETER;
2236 return 0;
2237 }
2238 }
2239 # endif
2240 # ifndef OPENSSL_NO_NEXTPROTONEG
2241 else if (type == TLSEXT_TYPE_next_proto_neg &&
2242 s->s3->tmp.finish_md_len == 0 &&
2243 s->s3->alpn_selected == NULL) {
2244 /*-
2245 * We shouldn't accept this extension on a
2246 * renegotiation.
2247 *
2248 * s->new_session will be set on renegotiation, but we
2249 * probably shouldn't rely that it couldn't be set on
2250 * the initial renegotation too in certain cases (when
2251 * there's some other reason to disallow resuming an
2252 * earlier session -- the current code won't be doing
2253 * anything like that, but this might change).
2254 *
2255 * A valid sign that there's been a previous handshake
2256 * in this connection is if s->s3->tmp.finish_md_len >
2257 * 0. (We are talking about a check that will happen
2258 * in the Hello protocol round, well before a new
2259 * Finished message could have been computed.)
2260 */
2261 s->s3->next_proto_neg_seen = 1;
2262 }
2263 # endif
2264
2265 else if (type == TLSEXT_TYPE_application_layer_protocol_negotiation &&
2266 s->ctx->alpn_select_cb && s->s3->tmp.finish_md_len == 0) {
2267 if (tls1_alpn_handle_client_hello(s, data, size, al) != 0)
2268 return 0;
2269 # ifndef OPENSSL_NO_NEXTPROTONEG
2270 /* ALPN takes precedence over NPN. */
2271 s->s3->next_proto_neg_seen = 0;
2272 # endif
2273 }
2274
2275 /* session ticket processed earlier */
2276 # ifndef OPENSSL_NO_SRTP
2277 else if (SSL_IS_DTLS(s) && SSL_get_srtp_profiles(s)
2278 && type == TLSEXT_TYPE_use_srtp) {
2279 if (ssl_parse_clienthello_use_srtp_ext(s, data, size, al))
2280 return 0;
2281 }
2282 # endif
2283 # ifdef TLSEXT_TYPE_encrypt_then_mac
2284 else if (type == TLSEXT_TYPE_encrypt_then_mac)
2285 s->s3->flags |= TLS1_FLAGS_ENCRYPT_THEN_MAC;
2286 # endif
2287 else if (type == TLSEXT_TYPE_extended_master_secret) {
2288 if (!s->hit)
2289 s->session->flags |= SSL_SESS_FLAG_EXTMS;
2290 }
2291 /*
2292 * If this ClientHello extension was unhandled and this is a
2293 * nonresumed connection, check whether the extension is a custom
2294 * TLS Extension (has a custom_srv_ext_record), and if so call the
2295 * callback and record the extension number so that an appropriate
2296 * ServerHello may be later returned.
2297 */
2298 else if (!s->hit) {
2299 if (custom_ext_parse(s, 1, type, data, size, al) <= 0)
2300 return 0;
2301 }
2302
2303 data += size;
2304 }
2305
2306 *p = data;
2307
2308 ri_check:
2309
2310 /* Need RI if renegotiating */
2311
2312 if (!renegotiate_seen && s->renegotiate &&
2313 !(s->options & SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION)) {
2314 *al = SSL_AD_HANDSHAKE_FAILURE;
2315 SSLerr(SSL_F_SSL_SCAN_CLIENTHELLO_TLSEXT,
2316 SSL_R_UNSAFE_LEGACY_RENEGOTIATION_DISABLED);
2317 return 0;
2318 }
2319
2320 return 1;
2321 }
2322
2323 int ssl_parse_clienthello_tlsext(SSL *s, unsigned char **p, unsigned char *d,
2324 int n)
2325 {
2326 int al = -1;
2327 custom_ext_init(&s->cert->srv_ext);
2328 if (ssl_scan_clienthello_tlsext(s, p, d, n, &al) <= 0) {
2329 ssl3_send_alert(s, SSL3_AL_FATAL, al);
2330 return 0;
2331 }
2332
2333 if (ssl_check_clienthello_tlsext_early(s) <= 0) {
2334 SSLerr(SSL_F_SSL_PARSE_CLIENTHELLO_TLSEXT, SSL_R_CLIENTHELLO_TLSEXT);
2335 return 0;
2336 }
2337 return 1;
2338 }
2339
2340 # ifndef OPENSSL_NO_NEXTPROTONEG
2341 /*
2342 * ssl_next_proto_validate validates a Next Protocol Negotiation block. No
2343 * elements of zero length are allowed and the set of elements must exactly
2344 * fill the length of the block.
2345 */
2346 static char ssl_next_proto_validate(unsigned char *d, unsigned len)
2347 {
2348 unsigned int off = 0;
2349
2350 while (off < len) {
2351 if (d[off] == 0)
2352 return 0;
2353 off += d[off];
2354 off++;
2355 }
2356
2357 return off == len;
2358 }
2359 # endif
2360
2361 static int ssl_scan_serverhello_tlsext(SSL *s, unsigned char **p,
2362 unsigned char *d, int n, int *al)
2363 {
2364 unsigned short length;
2365 unsigned short type;
2366 unsigned short size;
2367 unsigned char *data = *p;
2368 int tlsext_servername = 0;
2369 int renegotiate_seen = 0;
2370
2371 # ifndef OPENSSL_NO_NEXTPROTONEG
2372 s->s3->next_proto_neg_seen = 0;
2373 # endif
2374 s->tlsext_ticket_expected = 0;
2375
2376 OPENSSL_free(s->s3->alpn_selected);
2377 s->s3->alpn_selected = NULL;
2378 # ifndef OPENSSL_NO_HEARTBEATS
2379 s->tlsext_heartbeat &= ~(SSL_TLSEXT_HB_ENABLED |
2380 SSL_TLSEXT_HB_DONT_SEND_REQUESTS);
2381 # endif
2382
2383 # ifdef TLSEXT_TYPE_encrypt_then_mac
2384 s->s3->flags &= ~TLS1_FLAGS_ENCRYPT_THEN_MAC;
2385 # endif
2386
2387 if (data >= (d + n - 2))
2388 goto ri_check;
2389
2390 n2s(data, length);
2391 if (data + length != d + n) {
2392 *al = SSL_AD_DECODE_ERROR;
2393 return 0;
2394 }
2395
2396 while (data <= (d + n - 4)) {
2397 n2s(data, type);
2398 n2s(data, size);
2399
2400 if (data + size > (d + n))
2401 goto ri_check;
2402
2403 if (s->tlsext_debug_cb)
2404 s->tlsext_debug_cb(s, 1, type, data, size, s->tlsext_debug_arg);
2405
2406 if (type == TLSEXT_TYPE_renegotiate) {
2407 if (!ssl_parse_serverhello_renegotiate_ext(s, data, size, al))
2408 return 0;
2409 renegotiate_seen = 1;
2410 } else if (s->version == SSL3_VERSION) {
2411 } else if (type == TLSEXT_TYPE_server_name) {
2412 if (s->tlsext_hostname == NULL || size > 0) {
2413 *al = TLS1_AD_UNRECOGNIZED_NAME;
2414 return 0;
2415 }
2416 tlsext_servername = 1;
2417 }
2418 # ifndef OPENSSL_NO_EC
2419 else if (type == TLSEXT_TYPE_ec_point_formats) {
2420 unsigned char *sdata = data;
2421 int ecpointformatlist_length = *(sdata++);
2422
2423 if (ecpointformatlist_length != size - 1) {
2424 *al = TLS1_AD_DECODE_ERROR;
2425 return 0;
2426 }
2427 if (!s->hit) {
2428 s->session->tlsext_ecpointformatlist_length = 0;
2429 OPENSSL_free(s->session->tlsext_ecpointformatlist);
2430 if ((s->session->tlsext_ecpointformatlist =
2431 OPENSSL_malloc(ecpointformatlist_length)) == NULL) {
2432 *al = TLS1_AD_INTERNAL_ERROR;
2433 return 0;
2434 }
2435 s->session->tlsext_ecpointformatlist_length =
2436 ecpointformatlist_length;
2437 memcpy(s->session->tlsext_ecpointformatlist, sdata,
2438 ecpointformatlist_length);
2439 }
2440 }
2441 # endif /* OPENSSL_NO_EC */
2442
2443 else if (type == TLSEXT_TYPE_session_ticket) {
2444 if (s->tls_session_ticket_ext_cb &&
2445 !s->tls_session_ticket_ext_cb(s, data, size,
2446 s->tls_session_ticket_ext_cb_arg))
2447 {
2448 *al = TLS1_AD_INTERNAL_ERROR;
2449 return 0;
2450 }
2451 if (!tls_use_ticket(s) || (size > 0)) {
2452 *al = TLS1_AD_UNSUPPORTED_EXTENSION;
2453 return 0;
2454 }
2455 s->tlsext_ticket_expected = 1;
2456 }
2457 else if (type == TLSEXT_TYPE_status_request) {
2458 /*
2459 * MUST be empty and only sent if we've requested a status
2460 * request message.
