]> git.ipfire.org Git - thirdparty/openssl.git/blob - ssl/t1_lib.c
Check that Signature Algorithms are available before using them
[thirdparty/openssl.git] / ssl / t1_lib.c
1 /*
2 * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 /* We need access to the deprecated low level HMAC APIs */
11 #define OPENSSL_SUPPRESS_DEPRECATED
12
13 #include <stdio.h>
14 #include <stdlib.h>
15 #include <openssl/objects.h>
16 #include <openssl/evp.h>
17 #include <openssl/hmac.h>
18 #include <openssl/core_names.h>
19 #include <openssl/ocsp.h>
20 #include <openssl/conf.h>
21 #include <openssl/x509v3.h>
22 #include <openssl/dh.h>
23 #include <openssl/bn.h>
24 #include "internal/nelem.h"
25 #include "internal/evp.h"
26 #include "ssl_local.h"
27 #include <openssl/ct.h>
28
29 DEFINE_STACK_OF_CONST(SSL_CIPHER)
30 DEFINE_STACK_OF(X509)
31 DEFINE_STACK_OF(X509_NAME)
32
33 static const SIGALG_LOOKUP *find_sig_alg(SSL *s, X509 *x, EVP_PKEY *pkey);
34 static int tls12_sigalg_allowed(const SSL *s, int op, const SIGALG_LOOKUP *lu);
35
36 SSL3_ENC_METHOD const TLSv1_enc_data = {
37 tls1_enc,
38 tls1_mac,
39 tls1_setup_key_block,
40 tls1_generate_master_secret,
41 tls1_change_cipher_state,
42 tls1_final_finish_mac,
43 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
44 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
45 tls1_alert_code,
46 tls1_export_keying_material,
47 0,
48 ssl3_set_handshake_header,
49 tls_close_construct_packet,
50 ssl3_handshake_write
51 };
52
53 SSL3_ENC_METHOD const TLSv1_1_enc_data = {
54 tls1_enc,
55 tls1_mac,
56 tls1_setup_key_block,
57 tls1_generate_master_secret,
58 tls1_change_cipher_state,
59 tls1_final_finish_mac,
60 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
61 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
62 tls1_alert_code,
63 tls1_export_keying_material,
64 SSL_ENC_FLAG_EXPLICIT_IV,
65 ssl3_set_handshake_header,
66 tls_close_construct_packet,
67 ssl3_handshake_write
68 };
69
70 SSL3_ENC_METHOD const TLSv1_2_enc_data = {
71 tls1_enc,
72 tls1_mac,
73 tls1_setup_key_block,
74 tls1_generate_master_secret,
75 tls1_change_cipher_state,
76 tls1_final_finish_mac,
77 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
78 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
79 tls1_alert_code,
80 tls1_export_keying_material,
81 SSL_ENC_FLAG_EXPLICIT_IV | SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF
82 | SSL_ENC_FLAG_TLS1_2_CIPHERS,
83 ssl3_set_handshake_header,
84 tls_close_construct_packet,
85 ssl3_handshake_write
86 };
87
88 SSL3_ENC_METHOD const TLSv1_3_enc_data = {
89 tls13_enc,
90 tls1_mac,
91 tls13_setup_key_block,
92 tls13_generate_master_secret,
93 tls13_change_cipher_state,
94 tls13_final_finish_mac,
95 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
96 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
97 tls13_alert_code,
98 tls13_export_keying_material,
99 SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF,
100 ssl3_set_handshake_header,
101 tls_close_construct_packet,
102 ssl3_handshake_write
103 };
104
105 long tls1_default_timeout(void)
106 {
107 /*
108 * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for
109 * http, the cache would over fill
110 */
111 return (60 * 60 * 2);
112 }
113
114 int tls1_new(SSL *s)
115 {
116 if (!ssl3_new(s))
117 return 0;
118 if (!s->method->ssl_clear(s))
119 return 0;
120
121 return 1;
122 }
123
124 void tls1_free(SSL *s)
125 {
126 OPENSSL_free(s->ext.session_ticket);
127 ssl3_free(s);
128 }
129
130 int tls1_clear(SSL *s)
131 {
132 if (!ssl3_clear(s))
133 return 0;
134
135 if (s->method->version == TLS_ANY_VERSION)
136 s->version = TLS_MAX_VERSION_INTERNAL;
137 else
138 s->version = s->method->version;
139
140 return 1;
141 }
142
143 /*
144 * Table of group information.
