]> git.ipfire.org Git - thirdparty/openssl.git/blob - ssl/t1_lib.c
Add OPENSSL_NO_ECDH guards
[thirdparty/openssl.git] / ssl / t1_lib.c
1 /* ssl/t1_lib.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young's, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word 'cryptographic' can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58 /* ====================================================================
59 * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without
62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in
70 * the documentation and/or other materials provided with the
71 * distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 * software must display the following acknowledgment:
75 * "This product includes software developed by the OpenSSL Project
76 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 * endorse or promote products derived from this software without
80 * prior written permission. For written permission, please contact
81 * openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 * nor may "OpenSSL" appear in their names without prior written
85 * permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 * acknowledgment:
89 * "This product includes software developed by the OpenSSL Project
90 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ====================================================================
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com). This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */
111
112 #include <stdio.h>
113 #include <openssl/objects.h>
114 #include <openssl/evp.h>
115 #include <openssl/hmac.h>
116 #include <openssl/ocsp.h>
117 #include <openssl/rand.h>
118 #ifndef OPENSSL_NO_DH
119 #include <openssl/dh.h>
120 #include <openssl/bn.h>
121 #endif
122 #include "ssl_locl.h"
123
124 const char tls1_version_str[]="TLSv1" OPENSSL_VERSION_PTEXT;
125
126 #ifndef OPENSSL_NO_TLSEXT
127 static int tls_decrypt_ticket(SSL *s, const unsigned char *tick, int ticklen,
128 const unsigned char *sess_id, int sesslen,
129 SSL_SESSION **psess);
130 static int ssl_check_clienthello_tlsext_early(SSL *s);
131 int ssl_check_serverhello_tlsext(SSL *s);
132 #endif
133
134 SSL3_ENC_METHOD const TLSv1_enc_data={
135 tls1_enc,
136 tls1_mac,
137 tls1_setup_key_block,
138 tls1_generate_master_secret,
139 tls1_change_cipher_state,
140 tls1_final_finish_mac,
141 TLS1_FINISH_MAC_LENGTH,
142 tls1_cert_verify_mac,
143 TLS_MD_CLIENT_FINISH_CONST,TLS_MD_CLIENT_FINISH_CONST_SIZE,
144 TLS_MD_SERVER_FINISH_CONST,TLS_MD_SERVER_FINISH_CONST_SIZE,
145 tls1_alert_code,
146 tls1_export_keying_material,
147 0,
148 SSL3_HM_HEADER_LENGTH,
149 ssl3_set_handshake_header,
150 ssl3_handshake_write
151 };
152
153 SSL3_ENC_METHOD const TLSv1_1_enc_data={
154 tls1_enc,
155 tls1_mac,
156 tls1_setup_key_block,
157 tls1_generate_master_secret,
158 tls1_change_cipher_state,
159 tls1_final_finish_mac,
160 TLS1_FINISH_MAC_LENGTH,
161 tls1_cert_verify_mac,
162 TLS_MD_CLIENT_FINISH_CONST,TLS_MD_CLIENT_FINISH_CONST_SIZE,
163 TLS_MD_SERVER_FINISH_CONST,TLS_MD_SERVER_FINISH_CONST_SIZE,
164 tls1_alert_code,
165 tls1_export_keying_material,
166 SSL_ENC_FLAG_EXPLICIT_IV,
167 SSL3_HM_HEADER_LENGTH,
168 ssl3_set_handshake_header,
169 ssl3_handshake_write
170 };
171
172 SSL3_ENC_METHOD const TLSv1_2_enc_data={
173 tls1_enc,
174 tls1_mac,
175 tls1_setup_key_block,
176 tls1_generate_master_secret,
177 tls1_change_cipher_state,
178 tls1_final_finish_mac,
179 TLS1_FINISH_MAC_LENGTH,
180 tls1_cert_verify_mac,
181 TLS_MD_CLIENT_FINISH_CONST,TLS_MD_CLIENT_FINISH_CONST_SIZE,
182 TLS_MD_SERVER_FINISH_CONST,TLS_MD_SERVER_FINISH_CONST_SIZE,
183 tls1_alert_code,
184 tls1_export_keying_material,
185 SSL_ENC_FLAG_EXPLICIT_IV|SSL_ENC_FLAG_SIGALGS|SSL_ENC_FLAG_SHA256_PRF
186 |SSL_ENC_FLAG_TLS1_2_CIPHERS,
187 SSL3_HM_HEADER_LENGTH,
188 ssl3_set_handshake_header,
189 ssl3_handshake_write
190 };
191
192 long tls1_default_timeout(void)
193 {
194 /* 2 hours, the 24 hours mentioned in the TLSv1 spec
195 * is way too long for http, the cache would over fill */
196 return(60*60*2);
197 }
198
199 int tls1_new(SSL *s)
200 {
201 if (!ssl3_new(s)) return(0);
202 s->method->ssl_clear(s);
203 return(1);
204 }
205
206 void tls1_free(SSL *s)
207 {
208 #ifndef OPENSSL_NO_TLSEXT
209 if (s->tlsext_session_ticket)
210 {
211 OPENSSL_free(s->tlsext_session_ticket);
212 }
213 #endif /* OPENSSL_NO_TLSEXT */
214 ssl3_free(s);
215 }
216
217 void tls1_clear(SSL *s)
218 {
219 ssl3_clear(s);
220 s->version = s->method->version;
221 }
222
223 #ifndef OPENSSL_NO_EC
224
225 typedef struct
226 {
227 int nid; /* Curve NID */
228 int secbits; /* Bits of security (from SP800-57) */
229 unsigned int flags; /* Flags: currently just field type */
230 } tls_curve_info;
231
232 #define TLS_CURVE_CHAR2 0x1
233 #define TLS_CURVE_PRIME 0x0
234
235 static const tls_curve_info nid_list[] =
236 {
237 {NID_sect163k1, 80, TLS_CURVE_CHAR2},/* sect163k1 (1) */
238 {NID_sect163r1, 80, TLS_CURVE_CHAR2},/* sect163r1 (2) */
239 {NID_sect163r2, 80, TLS_CURVE_CHAR2},/* sect163r2 (3) */
240 {NID_sect193r1, 80, TLS_CURVE_CHAR2},/* sect193r1 (4) */
241 {NID_sect193r2, 80, TLS_CURVE_CHAR2},/* sect193r2 (5) */
242 {NID_sect233k1, 112, TLS_CURVE_CHAR2},/* sect233k1 (6) */
243 {NID_sect233r1, 112, TLS_CURVE_CHAR2},/* sect233r1 (7) */
244 {NID_sect239k1, 112, TLS_CURVE_CHAR2},/* sect239k1 (8) */
245 {NID_sect283k1, 128, TLS_CURVE_CHAR2},/* sect283k1 (9) */
246 {NID_sect283r1, 128, TLS_CURVE_CHAR2},/* sect283r1 (10) */
247 {NID_sect409k1, 192, TLS_CURVE_CHAR2},/* sect409k1 (11) */
248 {NID_sect409r1, 192, TLS_CURVE_CHAR2},/* sect409r1 (12) */
249 {NID_sect571k1, 256, TLS_CURVE_CHAR2},/* sect571k1 (13) */
250 {NID_sect571r1, 256, TLS_CURVE_CHAR2},/* sect571r1 (14) */
251 {NID_secp160k1, 80, TLS_CURVE_PRIME},/* secp160k1 (15) */
252 {NID_secp160r1, 80, TLS_CURVE_PRIME},/* secp160r1 (16) */
253 {NID_secp160r2, 80, TLS_CURVE_PRIME},/* secp160r2 (17) */
254 {NID_secp192k1, 80, TLS_CURVE_PRIME},/* secp192k1 (18) */
255 {NID_X9_62_prime192v1, 80, TLS_CURVE_PRIME},/* secp192r1 (19) */
256 {NID_secp224k1, 112, TLS_CURVE_PRIME},/* secp224k1 (20) */
257 {NID_secp224r1, 112, TLS_CURVE_PRIME},/* secp224r1 (21) */
258 {NID_secp256k1, 128, TLS_CURVE_PRIME},/* secp256k1 (22) */
259 {NID_X9_62_prime256v1, 128, TLS_CURVE_PRIME},/* secp256r1 (23) */
260 {NID_secp384r1, 192, TLS_CURVE_PRIME},/* secp384r1 (24) */
261 {NID_secp521r1, 256, TLS_CURVE_PRIME},/* secp521r1 (25) */
262 {NID_brainpoolP256r1, 128, TLS_CURVE_PRIME}, /* brainpoolP256r1 (26) */
263 {NID_brainpoolP384r1, 192, TLS_CURVE_PRIME}, /* brainpoolP384r1 (27) */
264 {NID_brainpoolP512r1, 256, TLS_CURVE_PRIME},/* brainpool512r1 (28) */
265 };
266
267
268 static const unsigned char ecformats_default[] =
269 {
270 TLSEXT_ECPOINTFORMAT_uncompressed,
271 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime,
272 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2
273 };
274
275 static const unsigned char eccurves_default[] =
276 {
277 0,14, /* sect571r1 (14) */
278 0,13, /* sect571k1 (13) */
279 0,25, /* secp521r1 (25) */
280 0,28, /* brainpool512r1 (28) */
281 0,11, /* sect409k1 (11) */
282 0,12, /* sect409r1 (12) */
283 0,27, /* brainpoolP384r1 (27) */
284 0,24, /* secp384r1 (24) */
285 0,9, /* sect283k1 (9) */
286 0,10, /* sect283r1 (10) */
287 0,26, /* brainpoolP256r1 (26) */
288 0,22, /* secp256k1 (22) */
289 0,23, /* secp256r1 (23) */
290 0,8, /* sect239k1 (8) */
291 0,6, /* sect233k1 (6) */
292 0,7, /* sect233r1 (7) */
293 0,20, /* secp224k1 (20) */
294 0,21, /* secp224r1 (21) */
295 0,4, /* sect193r1 (4) */
296 0,5, /* sect193r2 (5) */
297 0,18, /* secp192k1 (18) */
298 0,19, /* secp192r1 (19) */
299 0,1, /* sect163k1 (1) */
300 0,2, /* sect163r1 (2) */
301 0,3, /* sect163r2 (3) */
302 0,15, /* secp160k1 (15) */
303 0,16, /* secp160r1 (16) */
304 0,17, /* secp160r2 (17) */
305 };
306
307 static const unsigned char suiteb_curves[] =
308 {
309 0, TLSEXT_curve_P_256,
310 0, TLSEXT_curve_P_384
311 };
312
313 int tls1_ec_curve_id2nid(int curve_id)
314 {
315 /* ECC curves from RFC 4492 and RFC 7027 */
316 if ((curve_id < 1) || ((unsigned int)curve_id >
317 sizeof(nid_list)/sizeof(nid_list[0])))
318 return 0;
319 return nid_list[curve_id-1].nid;
320 }
321
322 int tls1_ec_nid2curve_id(int nid)
323 {
324 /* ECC curves from RFC 4492 and RFC 7027 */
325 switch (nid)
326 {
327 case NID_sect163k1: /* sect163k1 (1) */
328 return 1;
329 case NID_sect163r1: /* sect163r1 (2) */
330 return 2;
331 case NID_sect163r2: /* sect163r2 (3) */
332 return 3;
333 case NID_sect193r1: /* sect193r1 (4) */
334 return 4;
335 case NID_sect193r2: /* sect193r2 (5) */
336 return 5;
337 case NID_sect233k1: /* sect233k1 (6) */
338 return 6;
339 case NID_sect233r1: /* sect233r1 (7) */
340 return 7;
341 case NID_sect239k1: /* sect239k1 (8) */
342 return 8;
343 case NID_sect283k1: /* sect283k1 (9) */
344 return 9;
345 case NID_sect283r1: /* sect283r1 (10) */
346 return 10;
347 case NID_sect409k1: /* sect409k1 (11) */
348 return 11;
349 case NID_sect409r1: /* sect409r1 (12) */
350 return 12;
351 case NID_sect571k1: /* sect571k1 (13) */
352 return 13;
353 case NID_sect571r1: /* sect571r1 (14) */
354 return 14;
355 case NID_secp160k1: /* secp160k1 (15) */
356 return 15;
357 case NID_secp160r1: /* secp160r1 (16) */
358 return 16;
359 case NID_secp160r2: /* secp160r2 (17) */
360 return 17;
361 case NID_secp192k1: /* secp192k1 (18) */
362 return 18;
363 case NID_X9_62_prime192v1: /* secp192r1 (19) */
364 return 19;
365 case NID_secp224k1: /* secp224k1 (20) */
366 return 20;
367 case NID_secp224r1: /* secp224r1 (21) */
368 return 21;
369 case NID_secp256k1: /* secp256k1 (22) */
370 return 22;
371 case NID_X9_62_prime256v1: /* secp256r1 (23) */
372 return 23;
373 case NID_secp384r1: /* secp384r1 (24) */
374 return 24;
375 case NID_secp521r1: /* secp521r1 (25) */
376 return 25;
377 case NID_brainpoolP256r1: /* brainpoolP256r1 (26) */
378 return 26;
379 case NID_brainpoolP384r1: /* brainpoolP384r1 (27) */
380 return 27;
381 case NID_brainpoolP512r1: /* brainpool512r1 (28) */
382 return 28;
383 default:
384 return 0;
385 }
386 }
387 /*
388 * Get curves list, if "sess" is set return client curves otherwise
389 * preferred list.
390 * Sets |num_curves| to the number of curves in the list, i.e.,
391 * the length of |pcurves| is 2 * num_curves.
392 * Returns 1 on success and 0 if the client curves list has invalid format.
393 * The latter indicates an internal error: we should not be accepting such
394 * lists in the first place.
395 * TODO(emilia): we should really be storing the curves list in explicitly
396 * parsed form instead. (However, this would affect binary compatibility
397 * so cannot happen in the 1.0.x series.)
398 */
399 static int tls1_get_curvelist(SSL *s, int sess,
400 const unsigned char **pcurves,
401 size_t *num_curves)
402 {
403 size_t pcurveslen = 0;
404 if (sess)
405 {
406 *pcurves = s->session->tlsext_ellipticcurvelist;
407 pcurveslen = s->session->tlsext_ellipticcurvelist_length;
408 }
409 else
410 {
411 /* For Suite B mode only include P-256, P-384 */
412 switch (tls1_suiteb(s))
413 {
414 case SSL_CERT_FLAG_SUITEB_128_LOS:
415 *pcurves = suiteb_curves;
416 pcurveslen = sizeof(suiteb_curves);
417 break;
418
419 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
420 *pcurves = suiteb_curves;
421 pcurveslen = 2;
422 break;
423
424 case SSL_CERT_FLAG_SUITEB_192_LOS:
425 *pcurves = suiteb_curves + 2;
426 pcurveslen = 2;
427 break;
428 default:
429 *pcurves = s->tlsext_ellipticcurvelist;
430 pcurveslen = s->tlsext_ellipticcurvelist_length;
431 }
432 if (!*pcurves)
433 {
434 *pcurves = eccurves_default;
435 pcurveslen = sizeof(eccurves_default);
436 }
437 }
438
439 /* We do not allow odd length arrays to enter the system. */
440 if (pcurveslen & 1)
441 {
442 SSLerr(SSL_F_TLS1_GET_CURVELIST, ERR_R_INTERNAL_ERROR);
443 *num_curves = 0;
444 return 0;
445 }
446 else
447 {
448 *num_curves = pcurveslen / 2;
449 return 1;
450 }
451 }
452
453 /* See if curve is allowed by security callback */
454 static int tls_curve_allowed(SSL *s, const unsigned char *curve, int op)
455 {
456 const tls_curve_info *cinfo;
457 if (curve[0])
458 return 1;
459 if ((curve[1] < 1) || ((size_t)curve[1] >
460 sizeof(nid_list)/sizeof(nid_list[0])))
461 return 0;
462 cinfo = &nid_list[curve[1]-1];
463 #ifdef OPENSSL_NO_EC2M
464 if (cinfo->flags & TLS_CURVE_CHAR2)
465 return 0;
466 #endif
467 return ssl_security(s, op, cinfo->secbits, cinfo->nid, (void *)curve);
468 }
469
470 /* Check a curve is one of our preferences */
471 int tls1_check_curve(SSL *s, const unsigned char *p, size_t len)
472 {
473 const unsigned char *curves;
474 size_t num_curves, i;
475 unsigned int suiteb_flags = tls1_suiteb(s);
476 if (len != 3 || p[0] != NAMED_CURVE_TYPE)
477 return 0;
478 /* Check curve matches Suite B preferences */
479 if (suiteb_flags)
480 {
481 unsigned long cid = s->s3->tmp.new_cipher->id;
482 if (p[1])
483 return 0;
484 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
485 {
486 if (p[2] != TLSEXT_curve_P_256)
487 return 0;
488 }
489 else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
490 {
491 if (p[2] != TLSEXT_curve_P_384)
492 return 0;
493 }
494 else /* Should never happen */
495 return 0;
496 }
497 if (!tls1_get_curvelist(s, 0, &curves, &num_curves))
498 return 0;
499 for (i = 0; i < num_curves; i++, curves += 2)
500 {
501 if (p[1] == curves[0] && p[2] == curves[1])
502 return tls_curve_allowed(s, p + 1, SSL_SECOP_CURVE_CHECK);
503 }
504 return 0;
505 }
506
507 /*
508 * Return |nmatch|th shared curve or NID_undef if there is no match.
509 * For nmatch == -1, return number of matches
510 * For nmatch == -2, return the NID of the curve to use for
511 * an EC tmp key, or NID_undef if there is no match.
512 */
513 int tls1_shared_curve(SSL *s, int nmatch)
514 {
515 const unsigned char *pref, *supp;
516 size_t num_pref, num_supp, i, j;
517 int k;
518 /* Can't do anything on client side */
519 if (s->server == 0)
520 return -1;
521 if (nmatch == -2)
522 {
523 if (tls1_suiteb(s))
524 {
525 /* For Suite B ciphersuite determines curve: we
526 * already know these are acceptable due to previous
527 * checks.
528 */
529 unsigned long cid = s->s3->tmp.new_cipher->id;
530 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
531 return NID_X9_62_prime256v1; /* P-256 */
532 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
533 return NID_secp384r1; /* P-384 */
534 /* Should never happen */
535 return NID_undef;
536 }
537 /* If not Suite B just return first preference shared curve */
538 nmatch = 0;
539 }
540 /*
541 * Avoid truncation. tls1_get_curvelist takes an int
542 * but s->options is a long...
543 */
544 if (!tls1_get_curvelist(s, (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) != 0,
545 &supp, &num_supp))
546 /* In practice, NID_undef == 0 but let's be precise. */
547 return nmatch == -1 ? 0 : NID_undef;
548 if(!tls1_get_curvelist(s, !(s->options & SSL_OP_CIPHER_SERVER_PREFERENCE),
549 &pref, &num_pref))
550 return nmatch == -1 ? 0 : NID_undef;
551 k = 0;
552 for (i = 0; i < num_pref; i++, pref+=2)
553 {
554 const unsigned char *tsupp = supp;
555 for (j = 0; j < num_supp; j++, tsupp+=2)
556 {
557 if (pref[0] == tsupp[0] && pref[1] == tsupp[1])
558 {
559 if (!tls_curve_allowed(s, pref, SSL_SECOP_CURVE_SHARED))
560 continue;
561 if (nmatch == k)
562 {
563 int id = (pref[0] << 8) | pref[1];
564 return tls1_ec_curve_id2nid(id);
565 }
566 k++;
567 }
568 }
569 }
570 if (nmatch == -1)
571 return k;
572 /* Out of range (nmatch > k). */
573 return NID_undef;
574 }
575
576 int tls1_set_curves(unsigned char **pext, size_t *pextlen,
577 int *curves, size_t ncurves)
578 {
579 unsigned char *clist, *p;
580 size_t i;
581 /* Bitmap of curves included to detect duplicates: only works
582 * while curve ids < 32
583 */
584 unsigned long dup_list = 0;
585 clist = OPENSSL_malloc(ncurves * 2);
586 if (!clist)
587 return 0;
588 for (i = 0, p = clist; i < ncurves; i++)
589 {
590 unsigned long idmask;
591 int id;
592 id = tls1_ec_nid2curve_id(curves[i]);
593 idmask = 1L << id;
594 if (!id || (dup_list & idmask))
595 {
596 OPENSSL_free(clist);
597 return 0;
598 }
599 dup_list |= idmask;
600 s2n(id, p);
601 }
602 if (*pext)
603 OPENSSL_free(*pext);
604 *pext = clist;
605 *pextlen = ncurves * 2;
606 return 1;
607 }
608
609 #define MAX_CURVELIST 28
610
611 typedef struct
612 {
613 size_t nidcnt;
614 int nid_arr[MAX_CURVELIST];
615 } nid_cb_st;
616
617 static int nid_cb(const char *elem, int len, void *arg)
618 {
619 nid_cb_st *narg = arg;
620 size_t i;
621 int nid;
622 char etmp[20];
623 if (narg->nidcnt == MAX_CURVELIST)
624 return 0;
625 if (len > (int)(sizeof(etmp) - 1))
626 return 0;
627 memcpy(etmp, elem, len);
628 etmp[len] = 0;
629 nid = EC_curve_nist2nid(etmp);
630 if (nid == NID_undef)
631 nid = OBJ_sn2nid(etmp);
632 if (nid == NID_undef)
633 nid = OBJ_ln2nid(etmp);
634 if (nid == NID_undef)
635 return 0;
636 for (i = 0; i < narg->nidcnt; i++)
637 if (narg->nid_arr[i] == nid)
638 return 0;
639 narg->nid_arr[narg->nidcnt++] = nid;
640 return 1;
641 }
642 /* Set curves based on a colon separate list */
643 int tls1_set_curves_list(unsigned char **pext, size_t *pextlen,
644 const char *str)
645 {
646 nid_cb_st ncb;
647 ncb.nidcnt = 0;
648 if (!CONF_parse_list(str, ':', 1, nid_cb, &ncb))
649 return 0;
650 if (pext == NULL)
651 return 1;
652 return tls1_set_curves(pext, pextlen, ncb.nid_arr, ncb.nidcnt);
653 }
654 /* For an EC key set TLS id and required compression based on parameters */
655 static int tls1_set_ec_id(unsigned char *curve_id, unsigned char *comp_id,
656 EC_KEY *ec)
657 {
658 int is_prime, id;
659 const EC_GROUP *grp;
660 const EC_METHOD *meth;
661 if (!ec)
662 return 0;
663 /* Determine if it is a prime field */
664 grp = EC_KEY_get0_group(ec);
665 if (!grp)
666 return 0;
667 meth = EC_GROUP_method_of(grp);
668 if (!meth)
669 return 0;
670 if (EC_METHOD_get_field_type(meth) == NID_X9_62_prime_field)
671 is_prime = 1;
672 else
673 is_prime = 0;
674 /* Determine curve ID */
675 id = EC_GROUP_get_curve_name(grp);
676 id = tls1_ec_nid2curve_id(id);
677 /* If we have an ID set it, otherwise set arbitrary explicit curve */
678 if (id)
679 {
680 curve_id[0] = 0;
681 curve_id[1] = (unsigned char)id;
682 }
683 else
684 {
685 curve_id[0] = 0xff;
686 if (is_prime)
687 curve_id[1] = 0x01;
688 else
689 curve_id[1] = 0x02;
690 }
691 if (comp_id)
692 {
693 if (EC_KEY_get0_public_key(ec) == NULL)
694 return 0;
695 if (EC_KEY_get_conv_form(ec) == POINT_CONVERSION_COMPRESSED)
696 {
697 if (is_prime)
698 *comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime;
699 else
700 *comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2;
701 }
702 else
703 *comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;
704 }
705 return 1;
706 }
707 /* Check an EC key is compatible with extensions */
708 static int tls1_check_ec_key(SSL *s,
709 unsigned char *curve_id, unsigned char *comp_id)
710 {
711 const unsigned char *pformats, *pcurves;
712 size_t num_formats, num_curves, i;
713 int j;
714 /* If point formats extension present check it, otherwise everything
715 * is supported (see RFC4492).