2461 */
2462 if ((s->tlsext_status_type == -1) || (size > 0)) {
2463 *al = TLS1_AD_UNSUPPORTED_EXTENSION;
2464 return 0;
2465 }
2466 /* Set flag to expect CertificateStatus message */
2467 s->tlsext_status_expected = 1;
2468 }
2469 # ifndef OPENSSL_NO_NEXTPROTONEG
2470 else if (type == TLSEXT_TYPE_next_proto_neg &&
2471 s->s3->tmp.finish_md_len == 0) {
2472 unsigned char *selected;
2473 unsigned char selected_len;
2474
2475 /* We must have requested it. */
2476 if (s->ctx->next_proto_select_cb == NULL) {
2477 *al = TLS1_AD_UNSUPPORTED_EXTENSION;
2478 return 0;
2479 }
2480 /* The data must be valid */
2481 if (!ssl_next_proto_validate(data, size)) {
2482 *al = TLS1_AD_DECODE_ERROR;
2483 return 0;
2484 }
2485 if (s->
2486 ctx->next_proto_select_cb(s, &selected, &selected_len, data,
2487 size,
2488 s->ctx->next_proto_select_cb_arg) !=
2489 SSL_TLSEXT_ERR_OK) {
2490 *al = TLS1_AD_INTERNAL_ERROR;
2491 return 0;
2492 }
2493 s->next_proto_negotiated = OPENSSL_malloc(selected_len);
2494 if (!s->next_proto_negotiated) {
2495 *al = TLS1_AD_INTERNAL_ERROR;
2496 return 0;
2497 }
2498 memcpy(s->next_proto_negotiated, selected, selected_len);
2499 s->next_proto_negotiated_len = selected_len;
2500 s->s3->next_proto_neg_seen = 1;
2501 }
2502 # endif
2503
2504 else if (type == TLSEXT_TYPE_application_layer_protocol_negotiation) {
2505 unsigned len;
2506
2507 /* We must have requested it. */
2508 if (s->alpn_client_proto_list == NULL) {
2509 *al = TLS1_AD_UNSUPPORTED_EXTENSION;
2510 return 0;
2511 }
2512 if (size < 4) {
2513 *al = TLS1_AD_DECODE_ERROR;
2514 return 0;
2515 }
2516 /*-
2517 * The extension data consists of:
2518 * uint16 list_length
2519 * uint8 proto_length;
2520 * uint8 proto[proto_length];
2521 */
2522 len = data[0];
2523 len <<= 8;
2524 len |= data[1];
2525 if (len != (unsigned)size - 2) {
2526 *al = TLS1_AD_DECODE_ERROR;
2527 return 0;
2528 }
2529 len = data[2];
2530 if (len != (unsigned)size - 3) {
2531 *al = TLS1_AD_DECODE_ERROR;
2532 return 0;
2533 }
2534 OPENSSL_free(s->s3->alpn_selected);
2535 s->s3->alpn_selected = OPENSSL_malloc(len);
2536 if (!s->s3->alpn_selected) {
2537 *al = TLS1_AD_INTERNAL_ERROR;
2538 return 0;
2539 }
2540 memcpy(s->s3->alpn_selected, data + 3, len);
2541 s->s3->alpn_selected_len = len;
2542 }
2543 # ifndef OPENSSL_NO_HEARTBEATS
2544 else if (type == TLSEXT_TYPE_heartbeat) {
2545 switch (data[0]) {
2546 case 0x01: /* Server allows us to send HB requests */
2547 s->tlsext_heartbeat |= SSL_TLSEXT_HB_ENABLED;
2548 break;
2549 case 0x02: /* Server doesn't accept HB requests */
2550 s->tlsext_heartbeat |= SSL_TLSEXT_HB_ENABLED;
2551 s->tlsext_heartbeat |= SSL_TLSEXT_HB_DONT_SEND_REQUESTS;
2552 break;
2553 default:
2554 *al = SSL_AD_ILLEGAL_PARAMETER;
2555 return 0;
2556 }
2557 }
2558 # endif
2559 # ifndef OPENSSL_NO_SRTP
2560 else if (SSL_IS_DTLS(s) && type == TLSEXT_TYPE_use_srtp) {
2561 if (ssl_parse_serverhello_use_srtp_ext(s, data, size, al))
2562 return 0;
2563 }
2564 # endif
2565 # ifdef TLSEXT_TYPE_encrypt_then_mac
2566 else if (type == TLSEXT_TYPE_encrypt_then_mac) {
2567 /* Ignore if inappropriate ciphersuite */
2568 if (s->s3->tmp.new_cipher->algorithm_mac != SSL_AEAD
2569 && s->s3->tmp.new_cipher->algorithm_enc != SSL_RC4)
2570 s->s3->flags |= TLS1_FLAGS_ENCRYPT_THEN_MAC;
2571 }
2572 # endif
2573 else if (type == TLSEXT_TYPE_extended_master_secret) {
2574 if (!s->hit)
2575 s->session->flags |= SSL_SESS_FLAG_EXTMS;
2576 }
2577 /*
2578 * If this extension type was not otherwise handled, but matches a
2579 * custom_cli_ext_record, then send it to the c callback
2580 */
2581 else if (custom_ext_parse(s, 0, type, data, size, al) <= 0)
2582 return 0;
2583
2584 data += size;
2585 }
2586
2587 if (data != d + n) {
2588 *al = SSL_AD_DECODE_ERROR;
2589 return 0;
2590 }
2591
2592 if (!s->hit && tlsext_servername == 1) {
2593 if (s->tlsext_hostname) {
2594 if (s->session->tlsext_hostname == NULL) {
2595 s->session->tlsext_hostname = BUF_strdup(s->tlsext_hostname);
2596 if (!s->session->tlsext_hostname) {
2597 *al = SSL_AD_UNRECOGNIZED_NAME;
2598 return 0;
2599 }
2600 } else {
2601 *al = SSL_AD_DECODE_ERROR;
2602 return 0;
2603 }
2604 }
2605 }
2606
2607 *p = data;
2608
2609 ri_check:
2610
2611 /*
2612 * Determine if we need to see RI. Strictly speaking if we want to avoid
2613 * an attack we should *always* see RI even on initial server hello
2614 * because the client doesn't see any renegotiation during an attack.
2615 * However this would mean we could not connect to any server which
2616 * doesn't support RI so for the immediate future tolerate RI absence on
2617 * initial connect only.
2618 */
2619 if (!renegotiate_seen && !(s->options & SSL_OP_LEGACY_SERVER_CONNECT)
2620 && !(s->options & SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION)) {
2621 *al = SSL_AD_HANDSHAKE_FAILURE;
2622 SSLerr(SSL_F_SSL_SCAN_SERVERHELLO_TLSEXT,
2623 SSL_R_UNSAFE_LEGACY_RENEGOTIATION_DISABLED);
2624 return 0;
2625 }
2626
2627 return 1;
2628 }
2629
2630 int ssl_prepare_clienthello_tlsext(SSL *s)
2631 {
2632
2633 return 1;
2634 }
2635
2636 int ssl_prepare_serverhello_tlsext(SSL *s)
2637 {
2638 return 1;
2639 }
2640
2641 static int ssl_check_clienthello_tlsext_early(SSL *s)
2642 {
2643 int ret = SSL_TLSEXT_ERR_NOACK;
2644 int al = SSL_AD_UNRECOGNIZED_NAME;
2645
2646 # ifndef OPENSSL_NO_EC
2647 /*
2648 * The handling of the ECPointFormats extension is done elsewhere, namely
2649 * in ssl3_choose_cipher in s3_lib.c.
2650 */
2651 /*
2652 * The handling of the EllipticCurves extension is done elsewhere, namely
2653 * in ssl3_choose_cipher in s3_lib.c.
2654 */
2655 # endif
2656
2657 if (s->ctx != NULL && s->ctx->tlsext_servername_callback != 0)
2658 ret =
2659 s->ctx->tlsext_servername_callback(s, &al,
2660 s->ctx->tlsext_servername_arg);
2661 else if (s->initial_ctx != NULL
2662 && s->initial_ctx->tlsext_servername_callback != 0)
2663 ret =
2664 s->initial_ctx->tlsext_servername_callback(s, &al,
2665 s->
2666 initial_ctx->tlsext_servername_arg);
2667
2668 switch (ret) {
2669 case SSL_TLSEXT_ERR_ALERT_FATAL:
2670 ssl3_send_alert(s, SSL3_AL_FATAL, al);
2671 return -1;
2672
2673 case SSL_TLSEXT_ERR_ALERT_WARNING:
2674 ssl3_send_alert(s, SSL3_AL_WARNING, al);
2675 return 1;
2676
2677 case SSL_TLSEXT_ERR_NOACK:
2678 s->servername_done = 0;
2679 default:
2680 return 1;
2681 }
2682 }
2683
2684 int tls1_set_server_sigalgs(SSL *s)
2685 {
2686 int al;
2687 size_t i;
2688 /* Clear any shared sigtnature algorithms */
2689 OPENSSL_free(s->cert->shared_sigalgs);
2690 s->cert->shared_sigalgs = NULL;
2691 s->cert->shared_sigalgslen = 0;
2692 /* Clear certificate digests and validity flags */
2693 for (i = 0; i < SSL_PKEY_NUM; i++) {
2694 s->cert->pkeys[i].digest = NULL;
2695 s->cert->pkeys[i].valid_flags = 0;
2696 }
2697
2698 /* If sigalgs received process it. */
2699 if (s->cert->peer_sigalgs) {
2700 if (!tls1_process_sigalgs(s)) {
2701 SSLerr(SSL_F_TLS1_SET_SERVER_SIGALGS, ERR_R_MALLOC_FAILURE);
2702 al = SSL_AD_INTERNAL_ERROR;
2703 goto err;
2704 }
2705 /* Fatal error is no shared signature algorithms */
2706 if (!s->cert->shared_sigalgs) {
2707 SSLerr(SSL_F_TLS1_SET_SERVER_SIGALGS,
2708 SSL_R_NO_SHARED_SIGATURE_ALGORITHMS);
2709 al = SSL_AD_ILLEGAL_PARAMETER;
2710 goto err;
2711 }
2712 } else
2713 ssl_cert_set_default_md(s->cert);
2714 return 1;
2715 err:
2716 ssl3_send_alert(s, SSL3_AL_FATAL, al);
2717 return 0;
2718 }
2719
2720 int ssl_check_clienthello_tlsext_late(SSL *s)
2721 {
2722 int ret = SSL_TLSEXT_ERR_OK;
2723 int al;
2724
2725 /*
2726 * If status request then ask callback what to do. Note: this must be
2727 * called after servername callbacks in case the certificate has changed,
2728 * and must be called after the cipher has been chosen because this may
2729 * influence which certificate is sent
2730 */
2731 if ((s->tlsext_status_type != -1) && s->ctx && s->ctx->tlsext_status_cb) {
2732 int r;
2733 CERT_PKEY *certpkey;
2734 certpkey = ssl_get_server_send_pkey(s);
2735 /* If no certificate can't return certificate status */
2736 if (certpkey == NULL) {
2737 s->tlsext_status_expected = 0;
2738 return 1;
2739 }
2740 /*
2741 * Set current certificate to one we will use so SSL_get_certificate
2742 * et al can pick it up.