145 */
146 #if !defined(OPENSSL_NO_DH) || !defined(OPENSSL_NO_EC)
147 static const TLS_GROUP_INFO nid_list[] = {
148 # ifndef OPENSSL_NO_EC
149 {NID_sect163k1, "EC", 80, TLS_GROUP_CURVE_CHAR2, 0x0001}, /* sect163k1 (1) */
150 {NID_sect163r1, "EC", 80, TLS_GROUP_CURVE_CHAR2, 0x0002}, /* sect163r1 (2) */
151 {NID_sect163r2, "EC", 80, TLS_GROUP_CURVE_CHAR2, 0x0003}, /* sect163r2 (3) */
152 {NID_sect193r1, "EC", 80, TLS_GROUP_CURVE_CHAR2, 0x0004}, /* sect193r1 (4) */
153 {NID_sect193r2, "EC", 80, TLS_GROUP_CURVE_CHAR2, 0x0005}, /* sect193r2 (5) */
154 {NID_sect233k1, "EC", 112, TLS_GROUP_CURVE_CHAR2, 0x0006}, /* sect233k1 (6) */
155 {NID_sect233r1, "EC", 112, TLS_GROUP_CURVE_CHAR2, 0x0007}, /* sect233r1 (7) */
156 {NID_sect239k1, "EC", 112, TLS_GROUP_CURVE_CHAR2, 0x0008}, /* sect239k1 (8) */
157 {NID_sect283k1, "EC", 128, TLS_GROUP_CURVE_CHAR2, 0x0009}, /* sect283k1 (9) */
158 {NID_sect283r1, "EC", 128, TLS_GROUP_CURVE_CHAR2, 0x000A}, /* sect283r1 (10) */
159 {NID_sect409k1, "EC", 192, TLS_GROUP_CURVE_CHAR2, 0x000B}, /* sect409k1 (11) */
160 {NID_sect409r1, "EC", 192, TLS_GROUP_CURVE_CHAR2, 0x000C}, /* sect409r1 (12) */
161 {NID_sect571k1, "EC", 256, TLS_GROUP_CURVE_CHAR2, 0x000D}, /* sect571k1 (13) */
162 {NID_sect571r1, "EC", 256, TLS_GROUP_CURVE_CHAR2, 0x000E}, /* sect571r1 (14) */
163 {NID_secp160k1, "EC", 80, TLS_GROUP_CURVE_PRIME, 0x000F}, /* secp160k1 (15) */
164 {NID_secp160r1, "EC", 80, TLS_GROUP_CURVE_PRIME, 0x0010}, /* secp160r1 (16) */
165 {NID_secp160r2, "EC", 80, TLS_GROUP_CURVE_PRIME, 0x0011}, /* secp160r2 (17) */
166 {NID_secp192k1, "EC", 80, TLS_GROUP_CURVE_PRIME, 0x0012}, /* secp192k1 (18) */
167 {NID_X9_62_prime192v1, "EC", 80, TLS_GROUP_CURVE_PRIME, 0x0013}, /* secp192r1 (19) */
168 {NID_secp224k1, "EC", 112, TLS_GROUP_CURVE_PRIME, 0x0014}, /* secp224k1 (20) */
169 {NID_secp224r1, "EC", 112, TLS_GROUP_CURVE_PRIME, 0x0015}, /* secp224r1 (21) */
170 {NID_secp256k1, "EC", 128, TLS_GROUP_CURVE_PRIME, 0x0016}, /* secp256k1 (22) */
171 {NID_X9_62_prime256v1, "EC", 128, TLS_GROUP_CURVE_PRIME, 0x0017}, /* secp256r1 (23) */
172 {NID_secp384r1, "EC", 192, TLS_GROUP_CURVE_PRIME, 0x0018}, /* secp384r1 (24) */
173 {NID_secp521r1, "EC", 256, TLS_GROUP_CURVE_PRIME, 0x0019}, /* secp521r1 (25) */
174 {NID_brainpoolP256r1, "EC", 128, TLS_GROUP_CURVE_PRIME, 0x001A}, /* brainpoolP256r1 (26) */
175 {NID_brainpoolP384r1, "EC", 192, TLS_GROUP_CURVE_PRIME, 0x001B}, /* brainpoolP384r1 (27) */
176 {NID_brainpoolP512r1, "EC", 256, TLS_GROUP_CURVE_PRIME, 0x001C}, /* brainpool512r1 (28) */
177 {EVP_PKEY_X25519, "X25519", 128, TLS_GROUP_CURVE_CUSTOM, 0x001D}, /* X25519 (29) */
178 {EVP_PKEY_X448, "X448", 224, TLS_GROUP_CURVE_CUSTOM, 0x001E}, /* X448 (30) */
179 # endif /* OPENSSL_NO_EC */
180 # ifndef OPENSSL_NO_GOST
181 {NID_id_tc26_gost_3410_2012_256_paramSetA, "GOST_2012_256", 128, TLS_GROUP_CURVE_PRIME, 0x0022}, /* GC256A (34) */
182 {NID_id_tc26_gost_3410_2012_256_paramSetB, "GOST_2012_256", 128, TLS_GROUP_CURVE_PRIME, 0x0023}, /* GC256B (35) */
183 {NID_id_tc26_gost_3410_2012_256_paramSetC, "GOST_2012_256", 128, TLS_GROUP_CURVE_PRIME, 0x0024}, /* GC256C (36) */
184 {NID_id_tc26_gost_3410_2012_256_paramSetD, "GOST_2012_256", 128, TLS_GROUP_CURVE_PRIME, 0x0025}, /* GC256D (37) */
185 {NID_id_tc26_gost_3410_2012_512_paramSetA, "GOST_2012_512", 256, TLS_GROUP_CURVE_PRIME, 0x0026}, /* GC512A (38) */