716 */
717 if (comp_id && s->session->tlsext_ecpointformatlist)
718 {
719 pformats = s->session->tlsext_ecpointformatlist;
720 num_formats = s->session->tlsext_ecpointformatlist_length;
721 for (i = 0; i < num_formats; i++, pformats++)
722 {
723 if (*comp_id == *pformats)
724 break;
725 }
726 if (i == num_formats)
727 return 0;
728 }
729 if (!curve_id)
730 return 1;
731 /* Check curve is consistent with client and server preferences */
732 for (j = 0; j <= 1; j++)
733 {
734 if (!tls1_get_curvelist(s, j, &pcurves, &num_curves))
735 return 0;
736 for (i = 0; i < num_curves; i++, pcurves += 2)
737 {
738 if (pcurves[0] == curve_id[0] &&
739 pcurves[1] == curve_id[1])
740 break;
741 }
742 if (i == num_curves)
743 return 0;
744 /* For clients can only check sent curve list */
745 if (!s->server)
746 break;
747 }
748 return 1;
749 }
750
751 static void tls1_get_formatlist(SSL *s, const unsigned char **pformats,
752 size_t *num_formats)
753 {
754 /* If we have a custom point format list use it otherwise
755 * use default */
756 if (s->tlsext_ecpointformatlist)
757 {
758 *pformats = s->tlsext_ecpointformatlist;
759 *num_formats = s->tlsext_ecpointformatlist_length;
760 }
761 else
762 {
763 *pformats = ecformats_default;
764 /* For Suite B we don't support char2 fields */
765 if (tls1_suiteb(s))
766 *num_formats = sizeof(ecformats_default) - 1;
767 else
768 *num_formats = sizeof(ecformats_default);
769 }
770 }
771
772 /* Check cert parameters compatible with extensions: currently just checks
773 * EC certificates have compatible curves and compression.
774 */
775 static int tls1_check_cert_param(SSL *s, X509 *x, int set_ee_md)
776 {
777 unsigned char comp_id, curve_id[2];
778 EVP_PKEY *pkey;
779 int rv;
780 pkey = X509_get_pubkey(x);
781 if (!pkey)
782 return 0;
783 /* If not EC nothing to do */
784 if (pkey->type != EVP_PKEY_EC)
785 {
786 EVP_PKEY_free(pkey);
787 return 1;
788 }
789 rv = tls1_set_ec_id(curve_id, &comp_id, pkey->pkey.ec);
790 EVP_PKEY_free(pkey);
791 if (!rv)
792 return 0;
793 /* Can't check curve_id for client certs as we don't have a
794 * supported curves extension.
795 */
796 rv = tls1_check_ec_key(s, s->server ? curve_id : NULL, &comp_id);
797 if (!rv)
798 return 0;
799 /* Special case for suite B. We *MUST* sign using SHA256+P-256 or
800 * SHA384+P-384, adjust digest if necessary.
801 */
802 if (set_ee_md && tls1_suiteb(s))
803 {
804 int check_md;
805 size_t i;
806 CERT *c = s->cert;
807 if (curve_id[0])
808 return 0;
809 /* Check to see we have necessary signing algorithm */
810 if (curve_id[1] == TLSEXT_curve_P_256)
811 check_md = NID_ecdsa_with_SHA256;
812 else if (curve_id[1] == TLSEXT_curve_P_384)
813 check_md = NID_ecdsa_with_SHA384;
814 else
815 return 0; /* Should never happen */
816 for (i = 0; i < c->shared_sigalgslen; i++)
817 if (check_md == c->shared_sigalgs[i].signandhash_nid)
818 break;
819 if (i == c->shared_sigalgslen)
820 return 0;
821 if (set_ee_md == 2)
822 {
823 if (check_md == NID_ecdsa_with_SHA256)
824 c->pkeys[SSL_PKEY_ECC].digest = EVP_sha256();
825 else
826 c->pkeys[SSL_PKEY_ECC].digest = EVP_sha384();
827 }
828 }
829 return rv;
830 }
831 #ifndef OPENSSL_NO_ECDH
832 /* Check EC temporary key is compatible with client extensions */
833 int tls1_check_ec_tmp_key(SSL *s, unsigned long cid)
834 {
835 unsigned char curve_id[2];
836 EC_KEY *ec = s->cert->ecdh_tmp;
837 #ifdef OPENSSL_SSL_DEBUG_BROKEN_PROTOCOL
838 /* Allow any curve: not just those peer supports */
839 if (s->cert->cert_flags & SSL_CERT_FLAG_BROKEN_PROTOCOL)
840 return 1;
841 #endif
842 /* If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384,
843 * no other curves permitted.
844 */
845 if (tls1_suiteb(s))
846 {
847 /* Curve to check determined by ciphersuite */
848 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
849 curve_id[1] = TLSEXT_curve_P_256;
850 else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
851 curve_id[1] = TLSEXT_curve_P_384;
852 else
853 return 0;
854 curve_id[0] = 0;
855 /* Check this curve is acceptable */
856 if (!tls1_check_ec_key(s, curve_id, NULL))
857 return 0;
858 /* If auto or setting curve from callback assume OK */
859 if (s->cert->ecdh_tmp_auto || s->cert->ecdh_tmp_cb)
860 return 1;
861 /* Otherwise check curve is acceptable */
862 else
863 {
864 unsigned char curve_tmp[2];
865 if (!ec)
866 return 0;
867 if (!tls1_set_ec_id(curve_tmp, NULL, ec))
868 return 0;
869 if (!curve_tmp[0] || curve_tmp[1] == curve_id[1])
870 return 1;
871 return 0;
872 }
873
874 }
875 if (s->cert->ecdh_tmp_auto)
876 {
877 /* Need a shared curve */
878 if (tls1_shared_curve(s, 0))
879 return 1;
880 else return 0;
881 }
882 if (!ec)
883 {
884 if (s->cert->ecdh_tmp_cb)
885 return 1;
886 else
887 return 0;
888 }
889 if (!tls1_set_ec_id(curve_id, NULL, ec))
890 return 0;
891 /* Set this to allow use of invalid curves for testing */
892 #if 0
893 return 1;
894 #else
895 return tls1_check_ec_key(s, curve_id, NULL);
896 #endif
897 }
898 #endif /* OPENSSL_NO_ECDH */
899
900 #else
901
902 static int tls1_check_cert_param(SSL *s, X509 *x, int set_ee_md)
903 {
904 return 1;
905 }
906
907 #endif /* OPENSSL_NO_EC */
908
909 #ifndef OPENSSL_NO_TLSEXT
910
911 /* List of supported signature algorithms and hashes. Should make this
912 * customisable at some point, for now include everything we support.
913 */
914
915 #ifdef OPENSSL_NO_RSA
916 #define tlsext_sigalg_rsa(md) /* */
917 #else
918 #define tlsext_sigalg_rsa(md) md, TLSEXT_signature_rsa,
919 #endif
920
921 #ifdef OPENSSL_NO_DSA
922 #define tlsext_sigalg_dsa(md) /* */
923 #else
924 #define tlsext_sigalg_dsa(md) md, TLSEXT_signature_dsa,
925 #endif
926
927 #ifdef OPENSSL_NO_ECDSA
928 #define tlsext_sigalg_ecdsa(md) /* */
929 #else
930 #define tlsext_sigalg_ecdsa(md) md, TLSEXT_signature_ecdsa,
931 #endif
932
933 #define tlsext_sigalg(md) \
934 tlsext_sigalg_rsa(md) \
935 tlsext_sigalg_dsa(md) \
936 tlsext_sigalg_ecdsa(md)
937
938 static unsigned char tls12_sigalgs[] = {
939 #ifndef OPENSSL_NO_SHA512
940 tlsext_sigalg(TLSEXT_hash_sha512)
941 tlsext_sigalg(TLSEXT_hash_sha384)
942 #endif
943 #ifndef OPENSSL_NO_SHA256
944 tlsext_sigalg(TLSEXT_hash_sha256)
945 tlsext_sigalg(TLSEXT_hash_sha224)
946 #endif
947 #ifndef OPENSSL_NO_SHA
948 tlsext_sigalg(TLSEXT_hash_sha1)
949 #endif
950 };
951 #ifndef OPENSSL_NO_ECDSA
952 static unsigned char suiteb_sigalgs[] = {
953 tlsext_sigalg_ecdsa(TLSEXT_hash_sha256)
954 tlsext_sigalg_ecdsa(TLSEXT_hash_sha384)
955 };
956 #endif
957 size_t tls12_get_psigalgs(SSL *s, const unsigned char **psigs)
958 {
959 /* If Suite B mode use Suite B sigalgs only, ignore any other
960 * preferences.
961 */
962 #ifndef OPENSSL_NO_EC
963 switch (tls1_suiteb(s))
964 {
965 case SSL_CERT_FLAG_SUITEB_128_LOS:
966 *psigs = suiteb_sigalgs;
967 return sizeof(suiteb_sigalgs);
968
969 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
970 *psigs = suiteb_sigalgs;
971 return 2;
972
973 case SSL_CERT_FLAG_SUITEB_192_LOS:
974 *psigs = suiteb_sigalgs + 2;
975 return 2;
976 }
977 #endif
978 /* If server use client authentication sigalgs if not NULL */
979 if (s->server && s->cert->client_sigalgs)
980 {
981 *psigs = s->cert->client_sigalgs;
982 return s->cert->client_sigalgslen;
983 }
984 else if (s->cert->conf_sigalgs)
985 {
986 *psigs = s->cert->conf_sigalgs;
987 return s->cert->conf_sigalgslen;
988 }
989 else
990 {
991 *psigs = tls12_sigalgs;
992 return sizeof(tls12_sigalgs);
993 }
994 }
995 /* Check signature algorithm is consistent with sent supported signature
996 * algorithms and if so return relevant digest.
997 */
998 int tls12_check_peer_sigalg(const EVP_MD **pmd, SSL *s,
999 const unsigned char *sig, EVP_PKEY *pkey)
1000 {
1001 const unsigned char *sent_sigs;
1002 size_t sent_sigslen, i;
1003 int sigalg = tls12_get_sigid(pkey);
1004 /* Should never happen */
1005 if (sigalg == -1)
1006 return -1;
1007 /* Check key type is consistent with signature */
1008 if (sigalg != (int)sig[1])
1009 {
1010 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG,SSL_R_WRONG_SIGNATURE_TYPE);
1011 return 0;
1012 }
1013 #ifndef OPENSSL_NO_EC
1014 if (pkey->type == EVP_PKEY_EC)
1015 {
1016 unsigned char curve_id[2], comp_id;
1017 /* Check compression and curve matches extensions */
1018 if (!tls1_set_ec_id(curve_id, &comp_id, pkey->pkey.ec))
1019 return 0;
1020 if (!s->server && !tls1_check_ec_key(s, curve_id, &comp_id))
1021 {
1022 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG,SSL_R_WRONG_CURVE);
1023 return 0;
1024 }
1025 /* If Suite B only P-384+SHA384 or P-256+SHA-256 allowed */
1026 if (tls1_suiteb(s))
1027 {
1028 if (curve_id[0])
1029 return 0;
1030 if (curve_id[1] == TLSEXT_curve_P_256)
1031 {
1032 if (sig[0] != TLSEXT_hash_sha256)
1033 {
1034 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG,
1035 SSL_R_ILLEGAL_SUITEB_DIGEST);
1036 return 0;
1037 }
1038 }
1039 else if (curve_id[1] == TLSEXT_curve_P_384)
1040 {
1041 if (sig[0] != TLSEXT_hash_sha384)
1042 {
1043 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG,
1044 SSL_R_ILLEGAL_SUITEB_DIGEST);
1045 return 0;
1046 }
1047 }
1048 else
1049 return 0;
1050 }
1051 }
1052 else if (tls1_suiteb(s))
1053 return 0;
1054 #endif
1055
1056 /* Check signature matches a type we sent */
1057 sent_sigslen = tls12_get_psigalgs(s, &sent_sigs);
1058 for (i = 0; i < sent_sigslen; i+=2, sent_sigs+=2)
1059 {
1060 if (sig[0] == sent_sigs[0] && sig[1] == sent_sigs[1])
1061 break;
1062 }
1063 /* Allow fallback to SHA1 if not strict mode */
1064 if (i == sent_sigslen && (sig[0] != TLSEXT_hash_sha1 || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT))
1065 {
1066 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG,SSL_R_WRONG_SIGNATURE_TYPE);
1067 return 0;
1068 }
1069 *pmd = tls12_get_hash(sig[0]);
1070 if (*pmd == NULL)
1071 {
1072 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG,SSL_R_UNKNOWN_DIGEST);
1073 return 0;
1074 }
1075 /* Make sure security callback allows algorithm */
1076 if (!ssl_security(s, SSL_SECOP_SIGALG_CHECK,
1077 EVP_MD_size(*pmd) * 4, EVP_MD_type(*pmd),
1078 (void *)sig))
1079 {
1080 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG,SSL_R_WRONG_SIGNATURE_TYPE);
1081 return 0;
1082 }
1083 /* Store the digest used so applications can retrieve it if they
1084 * wish.
1085 */
1086 if (s->session && s->session->sess_cert)
1087 s->session->sess_cert->peer_key->digest = *pmd;
1088 return 1;
1089 }
1090
1091 /* Get a mask of disabled algorithms: an algorithm is disabled
1092 * if it isn't supported or doesn't appear in supported signature
1093 * algorithms. Unlike ssl_cipher_get_disabled this applies to a specific
1094 * session and not global settings.
1095 *
1096 */
1097 void ssl_set_client_disabled(SSL *s)
1098 {
1099 CERT *c = s->cert;
1100 c->mask_a = 0;
1101 c->mask_k = 0;
1102 /* Don't allow TLS 1.2 only ciphers if we don't suppport them */
1103 if (!SSL_CLIENT_USE_TLS1_2_CIPHERS(s))
1104 c->mask_ssl = SSL_TLSV1_2;
1105 else
1106 c->mask_ssl = 0;
1107 ssl_set_sig_mask(&c->mask_a, s, SSL_SECOP_SIGALG_MASK);
1108 /* Disable static DH if we don't include any appropriate
1109 * signature algorithms.
1110 */
1111 if (c->mask_a & SSL_aRSA)
1112 c->mask_k |= SSL_kDHr|SSL_kECDHr;
1113 if (c->mask_a & SSL_aDSS)
1114 c->mask_k |= SSL_kDHd;
1115 if (c->mask_a & SSL_aECDSA)
1116 c->mask_k |= SSL_kECDHe;
1117 #ifndef OPENSSL_NO_KRB5
1118 if (!kssl_tgt_is_available(s->kssl_ctx))
1119 {
1120 c->mask_a |= SSL_aKRB5;
1121 c->mask_k |= SSL_kKRB5;
1122 }
1123 #endif
1124 #ifndef OPENSSL_NO_PSK
1125 /* with PSK there must be client callback set */
1126 if (!s->psk_client_callback)
1127 {
1128 c->mask_a |= SSL_aPSK;
1129 c->mask_k |= SSL_kPSK;
1130 }
1131 #endif /* OPENSSL_NO_PSK */
1132 #ifndef OPENSSL_NO_SRP
1133 if (!(s->srp_ctx.srp_Mask & SSL_kSRP))
1134 {
1135 c->mask_a |= SSL_aSRP;
1136 c->mask_k |= SSL_kSRP;
1137 }
1138 #endif
1139 c->valid = 1;
1140 }
1141
1142 int ssl_cipher_disabled(SSL *s, const SSL_CIPHER *c, int op)
1143 {
1144 CERT *ct = s->cert;
1145 if (c->algorithm_ssl & ct->mask_ssl || c->algorithm_mkey & ct->mask_k || c->algorithm_auth & ct->mask_a)
1146 return 1;
1147 return !ssl_security(s, op, c->strength_bits, 0, (void *)c);
1148 }
1149
1150 static int tls_use_ticket(SSL *s)
1151 {
1152 if (s->options & SSL_OP_NO_TICKET)
1153 return 0;
1154 return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL);
1155 }
1156
1157 unsigned char *ssl_add_clienthello_tlsext(SSL *s, unsigned char *buf, unsigned char *limit, int *al)
1158 {
1159 int extdatalen=0;
1160 unsigned char *orig = buf;
1161 unsigned char *ret = buf;
1162 #ifndef OPENSSL_NO_EC
1163 /* See if we support any ECC ciphersuites */
1164 int using_ecc = 0;
1165 if (s->version >= TLS1_VERSION || SSL_IS_DTLS(s))
1166 {
1167 int i;
1168 unsigned long alg_k, alg_a;
1169 STACK_OF(SSL_CIPHER) *cipher_stack = SSL_get_ciphers(s);
1170
1171 for (i = 0; i < sk_SSL_CIPHER_num(cipher_stack); i++)
1172 {
1173 SSL_CIPHER *c = sk_SSL_CIPHER_value(cipher_stack, i);
1174
1175 alg_k = c->algorithm_mkey;
1176 alg_a = c->algorithm_auth;
1177 if ((alg_k & (SSL_kECDHE|SSL_kECDHr|SSL_kECDHe)
1178 || (alg_a & SSL_aECDSA)))
1179 {
1180 using_ecc = 1;
1181 break;
1182 }
1183 }
1184 }
1185 #endif
1186
1187 ret+=2;
1188
1189 if (ret>=limit) return NULL; /* this really never occurs, but ... */
1190
1191 /* Add RI if renegotiating */
1192 if (s->renegotiate)
1193 {
1194 int el;
1195
1196 if(!ssl_add_clienthello_renegotiate_ext(s, 0, &el, 0))
1197 {
1198 SSLerr(SSL_F_SSL_ADD_CLIENTHELLO_TLSEXT, ERR_R_INTERNAL_ERROR);
1199 return NULL;
1200 }
1201
1202 if((limit - ret - 4 - el) < 0) return NULL;
1203
1204 s2n(TLSEXT_TYPE_renegotiate,ret);
1205 s2n(el,ret);
1206
1207 if(!ssl_add_clienthello_renegotiate_ext(s, ret, &el, el))
1208 {
1209 SSLerr(SSL_F_SSL_ADD_CLIENTHELLO_TLSEXT, ERR_R_INTERNAL_ERROR);
1210 return NULL;
1211 }
1212
1213 ret += el;
1214 }
1215 /* Only add RI for SSLv3 */
1216 if (s->client_version == SSL3_VERSION)
1217 goto done;
1218
1219 if (s->tlsext_hostname != NULL)
1220 {
1221 /* Add TLS extension servername to the Client Hello message */
1222 unsigned long size_str;
1223 long lenmax;
1224
1225 /* check for enough space.
1226 4 for the servername type and entension length
1227 2 for servernamelist length
1228 1 for the hostname type
1229 2 for hostname length
1230 + hostname length
1231 */
1232
1233 if ((lenmax = limit - ret - 9) < 0
1234 || (size_str = strlen(s->tlsext_hostname)) > (unsigned long)lenmax)
1235 return NULL;
1236
1237 /* extension type and length */
1238 s2n(TLSEXT_TYPE_server_name,ret);
1239 s2n(size_str+5,ret);
1240
1241 /* length of servername list */
1242 s2n(size_str+3,ret);
1243
1244 /* hostname type, length and hostname */
1245 *(ret++) = (unsigned char) TLSEXT_NAMETYPE_host_name;
1246 s2n(size_str,ret);
1247 memcpy(ret, s->tlsext_hostname, size_str);
1248 ret+=size_str;
1249 }
1250
1251 #ifndef OPENSSL_NO_SRP
1252 /* Add SRP username if there is one */
1253 if (s->srp_ctx.login != NULL)
1254 { /* Add TLS extension SRP username to the Client Hello message */
1255
1256 int login_len = strlen(s->srp_ctx.login);
1257 if (login_len > 255 || login_len == 0)
1258 {
1259 SSLerr(SSL_F_SSL_ADD_CLIENTHELLO_TLSEXT, ERR_R_INTERNAL_ERROR);
1260 return NULL;
1261 }
1262
1263 /* check for enough space.