2743 */
2744 s->cert->key = certpkey;
2745 r = s->ctx->tlsext_status_cb(s, s->ctx->tlsext_status_arg);
2746 switch (r) {
2747 /* We don't want to send a status request response */
2748 case SSL_TLSEXT_ERR_NOACK:
2749 s->tlsext_status_expected = 0;
2750 break;
2751 /* status request response should be sent */
2752 case SSL_TLSEXT_ERR_OK:
2753 if (s->tlsext_ocsp_resp)
2754 s->tlsext_status_expected = 1;
2755 else
2756 s->tlsext_status_expected = 0;
2757 break;
2758 /* something bad happened */
2759 case SSL_TLSEXT_ERR_ALERT_FATAL:
2760 ret = SSL_TLSEXT_ERR_ALERT_FATAL;
2761 al = SSL_AD_INTERNAL_ERROR;
2762 goto err;
2763 }
2764 } else
2765 s->tlsext_status_expected = 0;
2766
2767 err:
2768 switch (ret) {
2769 case SSL_TLSEXT_ERR_ALERT_FATAL:
2770 ssl3_send_alert(s, SSL3_AL_FATAL, al);
2771 return -1;
2772
2773 case SSL_TLSEXT_ERR_ALERT_WARNING:
2774 ssl3_send_alert(s, SSL3_AL_WARNING, al);
2775 return 1;
2776
2777 default:
2778 return 1;
2779 }
2780 }
2781
2782 int ssl_check_serverhello_tlsext(SSL *s)
2783 {
2784 int ret = SSL_TLSEXT_ERR_NOACK;
2785 int al = SSL_AD_UNRECOGNIZED_NAME;
2786
2787 # ifndef OPENSSL_NO_EC
2788 /*
2789 * If we are client and using an elliptic curve cryptography cipher
2790 * suite, then if server returns an EC point formats lists extension it
2791 * must contain uncompressed.
2792 */
2793 unsigned long alg_k = s->s3->tmp.new_cipher->algorithm_mkey;
2794 unsigned long alg_a = s->s3->tmp.new_cipher->algorithm_auth;
2795 if ((s->tlsext_ecpointformatlist != NULL)
2796 && (s->tlsext_ecpointformatlist_length > 0)
2797 && (s->session->tlsext_ecpointformatlist != NULL)
2798 && (s->session->tlsext_ecpointformatlist_length > 0)
2799 && ((alg_k & (SSL_kECDHE | SSL_kECDHr | SSL_kECDHe))
2800 || (alg_a & SSL_aECDSA))) {
2801 /* we are using an ECC cipher */
2802 size_t i;
2803 unsigned char *list;
2804 int found_uncompressed = 0;
2805 list = s->session->tlsext_ecpointformatlist;
2806 for (i = 0; i < s->session->tlsext_ecpointformatlist_length; i++) {
2807 if (*(list++) == TLSEXT_ECPOINTFORMAT_uncompressed) {
2808 found_uncompressed = 1;
2809 break;
2810 }
2811 }
2812 if (!found_uncompressed) {
2813 SSLerr(SSL_F_SSL_CHECK_SERVERHELLO_TLSEXT,
2814 SSL_R_TLS_INVALID_ECPOINTFORMAT_LIST);
2815 return -1;
2816 }
2817 }
2818 ret = SSL_TLSEXT_ERR_OK;
2819 # endif /* OPENSSL_NO_EC */
2820
2821 if (s->ctx != NULL && s->ctx->tlsext_servername_callback != 0)
2822 ret =
2823 s->ctx->tlsext_servername_callback(s, &al,
2824 s->ctx->tlsext_servername_arg);
2825 else if (s->initial_ctx != NULL
2826 && s->initial_ctx->tlsext_servername_callback != 0)
2827 ret =
2828 s->initial_ctx->tlsext_servername_callback(s, &al,
2829 s->
2830 initial_ctx->tlsext_servername_arg);
2831
2832 /*
2833 * If we've requested certificate status and we wont get one tell the
2834 * callback
2835 */
2836 if ((s->tlsext_status_type != -1) && !(s->tlsext_status_expected)
2837 && s->ctx && s->ctx->tlsext_status_cb) {
2838 int r;
2839 /*
2840 * Set resp to NULL, resplen to -1 so callback knows there is no
2841 * response.
2842 */
2843 OPENSSL_free(s->tlsext_ocsp_resp);
2844 s->tlsext_ocsp_resp = NULL;
2845 s->tlsext_ocsp_resplen = -1;
2846 r = s->ctx->tlsext_status_cb(s, s->ctx->tlsext_status_arg);
2847 if (r == 0) {
2848 al = SSL_AD_BAD_CERTIFICATE_STATUS_RESPONSE;
2849 ret = SSL_TLSEXT_ERR_ALERT_FATAL;
2850 }
2851 if (r < 0) {
2852 al = SSL_AD_INTERNAL_ERROR;
2853 ret = SSL_TLSEXT_ERR_ALERT_FATAL;
2854 }
2855 }
2856
2857 switch (ret) {
2858 case SSL_TLSEXT_ERR_ALERT_FATAL:
2859 ssl3_send_alert(s, SSL3_AL_FATAL, al);
2860 return -1;
2861
2862 case SSL_TLSEXT_ERR_ALERT_WARNING:
2863 ssl3_send_alert(s, SSL3_AL_WARNING, al);
2864 return 1;
2865
2866 case SSL_TLSEXT_ERR_NOACK:
2867 s->servername_done = 0;
2868 default:
2869 return 1;
2870 }
2871 }
2872
2873 int ssl_parse_serverhello_tlsext(SSL *s, unsigned char **p, unsigned char *d,
2874 int n)
2875 {
2876 int al = -1;
2877 if (s->version < SSL3_VERSION)
2878 return 1;
2879 if (ssl_scan_serverhello_tlsext(s, p, d, n, &al) <= 0) {
2880 ssl3_send_alert(s, SSL3_AL_FATAL, al);
2881 return 0;
2882 }
2883
2884 if (ssl_check_serverhello_tlsext(s) <= 0) {
2885 SSLerr(SSL_F_SSL_PARSE_SERVERHELLO_TLSEXT, SSL_R_SERVERHELLO_TLSEXT);
2886 return 0;
2887 }
2888 return 1;
2889 }
2890
2891 /*-
2892 * Since the server cache lookup is done early on in the processing of the
2893 * ClientHello, and other operations depend on the result, we need to handle
2894 * any TLS session ticket extension at the same time.
2895 *
2896 * session_id: points at the session ID in the ClientHello. This code will
2897 * read past the end of this in order to parse out the session ticket
2898 * extension, if any.
2899 * len: the length of the session ID.
2900 * limit: a pointer to the first byte after the ClientHello.
2901 * ret: (output) on return, if a ticket was decrypted, then this is set to
2902 * point to the resulting session.
2903 *
2904 * If s->tls_session_secret_cb is set then we are expecting a pre-shared key
2905 * ciphersuite, in which case we have no use for session tickets and one will
2906 * never be decrypted, nor will s->tlsext_ticket_expected be set to 1.
2907 *
2908 * Returns:
2909 * -1: fatal error, either from parsing or decrypting the ticket.
2910 * 0: no ticket was found (or was ignored, based on settings).
2911 * 1: a zero length extension was found, indicating that the client supports
2912 * session tickets but doesn't currently have one to offer.
2913 * 2: either s->tls_session_secret_cb was set, or a ticket was offered but
2914 * couldn't be decrypted because of a non-fatal error.
2915 * 3: a ticket was successfully decrypted and *ret was set.
2916 *
2917 * Side effects:
2918 * Sets s->tlsext_ticket_expected to 1 if the server will have to issue
2919 * a new session ticket to the client because the client indicated support
2920 * (and s->tls_session_secret_cb is NULL) but the client either doesn't have
2921 * a session ticket or we couldn't use the one it gave us, or if
2922 * s->ctx->tlsext_ticket_key_cb asked to renew the client's ticket.
2923 * Otherwise, s->tlsext_ticket_expected is set to 0.
2924 */
2925 int tls1_process_ticket(SSL *s, unsigned char *session_id, int len,
2926 const unsigned char *limit, SSL_SESSION **ret)
2927 {
2928 /* Point after session ID in client hello */
2929 const unsigned char *p = session_id + len;
2930 unsigned short i;
2931
2932 *ret = NULL;
2933 s->tlsext_ticket_expected = 0;
2934
2935 /*
2936 * If tickets disabled behave as if no ticket present to permit stateful
2937 * resumption.
2938 */
2939 if (!tls_use_ticket(s))
2940 return 0;
2941 if ((s->version <= SSL3_VERSION) || !limit)
2942 return 0;
2943 if (p >= limit)
2944 return -1;
2945 /* Skip past DTLS cookie */
2946 if (SSL_IS_DTLS(s)) {
2947 i = *(p++);
2948 p += i;
2949 if (p >= limit)
2950 return -1;
2951 }
2952 /* Skip past cipher list */
2953 n2s(p, i);
2954 p += i;
2955 if (p >= limit)
2956 return -1;
2957 /* Skip past compression algorithm list */
2958 i = *(p++);
2959 p += i;
2960 if (p > limit)
2961 return -1;
2962 /* Now at start of extensions */
2963 if ((p + 2) >= limit)
2964 return 0;
2965 n2s(p, i);
2966 while ((p + 4) <= limit) {
2967 unsigned short type, size;
2968 n2s(p, type);
2969 n2s(p, size);
2970 if (p + size > limit)
2971 return 0;
2972 if (type == TLSEXT_TYPE_session_ticket) {
2973 int r;
2974 if (size == 0) {
2975 /*
2976 * The client will accept a ticket but doesn't currently have
2977 * one.