186 {NID_id_tc26_gost_3410_2012_512_paramSetB, "GOST_2012_512", 256, TLS_GROUP_CURVE_PRIME, 0x0027}, /* GC512B (39) */
187 {NID_id_tc26_gost_3410_2012_512_paramSetC, "GOST_2012_512", 256, TLS_GROUP_CURVE_PRIME, 0x0028}, /* GC512C (40) */
188 # endif /* OPENSSL_NO_GOST */
189 # ifndef OPENSSL_NO_DH
190 /* Security bit values for FFDHE groups are updated as per RFC 7919 */
191 {NID_ffdhe2048, "DH", 103, TLS_GROUP_FFDHE_FOR_TLS1_3, 0x0100}, /* ffdhe2048 (0x0100) */
192 {NID_ffdhe3072, "DH", 125, TLS_GROUP_FFDHE_FOR_TLS1_3, 0x0101}, /* ffdhe3072 (0x0101) */
193 {NID_ffdhe4096, "DH", 150, TLS_GROUP_FFDHE_FOR_TLS1_3, 0x0102}, /* ffdhe4096 (0x0102) */
194 {NID_ffdhe6144, "DH", 175, TLS_GROUP_FFDHE_FOR_TLS1_3, 0x0103}, /* ffdhe6144 (0x0103) */
195 {NID_ffdhe8192, "DH", 192, TLS_GROUP_FFDHE_FOR_TLS1_3, 0x0104}, /* ffdhe8192 (0x0104) */
196 # endif /* OPENSSL_NO_DH */
197 };
198 #endif
199
200 #ifndef OPENSSL_NO_EC
201 static const unsigned char ecformats_default[] = {
202 TLSEXT_ECPOINTFORMAT_uncompressed,
203 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime,
204 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2
205 };
206 #endif /* !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_DH) */
207
208 /* The default curves */
209 #if !defined(OPENSSL_NO_DH) || !defined(OPENSSL_NO_EC)
210 static const uint16_t supported_groups_default[] = {
211 # ifndef OPENSSL_NO_EC
212 29, /* X25519 (29) */
213 23, /* secp256r1 (23) */
214 30, /* X448 (30) */
215 25, /* secp521r1 (25) */
216 24, /* secp384r1 (24) */
217 # endif
218 # ifndef OPENSSL_NO_GOST
219 34, /* GC256A (34) */
220 35, /* GC256B (35) */
221 36, /* GC256C (36) */
222 37, /* GC256D (37) */
223 38, /* GC512A (38) */
224 39, /* GC512B (39) */
225 40, /* GC512C (40) */
226 # endif
227 # ifndef OPENSSL_NO_DH
228 0x100, /* ffdhe2048 (0x100) */
229 0x101, /* ffdhe3072 (0x101) */
230 0x102, /* ffdhe4096 (0x102) */
231 0x103, /* ffdhe6144 (0x103) */
232 0x104, /* ffdhe8192 (0x104) */
233 # endif
234 };
235 #endif /* !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_DH) */
236
237 #ifndef OPENSSL_NO_EC
238 static const uint16_t suiteb_curves[] = {
239 TLSEXT_curve_P_256,
240 TLSEXT_curve_P_384
241 };
242 #endif
243
244 const TLS_GROUP_INFO *tls1_group_id_lookup(uint16_t group_id)
245 {
246 #if !defined(OPENSSL_NO_DH) || !defined(OPENSSL_NO_EC)
247 size_t i;
248
249 /* ECC curves from RFC 4492 and RFC 7027 FFDHE group from RFC 8446 */
250 for (i = 0; i < OSSL_NELEM(nid_list); i++) {
251 if (nid_list[i].group_id == group_id)
252 return &nid_list[i];
253 }
254 #endif /* !defined(OPENSSL_NO_DH) || !defined(OPENSSL_NO_EC) */
255 return NULL;
256 }
257
258 #if !defined(OPENSSL_NO_DH) || !defined(OPENSSL_NO_EC)
259 int tls1_group_id2nid(uint16_t group_id)
260 {
261 const TLS_GROUP_INFO *ginf = tls1_group_id_lookup(group_id);
262
263 return ginf == NULL ? NID_undef : ginf->nid;
264 }
265
266 static uint16_t tls1_nid2group_id(int nid)
267 {
268 size_t i;
269
270 for (i = 0; i < OSSL_NELEM(nid_list); i++) {
271 if (nid_list[i].nid == nid)
272 return nid_list[i].group_id;
273 }
274 return 0;
275 }
276 #endif /* !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_DH) */
277
278 /*
279 * Set *pgroups to the supported groups list and *pgroupslen to
280 * the number of groups supported.