1264 4 for the srp type type and entension length
1265 1 for the srp user identity
1266 + srp user identity length
1267 */
1268 if ((limit - ret - 5 - login_len) < 0) return NULL;
1269
1270 /* fill in the extension */
1271 s2n(TLSEXT_TYPE_srp,ret);
1272 s2n(login_len+1,ret);
1273 (*ret++) = (unsigned char) login_len;
1274 memcpy(ret, s->srp_ctx.login, login_len);
1275 ret+=login_len;
1276 }
1277 #endif
1278
1279 #ifndef OPENSSL_NO_EC
1280 if (using_ecc)
1281 {
1282 /* Add TLS extension ECPointFormats to the ClientHello message */
1283 long lenmax;
1284 const unsigned char *pcurves, *pformats;
1285 size_t num_curves, num_formats, curves_list_len;
1286 size_t i;
1287 unsigned char *etmp;
1288
1289 tls1_get_formatlist(s, &pformats, &num_formats);
1290
1291 if ((lenmax = limit - ret - 5) < 0) return NULL;
1292 if (num_formats > (size_t)lenmax) return NULL;
1293 if (num_formats > 255)
1294 {
1295 SSLerr(SSL_F_SSL_ADD_CLIENTHELLO_TLSEXT, ERR_R_INTERNAL_ERROR);
1296 return NULL;
1297 }
1298
1299 s2n(TLSEXT_TYPE_ec_point_formats,ret);
1300 /* The point format list has 1-byte length. */
1301 s2n(num_formats + 1,ret);
1302 *(ret++) = (unsigned char)num_formats ;
1303 memcpy(ret, pformats, num_formats);
1304 ret+=num_formats;
1305
1306 /* Add TLS extension EllipticCurves to the ClientHello message */
1307 pcurves = s->tlsext_ellipticcurvelist;
1308 if (!tls1_get_curvelist(s, 0, &pcurves, &num_curves))
1309 return NULL;
1310
1311 if ((lenmax = limit - ret - 6) < 0) return NULL;
1312 if (num_curves > (size_t)lenmax / 2) return NULL;
1313 if (num_curves > 65532 / 2)
1314 {
1315 SSLerr(SSL_F_SSL_ADD_CLIENTHELLO_TLSEXT, ERR_R_INTERNAL_ERROR);
1316 return NULL;
1317 }
1318
1319
1320 s2n(TLSEXT_TYPE_elliptic_curves,ret);
1321 etmp = ret + 4;
1322 /* Copy curve ID if supported */
1323 for (i = 0; i < num_curves; i++, pcurves += 2)
1324 {
1325 if (tls_curve_allowed(s, pcurves, SSL_SECOP_CURVE_SUPPORTED))
1326 {
1327 *etmp++ = pcurves[0];
1328 *etmp++ = pcurves[1];
1329 }
1330 }
1331
1332 curves_list_len = etmp - ret - 4;
1333
1334 s2n(curves_list_len + 2, ret);
1335 s2n(curves_list_len, ret);
1336 ret += curves_list_len;
1337 }
1338 #endif /* OPENSSL_NO_EC */
1339
1340 if (tls_use_ticket(s))
1341 {
1342 int ticklen;
1343 if (!s->new_session && s->session && s->session->tlsext_tick)
1344 ticklen = s->session->tlsext_ticklen;
1345 else if (s->session && s->tlsext_session_ticket &&
1346 s->tlsext_session_ticket->data)
1347 {
1348 ticklen = s->tlsext_session_ticket->length;
1349 s->session->tlsext_tick = OPENSSL_malloc(ticklen);
1350 if (!s->session->tlsext_tick)
1351 return NULL;
1352 memcpy(s->session->tlsext_tick,
1353 s->tlsext_session_ticket->data,
1354 ticklen);
1355 s->session->tlsext_ticklen = ticklen;
1356 }
1357 else
1358 ticklen = 0;
1359 if (ticklen == 0 && s->tlsext_session_ticket &&
1360 s->tlsext_session_ticket->data == NULL)
1361 goto skip_ext;
1362 /* Check for enough room 2 for extension type, 2 for len
1363 * rest for ticket
1364 */
1365 if ((long)(limit - ret - 4 - ticklen) < 0) return NULL;
1366 s2n(TLSEXT_TYPE_session_ticket,ret);
1367 s2n(ticklen,ret);
1368 if (ticklen)
1369 {
1370 memcpy(ret, s->session->tlsext_tick, ticklen);
1371 ret += ticklen;
1372 }
1373 }
1374 skip_ext:
1375
1376 if (SSL_USE_SIGALGS(s))
1377 {
1378 size_t salglen;
1379 const unsigned char *salg;
1380 unsigned char *etmp;
1381 salglen = tls12_get_psigalgs(s, &salg);
1382 if ((size_t)(limit - ret) < salglen + 6)
1383 return NULL;
1384 s2n(TLSEXT_TYPE_signature_algorithms,ret);
1385 etmp = ret;
1386 /* Skip over lengths for now */
1387 ret += 4;
1388 salglen = tls12_copy_sigalgs(s, ret, salg, salglen);
1389 /* Fill in lengths */
1390 s2n(salglen + 2, etmp);
1391 s2n(salglen, etmp);
1392 ret += salglen;
1393 }
1394
1395 #ifdef TLSEXT_TYPE_opaque_prf_input
1396 if (s->s3->client_opaque_prf_input != NULL)
1397 {
1398 size_t col = s->s3->client_opaque_prf_input_len;
1399
1400 if ((long)(limit - ret - 6 - col) < 0)
1401 return NULL;
1402 if (col > 0xFFFD) /* can't happen */
1403 return NULL;
1404
1405 s2n(TLSEXT_TYPE_opaque_prf_input, ret);
1406 s2n(col + 2, ret);
1407 s2n(col, ret);
1408 memcpy(ret, s->s3->client_opaque_prf_input, col);
1409 ret += col;
1410 }
1411 #endif
1412
1413 if (s->tlsext_status_type == TLSEXT_STATUSTYPE_ocsp)
1414 {
1415 int i;
1416 long extlen, idlen, itmp;
1417 OCSP_RESPID *id;
1418
1419 idlen = 0;
1420 for (i = 0; i < sk_OCSP_RESPID_num(s->tlsext_ocsp_ids); i++)
1421 {
1422 id = sk_OCSP_RESPID_value(s->tlsext_ocsp_ids, i);
1423 itmp = i2d_OCSP_RESPID(id, NULL);
1424 if (itmp <= 0)
1425 return NULL;
1426 idlen += itmp + 2;
1427 }
1428
1429 if (s->tlsext_ocsp_exts)
1430 {
1431 extlen = i2d_X509_EXTENSIONS(s->tlsext_ocsp_exts, NULL);
1432 if (extlen < 0)
1433 return NULL;
1434 }
1435 else
1436 extlen = 0;
1437
1438 if ((long)(limit - ret - 7 - extlen - idlen) < 0) return NULL;
1439 s2n(TLSEXT_TYPE_status_request, ret);
1440 if (extlen + idlen > 0xFFF0)
1441 return NULL;
1442 s2n(extlen + idlen + 5, ret);
1443 *(ret++) = TLSEXT_STATUSTYPE_ocsp;
1444 s2n(idlen, ret);
1445 for (i = 0; i < sk_OCSP_RESPID_num(s->tlsext_ocsp_ids); i++)
1446 {
1447 /* save position of id len */
1448 unsigned char *q = ret;
1449 id = sk_OCSP_RESPID_value(s->tlsext_ocsp_ids, i);
1450 /* skip over id len */
1451 ret += 2;
1452 itmp = i2d_OCSP_RESPID(id, &ret);
1453 /* write id len */
1454 s2n(itmp, q);
1455 }
1456 s2n(extlen, ret);
1457 if (extlen > 0)
1458 i2d_X509_EXTENSIONS(s->tlsext_ocsp_exts, &ret);
1459 }
1460
1461 #ifndef OPENSSL_NO_HEARTBEATS
1462 /* Add Heartbeat extension */
1463 if ((limit - ret - 4 - 1) < 0)
1464 return NULL;
1465 s2n(TLSEXT_TYPE_heartbeat,ret);
1466 s2n(1,ret);
1467 /* Set mode:
1468 * 1: peer may send requests
1469 * 2: peer not allowed to send requests
1470 */
1471 if (s->tlsext_heartbeat & SSL_TLSEXT_HB_DONT_RECV_REQUESTS)
1472 *(ret++) = SSL_TLSEXT_HB_DONT_SEND_REQUESTS;
1473 else
1474 *(ret++) = SSL_TLSEXT_HB_ENABLED;
1475 #endif
1476
1477 #ifndef OPENSSL_NO_NEXTPROTONEG
1478 if (s->ctx->next_proto_select_cb && !s->s3->tmp.finish_md_len)
1479 {
1480 /* The client advertises an emtpy extension to indicate its
1481 * support for Next Protocol Negotiation */
1482 if (limit - ret - 4 < 0)
1483 return NULL;
1484 s2n(TLSEXT_TYPE_next_proto_neg,ret);
1485 s2n(0,ret);
1486 }
1487 #endif
1488
1489 if (s->alpn_client_proto_list && !s->s3->tmp.finish_md_len)
1490 {
1491 if ((size_t)(limit - ret) < 6 + s->alpn_client_proto_list_len)
1492 return NULL;
1493 s2n(TLSEXT_TYPE_application_layer_protocol_negotiation,ret);
1494 s2n(2 + s->alpn_client_proto_list_len,ret);
1495 s2n(s->alpn_client_proto_list_len,ret);
1496 memcpy(ret, s->alpn_client_proto_list,
1497 s->alpn_client_proto_list_len);
1498 ret += s->alpn_client_proto_list_len;
1499 }
1500
1501 if(SSL_IS_DTLS(s) && SSL_get_srtp_profiles(s))
1502 {
1503 int el;
1504
1505 ssl_add_clienthello_use_srtp_ext(s, 0, &el, 0);
1506
1507 if((limit - ret - 4 - el) < 0) return NULL;
1508
1509 s2n(TLSEXT_TYPE_use_srtp,ret);
1510 s2n(el,ret);
1511
1512 if(ssl_add_clienthello_use_srtp_ext(s, ret, &el, el))
1513 {
1514 SSLerr(SSL_F_SSL_ADD_CLIENTHELLO_TLSEXT, ERR_R_INTERNAL_ERROR);
1515 return NULL;
1516 }
1517 ret += el;
1518 }
1519 custom_ext_init(&s->cert->cli_ext);
1520 /* Add custom TLS Extensions to ClientHello */
1521 if (!custom_ext_add(s, 0, &ret, limit, al))
1522 return NULL;
1523 #ifdef TLSEXT_TYPE_encrypt_then_mac
1524 s2n(TLSEXT_TYPE_encrypt_then_mac,ret);
1525 s2n(0,ret);
1526 #endif
1527
1528 /* Add padding to workaround bugs in F5 terminators.
1529 * See https://tools.ietf.org/html/draft-agl-tls-padding-03
1530 *
1531 * NB: because this code works out the length of all existing
1532 * extensions it MUST always appear last.
1533 */
1534 if (s->options & SSL_OP_TLSEXT_PADDING)
1535 {
1536 int hlen = ret - (unsigned char *)s->init_buf->data;
1537 /* The code in s23_clnt.c to build ClientHello messages
1538 * includes the 5-byte record header in the buffer, while
1539 * the code in s3_clnt.c does not.
1540 */
1541 if (s->state == SSL23_ST_CW_CLNT_HELLO_A)
1542 hlen -= 5;
1543 if (hlen > 0xff && hlen < 0x200)
1544 {
1545 hlen = 0x200 - hlen;
1546 if (hlen >= 4)
1547 hlen -= 4;
1548 else
1549 hlen = 0;
1550
1551 s2n(TLSEXT_TYPE_padding, ret);
1552 s2n(hlen, ret);
1553 memset(ret, 0, hlen);
1554 ret += hlen;
1555 }
1556 }
1557
1558 done:
1559
1560 if ((extdatalen = ret-orig-2)== 0)
1561 return orig;
1562
1563 s2n(extdatalen, orig);
1564 return ret;
1565 }
1566
1567 unsigned char *ssl_add_serverhello_tlsext(SSL *s, unsigned char *buf, unsigned char *limit, int *al)
1568 {
1569 int extdatalen=0;
1570 unsigned char *orig = buf;
1571 unsigned char *ret = buf;
1572 #ifndef OPENSSL_NO_NEXTPROTONEG
1573 int next_proto_neg_seen;
1574 #endif
1575 #ifndef OPENSSL_NO_EC
1576 unsigned long alg_k = s->s3->tmp.new_cipher->algorithm_mkey;
1577 unsigned long alg_a = s->s3->tmp.new_cipher->algorithm_auth;
1578 int using_ecc = (alg_k & (SSL_kECDHE|SSL_kECDHr|SSL_kECDHe)) || (alg_a & SSL_aECDSA);
1579 using_ecc = using_ecc && (s->session->tlsext_ecpointformatlist != NULL);
1580 #endif
1581
1582 ret+=2;
1583 if (ret>=limit) return NULL; /* this really never occurs, but ... */
1584
1585 if(s->s3->send_connection_binding)
1586 {
1587 int el;
1588
1589 if(!ssl_add_serverhello_renegotiate_ext(s, 0, &el, 0))
1590 {
1591 SSLerr(SSL_F_SSL_ADD_SERVERHELLO_TLSEXT, ERR_R_INTERNAL_ERROR);
1592 return NULL;
1593 }
1594
1595 if((limit - ret - 4 - el) < 0) return NULL;
1596
1597 s2n(TLSEXT_TYPE_renegotiate,ret);
1598 s2n(el,ret);
1599
1600 if(!ssl_add_serverhello_renegotiate_ext(s, ret, &el, el))
1601 {
1602 SSLerr(SSL_F_SSL_ADD_SERVERHELLO_TLSEXT, ERR_R_INTERNAL_ERROR);
1603 return NULL;
1604 }
1605
1606 ret += el;
1607 }
1608
1609 /* Only add RI for SSLv3 */
1610 if (s->version == SSL3_VERSION)
1611 goto done;
1612
1613 if (!s->hit && s->servername_done == 1 && s->session->tlsext_hostname != NULL)
1614 {
1615 if ((long)(limit - ret - 4) < 0) return NULL;
1616
1617 s2n(TLSEXT_TYPE_server_name,ret);
1618 s2n(0,ret);
1619 }
1620
1621 #ifndef OPENSSL_NO_EC
1622 if (using_ecc)
1623 {
1624 const unsigned char *plist;
1625 size_t plistlen;
1626 /* Add TLS extension ECPointFormats to the ServerHello message */
1627 long lenmax;
1628
1629 tls1_get_formatlist(s, &plist, &plistlen);
1630
1631 if ((lenmax = limit - ret - 5) < 0) return NULL;
1632 if (plistlen > (size_t)lenmax) return NULL;
1633 if (plistlen > 255)
1634 {
1635 SSLerr(SSL_F_SSL_ADD_SERVERHELLO_TLSEXT, ERR_R_INTERNAL_ERROR);
1636 return NULL;
1637 }
1638
1639 s2n(TLSEXT_TYPE_ec_point_formats,ret);
1640 s2n(plistlen + 1,ret);
1641 *(ret++) = (unsigned char) plistlen;
1642 memcpy(ret, plist, plistlen);
1643 ret+=plistlen;
1644
1645 }
1646 /* Currently the server should not respond with a SupportedCurves extension */
1647 #endif /* OPENSSL_NO_EC */
1648
1649 if (s->tlsext_ticket_expected && tls_use_ticket(s))
1650 {
1651 if ((long)(limit - ret - 4) < 0) return NULL;
1652 s2n(TLSEXT_TYPE_session_ticket,ret);
1653 s2n(0,ret);
1654 }
1655
1656 if (s->tlsext_status_expected)
1657 {
1658 if ((long)(limit - ret - 4) < 0) return NULL;
1659 s2n(TLSEXT_TYPE_status_request,ret);
1660 s2n(0,ret);
1661 }
1662
1663 #ifdef TLSEXT_TYPE_opaque_prf_input
1664 if (s->s3->server_opaque_prf_input != NULL)
1665 {
1666 size_t sol = s->s3->server_opaque_prf_input_len;
1667
1668 if ((long)(limit - ret - 6 - sol) < 0)
1669 return NULL;
1670 if (sol > 0xFFFD) /* can't happen */
1671 return NULL;
1672
1673 s2n(TLSEXT_TYPE_opaque_prf_input, ret);
1674 s2n(sol + 2, ret);
1675 s2n(sol, ret);
1676 memcpy(ret, s->s3->server_opaque_prf_input, sol);
1677 ret += sol;
1678 }
1679 #endif
1680
1681 if(SSL_IS_DTLS(s) && s->srtp_profile)
1682 {
1683 int el;
1684
1685 ssl_add_serverhello_use_srtp_ext(s, 0, &el, 0);
1686
1687 if((limit - ret - 4 - el) < 0) return NULL;
1688
1689 s2n(TLSEXT_TYPE_use_srtp,ret);
1690 s2n(el,ret);
1691
1692 if(ssl_add_serverhello_use_srtp_ext(s, ret, &el, el))
1693 {
1694 SSLerr(SSL_F_SSL_ADD_SERVERHELLO_TLSEXT, ERR_R_INTERNAL_ERROR);
1695 return NULL;
1696 }
1697 ret+=el;
1698 }
1699
1700 if (((s->s3->tmp.new_cipher->id & 0xFFFF)==0x80 || (s->s3->tmp.new_cipher->id & 0xFFFF)==0x81)
1701 && (SSL_get_options(s) & SSL_OP_CRYPTOPRO_TLSEXT_BUG))
1702 { const unsigned char cryptopro_ext[36] = {
1703 0xfd, 0xe8, /*65000*/
1704 0x00, 0x20, /*32 bytes length*/
1705 0x30, 0x1e, 0x30, 0x08, 0x06, 0x06, 0x2a, 0x85,
1706 0x03, 0x02, 0x02, 0x09, 0x30, 0x08, 0x06, 0x06,
1707 0x2a, 0x85, 0x03, 0x02, 0x02, 0x16, 0x30, 0x08,
1708 0x06, 0x06, 0x2a, 0x85, 0x03, 0x02, 0x02, 0x17};
1709 if (limit-ret<36) return NULL;
1710 memcpy(ret,cryptopro_ext,36);
1711 ret+=36;
1712
1713 }
1714
1715 #ifndef OPENSSL_NO_HEARTBEATS
1716 /* Add Heartbeat extension if we've received one */
1717 if (s->tlsext_heartbeat & SSL_TLSEXT_HB_ENABLED)
1718 {
1719 if ((limit - ret - 4 - 1) < 0)
1720 return NULL;
1721 s2n(TLSEXT_TYPE_heartbeat,ret);
1722 s2n(1,ret);
1723 /* Set mode:
1724 * 1: peer may send requests
1725 * 2: peer not allowed to send requests
1726 */
1727 if (s->tlsext_heartbeat & SSL_TLSEXT_HB_DONT_RECV_REQUESTS)
1728 *(ret++) = SSL_TLSEXT_HB_DONT_SEND_REQUESTS;
1729 else
1730 *(ret++) = SSL_TLSEXT_HB_ENABLED;
1731
1732 }
1733 #endif
1734
1735 #ifndef OPENSSL_NO_NEXTPROTONEG
1736 next_proto_neg_seen = s->s3->next_proto_neg_seen;
1737 s->s3->next_proto_neg_seen = 0;
1738 if (next_proto_neg_seen && s->ctx->next_protos_advertised_cb)
1739 {
1740 const unsigned char *npa;
1741 unsigned int npalen;
1742 int r;
1743
1744 r = s->ctx->next_protos_advertised_cb(s, &npa, &npalen, s->ctx->next_protos_advertised_cb_arg);
1745 if (r == SSL_TLSEXT_ERR_OK)
1746 {
1747 if ((long)(limit - ret - 4 - npalen) < 0) return NULL;
1748 s2n(TLSEXT_TYPE_next_proto_neg,ret);
1749 s2n(npalen,ret);
1750 memcpy(ret, npa, npalen);
1751 ret += npalen;
1752 s->s3->next_proto_neg_seen = 1;
1753 }
1754 }
1755 #endif
1756 if (!custom_ext_add(s, 1, &ret, limit, al))
1757 return NULL;
1758 #ifdef TLSEXT_TYPE_encrypt_then_mac
1759 if (s->s3->flags & TLS1_FLAGS_ENCRYPT_THEN_MAC)
1760 {
1761 /* Don't use encrypt_then_mac if AEAD or RC4
1762 * might want to disable for other cases too.
1763 */
1764 if (s->s3->tmp.new_cipher->algorithm_mac == SSL_AEAD
1765 || s->s3->tmp.new_cipher->algorithm_enc == SSL_RC4)
1766 s->s3->flags &= ~TLS1_FLAGS_ENCRYPT_THEN_MAC;
1767 else
1768 {
1769 s2n(TLSEXT_TYPE_encrypt_then_mac,ret);
1770 s2n(0,ret);
1771 }
1772 }
1773 #endif
1774
1775 if (s->s3->alpn_selected)
1776 {
1777 const unsigned char *selected = s->s3->alpn_selected;
1778 unsigned len = s->s3->alpn_selected_len;
1779
1780 if ((long)(limit - ret - 4 - 2 - 1 - len) < 0)
1781 return NULL;
1782 s2n(TLSEXT_TYPE_application_layer_protocol_negotiation,ret);
1783 s2n(3 + len,ret);
1784 s2n(1 + len,ret);
1785 *ret++ = len;
1786 memcpy(ret, selected, len);
1787 ret += len;
1788 }
1789
1790 done:
1791
1792 if ((extdatalen = ret-orig-2)== 0)
1793 return orig;
1794
1795 s2n(extdatalen, orig);
1796 return ret;
1797 }
1798
1799 /* tls1_alpn_handle_client_hello is called to process the ALPN extension in a
1800 * ClientHello.