2978 */
2979 s->tlsext_ticket_expected = 1;
2980 return 1;
2981 }
2982 if (s->tls_session_secret_cb) {
2983 /*
2984 * Indicate that the ticket couldn't be decrypted rather than
2985 * generating the session from ticket now, trigger
2986 * abbreviated handshake based on external mechanism to
2987 * calculate the master secret later.
2988 */
2989 return 2;
2990 }
2991 r = tls_decrypt_ticket(s, p, size, session_id, len, ret);
2992 switch (r) {
2993 case 2: /* ticket couldn't be decrypted */
2994 s->tlsext_ticket_expected = 1;
2995 return 2;
2996 case 3: /* ticket was decrypted */
2997 return r;
2998 case 4: /* ticket decrypted but need to renew */
2999 s->tlsext_ticket_expected = 1;
3000 return 3;
3001 default: /* fatal error */
3002 return -1;
3003 }
3004 }
3005 p += size;
3006 }
3007 return 0;
3008 }
3009
3010 /*-
3011 * tls_decrypt_ticket attempts to decrypt a session ticket.
3012 *
3013 * etick: points to the body of the session ticket extension.
3014 * eticklen: the length of the session tickets extenion.
3015 * sess_id: points at the session ID.
3016 * sesslen: the length of the session ID.
3017 * psess: (output) on return, if a ticket was decrypted, then this is set to
3018 * point to the resulting session.
3019 *
3020 * Returns:
3021 * -1: fatal error, either from parsing or decrypting the ticket.
3022 * 2: the ticket couldn't be decrypted.
3023 * 3: a ticket was successfully decrypted and *psess was set.
3024 * 4: same as 3, but the ticket needs to be renewed.
3025 */
3026 static int tls_decrypt_ticket(SSL *s, const unsigned char *etick,
3027 int eticklen, const unsigned char *sess_id,
3028 int sesslen, SSL_SESSION **psess)
3029 {
3030 SSL_SESSION *sess;
3031 unsigned char *sdec;
3032 const unsigned char *p;
3033 int slen, mlen, renew_ticket = 0;
3034 unsigned char tick_hmac[EVP_MAX_MD_SIZE];
3035 HMAC_CTX hctx;
3036 EVP_CIPHER_CTX ctx;
3037 SSL_CTX *tctx = s->initial_ctx;
3038 /* Need at least keyname + iv + some encrypted data */
3039 if (eticklen < 48)
3040 return 2;
3041 /* Initialize session ticket encryption and HMAC contexts */
3042 HMAC_CTX_init(&hctx);
3043 EVP_CIPHER_CTX_init(&ctx);
3044 if (tctx->tlsext_ticket_key_cb) {
3045 unsigned char *nctick = (unsigned char *)etick;
3046 int rv = tctx->tlsext_ticket_key_cb(s, nctick, nctick + 16,
3047 &ctx, &hctx, 0);
3048 if (rv < 0)
3049 return -1;
3050 if (rv == 0)
3051 return 2;
3052 if (rv == 2)
3053 renew_ticket = 1;
3054 } else {
3055 /* Check key name matches */
3056 if (memcmp(etick, tctx->tlsext_tick_key_name, 16))
3057 return 2;
3058 HMAC_Init_ex(&hctx, tctx->tlsext_tick_hmac_key, 16,
3059 EVP_sha256(), NULL);
3060 EVP_DecryptInit_ex(&ctx, EVP_aes_128_cbc(), NULL,
3061 tctx->tlsext_tick_aes_key, etick + 16);
3062 }
3063 /*
3064 * Attempt to process session ticket, first conduct sanity and integrity
3065 * checks on ticket.
3066 */
3067 mlen = HMAC_size(&hctx);
3068 if (mlen < 0) {
3069 EVP_CIPHER_CTX_cleanup(&ctx);
3070 return -1;
3071 }
3072 eticklen -= mlen;
3073 /* Check HMAC of encrypted ticket */
3074 HMAC_Update(&hctx, etick, eticklen);
3075 HMAC_Final(&hctx, tick_hmac, NULL);
3076 HMAC_CTX_cleanup(&hctx);
3077 if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) {
3078 EVP_CIPHER_CTX_cleanup(&ctx);
3079 return 2;
3080 }
3081 /* Attempt to decrypt session data */
3082 /* Move p after IV to start of encrypted ticket, update length */
3083 p = etick + 16 + EVP_CIPHER_CTX_iv_length(&ctx);
3084 eticklen -= 16 + EVP_CIPHER_CTX_iv_length(&ctx);
3085 sdec = OPENSSL_malloc(eticklen);
3086 if (!sdec) {
3087 EVP_CIPHER_CTX_cleanup(&ctx);
3088 return -1;
3089 }
3090 EVP_DecryptUpdate(&ctx, sdec, &slen, p, eticklen);
3091 if (EVP_DecryptFinal(&ctx, sdec + slen, &mlen) <= 0) {
3092 EVP_CIPHER_CTX_cleanup(&ctx);
3093 OPENSSL_free(sdec);
3094 return 2;
3095 }
3096 slen += mlen;
3097 EVP_CIPHER_CTX_cleanup(&ctx);
3098 p = sdec;
3099
3100 sess = d2i_SSL_SESSION(NULL, &p, slen);
3101 OPENSSL_free(sdec);
3102 if (sess) {
3103 /*
3104 * The session ID, if non-empty, is used by some clients to detect
3105 * that the ticket has been accepted. So we copy it to the session
3106 * structure. If it is empty set length to zero as required by
3107 * standard.
3108 */
3109 if (sesslen)
3110 memcpy(sess->session_id, sess_id, sesslen);
3111 sess->session_id_length = sesslen;
3112 *psess = sess;
3113 if (renew_ticket)
3114 return 4;
3115 else
3116 return 3;
3117 }
3118 ERR_clear_error();
3119 /*
3120 * For session parse failure, indicate that we need to send a new ticket.
3121 */
3122 return 2;
3123 }
3124
3125 /* Tables to translate from NIDs to TLS v1.2 ids */
3126
3127 typedef struct {
3128 int nid;
3129 int id;
3130 } tls12_lookup;
3131
3132 static const tls12_lookup tls12_md[] = {
3133 {NID_md5, TLSEXT_hash_md5},
3134 {NID_sha1, TLSEXT_hash_sha1},
3135 {NID_sha224, TLSEXT_hash_sha224},
3136 {NID_sha256, TLSEXT_hash_sha256},
3137 {NID_sha384, TLSEXT_hash_sha384},
3138 {NID_sha512, TLSEXT_hash_sha512}
3139 };
3140
3141 static const tls12_lookup tls12_sig[] = {
3142 {EVP_PKEY_RSA, TLSEXT_signature_rsa},
3143 {EVP_PKEY_DSA, TLSEXT_signature_dsa},
3144 {EVP_PKEY_EC, TLSEXT_signature_ecdsa}
3145 };
3146
3147 static int tls12_find_id(int nid, const tls12_lookup *table, size_t tlen)
3148 {
3149 size_t i;
3150 for (i = 0; i < tlen; i++) {
3151 if (table[i].nid == nid)
3152 return table[i].id;
3153 }
3154 return -1;
3155 }
3156
3157 static int tls12_find_nid(int id, const tls12_lookup *table, size_t tlen)
3158 {
3159 size_t i;
3160 for (i = 0; i < tlen; i++) {
3161 if ((table[i].id) == id)
3162 return table[i].nid;
3163 }
3164 return NID_undef;
3165 }
3166
3167 int tls12_get_sigandhash(unsigned char *p, const EVP_PKEY *pk,
3168 const EVP_MD *md)
3169 {
3170 int sig_id, md_id;
3171 if (!md)
3172 return 0;
3173 md_id = tls12_find_id(EVP_MD_type(md), tls12_md, OSSL_NELEM(tls12_md));
3174 if (md_id == -1)
3175 return 0;
3176 sig_id = tls12_get_sigid(pk);
3177 if (sig_id == -1)
3178 return 0;
3179 p[0] = (unsigned char)md_id;
3180 p[1] = (unsigned char)sig_id;
3181 return 1;
3182 }
3183
3184 int tls12_get_sigid(const EVP_PKEY *pk)
3185 {
3186 return tls12_find_id(pk->type, tls12_sig, OSSL_NELEM(tls12_sig));
3187 }
3188
3189 typedef struct {
3190 int nid;
3191 int secbits;
3192 const EVP_MD *(*mfunc) (void);
3193 } tls12_hash_info;
3194
3195 static const tls12_hash_info tls12_md_info[] = {
3196 # ifdef OPENSSL_NO_MD5
3197 {NID_md5, 64, 0},
3198 # else
3199 {NID_md5, 64, EVP_md5},
3200 # endif
3201 {NID_sha1, 80, EVP_sha1},
3202 {NID_sha224, 112, EVP_sha224},
3203 {NID_sha256, 128, EVP_sha256},
3204 {NID_sha384, 192, EVP_sha384},
3205 {NID_sha512, 256, EVP_sha512}
3206 };
3207
3208 static const tls12_hash_info *tls12_get_hash_info(unsigned char hash_alg)
3209 {
3210 if (hash_alg == 0)
3211 return NULL;
3212 if (hash_alg > OSSL_NELEM(tls12_md_info))
3213 return NULL;
3214 return tls12_md_info + hash_alg - 1;
3215 }
3216
3217 const EVP_MD *tls12_get_hash(unsigned char hash_alg)
3218 {
3219 const tls12_hash_info *inf;
3220 if (hash_alg == TLSEXT_hash_md5 && FIPS_mode())
3221 return NULL;
3222 inf = tls12_get_hash_info(hash_alg);
3223 if (!inf || !inf->mfunc)
3224 return NULL;
3225 return inf->mfunc();
3226 }
3227
3228 static int tls12_get_pkey_idx(unsigned char sig_alg)
3229 {
3230 switch (sig_alg) {
3231 # ifndef OPENSSL_NO_RSA
3232 case TLSEXT_signature_rsa:
3233 return SSL_PKEY_RSA_SIGN;
3234 # endif
3235 # ifndef OPENSSL_NO_DSA
3236 case TLSEXT_signature_dsa:
3237 return SSL_PKEY_DSA_SIGN;
3238 # endif
3239 # ifndef OPENSSL_NO_EC
3240 case TLSEXT_signature_ecdsa:
3241 return SSL_PKEY_ECC;
3242 # endif
3243 }
3244 return -1;
3245 }
3246
3247 /* Convert TLS 1.2 signature algorithm extension values into NIDs */
3248 static void tls1_lookup_sigalg(int *phash_nid, int *psign_nid,
3249 int *psignhash_nid, const unsigned char *data)
3250 {
3251 int sign_nid = 0, hash_nid = 0;
3252 if (!phash_nid && !psign_nid && !psignhash_nid)
3253 return;
3254 if (phash_nid || psignhash_nid) {
3255 hash_nid = tls12_find_nid(data[0], tls12_md, OSSL_NELEM(tls12_md));
3256 if (phash_nid)
3257 *phash_nid = hash_nid;
3258 }
3259 if (psign_nid || psignhash_nid) {
3260 sign_nid = tls12_find_nid(data[1], tls12_sig, OSSL_NELEM(tls12_sig));
3261 if (psign_nid)
3262 *psign_nid = sign_nid;
3263 }
3264 if (psignhash_nid) {
3265 if (sign_nid && hash_nid)
3266 OBJ_find_sigid_by_algs(psignhash_nid, hash_nid, sign_nid);
3267 else
3268 *psignhash_nid = NID_undef;
3269 }
3270 }
3271
3272 /* Check to see if a signature algorithm is allowed */
3273 static int tls12_sigalg_allowed(SSL *s, int op, const unsigned char *ptmp)
3274 {
3275 /* See if we have an entry in the hash table and it is enabled */
3276 const tls12_hash_info *hinf = tls12_get_hash_info(ptmp[0]);
3277 if (!hinf || !hinf->mfunc)
3278 return 0;
3279 /* See if public key algorithm allowed */
3280 if (tls12_get_pkey_idx(ptmp[1]) == -1)
3281 return 0;
3282 /* Finally see if security callback allows it */
3283 return ssl_security(s, op, hinf->secbits, hinf->nid, (void *)ptmp);
3284 }
3285
3286 /*
3287 * Get a mask of disabled public key algorithms based on supported signature
3288 * algorithms. For example if no signature algorithm supports RSA then RSA is
3289 * disabled.