281 */
282 void tls1_get_supported_groups(SSL *s, const uint16_t **pgroups,
283 size_t *pgroupslen)
284 {
285 #if !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_DH)
286 /* For Suite B mode only include P-256, P-384 */
287 switch (tls1_suiteb(s)) {
288 # ifndef OPENSSL_NO_EC
289 case SSL_CERT_FLAG_SUITEB_128_LOS:
290 *pgroups = suiteb_curves;
291 *pgroupslen = OSSL_NELEM(suiteb_curves);
292 break;
293
294 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
295 *pgroups = suiteb_curves;
296 *pgroupslen = 1;
297 break;
298
299 case SSL_CERT_FLAG_SUITEB_192_LOS:
300 *pgroups = suiteb_curves + 1;
301 *pgroupslen = 1;
302 break;
303 # endif
304
305 default:
306 if (s->ext.supportedgroups == NULL) {
307 *pgroups = supported_groups_default;
308 *pgroupslen = OSSL_NELEM(supported_groups_default);
309 } else {
310 *pgroups = s->ext.supportedgroups;
311 *pgroupslen = s->ext.supportedgroups_len;
312 }
313 break;
314 }
315 #else
316 *pgroups = NULL;
317 *pgroupslen = 0;
318 #endif /* !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_DH) */
319 }
320
321 int tls_valid_group(SSL *s, uint16_t group_id, int version)
322 {
323 const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(group_id);
324
325 if (version < TLS1_3_VERSION) {
326 if ((ginfo->flags & TLS_GROUP_ONLY_FOR_TLS1_3) != 0)
327 return 0;
328 }
329 return 1;
330 }
331
332 /* See if group is allowed by security callback */
333 int tls_group_allowed(SSL *s, uint16_t group, int op)
334 {
335 const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(group);
336 unsigned char gtmp[2];
337
338 if (ginfo == NULL)
339 return 0;
340 #ifdef OPENSSL_NO_EC2M
341 if (ginfo->flags & TLS_GROUP_CURVE_CHAR2)
342 return 0;
343 #endif
344 #ifdef OPENSSL_NO_DH
345 if (ginfo->flags & TLS_GROUP_FFDHE)
346 return 0;
347 #endif
348 gtmp[0] = group >> 8;
349 gtmp[1] = group & 0xff;
350 return ssl_security(s, op, ginfo->secbits, ginfo->nid, (void *)gtmp);
351 }
352
353 /* Return 1 if "id" is in "list" */
354 static int tls1_in_list(uint16_t id, const uint16_t *list, size_t listlen)
355 {
356 size_t i;
357 for (i = 0; i < listlen; i++)
358 if (list[i] == id)
359 return 1;
360 return 0;
361 }
362
363 /*-
364 * For nmatch >= 0, return the id of the |nmatch|th shared group or 0
365 * if there is no match.
366 * For nmatch == -1, return number of matches
367 * For nmatch == -2, return the id of the group to use for
368 * a tmp key, or 0 if there is no match.
369 */
370 uint16_t tls1_shared_group(SSL *s, int nmatch)
371 {
372 const uint16_t *pref, *supp;
373 size_t num_pref, num_supp, i;
374 int k;
375
376 /* Can't do anything on client side */
377 if (s->server == 0)
378 return 0;
379 if (nmatch == -2) {
380 if (tls1_suiteb(s)) {
381 /*
382 * For Suite B ciphersuite determines curve: we already know
383 * these are acceptable due to previous checks.
384 */
385 unsigned long cid = s->s3.tmp.new_cipher->id;
386
387 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
388 return TLSEXT_curve_P_256;
389 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
390 return TLSEXT_curve_P_384;
391 /* Should never happen */
392 return 0;
393 }
394 /* If not Suite B just return first preference shared curve */
395 nmatch = 0;
396 }
397 /*
398 * If server preference set, our groups are the preference order
399 * otherwise peer decides.
400 */
401 if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) {
402 tls1_get_supported_groups(s, &pref, &num_pref);
403 tls1_get_peer_groups(s, &supp, &num_supp);
404 } else {
405 tls1_get_peer_groups(s, &pref, &num_pref);
406 tls1_get_supported_groups(s, &supp, &num_supp);
407 }
408
409 for (k = 0, i = 0; i < num_pref; i++) {
410 uint16_t id = pref[i];
411
412 if (!tls1_in_list(id, supp, num_supp)
413 || !tls_group_allowed(s, id, SSL_SECOP_CURVE_SHARED))
414 continue;
415 if (nmatch == k)
416 return id;
417 k++;
418 }
419 if (nmatch == -1)
420 return k;
421 /* Out of range (nmatch > k). */
422 return 0;
423 }
424
425 int tls1_set_groups(uint16_t **pext, size_t *pextlen,
426 int *groups, size_t ngroups)
427 {
428 #if !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_DH)
429 uint16_t *glist;
430 size_t i;
431 /*
432 * Bitmap of groups included to detect duplicates: two variables are added
433 * to detect duplicates as some values are more than 32.