1801 * data: the contents of the extension, not including the type and length.
1802 * data_len: the number of bytes in |data|
1803 * al: a pointer to the alert value to send in the event of a non-zero
1804 * return.
1805 *
1806 * returns: 0 on success. */
1807 static int tls1_alpn_handle_client_hello(SSL *s, const unsigned char *data,
1808 unsigned data_len, int *al)
1809 {
1810 unsigned i;
1811 unsigned proto_len;
1812 const unsigned char *selected;
1813 unsigned char selected_len;
1814 int r;
1815
1816 if (s->ctx->alpn_select_cb == NULL)
1817 return 0;
1818
1819 if (data_len < 2)
1820 goto parse_error;
1821
1822 /* data should contain a uint16 length followed by a series of 8-bit,
1823 * length-prefixed strings. */
1824 i = ((unsigned) data[0]) << 8 |
1825 ((unsigned) data[1]);
1826 data_len -= 2;
1827 data += 2;
1828 if (data_len != i)
1829 goto parse_error;
1830
1831 if (data_len < 2)
1832 goto parse_error;
1833
1834 for (i = 0; i < data_len;)
1835 {
1836 proto_len = data[i];
1837 i++;
1838
1839 if (proto_len == 0)
1840 goto parse_error;
1841
1842 if (i + proto_len < i || i + proto_len > data_len)
1843 goto parse_error;
1844
1845 i += proto_len;
1846 }
1847
1848 r = s->ctx->alpn_select_cb(s, &selected, &selected_len, data, data_len,
1849 s->ctx->alpn_select_cb_arg);
1850 if (r == SSL_TLSEXT_ERR_OK) {
1851 if (s->s3->alpn_selected)
1852 OPENSSL_free(s->s3->alpn_selected);
1853 s->s3->alpn_selected = OPENSSL_malloc(selected_len);
1854 if (!s->s3->alpn_selected)
1855 {
1856 *al = SSL_AD_INTERNAL_ERROR;
1857 return -1;
1858 }
1859 memcpy(s->s3->alpn_selected, selected, selected_len);
1860 s->s3->alpn_selected_len = selected_len;
1861 }
1862 return 0;
1863
1864 parse_error:
1865 *al = SSL_AD_DECODE_ERROR;
1866 return -1;
1867 }
1868
1869 #ifndef OPENSSL_NO_EC
1870 /* ssl_check_for_safari attempts to fingerprint Safari using OS X
1871 * SecureTransport using the TLS extension block in |d|, of length |n|.
1872 * Safari, since 10.6, sends exactly these extensions, in this order:
1873 * SNI,
1874 * elliptic_curves
1875 * ec_point_formats
1876 *
1877 * We wish to fingerprint Safari because they broke ECDHE-ECDSA support in 10.8,
1878 * but they advertise support. So enabling ECDHE-ECDSA ciphers breaks them.
1879 * Sadly we cannot differentiate 10.6, 10.7 and 10.8.4 (which work), from
1880 * 10.8..10.8.3 (which don't work).
1881 */
1882 static void ssl_check_for_safari(SSL *s, const unsigned char *data, const unsigned char *d, int n) {
1883 unsigned short type, size;
1884 static const unsigned char kSafariExtensionsBlock[] = {
1885 0x00, 0x0a, /* elliptic_curves extension */
1886 0x00, 0x08, /* 8 bytes */
1887 0x00, 0x06, /* 6 bytes of curve ids */
1888 0x00, 0x17, /* P-256 */
1889 0x00, 0x18, /* P-384 */
1890 0x00, 0x19, /* P-521 */
1891
1892 0x00, 0x0b, /* ec_point_formats */
1893 0x00, 0x02, /* 2 bytes */
1894 0x01, /* 1 point format */
1895 0x00, /* uncompressed */
1896 };
1897
1898 /* The following is only present in TLS 1.2 */
1899 static const unsigned char kSafariTLS12ExtensionsBlock[] = {
1900 0x00, 0x0d, /* signature_algorithms */
1901 0x00, 0x0c, /* 12 bytes */
1902 0x00, 0x0a, /* 10 bytes */
1903 0x05, 0x01, /* SHA-384/RSA */
1904 0x04, 0x01, /* SHA-256/RSA */
1905 0x02, 0x01, /* SHA-1/RSA */
1906 0x04, 0x03, /* SHA-256/ECDSA */
1907 0x02, 0x03, /* SHA-1/ECDSA */
1908 };
1909
1910 if (data >= (d+n-2))
1911 return;
1912 data += 2;
1913
1914 if (data > (d+n-4))
1915 return;
1916 n2s(data,type);
1917 n2s(data,size);
1918
1919 if (type != TLSEXT_TYPE_server_name)
1920 return;
1921
1922 if (data+size > d+n)
1923 return;
1924 data += size;
1925
1926 if (TLS1_get_client_version(s) >= TLS1_2_VERSION)
1927 {
1928 const size_t len1 = sizeof(kSafariExtensionsBlock);
1929 const size_t len2 = sizeof(kSafariTLS12ExtensionsBlock);
1930
1931 if (data + len1 + len2 != d+n)
1932 return;
1933 if (memcmp(data, kSafariExtensionsBlock, len1) != 0)
1934 return;
1935 if (memcmp(data + len1, kSafariTLS12ExtensionsBlock, len2) != 0)
1936 return;
1937 }
1938 else
1939 {
1940 const size_t len = sizeof(kSafariExtensionsBlock);
1941
1942 if (data + len != d+n)
1943 return;
1944 if (memcmp(data, kSafariExtensionsBlock, len) != 0)
1945 return;
1946 }
1947
1948 s->s3->is_probably_safari = 1;
1949 }
1950 #endif /* !OPENSSL_NO_EC */
1951
1952
1953 static int ssl_scan_clienthello_tlsext(SSL *s, unsigned char **p, unsigned char *d, int n, int *al)
1954 {
1955 unsigned short type;
1956 unsigned short size;
1957 unsigned short len;
1958 unsigned char *data = *p;
1959 int renegotiate_seen = 0;
1960
1961 s->servername_done = 0;
1962 s->tlsext_status_type = -1;
1963 #ifndef OPENSSL_NO_NEXTPROTONEG
1964 s->s3->next_proto_neg_seen = 0;
1965 #endif
1966
1967 if (s->s3->alpn_selected)
1968 {
1969 OPENSSL_free(s->s3->alpn_selected);
1970 s->s3->alpn_selected = NULL;
1971 }
1972
1973 #ifndef OPENSSL_NO_HEARTBEATS
1974 s->tlsext_heartbeat &= ~(SSL_TLSEXT_HB_ENABLED |
1975 SSL_TLSEXT_HB_DONT_SEND_REQUESTS);
1976 #endif
1977
1978 #ifndef OPENSSL_NO_EC
1979 if (s->options & SSL_OP_SAFARI_ECDHE_ECDSA_BUG)
1980 ssl_check_for_safari(s, data, d, n);
1981 #endif /* !OPENSSL_NO_EC */
1982
1983 /* Clear any signature algorithms extension received */
1984 if (s->cert->peer_sigalgs)
1985 {
1986 OPENSSL_free(s->cert->peer_sigalgs);
1987 s->cert->peer_sigalgs = NULL;
1988 }
1989
1990 #ifdef TLSEXT_TYPE_encrypt_then_mac
1991 s->s3->flags &= ~TLS1_FLAGS_ENCRYPT_THEN_MAC;
1992 #endif
1993
1994 if (data >= (d+n-2))
1995 goto ri_check;
1996 n2s(data,len);
1997
1998 if (data > (d+n-len))
1999 goto ri_check;
2000
2001 while (data <= (d+n-4))
2002 {
2003 n2s(data,type);
2004 n2s(data,size);
2005
2006 if (data+size > (d+n))
2007 goto ri_check;
2008 #if 0
2009 fprintf(stderr,"Received extension type %d size %d\n",type,size);
2010 #endif
2011 if (s->tlsext_debug_cb)
2012 s->tlsext_debug_cb(s, 0, type, data, size,
2013 s->tlsext_debug_arg);
2014 if (type == TLSEXT_TYPE_renegotiate)
2015 {
2016 if(!ssl_parse_clienthello_renegotiate_ext(s, data, size, al))
2017 return 0;
2018 renegotiate_seen = 1;
2019 }
2020 else if (s->version == SSL3_VERSION)
2021 {}
2022 /* The servername extension is treated as follows:
2023
2024 - Only the hostname type is supported with a maximum length of 255.
2025 - The servername is rejected if too long or if it contains zeros,
2026 in which case an fatal alert is generated.
2027 - The servername field is maintained together with the session cache.
2028 - When a session is resumed, the servername call back invoked in order
2029 to allow the application to position itself to the right context.
2030 - The servername is acknowledged if it is new for a session or when
2031 it is identical to a previously used for the same session.
2032 Applications can control the behaviour. They can at any time
2033 set a 'desirable' servername for a new SSL object. This can be the
2034 case for example with HTTPS when a Host: header field is received and
2035 a renegotiation is requested. In this case, a possible servername
2036 presented in the new client hello is only acknowledged if it matches
2037 the value of the Host: field.
2038 - Applications must use SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION
2039 if they provide for changing an explicit servername context for the session,
2040 i.e. when the session has been established with a servername extension.
2041 - On session reconnect, the servername extension may be absent.
2042
2043 */
2044
2045 else if (type == TLSEXT_TYPE_server_name)
2046 {
2047 unsigned char *sdata;
2048 int servname_type;
2049 int dsize;
2050
2051 if (size < 2)
2052 {
2053 *al = SSL_AD_DECODE_ERROR;
2054 return 0;
2055 }
2056 n2s(data,dsize);
2057 size -= 2;
2058 if (dsize > size )
2059 {
2060 *al = SSL_AD_DECODE_ERROR;
2061 return 0;
2062 }
2063
2064 sdata = data;
2065 while (dsize > 3)
2066 {
2067 servname_type = *(sdata++);
2068 n2s(sdata,len);
2069 dsize -= 3;
2070
2071 if (len > dsize)
2072 {
2073 *al = SSL_AD_DECODE_ERROR;
2074 return 0;
2075 }
2076 if (s->servername_done == 0)
2077 switch (servname_type)
2078 {
2079 case TLSEXT_NAMETYPE_host_name:
2080 if (!s->hit)
2081 {
2082 if(s->session->tlsext_hostname)
2083 {
2084 *al = SSL_AD_DECODE_ERROR;
2085 return 0;
2086 }
2087 if (len > TLSEXT_MAXLEN_host_name)
2088 {
2089 *al = TLS1_AD_UNRECOGNIZED_NAME;
2090 return 0;
2091 }
2092 if ((s->session->tlsext_hostname = OPENSSL_malloc(len+1)) == NULL)
2093 {
2094 *al = TLS1_AD_INTERNAL_ERROR;
2095 return 0;
2096 }
2097 memcpy(s->session->tlsext_hostname, sdata, len);
2098 s->session->tlsext_hostname[len]='\0';
2099 if (strlen(s->session->tlsext_hostname) != len) {
2100 OPENSSL_free(s->session->tlsext_hostname);
2101 s->session->tlsext_hostname = NULL;
2102 *al = TLS1_AD_UNRECOGNIZED_NAME;
2103 return 0;
2104 }
2105 s->servername_done = 1;
2106
2107 }
2108 else
2109 s->servername_done = s->session->tlsext_hostname
2110 && strlen(s->session->tlsext_hostname) == len
2111 && strncmp(s->session->tlsext_hostname, (char *)sdata, len) == 0;
2112
2113 break;
2114
2115 default:
2116 break;
2117 }
2118
2119 dsize -= len;
2120 }
2121 if (dsize != 0)
2122 {
2123 *al = SSL_AD_DECODE_ERROR;
2124 return 0;
2125 }
2126
2127 }
2128 #ifndef OPENSSL_NO_SRP
2129 else if (type == TLSEXT_TYPE_srp)
2130 {
2131 if (size <= 0 || ((len = data[0])) != (size -1))
2132 {
2133 *al = SSL_AD_DECODE_ERROR;
2134 return 0;
2135 }
2136 if (s->srp_ctx.login != NULL)
2137 {
2138 *al = SSL_AD_DECODE_ERROR;
2139 return 0;
2140 }
2141 if ((s->srp_ctx.login = OPENSSL_malloc(len+1)) == NULL)
2142 return -1;
2143 memcpy(s->srp_ctx.login, &data[1], len);
2144 s->srp_ctx.login[len]='\0';
2145
2146 if (strlen(s->srp_ctx.login) != len)
2147 {
2148 *al = SSL_AD_DECODE_ERROR;
2149 return 0;
2150 }
2151 }
2152 #endif
2153
2154 #ifndef OPENSSL_NO_EC
2155 else if (type == TLSEXT_TYPE_ec_point_formats)
2156 {
2157 unsigned char *sdata = data;
2158 int ecpointformatlist_length = *(sdata++);
2159
2160 if (ecpointformatlist_length != size - 1 ||
2161 ecpointformatlist_length < 1)
2162 {
2163 *al = TLS1_AD_DECODE_ERROR;
2164 return 0;
2165 }
2166 if (!s->hit)
2167 {
2168 if(s->session->tlsext_ecpointformatlist)
2169 {
2170 OPENSSL_free(s->session->tlsext_ecpointformatlist);
2171 s->session->tlsext_ecpointformatlist = NULL;
2172 }
2173 s->session->tlsext_ecpointformatlist_length = 0;
2174 if ((s->session->tlsext_ecpointformatlist = OPENSSL_malloc(ecpointformatlist_length)) == NULL)
2175 {
2176 *al = TLS1_AD_INTERNAL_ERROR;
2177 return 0;
2178 }
2179 s->session->tlsext_ecpointformatlist_length = ecpointformatlist_length;
2180 memcpy(s->session->tlsext_ecpointformatlist, sdata, ecpointformatlist_length);
2181 }
2182 #if 0
2183 fprintf(stderr,"ssl_parse_clienthello_tlsext s->session->tlsext_ecpointformatlist (length=%i) ", s->session->tlsext_ecpointformatlist_length);
2184 sdata = s->session->tlsext_ecpointformatlist;
2185 for (i = 0; i < s->session->tlsext_ecpointformatlist_length; i++)
2186 fprintf(stderr,"%i ",*(sdata++));
2187 fprintf(stderr,"\n");
2188 #endif
2189 }
2190 else if (type == TLSEXT_TYPE_elliptic_curves)
2191 {
2192 unsigned char *sdata = data;
2193 int ellipticcurvelist_length = (*(sdata++) << 8);
2194 ellipticcurvelist_length += (*(sdata++));
2195
2196 if (ellipticcurvelist_length != size - 2 ||
2197 ellipticcurvelist_length < 1 ||
2198 /* Each NamedCurve is 2 bytes. */
2199 ellipticcurvelist_length & 1)
2200 {
2201 *al = TLS1_AD_DECODE_ERROR;
2202 return 0;
2203 }
2204 if (!s->hit)
2205 {
2206 if(s->session->tlsext_ellipticcurvelist)
2207 {
2208 *al = TLS1_AD_DECODE_ERROR;
2209 return 0;
2210 }
2211 s->session->tlsext_ellipticcurvelist_length = 0;
2212 if ((s->session->tlsext_ellipticcurvelist = OPENSSL_malloc(ellipticcurvelist_length)) == NULL)
2213 {
2214 *al = TLS1_AD_INTERNAL_ERROR;
2215 return 0;
2216 }
2217 s->session->tlsext_ellipticcurvelist_length = ellipticcurvelist_length;
2218 memcpy(s->session->tlsext_ellipticcurvelist, sdata, ellipticcurvelist_length);
2219 }
2220 #if 0
2221 fprintf(stderr,"ssl_parse_clienthello_tlsext s->session->tlsext_ellipticcurvelist (length=%i) ", s->session->tlsext_ellipticcurvelist_length);
2222 sdata = s->session->tlsext_ellipticcurvelist;
2223 for (i = 0; i < s->session->tlsext_ellipticcurvelist_length; i++)
2224 fprintf(stderr,"%i ",*(sdata++));
2225 fprintf(stderr,"\n");
2226 #endif
2227 }
2228 #endif /* OPENSSL_NO_EC */
2229 #ifdef TLSEXT_TYPE_opaque_prf_input
2230 else if (type == TLSEXT_TYPE_opaque_prf_input)
2231 {
2232 unsigned char *sdata = data;
2233
2234 if (size < 2)
2235 {
2236 *al = SSL_AD_DECODE_ERROR;
2237 return 0;
2238 }
2239 n2s(sdata, s->s3->client_opaque_prf_input_len);
2240 if (s->s3->client_opaque_prf_input_len != size - 2)
2241 {
2242 *al = SSL_AD_DECODE_ERROR;
2243 return 0;
2244 }
2245
2246 if (s->s3->client_opaque_prf_input != NULL) /* shouldn't really happen */
2247 OPENSSL_free(s->s3->client_opaque_prf_input);
2248 if (s->s3->client_opaque_prf_input_len == 0)
2249 s->s3->client_opaque_prf_input = OPENSSL_malloc(1); /* dummy byte just to get non-NULL */
2250 else
2251 s->s3->client_opaque_prf_input = BUF_memdup(sdata, s->s3->client_opaque_prf_input_len);
2252 if (s->s3->client_opaque_prf_input == NULL)
2253 {
2254 *al = TLS1_AD_INTERNAL_ERROR;
2255 return 0;
2256 }
2257 }
2258 #endif
2259 else if (type == TLSEXT_TYPE_session_ticket)
2260 {
2261 if (s->tls_session_ticket_ext_cb &&
2262 !s->tls_session_ticket_ext_cb(s, data, size, s->tls_session_ticket_ext_cb_arg))
2263 {
2264 *al = TLS1_AD_INTERNAL_ERROR;
2265 return 0;
2266 }
2267 }
2268 else if (type == TLSEXT_TYPE_signature_algorithms)
2269 {
2270 int dsize;
2271 if (s->cert->peer_sigalgs || size < 2)
2272 {
2273 *al = SSL_AD_DECODE_ERROR;
2274 return 0;
2275 }
2276 n2s(data,dsize);
2277 size -= 2;
2278 if (dsize != size || dsize & 1 || !dsize)
2279 {
2280 *al = SSL_AD_DECODE_ERROR;
2281 return 0;
2282 }
2283 if (!tls1_save_sigalgs(s, data, dsize))
2284 {
2285 *al = SSL_AD_DECODE_ERROR;
2286 return 0;
2287 }
2288 }
2289 else if (type == TLSEXT_TYPE_status_request)
2290 {
2291
2292 if (size < 5)
2293 {
2294 *al = SSL_AD_DECODE_ERROR;
2295 return 0;
2296 }
2297
2298 s->tlsext_status_type = *data++;
2299 size--;
2300 if (s->tlsext_status_type == TLSEXT_STATUSTYPE_ocsp)
2301 {
2302 const unsigned char *sdata;
2303 int dsize;
2304 /* Read in responder_id_list */
2305 n2s(data,dsize);
2306 size -= 2;
2307 if (dsize > size )
2308 {
2309 *al = SSL_AD_DECODE_ERROR;
2310 return 0;
2311 }
2312 while (dsize > 0)
2313 {
2314 OCSP_RESPID *id;
2315 int idsize;
2316 if (dsize < 4)
2317 {
2318 *al = SSL_AD_DECODE_ERROR;
2319 return 0;
2320 }
2321 n2s(data, idsize);
2322 dsize -= 2 + idsize;
2323 size -= 2 + idsize;
2324 if (dsize < 0)
2325 {
2326 *al = SSL_AD_DECODE_ERROR;
2327 return 0;
2328 }
2329 sdata = data;
2330 data += idsize;
2331 id = d2i_OCSP_RESPID(NULL,
2332 &sdata, idsize);
2333 if (!id)
2334 {
2335 *al = SSL_AD_DECODE_ERROR;
2336 return 0;
2337 }
2338 if (data != sdata)
2339 {
2340 OCSP_RESPID_free(id);
2341 *al = SSL_AD_DECODE_ERROR;
2342 return 0;
2343 }
2344 if (!s->tlsext_ocsp_ids
2345 && !(s->tlsext_ocsp_ids =
2346 sk_OCSP_RESPID_new_null()))
2347 {
2348 OCSP_RESPID_free(id);
2349 *al = SSL_AD_INTERNAL_ERROR;
2350 return 0;
2351 }
2352 if (!sk_OCSP_RESPID_push(
2353 s->tlsext_ocsp_ids, id))
2354 {
2355 OCSP_RESPID_free(id);
2356 *al = SSL_AD_INTERNAL_ERROR;
2357 return 0;
2358 }
2359 }
2360
2361 /* Read in request_extensions */
2362 if (size < 2)
2363 {
2364 *al = SSL_AD_DECODE_ERROR;
2365 return 0;
2366 }
2367 n2s(data,dsize);
2368 size -= 2;
2369 if (dsize != size)
2370 {
2371 *al = SSL_AD_DECODE_ERROR;
2372 return 0;
2373 }
2374 sdata = data;
2375 if (dsize > 0)
2376 {
2377 if (s->tlsext_ocsp_exts)
2378 {
2379 sk_X509_EXTENSION_pop_free(s->tlsext_ocsp_exts,
2380 X509_EXTENSION_free);
2381 }
2382
2383 s->tlsext_ocsp_exts =
2384 d2i_X509_EXTENSIONS(NULL,
2385 &sdata, dsize);
2386 if (!s->tlsext_ocsp_exts
2387 || (data + dsize != sdata))
2388 {
2389 *al = SSL_AD_DECODE_ERROR;
2390 return 0;
2391 }
2392 }
2393 }
2394 /* We don't know what to do with any other type
2395 * so ignore it.