3290 */
3291
3292 void ssl_set_sig_mask(unsigned long *pmask_a, SSL *s, int op)
3293 {
3294 const unsigned char *sigalgs;
3295 size_t i, sigalgslen;
3296 int have_rsa = 0, have_dsa = 0, have_ecdsa = 0;
3297 /*
3298 * Now go through all signature algorithms seeing if we support any for
3299 * RSA, DSA, ECDSA. Do this for all versions not just TLS 1.2. To keep
3300 * down calls to security callback only check if we have to.
3301 */
3302 sigalgslen = tls12_get_psigalgs(s, &sigalgs);
3303 for (i = 0; i < sigalgslen; i += 2, sigalgs += 2) {
3304 switch (sigalgs[1]) {
3305 # ifndef OPENSSL_NO_RSA
3306 case TLSEXT_signature_rsa:
3307 if (!have_rsa && tls12_sigalg_allowed(s, op, sigalgs))
3308 have_rsa = 1;
3309 break;
3310 # endif
3311 # ifndef OPENSSL_NO_DSA
3312 case TLSEXT_signature_dsa:
3313 if (!have_dsa && tls12_sigalg_allowed(s, op, sigalgs))
3314 have_dsa = 1;
3315 break;
3316 # endif
3317 # ifndef OPENSSL_NO_EC
3318 case TLSEXT_signature_ecdsa:
3319 if (!have_ecdsa && tls12_sigalg_allowed(s, op, sigalgs))
3320 have_ecdsa = 1;
3321 break;
3322 # endif
3323 }
3324 }
3325 if (!have_rsa)
3326 *pmask_a |= SSL_aRSA;
3327 if (!have_dsa)
3328 *pmask_a |= SSL_aDSS;
3329 if (!have_ecdsa)
3330 *pmask_a |= SSL_aECDSA;
3331 }
3332
3333 size_t tls12_copy_sigalgs(SSL *s, unsigned char *out,
3334 const unsigned char *psig, size_t psiglen)
3335 {
3336 unsigned char *tmpout = out;
3337 size_t i;
3338 for (i = 0; i < psiglen; i += 2, psig += 2) {
3339 if (tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, psig)) {
3340 *tmpout++ = psig[0];
3341 *tmpout++ = psig[1];
3342 }
3343 }
3344 return tmpout - out;
3345 }
3346
3347 /* Given preference and allowed sigalgs set shared sigalgs */
3348 static int tls12_shared_sigalgs(SSL *s, TLS_SIGALGS *shsig,
3349 const unsigned char *pref, size_t preflen,
3350 const unsigned char *allow, size_t allowlen)
3351 {
3352 const unsigned char *ptmp, *atmp;
3353 size_t i, j, nmatch = 0;
3354 for (i = 0, ptmp = pref; i < preflen; i += 2, ptmp += 2) {
3355 /* Skip disabled hashes or signature algorithms */
3356 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, ptmp))
3357 continue;
3358 for (j = 0, atmp = allow; j < allowlen; j += 2, atmp += 2) {
3359 if (ptmp[0] == atmp[0] && ptmp[1] == atmp[1]) {
3360 nmatch++;
3361 if (shsig) {
3362 shsig->rhash = ptmp[0];
3363 shsig->rsign = ptmp[1];
3364 tls1_lookup_sigalg(&shsig->hash_nid,
3365 &shsig->sign_nid,
3366 &shsig->signandhash_nid, ptmp);
3367 shsig++;
3368 }
3369 break;
3370 }
3371 }
3372 }
3373 return nmatch;
3374 }
3375
3376 /* Set shared signature algorithms for SSL structures */
3377 static int tls1_set_shared_sigalgs(SSL *s)
3378 {
3379 const unsigned char *pref, *allow, *conf;
3380 size_t preflen, allowlen, conflen;
3381 size_t nmatch;
3382 TLS_SIGALGS *salgs = NULL;
3383 CERT *c = s->cert;
3384 unsigned int is_suiteb = tls1_suiteb(s);
3385
3386 OPENSSL_free(c->shared_sigalgs);
3387 c->shared_sigalgs = NULL;
3388 c->shared_sigalgslen = 0;
3389 /* If client use client signature algorithms if not NULL */
3390 if (!s->server && c->client_sigalgs && !is_suiteb) {
3391 conf = c->client_sigalgs;
3392 conflen = c->client_sigalgslen;
3393 } else if (c->conf_sigalgs && !is_suiteb) {
3394 conf = c->conf_sigalgs;
3395 conflen = c->conf_sigalgslen;
3396 } else
3397 conflen = tls12_get_psigalgs(s, &conf);
3398 if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) {
3399 pref = conf;
3400 preflen = conflen;
3401 allow = c->peer_sigalgs;
3402 allowlen = c->peer_sigalgslen;
3403 } else {
3404 allow = conf;
3405 allowlen = conflen;
3406 pref = c->peer_sigalgs;
3407 preflen = c->peer_sigalgslen;
3408 }
3409 nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen);
3410 if (nmatch) {
3411 salgs = OPENSSL_malloc(nmatch * sizeof(TLS_SIGALGS));
3412 if (!salgs)
3413 return 0;
3414 nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen);
3415 } else {
3416 salgs = NULL;
3417 }
3418 c->shared_sigalgs = salgs;
3419 c->shared_sigalgslen = nmatch;
3420 return 1;
3421 }
3422
3423 /* Set preferred digest for each key type */
3424
3425 int tls1_save_sigalgs(SSL *s, const unsigned char *data, int dsize)
3426 {
3427 CERT *c = s->cert;
3428 /* Extension ignored for inappropriate versions */
3429 if (!SSL_USE_SIGALGS(s))
3430 return 1;
3431 /* Should never happen */
3432 if (!c)
3433 return 0;
3434
3435 OPENSSL_free(c->peer_sigalgs);
3436 c->peer_sigalgs = OPENSSL_malloc(dsize);
3437 if (!c->peer_sigalgs)
3438 return 0;
3439 c->peer_sigalgslen = dsize;
3440 memcpy(c->peer_sigalgs, data, dsize);
3441 return 1;
3442 }
3443
3444 int tls1_process_sigalgs(SSL *s)
3445 {
3446 int idx;
3447 size_t i;
3448 const EVP_MD *md;
3449 CERT *c = s->cert;
3450 TLS_SIGALGS *sigptr;
3451 if (!tls1_set_shared_sigalgs(s))
3452 return 0;
3453
3454 # ifdef OPENSSL_SSL_DEBUG_BROKEN_PROTOCOL
3455 if (s->cert->cert_flags & SSL_CERT_FLAG_BROKEN_PROTOCOL) {
3456 /*
3457 * Use first set signature preference to force message digest,
3458 * ignoring any peer preferences.