434 */
435 unsigned long *dup_list = NULL;
436 unsigned long dup_list_egrp = 0;
437 unsigned long dup_list_dhgrp = 0;
438
439 if (ngroups == 0) {
440 SSLerr(SSL_F_TLS1_SET_GROUPS, SSL_R_BAD_LENGTH);
441 return 0;
442 }
443 if ((glist = OPENSSL_malloc(ngroups * sizeof(*glist))) == NULL) {
444 SSLerr(SSL_F_TLS1_SET_GROUPS, ERR_R_MALLOC_FAILURE);
445 return 0;
446 }
447 for (i = 0; i < ngroups; i++) {
448 unsigned long idmask;
449 uint16_t id;
450 id = tls1_nid2group_id(groups[i]);
451 if ((id & 0x00FF) >= (sizeof(unsigned long) * 8))
452 goto err;
453 idmask = 1L << (id & 0x00FF);
454 dup_list = (id < 0x100) ? &dup_list_egrp : &dup_list_dhgrp;
455 if (!id || ((*dup_list) & idmask))
456 goto err;
457 *dup_list |= idmask;
458 glist[i] = id;
459 }
460 OPENSSL_free(*pext);
461 *pext = glist;
462 *pextlen = ngroups;
463 return 1;
464 err:
465 OPENSSL_free(glist);
466 return 0;
467 #else
468 return 0;
469 #endif /* !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_DH) */
470 }
471
472 #if !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_DH)
473 # define MAX_GROUPLIST OSSL_NELEM(nid_list)
474
475 typedef struct {
476 size_t nidcnt;
477 int nid_arr[MAX_GROUPLIST];
478 } nid_cb_st;
479
480 static int nid_cb(const char *elem, int len, void *arg)
481 {
482 nid_cb_st *narg = arg;
483 size_t i;
484 int nid = NID_undef;
485 char etmp[20];
486 if (elem == NULL)
487 return 0;
488 if (narg->nidcnt == MAX_GROUPLIST)
489 return 0;
490 if (len > (int)(sizeof(etmp) - 1))
491 return 0;
492 memcpy(etmp, elem, len);
493 etmp[len] = 0;
494 # ifndef OPENSSL_NO_EC
495 nid = EC_curve_nist2nid(etmp);
496 # endif
497 if (nid == NID_undef)
498 nid = OBJ_sn2nid(etmp);
499 if (nid == NID_undef)
500 nid = OBJ_ln2nid(etmp);
501 if (nid == NID_undef)
502 return 0;
503 for (i = 0; i < narg->nidcnt; i++)
504 if (narg->nid_arr[i] == nid)
505 return 0;
506 narg->nid_arr[narg->nidcnt++] = nid;
507 return 1;
508 }
509 #endif /* !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_DH) */
510
511 /* Set groups based on a colon separate list */
512 int tls1_set_groups_list(uint16_t **pext, size_t *pextlen, const char *str)
513 {
514 #if !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_DH)
515 nid_cb_st ncb;
516 ncb.nidcnt = 0;
517 if (!CONF_parse_list(str, ':', 1, nid_cb, &ncb))
518 return 0;
519 if (pext == NULL)
520 return 1;
521 return tls1_set_groups(pext, pextlen, ncb.nid_arr, ncb.nidcnt);
522 #else
523 return 0;
524 #endif
525 }
526
527 /* Check a group id matches preferences */
528 int tls1_check_group_id(SSL *s, uint16_t group_id, int check_own_groups)
529 {
530 const uint16_t *groups;
531 size_t groups_len;
532
533 if (group_id == 0)
534 return 0;
535
536 /* Check for Suite B compliance */
537 if (tls1_suiteb(s) && s->s3.tmp.new_cipher != NULL) {
538 unsigned long cid = s->s3.tmp.new_cipher->id;
539
540 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) {
541 if (group_id != TLSEXT_curve_P_256)
542 return 0;
543 } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) {
544 if (group_id != TLSEXT_curve_P_384)
545 return 0;
546 } else {
547 /* Should never happen */
548 return 0;
549 }
550 }
551
552 if (check_own_groups) {
553 /* Check group is one of our preferences */
554 tls1_get_supported_groups(s, &groups, &groups_len);
555 if (!tls1_in_list(group_id, groups, groups_len))
556 return 0;
557 }
558
559 if (!tls_group_allowed(s, group_id, SSL_SECOP_CURVE_CHECK))
560 return 0;
561
562 /* For clients, nothing more to check */
563 if (!s->server)
564 return 1;
565
566 /* Check group is one of peers preferences */
567 tls1_get_peer_groups(s, &groups, &groups_len);
568
569 /*
570 * RFC 4492 does not require the supported elliptic curves extension
571 * so if it is not sent we can just choose any curve.
572 * It is invalid to send an empty list in the supported groups
573 * extension, so groups_len == 0 always means no extension.