2396 */
2397 else
2398 s->tlsext_status_type = -1;
2399 }
2400 #ifndef OPENSSL_NO_HEARTBEATS
2401 else if (type == TLSEXT_TYPE_heartbeat)
2402 {
2403 switch(data[0])
2404 {
2405 case 0x01: /* Client allows us to send HB requests */
2406 s->tlsext_heartbeat |= SSL_TLSEXT_HB_ENABLED;
2407 break;
2408 case 0x02: /* Client doesn't accept HB requests */
2409 s->tlsext_heartbeat |= SSL_TLSEXT_HB_ENABLED;
2410 s->tlsext_heartbeat |= SSL_TLSEXT_HB_DONT_SEND_REQUESTS;
2411 break;
2412 default: *al = SSL_AD_ILLEGAL_PARAMETER;
2413 return 0;
2414 }
2415 }
2416 #endif
2417 #ifndef OPENSSL_NO_NEXTPROTONEG
2418 else if (type == TLSEXT_TYPE_next_proto_neg &&
2419 s->s3->tmp.finish_md_len == 0 &&
2420 s->s3->alpn_selected == NULL)
2421 {
2422 /* We shouldn't accept this extension on a
2423 * renegotiation.
2424 *
2425 * s->new_session will be set on renegotiation, but we
2426 * probably shouldn't rely that it couldn't be set on
2427 * the initial renegotation too in certain cases (when
2428 * there's some other reason to disallow resuming an
2429 * earlier session -- the current code won't be doing
2430 * anything like that, but this might change).
2431
2432 * A valid sign that there's been a previous handshake
2433 * in this connection is if s->s3->tmp.finish_md_len >
2434 * 0. (We are talking about a check that will happen
2435 * in the Hello protocol round, well before a new
2436 * Finished message could have been computed.) */
2437 s->s3->next_proto_neg_seen = 1;
2438 }
2439 #endif
2440
2441 else if (type == TLSEXT_TYPE_application_layer_protocol_negotiation &&
2442 s->ctx->alpn_select_cb &&
2443 s->s3->tmp.finish_md_len == 0)
2444 {
2445 if (tls1_alpn_handle_client_hello(s, data, size, al) != 0)
2446 return 0;
2447 #ifndef OPENSSL_NO_NEXTPROTONEG
2448 /* ALPN takes precedence over NPN. */
2449 s->s3->next_proto_neg_seen = 0;
2450 #endif
2451 }
2452
2453 /* session ticket processed earlier */
2454 else if (SSL_IS_DTLS(s) && SSL_get_srtp_profiles(s)
2455 && type == TLSEXT_TYPE_use_srtp)
2456 {
2457 if(ssl_parse_clienthello_use_srtp_ext(s, data, size,
2458 al))
2459 return 0;
2460 }
2461 #ifdef TLSEXT_TYPE_encrypt_then_mac
2462 else if (type == TLSEXT_TYPE_encrypt_then_mac)
2463 s->s3->flags |= TLS1_FLAGS_ENCRYPT_THEN_MAC;
2464 #endif
2465 /* If this ClientHello extension was unhandled and this is
2466 * a nonresumed connection, check whether the extension is a
2467 * custom TLS Extension (has a custom_srv_ext_record), and if
2468 * so call the callback and record the extension number so that
2469 * an appropriate ServerHello may be later returned.
2470 */
2471 else if (!s->hit)
2472 {
2473 if (custom_ext_parse(s, 1, type, data, size, al) <= 0)
2474 return 0;
2475 }
2476
2477 data+=size;
2478 }
2479
2480 *p = data;
2481
2482 ri_check:
2483
2484 /* Need RI if renegotiating */
2485
2486 if (!renegotiate_seen && s->renegotiate &&
2487 !(s->options & SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION))
2488 {
2489 *al = SSL_AD_HANDSHAKE_FAILURE;
2490 SSLerr(SSL_F_SSL_SCAN_CLIENTHELLO_TLSEXT,
2491 SSL_R_UNSAFE_LEGACY_RENEGOTIATION_DISABLED);
2492 return 0;
2493 }
2494
2495 return 1;
2496 }
2497
2498 int ssl_parse_clienthello_tlsext(SSL *s, unsigned char **p, unsigned char *d, int n)
2499 {
2500 int al = -1;
2501 custom_ext_init(&s->cert->srv_ext);
2502 if (ssl_scan_clienthello_tlsext(s, p, d, n, &al) <= 0)
2503 {
2504 ssl3_send_alert(s,SSL3_AL_FATAL,al);
2505 return 0;
2506 }
2507
2508 if (ssl_check_clienthello_tlsext_early(s) <= 0)
2509 {
2510 SSLerr(SSL_F_SSL_PARSE_CLIENTHELLO_TLSEXT,SSL_R_CLIENTHELLO_TLSEXT);
2511 return 0;
2512 }
2513 return 1;
2514 }
2515
2516 #ifndef OPENSSL_NO_NEXTPROTONEG
2517 /* ssl_next_proto_validate validates a Next Protocol Negotiation block. No
2518 * elements of zero length are allowed and the set of elements must exactly fill
2519 * the length of the block. */
2520 static char ssl_next_proto_validate(unsigned char *d, unsigned len)
2521 {
2522 unsigned int off = 0;
2523
2524 while (off < len)
2525 {
2526 if (d[off] == 0)
2527 return 0;
2528 off += d[off];
2529 off++;
2530 }
2531
2532 return off == len;
2533 }
2534 #endif
2535
2536 static int ssl_scan_serverhello_tlsext(SSL *s, unsigned char **p, unsigned char *d, int n, int *al)
2537 {
2538 unsigned short length;
2539 unsigned short type;
2540 unsigned short size;
2541 unsigned char *data = *p;
2542 int tlsext_servername = 0;
2543 int renegotiate_seen = 0;
2544
2545 #ifndef OPENSSL_NO_NEXTPROTONEG
2546 s->s3->next_proto_neg_seen = 0;
2547 #endif
2548 s->tlsext_ticket_expected = 0;
2549
2550 if (s->s3->alpn_selected)
2551 {
2552 OPENSSL_free(s->s3->alpn_selected);
2553 s->s3->alpn_selected = NULL;
2554 }
2555
2556 #ifndef OPENSSL_NO_HEARTBEATS
2557 s->tlsext_heartbeat &= ~(SSL_TLSEXT_HB_ENABLED |
2558 SSL_TLSEXT_HB_DONT_SEND_REQUESTS);
2559 #endif
2560
2561 #ifdef TLSEXT_TYPE_encrypt_then_mac
2562 s->s3->flags &= ~TLS1_FLAGS_ENCRYPT_THEN_MAC;
2563 #endif
2564
2565 if (data >= (d+n-2))
2566 goto ri_check;
2567
2568 n2s(data,length);
2569 if (data+length != d+n)
2570 {
2571 *al = SSL_AD_DECODE_ERROR;
2572 return 0;
2573 }
2574
2575 while(data <= (d+n-4))
2576 {
2577 n2s(data,type);
2578 n2s(data,size);
2579
2580 if (data+size > (d+n))
2581 goto ri_check;
2582
2583 if (s->tlsext_debug_cb)
2584 s->tlsext_debug_cb(s, 1, type, data, size,
2585 s->tlsext_debug_arg);
2586
2587
2588 if (type == TLSEXT_TYPE_renegotiate)
2589 {
2590 if(!ssl_parse_serverhello_renegotiate_ext(s, data, size, al))
2591 return 0;
2592 renegotiate_seen = 1;
2593 }
2594 else if (s->version == SSL3_VERSION)
2595 {}
2596 else if (type == TLSEXT_TYPE_server_name)
2597 {
2598 if (s->tlsext_hostname == NULL || size > 0)
2599 {
2600 *al = TLS1_AD_UNRECOGNIZED_NAME;
2601 return 0;
2602 }
2603 tlsext_servername = 1;
2604 }
2605
2606 #ifndef OPENSSL_NO_EC
2607 else if (type == TLSEXT_TYPE_ec_point_formats)
2608 {
2609 unsigned char *sdata = data;
2610 int ecpointformatlist_length = *(sdata++);
2611
2612 if (ecpointformatlist_length != size - 1)
2613 {
2614 *al = TLS1_AD_DECODE_ERROR;
2615 return 0;
2616 }
2617 if (!s->hit)
2618 {
2619 s->session->tlsext_ecpointformatlist_length = 0;
2620 if (s->session->tlsext_ecpointformatlist != NULL) OPENSSL_free(s->session->tlsext_ecpointformatlist);
2621 if ((s->session->tlsext_ecpointformatlist = OPENSSL_malloc(ecpointformatlist_length)) == NULL)
2622 {
2623 *al = TLS1_AD_INTERNAL_ERROR;
2624 return 0;
2625 }
2626 s->session->tlsext_ecpointformatlist_length = ecpointformatlist_length;
2627 memcpy(s->session->tlsext_ecpointformatlist, sdata, ecpointformatlist_length);
2628 }
2629 #if 0
2630 fprintf(stderr,"ssl_parse_serverhello_tlsext s->session->tlsext_ecpointformatlist ");
2631 sdata = s->session->tlsext_ecpointformatlist;
2632 for (i = 0; i < s->session->tlsext_ecpointformatlist_length; i++)
2633 fprintf(stderr,"%i ",*(sdata++));
2634 fprintf(stderr,"\n");
2635 #endif
2636 }
2637 #endif /* OPENSSL_NO_EC */
2638
2639 else if (type == TLSEXT_TYPE_session_ticket)
2640 {
2641 if (s->tls_session_ticket_ext_cb &&
2642 !s->tls_session_ticket_ext_cb(s, data, size, s->tls_session_ticket_ext_cb_arg))
2643 {
2644 *al = TLS1_AD_INTERNAL_ERROR;
2645 return 0;
2646 }
2647 if (!tls_use_ticket(s) || (size > 0))
2648 {
2649 *al = TLS1_AD_UNSUPPORTED_EXTENSION;
2650 return 0;
2651 }
2652 s->tlsext_ticket_expected = 1;
2653 }
2654 #ifdef TLSEXT_TYPE_opaque_prf_input
2655 else if (type == TLSEXT_TYPE_opaque_prf_input)
2656 {
2657 unsigned char *sdata = data;
2658
2659 if (size < 2)
2660 {
2661 *al = SSL_AD_DECODE_ERROR;
2662 return 0;
2663 }
2664 n2s(sdata, s->s3->server_opaque_prf_input_len);
2665 if (s->s3->server_opaque_prf_input_len != size - 2)
2666 {
2667 *al = SSL_AD_DECODE_ERROR;
2668 return 0;
2669 }
2670
2671 if (s->s3->server_opaque_prf_input != NULL) /* shouldn't really happen */
2672 OPENSSL_free(s->s3->server_opaque_prf_input);
2673 if (s->s3->server_opaque_prf_input_len == 0)
2674 s->s3->server_opaque_prf_input = OPENSSL_malloc(1); /* dummy byte just to get non-NULL */
2675 else
2676 s->s3->server_opaque_prf_input = BUF_memdup(sdata, s->s3->server_opaque_prf_input_len);
2677
2678 if (s->s3->server_opaque_prf_input == NULL)
2679 {
2680 *al = TLS1_AD_INTERNAL_ERROR;
2681 return 0;
2682 }
2683 }
2684 #endif
2685 else if (type == TLSEXT_TYPE_status_request)
2686 {
2687 /* MUST be empty and only sent if we've requested
2688 * a status request message.
2689 */
2690 if ((s->tlsext_status_type == -1) || (size > 0))
2691 {
2692 *al = TLS1_AD_UNSUPPORTED_EXTENSION;
2693 return 0;
2694 }
2695 /* Set flag to expect CertificateStatus message */
2696 s->tlsext_status_expected = 1;
2697 }
2698 #ifndef OPENSSL_NO_NEXTPROTONEG
2699 else if (type == TLSEXT_TYPE_next_proto_neg &&
2700 s->s3->tmp.finish_md_len == 0)
2701 {
2702 unsigned char *selected;
2703 unsigned char selected_len;
2704
2705 /* We must have requested it. */
2706 if (s->ctx->next_proto_select_cb == NULL)
2707 {
2708 *al = TLS1_AD_UNSUPPORTED_EXTENSION;
2709 return 0;
2710 }
2711 /* The data must be valid */
2712 if (!ssl_next_proto_validate(data, size))
2713 {
2714 *al = TLS1_AD_DECODE_ERROR;
2715 return 0;
2716 }
2717 if (s->ctx->next_proto_select_cb(s, &selected, &selected_len, data, size, s->ctx->next_proto_select_cb_arg) != SSL_TLSEXT_ERR_OK)
2718 {
2719 *al = TLS1_AD_INTERNAL_ERROR;
2720 return 0;
2721 }
2722 s->next_proto_negotiated = OPENSSL_malloc(selected_len);
2723 if (!s->next_proto_negotiated)
2724 {
2725 *al = TLS1_AD_INTERNAL_ERROR;
2726 return 0;
2727 }
2728 memcpy(s->next_proto_negotiated, selected, selected_len);
2729 s->next_proto_negotiated_len = selected_len;
2730 s->s3->next_proto_neg_seen = 1;
2731 }
2732 #endif
2733
2734 else if (type == TLSEXT_TYPE_application_layer_protocol_negotiation)
2735 {
2736 unsigned len;
2737
2738 /* We must have requested it. */
2739 if (s->alpn_client_proto_list == NULL)
2740 {
2741 *al = TLS1_AD_UNSUPPORTED_EXTENSION;
2742 return 0;
2743 }
2744 if (size < 4)
2745 {
2746 *al = TLS1_AD_DECODE_ERROR;
2747 return 0;
2748 }
2749 /* The extension data consists of:
2750 * uint16 list_length
2751 * uint8 proto_length;
2752 * uint8 proto[proto_length]; */
2753 len = data[0];
2754 len <<= 8;
2755 len |= data[1];
2756 if (len != (unsigned) size - 2)
2757 {
2758 *al = TLS1_AD_DECODE_ERROR;
2759 return 0;
2760 }
2761 len = data[2];
2762 if (len != (unsigned) size - 3)
2763 {
2764 *al = TLS1_AD_DECODE_ERROR;
2765 return 0;
2766 }
2767 if (s->s3->alpn_selected)
2768 OPENSSL_free(s->s3->alpn_selected);
2769 s->s3->alpn_selected = OPENSSL_malloc(len);
2770 if (!s->s3->alpn_selected)
2771 {
2772 *al = TLS1_AD_INTERNAL_ERROR;
2773 return 0;
2774 }
2775 memcpy(s->s3->alpn_selected, data + 3, len);
2776 s->s3->alpn_selected_len = len;
2777 }
2778 #ifndef OPENSSL_NO_HEARTBEATS
2779 else if (type == TLSEXT_TYPE_heartbeat)
2780 {
2781 switch(data[0])
2782 {
2783 case 0x01: /* Server allows us to send HB requests */
2784 s->tlsext_heartbeat |= SSL_TLSEXT_HB_ENABLED;
2785 break;
2786 case 0x02: /* Server doesn't accept HB requests */
2787 s->tlsext_heartbeat |= SSL_TLSEXT_HB_ENABLED;
2788 s->tlsext_heartbeat |= SSL_TLSEXT_HB_DONT_SEND_REQUESTS;
2789 break;
2790 default: *al = SSL_AD_ILLEGAL_PARAMETER;
2791 return 0;
2792 }
2793 }
2794 #endif
2795 else if (SSL_IS_DTLS(s) && type == TLSEXT_TYPE_use_srtp)
2796 {
2797 if(ssl_parse_serverhello_use_srtp_ext(s, data, size,
2798 al))
2799 return 0;
2800 }
2801 #ifdef TLSEXT_TYPE_encrypt_then_mac
2802 else if (type == TLSEXT_TYPE_encrypt_then_mac)
2803 {
2804 /* Ignore if inappropriate ciphersuite */
2805 if (s->s3->tmp.new_cipher->algorithm_mac != SSL_AEAD
2806 && s->s3->tmp.new_cipher->algorithm_enc != SSL_RC4)
2807 s->s3->flags |= TLS1_FLAGS_ENCRYPT_THEN_MAC;
2808 }
2809 #endif
2810 /* If this extension type was not otherwise handled, but
2811 * matches a custom_cli_ext_record, then send it to the c
2812 * callback */
2813 else if (custom_ext_parse(s, 0, type, data, size, al) <= 0)
2814 return 0;
2815
2816 data += size;
2817 }
2818
2819 if (data != d+n)
2820 {
2821 *al = SSL_AD_DECODE_ERROR;
2822 return 0;
2823 }
2824
2825 if (!s->hit && tlsext_servername == 1)
2826 {
2827 if (s->tlsext_hostname)
2828 {
2829 if (s->session->tlsext_hostname == NULL)
2830 {
2831 s->session->tlsext_hostname = BUF_strdup(s->tlsext_hostname);
2832 if (!s->session->tlsext_hostname)
2833 {
2834 *al = SSL_AD_UNRECOGNIZED_NAME;
2835 return 0;
2836 }
2837 }
2838 else
2839 {
2840 *al = SSL_AD_DECODE_ERROR;
2841 return 0;
2842 }
2843 }
2844 }
2845
2846 *p = data;
2847
2848 ri_check:
2849
2850 /* Determine if we need to see RI. Strictly speaking if we want to
2851 * avoid an attack we should *always* see RI even on initial server
2852 * hello because the client doesn't see any renegotiation during an
2853 * attack. However this would mean we could not connect to any server
2854 * which doesn't support RI so for the immediate future tolerate RI
2855 * absence on initial connect only.
2856 */
2857 if (!renegotiate_seen
2858 && !(s->options & SSL_OP_LEGACY_SERVER_CONNECT)
2859 && !(s->options & SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION))
2860 {
2861 *al = SSL_AD_HANDSHAKE_FAILURE;
2862 SSLerr(SSL_F_SSL_SCAN_SERVERHELLO_TLSEXT,
2863 SSL_R_UNSAFE_LEGACY_RENEGOTIATION_DISABLED);
2864 return 0;
2865 }
2866
2867 return 1;
2868 }
2869
2870
2871 int ssl_prepare_clienthello_tlsext(SSL *s)
2872 {
2873
2874 #ifdef TLSEXT_TYPE_opaque_prf_input
2875 {
2876 int r = 1;
2877
2878 if (s->ctx->tlsext_opaque_prf_input_callback != 0)
2879 {
2880 r = s->ctx->tlsext_opaque_prf_input_callback(s, NULL, 0, s->ctx->tlsext_opaque_prf_input_callback_arg);
2881 if (!r)
2882 return -1;
2883 }
2884
2885 if (s->tlsext_opaque_prf_input != NULL)
2886 {
2887 if (s->s3->client_opaque_prf_input != NULL) /* shouldn't really happen */
2888 OPENSSL_free(s->s3->client_opaque_prf_input);
2889
2890 if (s->tlsext_opaque_prf_input_len == 0)
2891 s->s3->client_opaque_prf_input = OPENSSL_malloc(1); /* dummy byte just to get non-NULL */
2892 else
2893 s->s3->client_opaque_prf_input = BUF_memdup(s->tlsext_opaque_prf_input, s->tlsext_opaque_prf_input_len);
2894 if (s->s3->client_opaque_prf_input == NULL)
2895 {
2896 SSLerr(SSL_F_SSL_PREPARE_CLIENTHELLO_TLSEXT,ERR_R_MALLOC_FAILURE);
2897 return -1;
2898 }
2899 s->s3->client_opaque_prf_input_len = s->tlsext_opaque_prf_input_len;
2900 }
2901
2902 if (r == 2)
2903 /* at callback's request, insist on receiving an appropriate server opaque PRF input */
2904 s->s3->server_opaque_prf_input_len = s->tlsext_opaque_prf_input_len;
2905 }
2906 #endif
2907
2908 return 1;
2909 }
2910
2911 int ssl_prepare_serverhello_tlsext(SSL *s)
2912 {
2913 return 1;
2914 }
2915
2916 static int ssl_check_clienthello_tlsext_early(SSL *s)
2917 {
2918 int ret=SSL_TLSEXT_ERR_NOACK;
2919 int al = SSL_AD_UNRECOGNIZED_NAME;
2920
2921 #ifndef OPENSSL_NO_EC
2922 /* The handling of the ECPointFormats extension is done elsewhere, namely in
2923 * ssl3_choose_cipher in s3_lib.c.
2924 */
2925 /* The handling of the EllipticCurves extension is done elsewhere, namely in
2926 * ssl3_choose_cipher in s3_lib.c.
2927 */
2928 #endif
2929
2930 if (s->ctx != NULL && s->ctx->tlsext_servername_callback != 0)
2931 ret = s->ctx->tlsext_servername_callback(s, &al, s->ctx->tlsext_servername_arg);
2932 else if (s->initial_ctx != NULL && s->initial_ctx->tlsext_servername_callback != 0)
2933 ret = s->initial_ctx->tlsext_servername_callback(s, &al, s->initial_ctx->tlsext_servername_arg);
2934
2935 #ifdef TLSEXT_TYPE_opaque_prf_input
2936 {
2937 /* This sort of belongs into ssl_prepare_serverhello_tlsext(),
2938 * but we might be sending an alert in response to the client hello,
2939 * so this has to happen here in
2940 * ssl_check_clienthello_tlsext_early(). */
2941
2942 int r = 1;
2943
2944 if (s->ctx->tlsext_opaque_prf_input_callback != 0)
2945 {
2946 r = s->ctx->tlsext_opaque_prf_input_callback(s, NULL, 0, s->ctx->tlsext_opaque_prf_input_callback_arg);
2947 if (!r)
2948 {
2949 ret = SSL_TLSEXT_ERR_ALERT_FATAL;
2950 al = SSL_AD_INTERNAL_ERROR;
2951 goto err;
2952 }
2953 }
2954
2955 if (s->s3->server_opaque_prf_input != NULL) /* shouldn't really happen */
2956 OPENSSL_free(s->s3->server_opaque_prf_input);
2957 s->s3->server_opaque_prf_input = NULL;
2958
2959 if (s->tlsext_opaque_prf_input != NULL)
2960 {
2961 if (s->s3->client_opaque_prf_input != NULL &&
2962 s->s3->client_opaque_prf_input_len == s->tlsext_opaque_prf_input_len)
2963 {
2964 /* can only use this extension if we have a server opaque PRF input
2965 * of the same length as the client opaque PRF input! */
2966
2967 if (s->tlsext_opaque_prf_input_len == 0)
2968 s->s3->server_opaque_prf_input = OPENSSL_malloc(1); /* dummy byte just to get non-NULL */
2969 else
2970 s->s3->server_opaque_prf_input = BUF_memdup(s->tlsext_opaque_prf_input, s->tlsext_opaque_prf_input_len);
2971 if (s->s3->server_opaque_prf_input == NULL)
2972 {
2973 ret = SSL_TLSEXT_ERR_ALERT_FATAL;
2974 al = SSL_AD_INTERNAL_ERROR;
2975 goto err;
2976 }
2977 s->s3->server_opaque_prf_input_len = s->tlsext_opaque_prf_input_len;
2978 }
2979 }
2980
2981 if (r == 2 && s->s3->server_opaque_prf_input == NULL)
2982 {
2983 /* The callback wants to enforce use of the extension,
2984 * but we can't do that with the client opaque PRF input;
2985 * abort the handshake.