3459 */
3460 const unsigned char *sigs = NULL;
3461 if (s->server)
3462 sigs = c->conf_sigalgs;
3463 else
3464 sigs = c->client_sigalgs;
3465 if (sigs) {
3466 idx = tls12_get_pkey_idx(sigs[1]);
3467 md = tls12_get_hash(sigs[0]);
3468 c->pkeys[idx].digest = md;
3469 c->pkeys[idx].valid_flags = CERT_PKEY_EXPLICIT_SIGN;
3470 if (idx == SSL_PKEY_RSA_SIGN) {
3471 c->pkeys[SSL_PKEY_RSA_ENC].valid_flags =
3472 CERT_PKEY_EXPLICIT_SIGN;
3473 c->pkeys[SSL_PKEY_RSA_ENC].digest = md;
3474 }
3475 }
3476 }
3477 # endif
3478
3479 for (i = 0, sigptr = c->shared_sigalgs;
3480 i < c->shared_sigalgslen; i++, sigptr++) {
3481 idx = tls12_get_pkey_idx(sigptr->rsign);
3482 if (idx > 0 && c->pkeys[idx].digest == NULL) {
3483 md = tls12_get_hash(sigptr->rhash);
3484 c->pkeys[idx].digest = md;
3485 c->pkeys[idx].valid_flags = CERT_PKEY_EXPLICIT_SIGN;
3486 if (idx == SSL_PKEY_RSA_SIGN) {
3487 c->pkeys[SSL_PKEY_RSA_ENC].valid_flags =
3488 CERT_PKEY_EXPLICIT_SIGN;
3489 c->pkeys[SSL_PKEY_RSA_ENC].digest = md;
3490 }
3491 }
3492
3493 }
3494 /*
3495 * In strict mode leave unset digests as NULL to indicate we can't use
3496 * the certificate for signing.
3497 */
3498 if (!(s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) {
3499 /*
3500 * Set any remaining keys to default values. NOTE: if alg is not
3501 * supported it stays as NULL.
3502 */
3503 # ifndef OPENSSL_NO_DSA
3504 if (!c->pkeys[SSL_PKEY_DSA_SIGN].digest)
3505 c->pkeys[SSL_PKEY_DSA_SIGN].digest = EVP_sha1();
3506 # endif
3507 # ifndef OPENSSL_NO_RSA
3508 if (!c->pkeys[SSL_PKEY_RSA_SIGN].digest) {
3509 c->pkeys[SSL_PKEY_RSA_SIGN].digest = EVP_sha1();
3510 c->pkeys[SSL_PKEY_RSA_ENC].digest = EVP_sha1();
3511 }
3512 # endif
3513 # ifndef OPENSSL_NO_EC
3514 if (!c->pkeys[SSL_PKEY_ECC].digest)
3515 c->pkeys[SSL_PKEY_ECC].digest = EVP_sha1();
3516 # endif
3517 }
3518 return 1;
3519 }
3520
3521 int SSL_get_sigalgs(SSL *s, int idx,
3522 int *psign, int *phash, int *psignhash,
3523 unsigned char *rsig, unsigned char *rhash)
3524 {
3525 const unsigned char *psig = s->cert->peer_sigalgs;
3526 if (psig == NULL)
3527 return 0;
3528 if (idx >= 0) {
3529 idx <<= 1;
3530 if (idx >= (int)s->cert->peer_sigalgslen)
3531 return 0;
3532 psig += idx;
3533 if (rhash)
3534 *rhash = psig[0];
3535 if (rsig)
3536 *rsig = psig[1];
3537 tls1_lookup_sigalg(phash, psign, psignhash, psig);
3538 }
3539 return s->cert->peer_sigalgslen / 2;
3540 }
3541
3542 int SSL_get_shared_sigalgs(SSL *s, int idx,
3543 int *psign, int *phash, int *psignhash,
3544 unsigned char *rsig, unsigned char *rhash)
3545 {
3546 TLS_SIGALGS *shsigalgs = s->cert->shared_sigalgs;
3547 if (!shsigalgs || idx >= (int)s->cert->shared_sigalgslen)
3548 return 0;
3549 shsigalgs += idx;
3550 if (phash)
3551 *phash = shsigalgs->hash_nid;
3552 if (psign)
3553 *psign = shsigalgs->sign_nid;
3554 if (psignhash)
3555 *psignhash = shsigalgs->signandhash_nid;
3556 if (rsig)
3557 *rsig = shsigalgs->rsign;
3558 if (rhash)
3559 *rhash = shsigalgs->rhash;
3560 return s->cert->shared_sigalgslen;
3561 }
3562
3563 # ifndef OPENSSL_NO_HEARTBEATS
3564 int tls1_process_heartbeat(SSL *s, unsigned char *p, unsigned int length)
3565 {
3566 unsigned char *pl;
3567 unsigned short hbtype;
3568 unsigned int payload;
3569 unsigned int padding = 16; /* Use minimum padding */
3570
3571 if (s->msg_callback)
3572 s->msg_callback(0, s->version, TLS1_RT_HEARTBEAT,
3573 p, length,
3574 s, s->msg_callback_arg);
3575
3576 /* Read type and payload length first */
3577 if (1 + 2 + 16 > length)
3578 return 0; /* silently discard */
3579 hbtype = *p++;
3580 n2s(p, payload);
3581 if (1 + 2 + payload + 16 > length)
3582 return 0; /* silently discard per RFC 6520 sec. 4 */
3583 pl = p;
3584
3585 if (hbtype == TLS1_HB_REQUEST) {
3586 unsigned char *buffer, *bp;
3587 int r;
3588
3589 /*
3590 * Allocate memory for the response, size is 1 bytes message type,
3591 * plus 2 bytes payload length, plus payload, plus padding
3592 */
3593 buffer = OPENSSL_malloc(1 + 2 + payload + padding);
3594 if (buffer == NULL) {
3595 SSLerr(SSL_F_TLS1_PROCESS_HEARTBEAT, ERR_R_MALLOC_FAILURE);
3596 return -1;
3597 }
3598 bp = buffer;
3599
3600 /* Enter response type, length and copy payload */
3601 *bp++ = TLS1_HB_RESPONSE;
3602 s2n(payload, bp);
3603 memcpy(bp, pl, payload);
3604 bp += payload;
3605 /* Random padding */
3606 if (RAND_bytes(bp, padding) <= 0) {
3607 OPENSSL_free(buffer);
3608 return -1;
3609 }
3610
3611 r = ssl3_write_bytes(s, TLS1_RT_HEARTBEAT, buffer,
3612 3 + payload + padding);
3613
3614 if (r >= 0 && s->msg_callback)
3615 s->msg_callback(1, s->version, TLS1_RT_HEARTBEAT,
3616 buffer, 3 + payload + padding,
3617 s, s->msg_callback_arg);
3618
3619 OPENSSL_free(buffer);
3620
3621 if (r < 0)
3622 return r;
3623 } else if (hbtype == TLS1_HB_RESPONSE) {
3624 unsigned int seq;
3625
3626 /*
3627 * We only send sequence numbers (2 bytes unsigned int), and 16
3628 * random bytes, so we just try to read the sequence number
3629 */
3630 n2s(pl, seq);
3631
3632 if (payload == 18 && seq == s->tlsext_hb_seq) {
3633 s->tlsext_hb_seq++;
3634 s->tlsext_hb_pending = 0;
3635 }
3636 }
3637
3638 return 0;
3639 }
3640
3641 int tls1_heartbeat(SSL *s)
3642 {
3643 unsigned char *buf, *p;
3644 int ret = -1;
3645 unsigned int payload = 18; /* Sequence number + random bytes */
3646 unsigned int padding = 16; /* Use minimum padding */
3647
3648 /* Only send if peer supports and accepts HB requests... */
3649 if (!(s->tlsext_heartbeat & SSL_TLSEXT_HB_ENABLED) ||
3650 s->tlsext_heartbeat & SSL_TLSEXT_HB_DONT_SEND_REQUESTS) {
3651 SSLerr(SSL_F_TLS1_HEARTBEAT, SSL_R_TLS_HEARTBEAT_PEER_DOESNT_ACCEPT);
3652 return -1;
3653 }
3654
3655 /* ...and there is none in flight yet... */
3656 if (s->tlsext_hb_pending) {
3657 SSLerr(SSL_F_TLS1_HEARTBEAT, SSL_R_TLS_HEARTBEAT_PENDING);
3658 return -1;
3659 }
3660
3661 /* ...and no handshake in progress. */
3662 if (SSL_in_init(s) || s->in_handshake) {
3663 SSLerr(SSL_F_TLS1_HEARTBEAT, SSL_R_UNEXPECTED_MESSAGE);
3664 return -1;
3665 }
3666
3667 /*
3668 * Check if padding is too long, payload and padding must not exceed 2^14
3669 * - 3 = 16381 bytes in total.
3670 */
3671 OPENSSL_assert(payload + padding <= 16381);
3672
3673 /*-
3674 * Create HeartBeat message, we just use a sequence number
3675 * as payload to distuingish different messages and add
3676 * some random stuff.