574 */
575 if (groups_len == 0)
576 return 1;
577 return tls1_in_list(group_id, groups, groups_len);
578 }
579
580 #ifndef OPENSSL_NO_EC
581 void tls1_get_formatlist(SSL *s, const unsigned char **pformats,
582 size_t *num_formats)
583 {
584 /*
585 * If we have a custom point format list use it otherwise use default
586 */
587 if (s->ext.ecpointformats) {
588 *pformats = s->ext.ecpointformats;
589 *num_formats = s->ext.ecpointformats_len;
590 } else {
591 *pformats = ecformats_default;
592 /* For Suite B we don't support char2 fields */
593 if (tls1_suiteb(s))
594 *num_formats = sizeof(ecformats_default) - 1;
595 else
596 *num_formats = sizeof(ecformats_default);
597 }
598 }
599
600 /* Check a key is compatible with compression extension */
601 static int tls1_check_pkey_comp(SSL *s, EVP_PKEY *pkey)
602 {
603 const EC_KEY *ec;
604 const EC_GROUP *grp;
605 unsigned char comp_id;
606 size_t i;
607
608 /* If not an EC key nothing to check */
609 if (!EVP_PKEY_is_a(pkey, "EC"))
610 return 1;
611 ec = EVP_PKEY_get0_EC_KEY(pkey);
612 grp = EC_KEY_get0_group(ec);
613
614 /* Get required compression id */
615 if (EC_KEY_get_conv_form(ec) == POINT_CONVERSION_UNCOMPRESSED) {
616 comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;
617 } else if (SSL_IS_TLS13(s)) {
618 /*
619 * ec_point_formats extension is not used in TLSv1.3 so we ignore
620 * this check.
621 */
622 return 1;
623 } else {
624 int field_type = EC_GROUP_get_field_type(grp);
625
626 if (field_type == NID_X9_62_prime_field)
627 comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime;
628 else if (field_type == NID_X9_62_characteristic_two_field)
629 comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2;
630 else
631 return 0;
632 }
633 /*
634 * If point formats extension present check it, otherwise everything is
635 * supported (see RFC4492).
636 */
637 if (s->ext.peer_ecpointformats == NULL)
638 return 1;
639
640 for (i = 0; i < s->ext.peer_ecpointformats_len; i++) {
641 if (s->ext.peer_ecpointformats[i] == comp_id)
642 return 1;
643 }
644 return 0;
645 }
646
647 /* Return group id of a key */
648 static uint16_t tls1_get_group_id(EVP_PKEY *pkey)
649 {
650 int curve_nid = evp_pkey_get_EC_KEY_curve_nid(pkey);
651
652 if (curve_nid == NID_undef)
653 return 0;
654 return tls1_nid2group_id(curve_nid);
655 }
656
657 /*
658 * Check cert parameters compatible with extensions: currently just checks EC
659 * certificates have compatible curves and compression.
660 */
661 static int tls1_check_cert_param(SSL *s, X509 *x, int check_ee_md)
662 {
663 uint16_t group_id;
664 EVP_PKEY *pkey;
665 pkey = X509_get0_pubkey(x);
666 if (pkey == NULL)
667 return 0;
668 /* If not EC nothing to do */
669 if (!EVP_PKEY_is_a(pkey, "EC"))
670 return 1;
671 /* Check compression */
672 if (!tls1_check_pkey_comp(s, pkey))
673 return 0;
674 group_id = tls1_get_group_id(pkey);
675 /*
676 * For a server we allow the certificate to not be in our list of supported
677 * groups.
678 */
679 if (!tls1_check_group_id(s, group_id, !s->server))
680 return 0;
681 /*
682 * Special case for suite B. We *MUST* sign using SHA256+P-256 or
683 * SHA384+P-384.
684 */
685 if (check_ee_md && tls1_suiteb(s)) {
686 int check_md;
687 size_t i;
688
689 /* Check to see we have necessary signing algorithm */
690 if (group_id == TLSEXT_curve_P_256)
691 check_md = NID_ecdsa_with_SHA256;
692 else if (group_id == TLSEXT_curve_P_384)
693 check_md = NID_ecdsa_with_SHA384;
694 else
695 return 0; /* Should never happen */
696 for (i = 0; i < s->shared_sigalgslen; i++) {
697 if (check_md == s->shared_sigalgs[i]->sigandhash)
698 return 1;;
699 }
700 return 0;
701 }
702 return 1;
703 }
704
705 /*
706 * tls1_check_ec_tmp_key - Check EC temporary key compatibility
707 * @s: SSL connection
708 * @cid: Cipher ID we're considering using
709 *
710 * Checks that the kECDHE cipher suite we're considering using
711 * is compatible with the client extensions.
712 *
713 * Returns 0 when the cipher can't be used or 1 when it can.
714 */
715 int tls1_check_ec_tmp_key(SSL *s, unsigned long cid)
716 {
717 /* If not Suite B just need a shared group */
718 if (!tls1_suiteb(s))
719 return tls1_shared_group(s, 0) != 0;
720 /*
721 * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other
722 * curves permitted.