2986 */
2987 ret = SSL_TLSEXT_ERR_ALERT_FATAL;
2988 al = SSL_AD_HANDSHAKE_FAILURE;
2989 }
2990 }
2991
2992 err:
2993 #endif
2994 switch (ret)
2995 {
2996 case SSL_TLSEXT_ERR_ALERT_FATAL:
2997 ssl3_send_alert(s,SSL3_AL_FATAL,al);
2998 return -1;
2999
3000 case SSL_TLSEXT_ERR_ALERT_WARNING:
3001 ssl3_send_alert(s,SSL3_AL_WARNING,al);
3002 return 1;
3003
3004 case SSL_TLSEXT_ERR_NOACK:
3005 s->servername_done=0;
3006 default:
3007 return 1;
3008 }
3009 }
3010
3011 int tls1_set_server_sigalgs(SSL *s)
3012 {
3013 int al;
3014 size_t i;
3015 /* Clear any shared sigtnature algorithms */
3016 if (s->cert->shared_sigalgs)
3017 {
3018 OPENSSL_free(s->cert->shared_sigalgs);
3019 s->cert->shared_sigalgs = NULL;
3020 }
3021 /* Clear certificate digests and validity flags */
3022 for (i = 0; i < SSL_PKEY_NUM; i++)
3023 {
3024 s->cert->pkeys[i].digest = NULL;
3025 s->cert->pkeys[i].valid_flags = 0;
3026 }
3027
3028 /* If sigalgs received process it. */
3029 if (s->cert->peer_sigalgs)
3030 {
3031 if (!tls1_process_sigalgs(s))
3032 {
3033 SSLerr(SSL_F_TLS1_SET_SERVER_SIGALGS,
3034 ERR_R_MALLOC_FAILURE);
3035 al = SSL_AD_INTERNAL_ERROR;
3036 goto err;
3037 }
3038 /* Fatal error is no shared signature algorithms */
3039 if (!s->cert->shared_sigalgs)
3040 {
3041 SSLerr(SSL_F_TLS1_SET_SERVER_SIGALGS,
3042 SSL_R_NO_SHARED_SIGATURE_ALGORITHMS);
3043 al = SSL_AD_ILLEGAL_PARAMETER;
3044 goto err;
3045 }
3046 }
3047 else
3048 ssl_cert_set_default_md(s->cert);
3049 return 1;
3050 err:
3051 ssl3_send_alert(s, SSL3_AL_FATAL, al);
3052 return 0;
3053 }
3054
3055 int ssl_check_clienthello_tlsext_late(SSL *s)
3056 {
3057 int ret = SSL_TLSEXT_ERR_OK;
3058 int al;
3059
3060 /* If status request then ask callback what to do.
3061 * Note: this must be called after servername callbacks in case
3062 * the certificate has changed, and must be called after the cipher
3063 * has been chosen because this may influence which certificate is sent
3064 */
3065 if ((s->tlsext_status_type != -1) && s->ctx && s->ctx->tlsext_status_cb)
3066 {
3067 int r;
3068 CERT_PKEY *certpkey;
3069 certpkey = ssl_get_server_send_pkey(s);
3070 /* If no certificate can't return certificate status */
3071 if (certpkey == NULL)
3072 {
3073 s->tlsext_status_expected = 0;
3074 return 1;
3075 }
3076 /* Set current certificate to one we will use so
3077 * SSL_get_certificate et al can pick it up.
3078 */
3079 s->cert->key = certpkey;
3080 r = s->ctx->tlsext_status_cb(s, s->ctx->tlsext_status_arg);
3081 switch (r)
3082 {
3083 /* We don't want to send a status request response */
3084 case SSL_TLSEXT_ERR_NOACK:
3085 s->tlsext_status_expected = 0;
3086 break;
3087 /* status request response should be sent */
3088 case SSL_TLSEXT_ERR_OK:
3089 if (s->tlsext_ocsp_resp)
3090 s->tlsext_status_expected = 1;
3091 else
3092 s->tlsext_status_expected = 0;
3093 break;
3094 /* something bad happened */
3095 case SSL_TLSEXT_ERR_ALERT_FATAL:
3096 ret = SSL_TLSEXT_ERR_ALERT_FATAL;
3097 al = SSL_AD_INTERNAL_ERROR;
3098 goto err;
3099 }
3100 }
3101 else
3102 s->tlsext_status_expected = 0;
3103
3104 err:
3105 switch (ret)
3106 {
3107 case SSL_TLSEXT_ERR_ALERT_FATAL:
3108 ssl3_send_alert(s, SSL3_AL_FATAL, al);
3109 return -1;
3110
3111 case SSL_TLSEXT_ERR_ALERT_WARNING:
3112 ssl3_send_alert(s, SSL3_AL_WARNING, al);
3113 return 1;
3114
3115 default:
3116 return 1;
3117 }
3118 }
3119
3120 int ssl_check_serverhello_tlsext(SSL *s)
3121 {
3122 int ret=SSL_TLSEXT_ERR_NOACK;
3123 int al = SSL_AD_UNRECOGNIZED_NAME;
3124
3125 #ifndef OPENSSL_NO_EC
3126 /* If we are client and using an elliptic curve cryptography cipher
3127 * suite, then if server returns an EC point formats lists extension
3128 * it must contain uncompressed.
3129 */
3130 unsigned long alg_k = s->s3->tmp.new_cipher->algorithm_mkey;
3131 unsigned long alg_a = s->s3->tmp.new_cipher->algorithm_auth;
3132 if ((s->tlsext_ecpointformatlist != NULL) && (s->tlsext_ecpointformatlist_length > 0) &&
3133 (s->session->tlsext_ecpointformatlist != NULL) && (s->session->tlsext_ecpointformatlist_length > 0) &&
3134 ((alg_k & (SSL_kECDHE|SSL_kECDHr|SSL_kECDHe)) || (alg_a & SSL_aECDSA)))
3135 {
3136 /* we are using an ECC cipher */
3137 size_t i;
3138 unsigned char *list;
3139 int found_uncompressed = 0;
3140 list = s->session->tlsext_ecpointformatlist;
3141 for (i = 0; i < s->session->tlsext_ecpointformatlist_length; i++)
3142 {
3143 if (*(list++) == TLSEXT_ECPOINTFORMAT_uncompressed)
3144 {
3145 found_uncompressed = 1;
3146 break;
3147 }
3148 }
3149 if (!found_uncompressed)
3150 {
3151 SSLerr(SSL_F_SSL_CHECK_SERVERHELLO_TLSEXT,SSL_R_TLS_INVALID_ECPOINTFORMAT_LIST);
3152 return -1;
3153 }
3154 }
3155 ret = SSL_TLSEXT_ERR_OK;
3156 #endif /* OPENSSL_NO_EC */
3157
3158 if (s->ctx != NULL && s->ctx->tlsext_servername_callback != 0)
3159 ret = s->ctx->tlsext_servername_callback(s, &al, s->ctx->tlsext_servername_arg);
3160 else if (s->initial_ctx != NULL && s->initial_ctx->tlsext_servername_callback != 0)
3161 ret = s->initial_ctx->tlsext_servername_callback(s, &al, s->initial_ctx->tlsext_servername_arg);
3162
3163 #ifdef TLSEXT_TYPE_opaque_prf_input
3164 if (s->s3->server_opaque_prf_input_len > 0)
3165 {
3166 /* This case may indicate that we, as a client, want to insist on using opaque PRF inputs.
3167 * So first verify that we really have a value from the server too. */
3168
3169 if (s->s3->server_opaque_prf_input == NULL)
3170 {
3171 ret = SSL_TLSEXT_ERR_ALERT_FATAL;
3172 al = SSL_AD_HANDSHAKE_FAILURE;
3173 }
3174
3175 /* Anytime the server *has* sent an opaque PRF input, we need to check
3176 * that we have a client opaque PRF input of the same size. */
3177 if (s->s3->client_opaque_prf_input == NULL ||
3178 s->s3->client_opaque_prf_input_len != s->s3->server_opaque_prf_input_len)
3179 {
3180 ret = SSL_TLSEXT_ERR_ALERT_FATAL;
3181 al = SSL_AD_ILLEGAL_PARAMETER;
3182 }
3183 }
3184 #endif
3185
3186 /* If we've requested certificate status and we wont get one
3187 * tell the callback
3188 */
3189 if ((s->tlsext_status_type != -1) && !(s->tlsext_status_expected)
3190 && s->ctx && s->ctx->tlsext_status_cb)
3191 {
3192 int r;
3193 /* Set resp to NULL, resplen to -1 so callback knows
3194 * there is no response.
3195 */
3196 if (s->tlsext_ocsp_resp)
3197 {
3198 OPENSSL_free(s->tlsext_ocsp_resp);
3199 s->tlsext_ocsp_resp = NULL;
3200 }
3201 s->tlsext_ocsp_resplen = -1;
3202 r = s->ctx->tlsext_status_cb(s, s->ctx->tlsext_status_arg);
3203 if (r == 0)
3204 {
3205 al = SSL_AD_BAD_CERTIFICATE_STATUS_RESPONSE;
3206 ret = SSL_TLSEXT_ERR_ALERT_FATAL;
3207 }
3208 if (r < 0)
3209 {
3210 al = SSL_AD_INTERNAL_ERROR;
3211 ret = SSL_TLSEXT_ERR_ALERT_FATAL;
3212 }
3213 }
3214
3215 switch (ret)
3216 {
3217 case SSL_TLSEXT_ERR_ALERT_FATAL:
3218 ssl3_send_alert(s,SSL3_AL_FATAL,al);
3219 return -1;
3220
3221 case SSL_TLSEXT_ERR_ALERT_WARNING:
3222 ssl3_send_alert(s,SSL3_AL_WARNING,al);
3223 return 1;
3224
3225 case SSL_TLSEXT_ERR_NOACK:
3226 s->servername_done=0;
3227 default:
3228 return 1;
3229 }
3230 }
3231
3232 int ssl_parse_serverhello_tlsext(SSL *s, unsigned char **p, unsigned char *d, int n)
3233 {
3234 int al = -1;
3235 if (s->version < SSL3_VERSION)
3236 return 1;
3237 if (ssl_scan_serverhello_tlsext(s, p, d, n, &al) <= 0)
3238 {
3239 ssl3_send_alert(s,SSL3_AL_FATAL,al);
3240 return 0;
3241 }
3242
3243 if (ssl_check_serverhello_tlsext(s) <= 0)
3244 {
3245 SSLerr(SSL_F_SSL_PARSE_SERVERHELLO_TLSEXT,SSL_R_SERVERHELLO_TLSEXT);
3246 return 0;
3247 }
3248 return 1;
3249 }
3250
3251 /* Since the server cache lookup is done early on in the processing of the
3252 * ClientHello, and other operations depend on the result, we need to handle
3253 * any TLS session ticket extension at the same time.
3254 *
3255 * session_id: points at the session ID in the ClientHello. This code will
3256 * read past the end of this in order to parse out the session ticket
3257 * extension, if any.
3258 * len: the length of the session ID.
3259 * limit: a pointer to the first byte after the ClientHello.
3260 * ret: (output) on return, if a ticket was decrypted, then this is set to
3261 * point to the resulting session.
3262 *
3263 * If s->tls_session_secret_cb is set then we are expecting a pre-shared key
3264 * ciphersuite, in which case we have no use for session tickets and one will
3265 * never be decrypted, nor will s->tlsext_ticket_expected be set to 1.
3266 *
3267 * Returns:
3268 * -1: fatal error, either from parsing or decrypting the ticket.
3269 * 0: no ticket was found (or was ignored, based on settings).
3270 * 1: a zero length extension was found, indicating that the client supports
3271 * session tickets but doesn't currently have one to offer.
3272 * 2: either s->tls_session_secret_cb was set, or a ticket was offered but
3273 * couldn't be decrypted because of a non-fatal error.
3274 * 3: a ticket was successfully decrypted and *ret was set.
3275 *
3276 * Side effects:
3277 * Sets s->tlsext_ticket_expected to 1 if the server will have to issue
3278 * a new session ticket to the client because the client indicated support
3279 * (and s->tls_session_secret_cb is NULL) but the client either doesn't have
3280 * a session ticket or we couldn't use the one it gave us, or if
3281 * s->ctx->tlsext_ticket_key_cb asked to renew the client's ticket.
3282 * Otherwise, s->tlsext_ticket_expected is set to 0.
3283 */
3284 int tls1_process_ticket(SSL *s, unsigned char *session_id, int len,
3285 const unsigned char *limit, SSL_SESSION **ret)
3286 {
3287 /* Point after session ID in client hello */
3288 const unsigned char *p = session_id + len;
3289 unsigned short i;
3290
3291 *ret = NULL;
3292 s->tlsext_ticket_expected = 0;
3293
3294 /* If tickets disabled behave as if no ticket present
3295 * to permit stateful resumption.
3296 */
3297 if (!tls_use_ticket(s))
3298 return 0;
3299 if ((s->version <= SSL3_VERSION) || !limit)
3300 return 0;
3301 if (p >= limit)
3302 return -1;
3303 /* Skip past DTLS cookie */
3304 if (SSL_IS_DTLS(s))
3305 {
3306 i = *(p++);
3307 p+= i;
3308 if (p >= limit)
3309 return -1;
3310 }
3311 /* Skip past cipher list */
3312 n2s(p, i);
3313 p+= i;
3314 if (p >= limit)
3315 return -1;
3316 /* Skip past compression algorithm list */
3317 i = *(p++);
3318 p += i;
3319 if (p > limit)
3320 return -1;
3321 /* Now at start of extensions */
3322 if ((p + 2) >= limit)
3323 return 0;
3324 n2s(p, i);
3325 while ((p + 4) <= limit)
3326 {
3327 unsigned short type, size;
3328 n2s(p, type);
3329 n2s(p, size);
3330 if (p + size > limit)
3331 return 0;
3332 if (type == TLSEXT_TYPE_session_ticket)
3333 {
3334 int r;
3335 if (size == 0)
3336 {
3337 /* The client will accept a ticket but doesn't
3338 * currently have one. */
3339 s->tlsext_ticket_expected = 1;
3340 return 1;
3341 }
3342 if (s->tls_session_secret_cb)
3343 {
3344 /* Indicate that the ticket couldn't be
3345 * decrypted rather than generating the session
3346 * from ticket now, trigger abbreviated
3347 * handshake based on external mechanism to
3348 * calculate the master secret later. */
3349 return 2;
3350 }
3351 r = tls_decrypt_ticket(s, p, size, session_id, len, ret);
3352 switch (r)
3353 {
3354 case 2: /* ticket couldn't be decrypted */
3355 s->tlsext_ticket_expected = 1;
3356 return 2;
3357 case 3: /* ticket was decrypted */
3358 return r;
3359 case 4: /* ticket decrypted but need to renew */
3360 s->tlsext_ticket_expected = 1;
3361 return 3;
3362 default: /* fatal error */
3363 return -1;
3364 }
3365 }
3366 p += size;
3367 }
3368 return 0;
3369 }
3370
3371 /* tls_decrypt_ticket attempts to decrypt a session ticket.
3372 *
3373 * etick: points to the body of the session ticket extension.
3374 * eticklen: the length of the session tickets extenion.
3375 * sess_id: points at the session ID.
3376 * sesslen: the length of the session ID.
3377 * psess: (output) on return, if a ticket was decrypted, then this is set to
3378 * point to the resulting session.
3379 *
3380 * Returns:
3381 * -1: fatal error, either from parsing or decrypting the ticket.
3382 * 2: the ticket couldn't be decrypted.
3383 * 3: a ticket was successfully decrypted and *psess was set.
3384 * 4: same as 3, but the ticket needs to be renewed.
3385 */
3386 static int tls_decrypt_ticket(SSL *s, const unsigned char *etick, int eticklen,
3387 const unsigned char *sess_id, int sesslen,
3388 SSL_SESSION **psess)
3389 {
3390 SSL_SESSION *sess;
3391 unsigned char *sdec;
3392 const unsigned char *p;
3393 int slen, mlen, renew_ticket = 0;
3394 unsigned char tick_hmac[EVP_MAX_MD_SIZE];
3395 HMAC_CTX hctx;
3396 EVP_CIPHER_CTX ctx;
3397 SSL_CTX *tctx = s->initial_ctx;
3398 /* Need at least keyname + iv + some encrypted data */
3399 if (eticklen < 48)
3400 return 2;
3401 /* Initialize session ticket encryption and HMAC contexts */
3402 HMAC_CTX_init(&hctx);
3403 EVP_CIPHER_CTX_init(&ctx);
3404 if (tctx->tlsext_ticket_key_cb)
3405 {
3406 unsigned char *nctick = (unsigned char *)etick;
3407 int rv = tctx->tlsext_ticket_key_cb(s, nctick, nctick + 16,
3408 &ctx, &hctx, 0);
3409 if (rv < 0)
3410 return -1;
3411 if (rv == 0)
3412 return 2;
3413 if (rv == 2)
3414 renew_ticket = 1;
3415 }
3416 else
3417 {
3418 /* Check key name matches */
3419 if (memcmp(etick, tctx->tlsext_tick_key_name, 16))
3420 return 2;
3421 HMAC_Init_ex(&hctx, tctx->tlsext_tick_hmac_key, 16,
3422 tlsext_tick_md(), NULL);
3423 EVP_DecryptInit_ex(&ctx, EVP_aes_128_cbc(), NULL,
3424 tctx->tlsext_tick_aes_key, etick + 16);
3425 }
3426 /* Attempt to process session ticket, first conduct sanity and
3427 * integrity checks on ticket.
3428 */
3429 mlen = HMAC_size(&hctx);
3430 if (mlen < 0)
3431 {
3432 EVP_CIPHER_CTX_cleanup(&ctx);
3433 return -1;
3434 }
3435 eticklen -= mlen;
3436 /* Check HMAC of encrypted ticket */
3437 HMAC_Update(&hctx, etick, eticklen);
3438 HMAC_Final(&hctx, tick_hmac, NULL);
3439 HMAC_CTX_cleanup(&hctx);
3440 if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen))
3441 {
3442 EVP_CIPHER_CTX_cleanup(&ctx);
3443 return 2;
3444 }
3445 /* Attempt to decrypt session data */
3446 /* Move p after IV to start of encrypted ticket, update length */
3447 p = etick + 16 + EVP_CIPHER_CTX_iv_length(&ctx);
3448 eticklen -= 16 + EVP_CIPHER_CTX_iv_length(&ctx);
3449 sdec = OPENSSL_malloc(eticklen);
3450 if (!sdec)
3451 {
3452 EVP_CIPHER_CTX_cleanup(&ctx);
3453 return -1;
3454 }
3455 EVP_DecryptUpdate(&ctx, sdec, &slen, p, eticklen);
3456 if (EVP_DecryptFinal(&ctx, sdec + slen, &mlen) <= 0)
3457 {
3458 EVP_CIPHER_CTX_cleanup(&ctx);
3459 OPENSSL_free(sdec);
3460 return 2;
3461 }
3462 slen += mlen;
3463 EVP_CIPHER_CTX_cleanup(&ctx);
3464 p = sdec;
3465
3466 sess = d2i_SSL_SESSION(NULL, &p, slen);
3467 OPENSSL_free(sdec);
3468 if (sess)
3469 {
3470 /* The session ID, if non-empty, is used by some clients to
3471 * detect that the ticket has been accepted. So we copy it to
3472 * the session structure. If it is empty set length to zero
3473 * as required by standard.