3677 * - Message Type, 1 byte
3678 * - Payload Length, 2 bytes (unsigned int)
3679 * - Payload, the sequence number (2 bytes uint)
3680 * - Payload, random bytes (16 bytes uint)
3681 * - Padding
3682 */
3683 buf = OPENSSL_malloc(1 + 2 + payload + padding);
3684 if (buf == NULL) {
3685 SSLerr(SSL_F_TLS1_HEARTBEAT, ERR_R_MALLOC_FAILURE);
3686 return -1;
3687 }
3688 p = buf;
3689 /* Message Type */
3690 *p++ = TLS1_HB_REQUEST;
3691 /* Payload length (18 bytes here) */
3692 s2n(payload, p);
3693 /* Sequence number */
3694 s2n(s->tlsext_hb_seq, p);
3695 /* 16 random bytes */
3696 if (RAND_bytes(p, 16) <= 0) {
3697 SSLerr(SSL_F_TLS1_HEARTBEAT, ERR_R_INTERNAL_ERROR);
3698 goto err;
3699 }
3700 p += 16;
3701 /* Random padding */
3702 if (RAND_bytes(p, padding) <= 0) {
3703 SSLerr(SSL_F_TLS1_HEARTBEAT, ERR_R_INTERNAL_ERROR);
3704 goto err;
3705 }
3706
3707 ret = ssl3_write_bytes(s, TLS1_RT_HEARTBEAT, buf, 3 + payload + padding);
3708 if (ret >= 0) {
3709 if (s->msg_callback)
3710 s->msg_callback(1, s->version, TLS1_RT_HEARTBEAT,
3711 buf, 3 + payload + padding,
3712 s, s->msg_callback_arg);
3713
3714 s->tlsext_hb_pending = 1;
3715 }
3716
3717 err:
3718 OPENSSL_free(buf);
3719 return ret;
3720 }
3721 # endif
3722
3723 # define MAX_SIGALGLEN (TLSEXT_hash_num * TLSEXT_signature_num * 2)
3724
3725 typedef struct {
3726 size_t sigalgcnt;
3727 int sigalgs[MAX_SIGALGLEN];
3728 } sig_cb_st;
3729
3730 static int sig_cb(const char *elem, int len, void *arg)
3731 {
3732 sig_cb_st *sarg = arg;
3733 size_t i;
3734 char etmp[20], *p;
3735 int sig_alg, hash_alg;
3736 if (elem == NULL)
3737 return 0;
3738 if (sarg->sigalgcnt == MAX_SIGALGLEN)
3739 return 0;
3740 if (len > (int)(sizeof(etmp) - 1))
3741 return 0;
3742 memcpy(etmp, elem, len);
3743 etmp[len] = 0;
3744 p = strchr(etmp, '+');
3745 if (!p)
3746 return 0;
3747 *p = 0;
3748 p++;
3749 if (!*p)
3750 return 0;
3751
3752 if (!strcmp(etmp, "RSA"))
3753 sig_alg = EVP_PKEY_RSA;
3754 else if (!strcmp(etmp, "DSA"))
3755 sig_alg = EVP_PKEY_DSA;
3756 else if (!strcmp(etmp, "ECDSA"))
3757 sig_alg = EVP_PKEY_EC;
3758 else
3759 return 0;
3760
3761 hash_alg = OBJ_sn2nid(p);
3762 if (hash_alg == NID_undef)
3763 hash_alg = OBJ_ln2nid(p);
3764 if (hash_alg == NID_undef)
3765 return 0;
3766
3767 for (i = 0; i < sarg->sigalgcnt; i += 2) {
3768 if (sarg->sigalgs[i] == sig_alg && sarg->sigalgs[i + 1] == hash_alg)
3769 return 0;
3770 }
3771 sarg->sigalgs[sarg->sigalgcnt++] = hash_alg;
3772 sarg->sigalgs[sarg->sigalgcnt++] = sig_alg;
3773 return 1;
3774 }
3775
3776 /*
3777 * Set suppored signature algorithms based on a colon separated list of the
3778 * form sig+hash e.g. RSA+SHA512:DSA+SHA512
3779 */
3780 int tls1_set_sigalgs_list(CERT *c, const char *str, int client)
3781 {
3782 sig_cb_st sig;
3783 sig.sigalgcnt = 0;
3784 if (!CONF_parse_list(str, ':', 1, sig_cb, &sig))
3785 return 0;
3786 if (c == NULL)
3787 return 1;
3788 return tls1_set_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client);
3789 }
3790
3791 int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen,
3792 int client)
3793 {
3794 unsigned char *sigalgs, *sptr;
3795 int rhash, rsign;
3796 size_t i;
3797 if (salglen & 1)
3798 return 0;
3799 sigalgs = OPENSSL_malloc(salglen);
3800 if (sigalgs == NULL)
3801 return 0;
3802 for (i = 0, sptr = sigalgs; i < salglen; i += 2) {
3803 rhash = tls12_find_id(*psig_nids++, tls12_md, OSSL_NELEM(tls12_md));
3804 rsign = tls12_find_id(*psig_nids++, tls12_sig, OSSL_NELEM(tls12_sig));
3805
3806 if (rhash == -1 || rsign == -1)
3807 goto err;
3808 *sptr++ = rhash;
3809 *sptr++ = rsign;
3810 }
3811
3812 if (client) {
3813 OPENSSL_free(c->client_sigalgs);
3814 c->client_sigalgs = sigalgs;
3815 c->client_sigalgslen = salglen;
3816 } else {
3817 OPENSSL_free(c->conf_sigalgs);
3818 c->conf_sigalgs = sigalgs;
3819 c->conf_sigalgslen = salglen;
3820 }
3821
3822 return 1;
3823
3824 err:
3825 OPENSSL_free(sigalgs);
3826 return 0;
3827 }
3828
3829 static int tls1_check_sig_alg(CERT *c, X509 *x, int default_nid)
3830 {
3831 int sig_nid;
3832 size_t i;
3833 if (default_nid == -1)
3834 return 1;
3835 sig_nid = X509_get_signature_nid(x);
3836 if (default_nid)
3837 return sig_nid == default_nid ? 1 : 0;
3838 for (i = 0; i < c->shared_sigalgslen; i++)
3839 if (sig_nid == c->shared_sigalgs[i].signandhash_nid)
3840 return 1;
3841 return 0;
3842 }
3843
3844 /* Check to see if a certificate issuer name matches list of CA names */
3845 static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x)
3846 {
3847 X509_NAME *nm;
3848 int i;
3849 nm = X509_get_issuer_name(x);
3850 for (i = 0; i < sk_X509_NAME_num(names); i++) {
3851 if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i)))
3852 return 1;
3853 }
3854 return 0;
3855 }
3856
3857 /*
3858 * Check certificate chain is consistent with TLS extensions and is usable by
3859 * server. This servers two purposes: it allows users to check chains before
3860 * passing them to the server and it allows the server to check chains before
3861 * attempting to use them.
3862 */
3863
3864 /* Flags which need to be set for a certificate when stict mode not set */
3865
3866 # define CERT_PKEY_VALID_FLAGS \
3867 (CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM)
3868 /* Strict mode flags */
3869 # define CERT_PKEY_STRICT_FLAGS \
3870 (CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \
3871 | CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE)
3872
3873 int tls1_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain,
3874 int idx)
3875 {
3876 int i;
3877 int rv = 0;
3878 int check_flags = 0, strict_mode;
3879 CERT_PKEY *cpk = NULL;
3880 CERT *c = s->cert;
3881 unsigned int suiteb_flags = tls1_suiteb(s);
3882 /* idx == -1 means checking server chains */
3883 if (idx != -1) {
3884 /* idx == -2 means checking client certificate chains */
3885 if (idx == -2) {
3886 cpk = c->key;
3887 idx = cpk - c->pkeys;
3888 } else
3889 cpk = c->pkeys + idx;
3890 x = cpk->x509;
3891 pk = cpk->privatekey;
3892 chain = cpk->chain;
3893 strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT;
3894 /* If no cert or key, forget it */
3895 if (!x || !pk)
3896 goto end;
3897 # ifdef OPENSSL_SSL_DEBUG_BROKEN_PROTOCOL
3898 /* Allow any certificate to pass test */
3899 if (s->cert->cert_flags & SSL_CERT_FLAG_BROKEN_PROTOCOL) {
3900 rv = CERT_PKEY_STRICT_FLAGS | CERT_PKEY_EXPLICIT_SIGN |
3901 CERT_PKEY_VALID | CERT_PKEY_SIGN;
3902 cpk->valid_flags = rv;
3903 return rv;
3904 }
3905 # endif
3906 } else {
3907 if (!x || !pk)
3908 return 0;
3909 idx = ssl_cert_type(x, pk);
3910 if (idx == -1)
3911 return 0;
3912 cpk = c->pkeys + idx;
3913 if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)
3914 check_flags = CERT_PKEY_STRICT_FLAGS;
3915 else
3916 check_flags = CERT_PKEY_VALID_FLAGS;
3917 strict_mode = 1;
3918 }
3919
3920 if (suiteb_flags) {
3921 int ok;
3922 if (check_flags)
3923 check_flags |= CERT_PKEY_SUITEB;
3924 ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags);
3925 if (ok == X509_V_OK)
3926 rv |= CERT_PKEY_SUITEB;
3927 else if (!check_flags)
3928 goto end;
3929 }
3930
3931 /*
3932 * Check all signature algorithms are consistent with signature
3933 * algorithms extension if TLS 1.2 or later and strict mode.
3934 */
3935 if (TLS1_get_version(s) >= TLS1_2_VERSION && strict_mode) {
3936 int default_nid;
3937 unsigned char rsign = 0;
3938 if (c->peer_sigalgs)
3939 default_nid = 0;
3940 /* If no sigalgs extension use defaults from RFC5246 */
3941 else {
3942 switch (idx) {
3943 case SSL_PKEY_RSA_ENC:
3944 case SSL_PKEY_RSA_SIGN:
3945 case SSL_PKEY_DH_RSA:
3946 rsign = TLSEXT_signature_rsa;
3947 default_nid = NID_sha1WithRSAEncryption;
3948 break;
3949
3950 case SSL_PKEY_DSA_SIGN:
3951 case SSL_PKEY_DH_DSA:
3952 rsign = TLSEXT_signature_dsa;
3953 default_nid = NID_dsaWithSHA1;
3954 break;
3955
3956 case SSL_PKEY_ECC:
3957 rsign = TLSEXT_signature_ecdsa;
3958 default_nid = NID_ecdsa_with_SHA1;
3959 break;
3960
3961 default:
3962 default_nid = -1;
3963 break;
3964 }
3965 }
3966 /*
3967 * If peer sent no signature algorithms extension and we have set
3968 * preferred signature algorithms check we support sha1.