723 */
724 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
725 return tls1_check_group_id(s, TLSEXT_curve_P_256, 1);
726 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
727 return tls1_check_group_id(s, TLSEXT_curve_P_384, 1);
728
729 return 0;
730 }
731
732 #else
733
734 static int tls1_check_cert_param(SSL *s, X509 *x, int set_ee_md)
735 {
736 return 1;
737 }
738
739 #endif /* OPENSSL_NO_EC */
740
741 /* Default sigalg schemes */
742 static const uint16_t tls12_sigalgs[] = {
743 #ifndef OPENSSL_NO_EC
744 TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
745 TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
746 TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
747 TLSEXT_SIGALG_ed25519,
748 TLSEXT_SIGALG_ed448,
749 #endif
750
751 TLSEXT_SIGALG_rsa_pss_pss_sha256,
752 TLSEXT_SIGALG_rsa_pss_pss_sha384,
753 TLSEXT_SIGALG_rsa_pss_pss_sha512,
754 TLSEXT_SIGALG_rsa_pss_rsae_sha256,
755 TLSEXT_SIGALG_rsa_pss_rsae_sha384,
756 TLSEXT_SIGALG_rsa_pss_rsae_sha512,
757
758 TLSEXT_SIGALG_rsa_pkcs1_sha256,
759 TLSEXT_SIGALG_rsa_pkcs1_sha384,
760 TLSEXT_SIGALG_rsa_pkcs1_sha512,
761
762 #ifndef OPENSSL_NO_EC
763 TLSEXT_SIGALG_ecdsa_sha224,
764 TLSEXT_SIGALG_ecdsa_sha1,
765 #endif
766 TLSEXT_SIGALG_rsa_pkcs1_sha224,
767 TLSEXT_SIGALG_rsa_pkcs1_sha1,
768 #ifndef OPENSSL_NO_DSA
769 TLSEXT_SIGALG_dsa_sha224,
770 TLSEXT_SIGALG_dsa_sha1,
771
772 TLSEXT_SIGALG_dsa_sha256,
773 TLSEXT_SIGALG_dsa_sha384,
774 TLSEXT_SIGALG_dsa_sha512,
775 #endif
776 #ifndef OPENSSL_NO_GOST
777 TLSEXT_SIGALG_gostr34102012_256_intrinsic,
778 TLSEXT_SIGALG_gostr34102012_512_intrinsic,
779 TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
780 TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
781 TLSEXT_SIGALG_gostr34102001_gostr3411,
782 #endif
783 };
784
785 #ifndef OPENSSL_NO_EC
786 static const uint16_t suiteb_sigalgs[] = {
787 TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
788 TLSEXT_SIGALG_ecdsa_secp384r1_sha384
789 };
790 #endif
791
792 static const SIGALG_LOOKUP sigalg_lookup_tbl[] = {
793 #ifndef OPENSSL_NO_EC
794 {"ecdsa_secp256r1_sha256", TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
795 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
796 NID_ecdsa_with_SHA256, NID_X9_62_prime256v1, 1},
797 {"ecdsa_secp384r1_sha384", TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
798 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
799 NID_ecdsa_with_SHA384, NID_secp384r1, 1},
800 {"ecdsa_secp521r1_sha512", TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
801 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
802 NID_ecdsa_with_SHA512, NID_secp521r1, 1},
803 {"ed25519", TLSEXT_SIGALG_ed25519,
804 NID_undef, -1, EVP_PKEY_ED25519, SSL_PKEY_ED25519,
805 NID_undef, NID_undef, 1},
806 {"ed448", TLSEXT_SIGALG_ed448,
807 NID_undef, -1, EVP_PKEY_ED448, SSL_PKEY_ED448,
808 NID_undef, NID_undef, 1},
809 {NULL, TLSEXT_SIGALG_ecdsa_sha224,
810 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
811 NID_ecdsa_with_SHA224, NID_undef, 1},
812 {NULL, TLSEXT_SIGALG_ecdsa_sha1,
813 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
814 NID_ecdsa_with_SHA1, NID_undef, 1},
815 #endif
816 {"rsa_pss_rsae_sha256", TLSEXT_SIGALG_rsa_pss_rsae_sha256,
817 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
818 NID_undef, NID_undef, 1},
819 {"rsa_pss_rsae_sha384", TLSEXT_SIGALG_rsa_pss_rsae_sha384,
820 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
821 NID_undef, NID_undef, 1},
822 {"rsa_pss_rsae_sha512", TLSEXT_SIGALG_rsa_pss_rsae_sha512,
823 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
824 NID_undef, NID_undef, 1},
825 {"rsa_pss_pss_sha256", TLSEXT_SIGALG_rsa_pss_pss_sha256,
826 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
827 NID_undef, NID_undef, 1},
828 {"rsa_pss_pss_sha384", TLSEXT_SIGALG_rsa_pss_pss_sha384,
829 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
830 NID_undef, NID_undef, 1},
831 {"rsa_pss_pss_sha512", TLSEXT_SIGALG_rsa_pss_pss_sha512,
832 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
833 NID_undef, NID_undef, 1},
834 {"rsa_pkcs1_sha256", TLSEXT_SIGALG_rsa_pkcs1_sha256,
835 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
836 NID_sha256WithRSAEncryption, NID_undef, 1},
837 {"rsa_pkcs1_sha384", TLSEXT_SIGALG_rsa_pkcs1_sha384,
838 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
839 NID_sha384WithRSAEncryption, NID_undef, 1},
840 {"rsa_pkcs1_sha512", TLSEXT_SIGALG_rsa_pkcs1_sha512,