3474 */
3475 if (sesslen)
3476 memcpy(sess->session_id, sess_id, sesslen);
3477 sess->session_id_length = sesslen;
3478 *psess = sess;
3479 if (renew_ticket)
3480 return 4;
3481 else
3482 return 3;
3483 }
3484 ERR_clear_error();
3485 /* For session parse failure, indicate that we need to send a new
3486 * ticket. */
3487 return 2;
3488 }
3489
3490 /* Tables to translate from NIDs to TLS v1.2 ids */
3491
3492 typedef struct
3493 {
3494 int nid;
3495 int id;
3496 } tls12_lookup;
3497
3498 static tls12_lookup tls12_md[] = {
3499 {NID_md5, TLSEXT_hash_md5},
3500 {NID_sha1, TLSEXT_hash_sha1},
3501 {NID_sha224, TLSEXT_hash_sha224},
3502 {NID_sha256, TLSEXT_hash_sha256},
3503 {NID_sha384, TLSEXT_hash_sha384},
3504 {NID_sha512, TLSEXT_hash_sha512}
3505 };
3506
3507 static tls12_lookup tls12_sig[] = {
3508 {EVP_PKEY_RSA, TLSEXT_signature_rsa},
3509 {EVP_PKEY_DSA, TLSEXT_signature_dsa},
3510 {EVP_PKEY_EC, TLSEXT_signature_ecdsa}
3511 };
3512
3513 static int tls12_find_id(int nid, tls12_lookup *table, size_t tlen)
3514 {
3515 size_t i;
3516 for (i = 0; i < tlen; i++)
3517 {
3518 if (table[i].nid == nid)
3519 return table[i].id;
3520 }
3521 return -1;
3522 }
3523
3524 static int tls12_find_nid(int id, tls12_lookup *table, size_t tlen)
3525 {
3526 size_t i;
3527 for (i = 0; i < tlen; i++)
3528 {
3529 if ((table[i].id) == id)
3530 return table[i].nid;
3531 }
3532 return NID_undef;
3533 }
3534
3535 int tls12_get_sigandhash(unsigned char *p, const EVP_PKEY *pk, const EVP_MD *md)
3536 {
3537 int sig_id, md_id;
3538 if (!md)
3539 return 0;
3540 md_id = tls12_find_id(EVP_MD_type(md), tls12_md,
3541 sizeof(tls12_md)/sizeof(tls12_lookup));
3542 if (md_id == -1)
3543 return 0;
3544 sig_id = tls12_get_sigid(pk);
3545 if (sig_id == -1)
3546 return 0;
3547 p[0] = (unsigned char)md_id;
3548 p[1] = (unsigned char)sig_id;
3549 return 1;
3550 }
3551
3552 int tls12_get_sigid(const EVP_PKEY *pk)
3553 {
3554 return tls12_find_id(pk->type, tls12_sig,
3555 sizeof(tls12_sig)/sizeof(tls12_lookup));
3556 }
3557
3558 typedef struct
3559 {
3560 int nid;
3561 int secbits;
3562 const EVP_MD *(*mfunc)(void);
3563 } tls12_hash_info;
3564
3565 static const tls12_hash_info tls12_md_info[] = {
3566 #ifdef OPENSSL_NO_MD5
3567 {NID_md5, 64, 0},
3568 #else
3569 {NID_md5, 64, EVP_md5},
3570 #endif
3571 #ifdef OPENSSL_NO_SHA
3572 {NID_sha1, 80, 0},
3573 #else
3574 {NID_sha1, 80, EVP_sha1},
3575 #endif
3576 #ifdef OPENSSL_NO_SHA256
3577 {NID_sha224, 112, 0},
3578 {NID_sha256, 128, 0},
3579 #else
3580 {NID_sha224, 112, EVP_sha224},
3581 {NID_sha256, 128, EVP_sha256},
3582 #endif
3583 #ifdef OPENSSL_NO_SHA512
3584 {NID_sha384, 192, 0},
3585 {NID_sha512, 256, 0}
3586 #else
3587 {NID_sha384, 192, EVP_sha384},
3588 {NID_sha512, 256, EVP_sha512}
3589 #endif
3590 };
3591
3592 static const tls12_hash_info *tls12_get_hash_info(unsigned char hash_alg)
3593 {
3594 if (hash_alg == 0)
3595 return NULL;
3596 if (hash_alg > sizeof(tls12_md_info)/sizeof(tls12_md_info[0]))
3597 return NULL;
3598 return tls12_md_info + hash_alg - 1;
3599 }
3600
3601 const EVP_MD *tls12_get_hash(unsigned char hash_alg)
3602 {
3603 const tls12_hash_info *inf;
3604 if (hash_alg == TLSEXT_hash_md5 && FIPS_mode())
3605 return NULL;
3606 inf = tls12_get_hash_info(hash_alg);
3607 if (!inf || !inf->mfunc)
3608 return NULL;
3609 return inf->mfunc();
3610 }
3611
3612 static int tls12_get_pkey_idx(unsigned char sig_alg)
3613 {
3614 switch(sig_alg)
3615 {
3616 #ifndef OPENSSL_NO_RSA
3617 case TLSEXT_signature_rsa:
3618 return SSL_PKEY_RSA_SIGN;
3619 #endif
3620 #ifndef OPENSSL_NO_DSA
3621 case TLSEXT_signature_dsa:
3622 return SSL_PKEY_DSA_SIGN;
3623 #endif
3624 #ifndef OPENSSL_NO_ECDSA
3625 case TLSEXT_signature_ecdsa:
3626 return SSL_PKEY_ECC;
3627 #endif
3628 }
3629 return -1;
3630 }
3631
3632 /* Convert TLS 1.2 signature algorithm extension values into NIDs */
3633 static void tls1_lookup_sigalg(int *phash_nid, int *psign_nid,
3634 int *psignhash_nid, const unsigned char *data)
3635 {
3636 int sign_nid = 0, hash_nid = 0;
3637 if (!phash_nid && !psign_nid && !psignhash_nid)
3638 return;
3639 if (phash_nid || psignhash_nid)
3640 {
3641 hash_nid = tls12_find_nid(data[0], tls12_md,
3642 sizeof(tls12_md)/sizeof(tls12_lookup));
3643 if (phash_nid)
3644 *phash_nid = hash_nid;
3645 }
3646 if (psign_nid || psignhash_nid)
3647 {
3648 sign_nid = tls12_find_nid(data[1], tls12_sig,
3649 sizeof(tls12_sig)/sizeof(tls12_lookup));
3650 if (psign_nid)
3651 *psign_nid = sign_nid;
3652 }
3653 if (psignhash_nid)
3654 {
3655 if (sign_nid && hash_nid)
3656 OBJ_find_sigid_by_algs(psignhash_nid,
3657 hash_nid, sign_nid);
3658 else
3659 *psignhash_nid = NID_undef;
3660 }
3661 }
3662 /* Check to see if a signature algorithm is allowed */
3663 static int tls12_sigalg_allowed(SSL *s, int op, const unsigned char *ptmp)
3664 {
3665 /* See if we have an entry in the hash table and it is enabled */
3666 const tls12_hash_info *hinf = tls12_get_hash_info(ptmp[0]);
3667 if (!hinf || !hinf->mfunc)
3668 return 0;
3669 /* See if public key algorithm allowed */
3670 if (tls12_get_pkey_idx(ptmp[1]) == -1)
3671 return 0;
3672 /* Finally see if security callback allows it */
3673 return ssl_security(s, op, hinf->secbits, hinf->nid, (void *)ptmp);
3674 }
3675
3676 /* Get a mask of disabled public key algorithms based on supported
3677 * signature algorithms. For example if no signature algorithm supports RSA
3678 * then RSA is disabled.
3679 */
3680
3681 void ssl_set_sig_mask(unsigned long *pmask_a, SSL *s, int op)
3682 {
3683 const unsigned char *sigalgs;
3684 size_t i, sigalgslen;
3685 int have_rsa = 0, have_dsa = 0, have_ecdsa = 0;
3686 /* Now go through all signature algorithms seeing if we support
3687 * any for RSA, DSA, ECDSA. Do this for all versions not just
3688 * TLS 1.2. To keep down calls to security callback only check
3689 * if we have to.
3690 */
3691 sigalgslen = tls12_get_psigalgs(s, &sigalgs);
3692 for (i = 0; i < sigalgslen; i += 2, sigalgs += 2)
3693 {
3694 switch(sigalgs[1])
3695 {
3696 #ifndef OPENSSL_NO_RSA
3697 case TLSEXT_signature_rsa:
3698 if (!have_rsa && tls12_sigalg_allowed(s, op, sigalgs))
3699 have_rsa = 1;
3700 break;
3701 #endif
3702 #ifndef OPENSSL_NO_DSA
3703 case TLSEXT_signature_dsa:
3704 if (!have_dsa && tls12_sigalg_allowed(s, op, sigalgs))
3705 have_dsa = 1;
3706 break;
3707 #endif
3708 #ifndef OPENSSL_NO_ECDSA
3709 case TLSEXT_signature_ecdsa:
3710 if (!have_ecdsa && tls12_sigalg_allowed(s, op, sigalgs))
3711 have_ecdsa = 1;
3712 break;
3713 #endif
3714 }
3715 }
3716 if (!have_rsa)
3717 *pmask_a |= SSL_aRSA;
3718 if (!have_dsa)
3719 *pmask_a |= SSL_aDSS;
3720 if (!have_ecdsa)
3721 *pmask_a |= SSL_aECDSA;
3722 }
3723
3724 size_t tls12_copy_sigalgs(SSL *s, unsigned char *out,
3725 const unsigned char *psig, size_t psiglen)
3726 {
3727 unsigned char *tmpout = out;
3728 size_t i;
3729 for (i = 0; i < psiglen; i += 2, psig += 2)
3730 {
3731 if (tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, psig))
3732 {
3733 *tmpout++ = psig[0];
3734 *tmpout++ = psig[1];
3735 }
3736 }
3737 return tmpout - out;
3738 }
3739
3740 /* Given preference and allowed sigalgs set shared sigalgs */
3741 static int tls12_shared_sigalgs(SSL *s, TLS_SIGALGS *shsig,
3742 const unsigned char *pref, size_t preflen,
3743 const unsigned char *allow, size_t allowlen)
3744 {
3745 const unsigned char *ptmp, *atmp;
3746 size_t i, j, nmatch = 0;
3747 for (i = 0, ptmp = pref; i < preflen; i+=2, ptmp+=2)
3748 {
3749 /* Skip disabled hashes or signature algorithms */
3750 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, ptmp))
3751 continue;
3752 for (j = 0, atmp = allow; j < allowlen; j+=2, atmp+=2)
3753 {
3754 if (ptmp[0] == atmp[0] && ptmp[1] == atmp[1])
3755 {
3756 nmatch++;
3757 if (shsig)
3758 {
3759 shsig->rhash = ptmp[0];
3760 shsig->rsign = ptmp[1];
3761 tls1_lookup_sigalg(&shsig->hash_nid,
3762 &shsig->sign_nid,
3763 &shsig->signandhash_nid,
3764 ptmp);
3765 shsig++;
3766 }
3767 break;
3768 }
3769 }
3770 }
3771 return nmatch;
3772 }
3773
3774 /* Set shared signature algorithms for SSL structures */
3775 static int tls1_set_shared_sigalgs(SSL *s)
3776 {
3777 const unsigned char *pref, *allow, *conf;
3778 size_t preflen, allowlen, conflen;
3779 size_t nmatch;
3780 TLS_SIGALGS *salgs = NULL;
3781 CERT *c = s->cert;
3782 unsigned int is_suiteb = tls1_suiteb(s);
3783 if (c->shared_sigalgs)
3784 {
3785 OPENSSL_free(c->shared_sigalgs);
3786 c->shared_sigalgs = NULL;
3787 }
3788 /* If client use client signature algorithms if not NULL */
3789 if (!s->server && c->client_sigalgs && !is_suiteb)
3790 {
3791 conf = c->client_sigalgs;
3792 conflen = c->client_sigalgslen;
3793 }
3794 else if (c->conf_sigalgs && !is_suiteb)
3795 {
3796 conf = c->conf_sigalgs;
3797 conflen = c->conf_sigalgslen;
3798 }
3799 else
3800 conflen = tls12_get_psigalgs(s, &conf);
3801 if(s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb)
3802 {
3803 pref = conf;
3804 preflen = conflen;
3805 allow = c->peer_sigalgs;
3806 allowlen = c->peer_sigalgslen;
3807 }
3808 else
3809 {
3810 allow = conf;
3811 allowlen = conflen;
3812 pref = c->peer_sigalgs;
3813 preflen = c->peer_sigalgslen;
3814 }
3815 nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen);
3816 if (!nmatch)
3817 return 1;
3818 salgs = OPENSSL_malloc(nmatch * sizeof(TLS_SIGALGS));
3819 if (!salgs)
3820 return 0;
3821 nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen);
3822 c->shared_sigalgs = salgs;
3823 c->shared_sigalgslen = nmatch;
3824 return 1;
3825 }
3826
3827
3828 /* Set preferred digest for each key type */
3829
3830 int tls1_save_sigalgs(SSL *s, const unsigned char *data, int dsize)
3831 {
3832 CERT *c = s->cert;
3833 /* Extension ignored for inappropriate versions */
3834 if (!SSL_USE_SIGALGS(s))
3835 return 1;
3836 /* Should never happen */
3837 if (!c)
3838 return 0;
3839
3840 if (c->peer_sigalgs)
3841 OPENSSL_free(c->peer_sigalgs);
3842 c->peer_sigalgs = OPENSSL_malloc(dsize);
3843 if (!c->peer_sigalgs)
3844 return 0;
3845 c->peer_sigalgslen = dsize;
3846 memcpy(c->peer_sigalgs, data, dsize);
3847 return 1;
3848 }
3849
3850 int tls1_process_sigalgs(SSL *s)
3851 {
3852 int idx;
3853 size_t i;
3854 const EVP_MD *md;
3855 CERT *c = s->cert;
3856 TLS_SIGALGS *sigptr;
3857 if (!tls1_set_shared_sigalgs(s))
3858 return 0;
3859
3860 #ifdef OPENSSL_SSL_DEBUG_BROKEN_PROTOCOL
3861 if (s->cert->cert_flags & SSL_CERT_FLAG_BROKEN_PROTOCOL)
3862 {
3863 /* Use first set signature preference to force message
3864 * digest, ignoring any peer preferences.
3865 */
3866 const unsigned char *sigs = NULL;
3867 if (s->server)
3868 sigs = c->conf_sigalgs;
3869 else
3870 sigs = c->client_sigalgs;
3871 if (sigs)
3872 {
3873 idx = tls12_get_pkey_idx(sigs[1]);
3874 md = tls12_get_hash(sigs[0]);
3875 c->pkeys[idx].digest = md;
3876 c->pkeys[idx].valid_flags = CERT_PKEY_EXPLICIT_SIGN;
3877 if (idx == SSL_PKEY_RSA_SIGN)
3878 {
3879 c->pkeys[SSL_PKEY_RSA_ENC].valid_flags = CERT_PKEY_EXPLICIT_SIGN;
3880 c->pkeys[SSL_PKEY_RSA_ENC].digest = md;
3881 }
3882 }
3883 }
3884 #endif
3885
3886 for (i = 0, sigptr = c->shared_sigalgs;
3887 i < c->shared_sigalgslen; i++, sigptr++)
3888 {
3889 idx = tls12_get_pkey_idx(sigptr->rsign);
3890 if (idx > 0 && c->pkeys[idx].digest == NULL)
3891 {
3892 md = tls12_get_hash(sigptr->rhash);
3893 c->pkeys[idx].digest = md;
3894 c->pkeys[idx].valid_flags = CERT_PKEY_EXPLICIT_SIGN;
3895 if (idx == SSL_PKEY_RSA_SIGN)
3896 {
3897 c->pkeys[SSL_PKEY_RSA_ENC].valid_flags = CERT_PKEY_EXPLICIT_SIGN;
3898 c->pkeys[SSL_PKEY_RSA_ENC].digest = md;
3899 }
3900 }
3901
3902 }
3903 /* In strict mode leave unset digests as NULL to indicate we can't
3904 * use the certificate for signing.
3905 */
3906 if (!(s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT))
3907 {
3908 /* Set any remaining keys to default values. NOTE: if alg is
3909 * not supported it stays as NULL.
3910 */
3911 #ifndef OPENSSL_NO_DSA
3912 if (!c->pkeys[SSL_PKEY_DSA_SIGN].digest)
3913 c->pkeys[SSL_PKEY_DSA_SIGN].digest = EVP_sha1();
3914 #endif
3915 #ifndef OPENSSL_NO_RSA
3916 if (!c->pkeys[SSL_PKEY_RSA_SIGN].digest)
3917 {
3918 c->pkeys[SSL_PKEY_RSA_SIGN].digest = EVP_sha1();
3919 c->pkeys[SSL_PKEY_RSA_ENC].digest = EVP_sha1();
3920 }
3921 #endif
3922 #ifndef OPENSSL_NO_ECDSA
3923 if (!c->pkeys[SSL_PKEY_ECC].digest)
3924 c->pkeys[SSL_PKEY_ECC].digest = EVP_sha1();
3925 #endif
3926 }
3927 return 1;
3928 }
3929
3930
3931 int SSL_get_sigalgs(SSL *s, int idx,
3932 int *psign, int *phash, int *psignhash,
3933 unsigned char *rsig, unsigned char *rhash)
3934 {
3935 const unsigned char *psig = s->cert->peer_sigalgs;
3936 if (psig == NULL)
3937 return 0;
3938 if (idx >= 0)
3939 {
3940 idx <<= 1;
3941 if (idx >= (int)s->cert->peer_sigalgslen)
3942 return 0;
3943 psig += idx;
3944 if (rhash)
3945 *rhash = psig[0];
3946 if (rsig)
3947 *rsig = psig[1];
3948 tls1_lookup_sigalg(phash, psign, psignhash, psig);
3949 }
3950 return s->cert->peer_sigalgslen / 2;
3951 }
3952
3953 int SSL_get_shared_sigalgs(SSL *s, int idx,
3954 int *psign, int *phash, int *psignhash,
3955 unsigned char *rsig, unsigned char *rhash)
3956 {
3957 TLS_SIGALGS *shsigalgs = s->cert->shared_sigalgs;
3958 if (!shsigalgs || idx >= (int)s->cert->shared_sigalgslen)
3959 return 0;
3960 shsigalgs += idx;
3961 if (phash)
3962 *phash = shsigalgs->hash_nid;
3963 if (psign)
3964 *psign = shsigalgs->sign_nid;
3965 if (psignhash)
3966 *psignhash = shsigalgs->signandhash_nid;
3967 if (rsig)
3968 *rsig = shsigalgs->rsign;
3969 if (rhash)
3970 *rhash = shsigalgs->rhash;
3971 return s->cert->shared_sigalgslen;
3972 }
3973
3974
3975 #ifndef OPENSSL_NO_HEARTBEATS
3976 int
3977 tls1_process_heartbeat(SSL *s)
3978 {
3979 unsigned char *p = &s->s3->rrec.data[0], *pl;
3980 unsigned short hbtype;
3981 unsigned int payload;
3982 unsigned int padding = 16; /* Use minimum padding */
3983
3984 if (s->msg_callback)
3985 s->msg_callback(0, s->version, TLS1_RT_HEARTBEAT,
3986 &s->s3->rrec.data[0], s->s3->rrec.length,
3987 s, s->msg_callback_arg);
3988
3989 /* Read type and payload length first */
3990 if (1 + 2 + 16 > s->s3->rrec.length)
3991 return 0; /* silently discard */
3992 hbtype = *p++;
3993 n2s(p, payload);
3994 if (1 + 2 + payload + 16 > s->s3->rrec.length)
3995 return 0; /* silently discard per RFC 6520 sec. 4 */
3996 pl = p;
3997
3998 if (hbtype == TLS1_HB_REQUEST)
3999 {
4000 unsigned char *buffer, *bp;
4001 int r;
4002
4003 /* Allocate memory for the response, size is 1 bytes
4004 * message type, plus 2 bytes payload length, plus
4005 * payload, plus padding
4006 */
4007 buffer = OPENSSL_malloc(1 + 2 + payload + padding);
4008 if (buffer == NULL)
4009 {
4010 SSLerr(SSL_F_TLS1_PROCESS_HEARTBEAT,ERR_R_MALLOC_FAILURE);
4011 return -1;
4012 }
4013 bp = buffer;
4014
4015 /* Enter response type, length and copy payload */
4016 *bp++ = TLS1_HB_RESPONSE;
4017 s2n(payload, bp);
4018 memcpy(bp, pl, payload);
4019 bp += payload;
4020 /* Random padding */
4021 RAND_pseudo_bytes(bp, padding);
4022
4023 r = ssl3_write_bytes(s, TLS1_RT_HEARTBEAT, buffer, 3 + payload + padding);
4024
4025 if (r >= 0 && s->msg_callback)
4026 s->msg_callback(1, s->version, TLS1_RT_HEARTBEAT,
4027 buffer, 3 + payload + padding,
4028 s, s->msg_callback_arg);
4029
4030 OPENSSL_free(buffer);
4031
4032 if (r < 0)
4033 return r;
4034 }
4035 else if (hbtype == TLS1_HB_RESPONSE)
4036 {
4037 unsigned int seq;
4038
4039 /* We only send sequence numbers (2 bytes unsigned int),
4040 * and 16 random bytes, so we just try to read the
4041 * sequence number */
4042 n2s(pl, seq);
4043
4044 if (payload == 18 && seq == s->tlsext_hb_seq)
4045 {
4046 s->tlsext_hb_seq++;
4047 s->tlsext_hb_pending = 0;
4048 }
4049 }
4050
4051 return 0;
4052 }
4053
4054 int
4055 tls1_heartbeat(SSL *s)
4056 {
4057 unsigned char *buf, *p;
4058 int ret;
4059 unsigned int payload = 18; /* Sequence number + random bytes */
4060 unsigned int padding = 16; /* Use minimum padding */
4061
4062 /* Only send if peer supports and accepts HB requests... */
4063 if (!(s->tlsext_heartbeat & SSL_TLSEXT_HB_ENABLED) ||
4064 s->tlsext_heartbeat & SSL_TLSEXT_HB_DONT_SEND_REQUESTS)
4065 {
4066 SSLerr(SSL_F_TLS1_HEARTBEAT,SSL_R_TLS_HEARTBEAT_PEER_DOESNT_ACCEPT);
4067 return -1;
4068 }
4069
4070 /* ...and there is none in flight yet... */
4071 if (s->tlsext_hb_pending)
4072 {
4073 SSLerr(SSL_F_TLS1_HEARTBEAT,SSL_R_TLS_HEARTBEAT_PENDING);
4074 return -1;
4075 }
4076
4077 /* ...and no handshake in progress. */
4078 if (SSL_in_init(s) || s->in_handshake)
4079 {
4080 SSLerr(SSL_F_TLS1_HEARTBEAT,SSL_R_UNEXPECTED_MESSAGE);
4081 return -1;
4082 }
4083
4084 /* Check if padding is too long, payload and padding
4085 * must not exceed 2^14 - 3 = 16381 bytes in total.