3969 */
3970 if (default_nid > 0 && c->conf_sigalgs) {
3971 size_t j;
3972 const unsigned char *p = c->conf_sigalgs;
3973 for (j = 0; j < c->conf_sigalgslen; j += 2, p += 2) {
3974 if (p[0] == TLSEXT_hash_sha1 && p[1] == rsign)
3975 break;
3976 }
3977 if (j == c->conf_sigalgslen) {
3978 if (check_flags)
3979 goto skip_sigs;
3980 else
3981 goto end;
3982 }
3983 }
3984 /* Check signature algorithm of each cert in chain */
3985 if (!tls1_check_sig_alg(c, x, default_nid)) {
3986 if (!check_flags)
3987 goto end;
3988 } else
3989 rv |= CERT_PKEY_EE_SIGNATURE;
3990 rv |= CERT_PKEY_CA_SIGNATURE;
3991 for (i = 0; i < sk_X509_num(chain); i++) {
3992 if (!tls1_check_sig_alg(c, sk_X509_value(chain, i), default_nid)) {
3993 if (check_flags) {
3994 rv &= ~CERT_PKEY_CA_SIGNATURE;
3995 break;
3996 } else
3997 goto end;
3998 }
3999 }
4000 }
4001 /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */
4002 else if (check_flags)
4003 rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE;
4004 skip_sigs:
4005 /* Check cert parameters are consistent */
4006 if (tls1_check_cert_param(s, x, check_flags ? 1 : 2))
4007 rv |= CERT_PKEY_EE_PARAM;
4008 else if (!check_flags)
4009 goto end;
4010 if (!s->server)
4011 rv |= CERT_PKEY_CA_PARAM;
4012 /* In strict mode check rest of chain too */
4013 else if (strict_mode) {
4014 rv |= CERT_PKEY_CA_PARAM;
4015 for (i = 0; i < sk_X509_num(chain); i++) {
4016 X509 *ca = sk_X509_value(chain, i);
4017 if (!tls1_check_cert_param(s, ca, 0)) {
4018 if (check_flags) {
4019 rv &= ~CERT_PKEY_CA_PARAM;
4020 break;
4021 } else
4022 goto end;
4023 }
4024 }
4025 }
4026 if (!s->server && strict_mode) {
4027 STACK_OF(X509_NAME) *ca_dn;
4028 int check_type = 0;
4029 switch (pk->type) {
4030 case EVP_PKEY_RSA:
4031 check_type = TLS_CT_RSA_SIGN;
4032 break;
4033 case EVP_PKEY_DSA:
4034 check_type = TLS_CT_DSS_SIGN;
4035 break;
4036 case EVP_PKEY_EC:
4037 check_type = TLS_CT_ECDSA_SIGN;
4038 break;
4039 case EVP_PKEY_DH:
4040 case EVP_PKEY_DHX:
4041 {
4042 int cert_type = X509_certificate_type(x, pk);
4043 if (cert_type & EVP_PKS_RSA)
4044 check_type = TLS_CT_RSA_FIXED_DH;
4045 if (cert_type & EVP_PKS_DSA)
4046 check_type = TLS_CT_DSS_FIXED_DH;
4047 }
4048 }
4049 if (check_type) {
4050 const unsigned char *ctypes;
4051 int ctypelen;
4052 if (c->ctypes) {
4053 ctypes = c->ctypes;
4054 ctypelen = (int)c->ctype_num;
4055 } else {
4056 ctypes = (unsigned char *)s->s3->tmp.ctype;
4057 ctypelen = s->s3->tmp.ctype_num;
4058 }
4059 for (i = 0; i < ctypelen; i++) {
4060 if (ctypes[i] == check_type) {
4061 rv |= CERT_PKEY_CERT_TYPE;
4062 break;
4063 }
4064 }
4065 if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags)
4066 goto end;
4067 } else
4068 rv |= CERT_PKEY_CERT_TYPE;
4069
4070 ca_dn = s->s3->tmp.ca_names;
4071
4072 if (!sk_X509_NAME_num(ca_dn))
4073 rv |= CERT_PKEY_ISSUER_NAME;
4074
4075 if (!(rv & CERT_PKEY_ISSUER_NAME)) {
4076 if (ssl_check_ca_name(ca_dn, x))
4077 rv |= CERT_PKEY_ISSUER_NAME;
4078 }
4079 if (!(rv & CERT_PKEY_ISSUER_NAME)) {
4080 for (i = 0; i < sk_X509_num(chain); i++) {
4081 X509 *xtmp = sk_X509_value(chain, i);
4082 if (ssl_check_ca_name(ca_dn, xtmp)) {
4083 rv |= CERT_PKEY_ISSUER_NAME;
4084 break;
4085 }
4086 }
4087 }
4088 if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME))
4089 goto end;
4090 } else
4091 rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE;
4092
4093 if (!check_flags || (rv & check_flags) == check_flags)
4094 rv |= CERT_PKEY_VALID;
4095
4096 end:
4097
4098 if (TLS1_get_version(s) >= TLS1_2_VERSION) {
4099 if (cpk->valid_flags & CERT_PKEY_EXPLICIT_SIGN)
4100 rv |= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
4101 else if (cpk->digest)
4102 rv |= CERT_PKEY_SIGN;
4103 } else
4104 rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN;
4105
4106 /*
4107 * When checking a CERT_PKEY structure all flags are irrelevant if the
4108 * chain is invalid.
4109 */
4110 if (!check_flags) {
4111 if (rv & CERT_PKEY_VALID)
4112 cpk->valid_flags = rv;
4113 else {
4114 /* Preserve explicit sign flag, clear rest */
4115 cpk->valid_flags &= CERT_PKEY_EXPLICIT_SIGN;
4116 return 0;
4117 }
4118 }
4119 return rv;
4120 }
4121
4122 /* Set validity of certificates in an SSL structure */
4123 void tls1_set_cert_validity(SSL *s)
4124 {
4125 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_ENC);
4126 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_SIGN);
4127 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN);
4128 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DH_RSA);
4129 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DH_DSA);
4130 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC);
4131 }
4132
4133 /* User level utiity function to check a chain is suitable */
4134 int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain)
4135 {
4136 return tls1_check_chain(s, x, pk, chain, -1);
4137 }
4138
4139 #endif
4140
4141 #ifndef OPENSSL_NO_DH
4142 DH *ssl_get_auto_dh(SSL *s)
4143 {
4144 int dh_secbits = 80;
4145 if (s->cert->dh_tmp_auto == 2)
4146 return DH_get_1024_160();
4147 if (s->s3->tmp.new_cipher->algorithm_auth & SSL_aNULL) {
4148 if (s->s3->tmp.new_cipher->strength_bits == 256)
4149 dh_secbits = 128;
4150 else
4151 dh_secbits = 80;
4152 } else {
4153 CERT_PKEY *cpk = ssl_get_server_send_pkey(s);
4154 dh_secbits = EVP_PKEY_security_bits(cpk->privatekey);
4155 }
4156
4157 if (dh_secbits >= 128) {
4158 DH *dhp = DH_new();
4159 if (!dhp)
4160 return NULL;
4161 dhp->g = BN_new();
4162 if (dhp->g)
4163 BN_set_word(dhp->g, 2);
4164 if (dh_secbits >= 192)
4165 dhp->p = get_rfc3526_prime_8192(NULL);
4166 else
4167 dhp->p = get_rfc3526_prime_3072(NULL);
4168 if (!dhp->p || !dhp->g) {
4169 DH_free(dhp);
4170 return NULL;
4171 }
4172 return dhp;
4173 }
4174 if (dh_secbits >= 112)
4175 return DH_get_2048_224();
4176 return DH_get_1024_160();
4177 }
4178 #endif
4179
4180 static int ssl_security_cert_key(SSL *s, SSL_CTX *ctx, X509 *x, int op)
4181 {
4182 int secbits;
4183 EVP_PKEY *pkey = X509_get_pubkey(x);
4184 if (pkey) {
4185 secbits = EVP_PKEY_security_bits(pkey);
4186 EVP_PKEY_free(pkey);
4187 } else
4188 secbits = -1;
4189 if (s)
4190 return ssl_security(s, op, secbits, 0, x);
4191 else
4192 return ssl_ctx_security(ctx, op, secbits, 0, x);
4193 }
4194
4195 static int ssl_security_cert_sig(SSL *s, SSL_CTX *ctx, X509 *x, int op)
4196 {
4197 /* Lookup signature algorithm digest */
4198 int secbits = -1, md_nid = NID_undef, sig_nid;
4199 sig_nid = X509_get_signature_nid(x);
4200 if (sig_nid && OBJ_find_sigid_algs(sig_nid, &md_nid, NULL)) {
4201 const EVP_MD *md;
4202 if (md_nid && (md = EVP_get_digestbynid(md_nid)))
4203 secbits = EVP_MD_size(md) * 4;
4204 }
4205 if (s)
4206 return ssl_security(s, op, secbits, md_nid, x);
4207 else
4208 return ssl_ctx_security(ctx, op, secbits, md_nid, x);
4209 }
4210
4211 int ssl_security_cert(SSL *s, SSL_CTX *ctx, X509 *x, int vfy, int is_ee)
4212 {
4213 if (vfy)
4214 vfy = SSL_SECOP_PEER;
4215 if (is_ee) {
4216 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy))
4217 return SSL_R_EE_KEY_TOO_SMALL;
4218 } else {
4219 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy))
4220 return SSL_R_CA_KEY_TOO_SMALL;
4221 }
4222 if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy))
4223 return SSL_R_CA_MD_TOO_WEAK;
4224 return 1;
4225 }
4226
4227 /*
4228 * Check security of a chain, if sk includes the end entity certificate then
4229 * x is NULL. If vfy is 1 then we are verifying a peer chain and not sending
4230 * one to the peer. Return values: 1 if ok otherwise error code to use
4231 */
4232
4233 int ssl_security_cert_chain(SSL *s, STACK_OF(X509) *sk, X509 *x, int vfy)
4234 {
4235 int rv, start_idx, i;
4236 if (x == NULL) {
4237 x = sk_X509_value(sk, 0);
4238 start_idx = 1;
4239 } else
4240 start_idx = 0;
4241
4242 rv = ssl_security_cert(s, NULL, x, vfy, 1);
4243 if (rv != 1)
4244 return rv;
4245
4246 for (i = start_idx; i < sk_X509_num(sk); i++) {
4247 x = sk_X509_value(sk, i);
4248 rv = ssl_security_cert(s, NULL, x, vfy, 0);
4249 if (rv != 1)
4250 return rv;
4251 }
4252 return 1;
4253 }