4086 */
4087 OPENSSL_assert(payload + padding <= 16381);
4088
4089 /* Create HeartBeat message, we just use a sequence number
4090 * as payload to distuingish different messages and add
4091 * some random stuff.
4092 * - Message Type, 1 byte
4093 * - Payload Length, 2 bytes (unsigned int)
4094 * - Payload, the sequence number (2 bytes uint)
4095 * - Payload, random bytes (16 bytes uint)
4096 * - Padding
4097 */
4098 buf = OPENSSL_malloc(1 + 2 + payload + padding);
4099 if (buf == NULL)
4100 {
4101 SSLerr(SSL_F_TLS1_HEARTBEAT,ERR_R_MALLOC_FAILURE);
4102 return -1;
4103 }
4104 p = buf;
4105 /* Message Type */
4106 *p++ = TLS1_HB_REQUEST;
4107 /* Payload length (18 bytes here) */
4108 s2n(payload, p);
4109 /* Sequence number */
4110 s2n(s->tlsext_hb_seq, p);
4111 /* 16 random bytes */
4112 RAND_pseudo_bytes(p, 16);
4113 p += 16;
4114 /* Random padding */
4115 RAND_pseudo_bytes(p, padding);
4116
4117 ret = ssl3_write_bytes(s, TLS1_RT_HEARTBEAT, buf, 3 + payload + padding);
4118 if (ret >= 0)
4119 {
4120 if (s->msg_callback)
4121 s->msg_callback(1, s->version, TLS1_RT_HEARTBEAT,
4122 buf, 3 + payload + padding,
4123 s, s->msg_callback_arg);
4124
4125 s->tlsext_hb_pending = 1;
4126 }
4127
4128 OPENSSL_free(buf);
4129
4130 return ret;
4131 }
4132 #endif
4133
4134 #define MAX_SIGALGLEN (TLSEXT_hash_num * TLSEXT_signature_num * 2)
4135
4136 typedef struct
4137 {
4138 size_t sigalgcnt;
4139 int sigalgs[MAX_SIGALGLEN];
4140 } sig_cb_st;
4141
4142 static int sig_cb(const char *elem, int len, void *arg)
4143 {
4144 sig_cb_st *sarg = arg;
4145 size_t i;
4146 char etmp[20], *p;
4147 int sig_alg, hash_alg;
4148 if (sarg->sigalgcnt == MAX_SIGALGLEN)
4149 return 0;
4150 if (len > (int)(sizeof(etmp) - 1))
4151 return 0;
4152 memcpy(etmp, elem, len);
4153 etmp[len] = 0;
4154 p = strchr(etmp, '+');
4155 if (!p)
4156 return 0;
4157 *p = 0;
4158 p++;
4159 if (!*p)
4160 return 0;
4161
4162 if (!strcmp(etmp, "RSA"))
4163 sig_alg = EVP_PKEY_RSA;
4164 else if (!strcmp(etmp, "DSA"))
4165 sig_alg = EVP_PKEY_DSA;
4166 else if (!strcmp(etmp, "ECDSA"))
4167 sig_alg = EVP_PKEY_EC;
4168 else return 0;
4169
4170 hash_alg = OBJ_sn2nid(p);
4171 if (hash_alg == NID_undef)
4172 hash_alg = OBJ_ln2nid(p);
4173 if (hash_alg == NID_undef)
4174 return 0;
4175
4176 for (i = 0; i < sarg->sigalgcnt; i+=2)
4177 {
4178 if (sarg->sigalgs[i] == sig_alg
4179 && sarg->sigalgs[i + 1] == hash_alg)
4180 return 0;
4181 }
4182 sarg->sigalgs[sarg->sigalgcnt++] = hash_alg;
4183 sarg->sigalgs[sarg->sigalgcnt++] = sig_alg;
4184 return 1;
4185 }
4186
4187 /* Set suppored signature algorithms based on a colon separated list
4188 * of the form sig+hash e.g. RSA+SHA512:DSA+SHA512 */
4189 int tls1_set_sigalgs_list(CERT *c, const char *str, int client)
4190 {
4191 sig_cb_st sig;
4192 sig.sigalgcnt = 0;
4193 if (!CONF_parse_list(str, ':', 1, sig_cb, &sig))
4194 return 0;
4195 if (c == NULL)
4196 return 1;
4197 return tls1_set_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client);
4198 }
4199
4200 int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client)
4201 {
4202 unsigned char *sigalgs, *sptr;
4203 int rhash, rsign;
4204 size_t i;
4205 if (salglen & 1)
4206 return 0;
4207 sigalgs = OPENSSL_malloc(salglen);
4208 if (sigalgs == NULL)
4209 return 0;
4210 for (i = 0, sptr = sigalgs; i < salglen; i+=2)
4211 {
4212 rhash = tls12_find_id(*psig_nids++, tls12_md,
4213 sizeof(tls12_md)/sizeof(tls12_lookup));
4214 rsign = tls12_find_id(*psig_nids++, tls12_sig,
4215 sizeof(tls12_sig)/sizeof(tls12_lookup));
4216
4217 if (rhash == -1 || rsign == -1)
4218 goto err;
4219 *sptr++ = rhash;
4220 *sptr++ = rsign;
4221 }
4222
4223 if (client)
4224 {
4225 if (c->client_sigalgs)
4226 OPENSSL_free(c->client_sigalgs);
4227 c->client_sigalgs = sigalgs;
4228 c->client_sigalgslen = salglen;
4229 }
4230 else
4231 {
4232 if (c->conf_sigalgs)
4233 OPENSSL_free(c->conf_sigalgs);
4234 c->conf_sigalgs = sigalgs;
4235 c->conf_sigalgslen = salglen;
4236 }
4237
4238 return 1;
4239
4240 err:
4241 OPENSSL_free(sigalgs);
4242 return 0;
4243 }
4244
4245 static int tls1_check_sig_alg(CERT *c, X509 *x, int default_nid)
4246 {
4247 int sig_nid;
4248 size_t i;
4249 if (default_nid == -1)
4250 return 1;
4251 sig_nid = X509_get_signature_nid(x);
4252 if (default_nid)
4253 return sig_nid == default_nid ? 1 : 0;
4254 for (i = 0; i < c->shared_sigalgslen; i++)
4255 if (sig_nid == c->shared_sigalgs[i].signandhash_nid)
4256 return 1;
4257 return 0;
4258 }
4259 /* Check to see if a certificate issuer name matches list of CA names */
4260 static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x)
4261 {
4262 X509_NAME *nm;
4263 int i;
4264 nm = X509_get_issuer_name(x);
4265 for (i = 0; i < sk_X509_NAME_num(names); i++)
4266 {
4267 if(!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i)))
4268 return 1;
4269 }
4270 return 0;
4271 }
4272
4273 /* Check certificate chain is consistent with TLS extensions and is
4274 * usable by server. This servers two purposes: it allows users to
4275 * check chains before passing them to the server and it allows the
4276 * server to check chains before attempting to use them.
4277 */
4278
4279 /* Flags which need to be set for a certificate when stict mode not set */
4280
4281 #define CERT_PKEY_VALID_FLAGS \
4282 (CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM)
4283 /* Strict mode flags */
4284 #define CERT_PKEY_STRICT_FLAGS \
4285 (CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \
4286 | CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE)
4287
4288 int tls1_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain,
4289 int idx)
4290 {
4291 int i;
4292 int rv = 0;
4293 int check_flags = 0, strict_mode;
4294 CERT_PKEY *cpk = NULL;
4295 CERT *c = s->cert;
4296 unsigned int suiteb_flags = tls1_suiteb(s);
4297 /* idx == -1 means checking server chains */
4298 if (idx != -1)
4299 {
4300 /* idx == -2 means checking client certificate chains */
4301 if (idx == -2)
4302 {
4303 cpk = c->key;
4304 idx = cpk - c->pkeys;
4305 }
4306 else
4307 cpk = c->pkeys + idx;
4308 x = cpk->x509;
4309 pk = cpk->privatekey;
4310 chain = cpk->chain;
4311 strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT;
4312 /* If no cert or key, forget it */
4313 if (!x || !pk)
4314 goto end;
4315 #ifdef OPENSSL_SSL_DEBUG_BROKEN_PROTOCOL
4316 /* Allow any certificate to pass test */
4317 if (s->cert->cert_flags & SSL_CERT_FLAG_BROKEN_PROTOCOL)
4318 {
4319 rv = CERT_PKEY_STRICT_FLAGS|CERT_PKEY_EXPLICIT_SIGN|CERT_PKEY_VALID|CERT_PKEY_SIGN;
4320 cpk->valid_flags = rv;
4321 return rv;
4322 }
4323 #endif
4324 }
4325 else
4326 {
4327 if (!x || !pk)
4328 goto end;
4329 idx = ssl_cert_type(x, pk);
4330 if (idx == -1)
4331 goto end;
4332 cpk = c->pkeys + idx;
4333 if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)
4334 check_flags = CERT_PKEY_STRICT_FLAGS;
4335 else
4336 check_flags = CERT_PKEY_VALID_FLAGS;
4337 strict_mode = 1;
4338 }
4339
4340 if (suiteb_flags)
4341 {
4342 int ok;
4343 if (check_flags)
4344 check_flags |= CERT_PKEY_SUITEB;
4345 ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags);
4346 if (ok == X509_V_OK)
4347 rv |= CERT_PKEY_SUITEB;
4348 else if (!check_flags)
4349 goto end;
4350 }
4351
4352 /* Check all signature algorithms are consistent with
4353 * signature algorithms extension if TLS 1.2 or later
4354 * and strict mode.
4355 */
4356 if (TLS1_get_version(s) >= TLS1_2_VERSION && strict_mode)
4357 {
4358 int default_nid;
4359 unsigned char rsign = 0;
4360 if (c->peer_sigalgs)
4361 default_nid = 0;
4362 /* If no sigalgs extension use defaults from RFC5246 */
4363 else
4364 {
4365 switch(idx)
4366 {
4367 case SSL_PKEY_RSA_ENC:
4368 case SSL_PKEY_RSA_SIGN:
4369 case SSL_PKEY_DH_RSA:
4370 rsign = TLSEXT_signature_rsa;
4371 default_nid = NID_sha1WithRSAEncryption;
4372 break;
4373
4374 case SSL_PKEY_DSA_SIGN:
4375 case SSL_PKEY_DH_DSA:
4376 rsign = TLSEXT_signature_dsa;
4377 default_nid = NID_dsaWithSHA1;
4378 break;
4379
4380 case SSL_PKEY_ECC:
4381 rsign = TLSEXT_signature_ecdsa;
4382 default_nid = NID_ecdsa_with_SHA1;
4383 break;
4384
4385 default:
4386 default_nid = -1;
4387 break;
4388 }
4389 }
4390 /* If peer sent no signature algorithms extension and we
4391 * have set preferred signature algorithms check we support
4392 * sha1.
4393 */
4394 if (default_nid > 0 && c->conf_sigalgs)
4395 {
4396 size_t j;
4397 const unsigned char *p = c->conf_sigalgs;
4398 for (j = 0; j < c->conf_sigalgslen; j += 2, p += 2)
4399 {
4400 if (p[0] == TLSEXT_hash_sha1 && p[1] == rsign)
4401 break;
4402 }
4403 if (j == c->conf_sigalgslen)
4404 {
4405 if (check_flags)
4406 goto skip_sigs;
4407 else
4408 goto end;
4409 }
4410 }
4411 /* Check signature algorithm of each cert in chain */
4412 if (!tls1_check_sig_alg(c, x, default_nid))
4413 {
4414 if (!check_flags) goto end;
4415 }
4416 else
4417 rv |= CERT_PKEY_EE_SIGNATURE;
4418 rv |= CERT_PKEY_CA_SIGNATURE;
4419 for (i = 0; i < sk_X509_num(chain); i++)
4420 {
4421 if (!tls1_check_sig_alg(c, sk_X509_value(chain, i),
4422 default_nid))
4423 {
4424 if (check_flags)
4425 {
4426 rv &= ~CERT_PKEY_CA_SIGNATURE;
4427 break;
4428 }
4429 else
4430 goto end;
4431 }
4432 }
4433 }
4434 /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */
4435 else if(check_flags)
4436 rv |= CERT_PKEY_EE_SIGNATURE|CERT_PKEY_CA_SIGNATURE;
4437 skip_sigs:
4438 /* Check cert parameters are consistent */
4439 if (tls1_check_cert_param(s, x, check_flags ? 1 : 2))
4440 rv |= CERT_PKEY_EE_PARAM;
4441 else if (!check_flags)
4442 goto end;
4443 if (!s->server)
4444 rv |= CERT_PKEY_CA_PARAM;
4445 /* In strict mode check rest of chain too */
4446 else if (strict_mode)
4447 {
4448 rv |= CERT_PKEY_CA_PARAM;
4449 for (i = 0; i < sk_X509_num(chain); i++)
4450 {
4451 X509 *ca = sk_X509_value(chain, i);
4452 if (!tls1_check_cert_param(s, ca, 0))
4453 {
4454 if (check_flags)
4455 {
4456 rv &= ~CERT_PKEY_CA_PARAM;
4457 break;
4458 }
4459 else
4460 goto end;
4461 }
4462 }
4463 }
4464 if (!s->server && strict_mode)
4465 {
4466 STACK_OF(X509_NAME) *ca_dn;
4467 int check_type = 0;
4468 switch (pk->type)
4469 {
4470 case EVP_PKEY_RSA:
4471 check_type = TLS_CT_RSA_SIGN;
4472 break;
4473 case EVP_PKEY_DSA:
4474 check_type = TLS_CT_DSS_SIGN;
4475 break;
4476 case EVP_PKEY_EC:
4477 check_type = TLS_CT_ECDSA_SIGN;
4478 break;
4479 case EVP_PKEY_DH:
4480 case EVP_PKEY_DHX:
4481 {
4482 int cert_type = X509_certificate_type(x, pk);
4483 if (cert_type & EVP_PKS_RSA)
4484 check_type = TLS_CT_RSA_FIXED_DH;
4485 if (cert_type & EVP_PKS_DSA)
4486 check_type = TLS_CT_DSS_FIXED_DH;
4487 }
4488 }
4489 if (check_type)
4490 {
4491 const unsigned char *ctypes;
4492 int ctypelen;
4493 if (c->ctypes)
4494 {
4495 ctypes = c->ctypes;
4496 ctypelen = (int)c->ctype_num;
4497 }
4498 else
4499 {
4500 ctypes = (unsigned char *)s->s3->tmp.ctype;
4501 ctypelen = s->s3->tmp.ctype_num;
4502 }
4503 for (i = 0; i < ctypelen; i++)
4504 {
4505 if (ctypes[i] == check_type)
4506 {
4507 rv |= CERT_PKEY_CERT_TYPE;
4508 break;
4509 }
4510 }
4511 if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags)
4512 goto end;
4513 }
4514 else
4515 rv |= CERT_PKEY_CERT_TYPE;
4516
4517
4518 ca_dn = s->s3->tmp.ca_names;
4519
4520 if (!sk_X509_NAME_num(ca_dn))
4521 rv |= CERT_PKEY_ISSUER_NAME;
4522
4523 if (!(rv & CERT_PKEY_ISSUER_NAME))
4524 {
4525 if (ssl_check_ca_name(ca_dn, x))
4526 rv |= CERT_PKEY_ISSUER_NAME;
4527 }
4528 if (!(rv & CERT_PKEY_ISSUER_NAME))
4529 {
4530 for (i = 0; i < sk_X509_num(chain); i++)
4531 {
4532 X509 *xtmp = sk_X509_value(chain, i);
4533 if (ssl_check_ca_name(ca_dn, xtmp))
4534 {
4535 rv |= CERT_PKEY_ISSUER_NAME;
4536 break;
4537 }
4538 }
4539 }
4540 if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME))
4541 goto end;
4542 }
4543 else
4544 rv |= CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE;
4545
4546 if (!check_flags || (rv & check_flags) == check_flags)
4547 rv |= CERT_PKEY_VALID;
4548
4549 end:
4550
4551 if (TLS1_get_version(s) >= TLS1_2_VERSION)
4552 {
4553 if (cpk->valid_flags & CERT_PKEY_EXPLICIT_SIGN)
4554 rv |= CERT_PKEY_EXPLICIT_SIGN|CERT_PKEY_SIGN;
4555 else if (cpk->digest)
4556 rv |= CERT_PKEY_SIGN;
4557 }
4558 else
4559 rv |= CERT_PKEY_SIGN|CERT_PKEY_EXPLICIT_SIGN;
4560
4561 /* When checking a CERT_PKEY structure all flags are irrelevant
4562 * if the chain is invalid.
4563 */
4564 if (!check_flags)
4565 {
4566 if (rv & CERT_PKEY_VALID)
4567 cpk->valid_flags = rv;
4568 else
4569 {
4570 /* Preserve explicit sign flag, clear rest */
4571 cpk->valid_flags &= CERT_PKEY_EXPLICIT_SIGN;
4572 return 0;
4573 }
4574 }
4575 return rv;
4576 }
4577
4578 /* Set validity of certificates in an SSL structure */
4579 void tls1_set_cert_validity(SSL *s)
4580 {
4581 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_ENC);
4582 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_SIGN);
4583 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN);
4584 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DH_RSA);
4585 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DH_DSA);
4586 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC);
4587 }
4588 /* User level utiity function to check a chain is suitable */
4589 int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain)
4590 {
4591 return tls1_check_chain(s, x, pk, chain, -1);
4592 }
4593
4594 #endif
4595
4596 #ifndef OPENSSL_NO_DH
4597 DH *ssl_get_auto_dh(SSL *s)
4598 {
4599 int dh_secbits = 80;
4600 if (s->cert->dh_tmp_auto == 2)
4601 return DH_get_1024_160();
4602 if (s->s3->tmp.new_cipher->algorithm_auth & SSL_aNULL)
4603 {
4604 if (s->s3->tmp.new_cipher->strength_bits == 256)
4605 dh_secbits = 128;
4606 else
4607 dh_secbits = 80;
4608 }
4609 else
4610 {
4611 CERT_PKEY *cpk = ssl_get_server_send_pkey(s);
4612 dh_secbits = EVP_PKEY_security_bits(cpk->privatekey);
4613 }
4614
4615 if (dh_secbits >= 128)
4616 {
4617 DH *dhp = DH_new();
4618 if (!dhp)
4619 return NULL;
4620 dhp->g = BN_new();
4621 if (dhp->g)
4622 BN_set_word(dhp->g, 2);
4623 if (dh_secbits >= 192)
4624 dhp->p = get_rfc3526_prime_8192(NULL);
4625 else
4626 dhp->p = get_rfc3526_prime_3072(NULL);
4627 if (!dhp->p || !dhp->g)
4628 {
4629 DH_free(dhp);
4630 return NULL;
4631 }
4632 return dhp;
4633 }
4634 if (dh_secbits >= 112)
4635 return DH_get_2048_224();
4636 return DH_get_1024_160();
4637 }
4638 #endif
4639
4640 static int ssl_security_cert_key(SSL *s, SSL_CTX *ctx, X509 *x, int op)
4641 {
4642 int secbits;
4643 EVP_PKEY *pkey = X509_get_pubkey(x);
4644 if (pkey)
4645 {
4646 secbits = EVP_PKEY_security_bits(pkey);
4647 EVP_PKEY_free(pkey);
4648 }
4649 else
4650 secbits = -1;
4651 if (s)
4652 return ssl_security(s, op, secbits, 0, x);
4653 else
4654 return ssl_ctx_security(ctx, op, secbits, 0, x);
4655 }
4656
4657 static int ssl_security_cert_sig(SSL *s, SSL_CTX *ctx, X509 *x, int op)
4658 {
4659 /* Lookup signature algorithm digest */
4660 int secbits = -1, md_nid = NID_undef, sig_nid;
4661 sig_nid = X509_get_signature_nid(x);
4662 if (sig_nid && OBJ_find_sigid_algs(sig_nid, &md_nid, NULL))
4663 {
4664 const EVP_MD *md;
4665 if (md_nid && (md = EVP_get_digestbynid(md_nid)))
4666 secbits = EVP_MD_size(md) * 4;
4667 }
4668 if (s)
4669 return ssl_security(s, op, secbits, md_nid, x);
4670 else
4671 return ssl_ctx_security(ctx, op, secbits, md_nid, x);
4672 }
4673
4674 int ssl_security_cert(SSL *s, SSL_CTX *ctx, X509 *x, int vfy, int is_ee)
4675 {
4676 if (vfy)
4677 vfy = SSL_SECOP_PEER;
4678 if (is_ee)
4679 {
4680 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy))
4681 return SSL_R_EE_KEY_TOO_SMALL;
4682 }
4683 else
4684 {
4685 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy))
4686 return SSL_R_CA_KEY_TOO_SMALL;
4687 }
4688 if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy))
4689 return SSL_R_CA_MD_TOO_WEAK;
4690 return 1;
4691 }
4692
4693 /* Check security of a chain, if sk includes the end entity certificate
4694 * then x is NULL. If vfy is 1 then we are verifying a peer chain and
4695 * not sending one to the peer.
4696 * Return values: 1 if ok otherwise error code to use
4697 */
4698
4699 int ssl_security_cert_chain(SSL *s, STACK_OF(X509) *sk, X509 *x, int vfy)
4700 {
4701 int rv, start_idx, i;
4702 if (x == NULL)
4703 {
4704 x = sk_X509_value(sk, 0);
4705 start_idx = 1;
4706 }
4707 else
4708 start_idx = 0;
4709
4710 rv = ssl_security_cert(s, NULL, x, vfy, 1);
4711 if (rv != 1)
4712 return rv;
4713
4714 for (i = start_idx; i < sk_X509_num(sk); i++)
4715 {
4716 x = sk_X509_value(sk, i);
4717 rv = ssl_security_cert(s, NULL, x, vfy, 0);
4718 if (rv != 1)
4719 return rv;
4720 }
4721 return 1;
4722 }