841 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
842 NID_sha512WithRSAEncryption, NID_undef, 1},
843 {"rsa_pkcs1_sha224", TLSEXT_SIGALG_rsa_pkcs1_sha224,
844 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
845 NID_sha224WithRSAEncryption, NID_undef, 1},
846 {"rsa_pkcs1_sha1", TLSEXT_SIGALG_rsa_pkcs1_sha1,
847 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
848 NID_sha1WithRSAEncryption, NID_undef, 1},
849 #ifndef OPENSSL_NO_DSA
850 {NULL, TLSEXT_SIGALG_dsa_sha256,
851 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
852 NID_dsa_with_SHA256, NID_undef, 1},
853 {NULL, TLSEXT_SIGALG_dsa_sha384,
854 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
855 NID_undef, NID_undef, 1},
856 {NULL, TLSEXT_SIGALG_dsa_sha512,
857 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
858 NID_undef, NID_undef, 1},
859 {NULL, TLSEXT_SIGALG_dsa_sha224,
860 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
861 NID_undef, NID_undef, 1},
862 {NULL, TLSEXT_SIGALG_dsa_sha1,
863 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
864 NID_dsaWithSHA1, NID_undef, 1},
865 #endif
866 #ifndef OPENSSL_NO_GOST
867 {NULL, TLSEXT_SIGALG_gostr34102012_256_intrinsic,
868 NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
869 NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
870 NID_undef, NID_undef, 1},
871 {NULL, TLSEXT_SIGALG_gostr34102012_512_intrinsic,
872 NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
873 NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
874 NID_undef, NID_undef, 1},
875 {NULL, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
876 NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
877 NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
878 NID_undef, NID_undef, 1},
879 {NULL, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
880 NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
881 NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
882 NID_undef, NID_undef, 1},
883 {NULL, TLSEXT_SIGALG_gostr34102001_gostr3411,
884 NID_id_GostR3411_94, SSL_MD_GOST94_IDX,
885 NID_id_GostR3410_2001, SSL_PKEY_GOST01,
886 NID_undef, NID_undef, 1}
887 #endif
888 };
889 /* Legacy sigalgs for TLS < 1.2 RSA TLS signatures */
890 static const SIGALG_LOOKUP legacy_rsa_sigalg = {
891 "rsa_pkcs1_md5_sha1", 0,
892 NID_md5_sha1, SSL_MD_MD5_SHA1_IDX,
893 EVP_PKEY_RSA, SSL_PKEY_RSA,
894 NID_undef, NID_undef, 1
895 };
896
897 /*
898 * Default signature algorithm values used if signature algorithms not present.
899 * From RFC5246. Note: order must match certificate index order.
900 */
901 static const uint16_t tls_default_sigalg[] = {
902 TLSEXT_SIGALG_rsa_pkcs1_sha1, /* SSL_PKEY_RSA */
903 0, /* SSL_PKEY_RSA_PSS_SIGN */
904 TLSEXT_SIGALG_dsa_sha1, /* SSL_PKEY_DSA_SIGN */
905 TLSEXT_SIGALG_ecdsa_sha1, /* SSL_PKEY_ECC */
906 TLSEXT_SIGALG_gostr34102001_gostr3411, /* SSL_PKEY_GOST01 */
907 TLSEXT_SIGALG_gostr34102012_256_intrinsic, /* SSL_PKEY_GOST12_256 */
908 TLSEXT_SIGALG_gostr34102012_512_intrinsic, /* SSL_PKEY_GOST12_512 */
909 0, /* SSL_PKEY_ED25519 */
910 0, /* SSL_PKEY_ED448 */
911 };
912
913 int ssl_setup_sig_algs(SSL_CTX *ctx)
914 {
915 size_t i;
916 const SIGALG_LOOKUP *lu;
917 SIGALG_LOOKUP *cache
918 = OPENSSL_malloc(sizeof(*lu) * OSSL_NELEM(sigalg_lookup_tbl));
919 EVP_PKEY *tmpkey = EVP_PKEY_new();
920 int ret = 0;
921
922 if (cache == NULL || tmpkey == NULL)
923 goto err;
924
925 ERR_set_mark();
926 for (i = 0, lu = sigalg_lookup_tbl;
927 i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) {
928 EVP_PKEY_CTX *pctx;
929
930 cache[i] = *lu;
931
932 /*
933 * Check hash is available.
934 * TODO(3.0): This test is not perfect. A provider could have support
935 * for a signature scheme, but not a particular hash. However the hash
936 * could be available from some other loaded provider. In that case it
937 * could be that the signature is available, and the hash is available
938 * independently - but not as a combination. We ignore this for now.
939 */
940 if (lu->hash != NID_undef
941 && ctx->ssl_digest_methods[lu->hash_idx] == NULL) {
942 cache[i].enabled = 0;
943 continue;
944 }
945
946 if (!EVP_PKEY_set_type(tmpkey, lu->sig)) {
947 cache[i].enabled = 0;
948 continue;
949 }
950 pctx = EVP_PKEY_CTX_new_from_pkey(ctx->libctx, tmpkey, ctx->propq);
951 /* If unable to create pctx we assume the sig algorithm is unavailable */
952 if (pctx == NULL)
953 cache[i].enabled = 0;
954 EVP_PKEY_CTX_free(pctx);
955 }
956 ERR_pop_to_mark();
957 ctx->sigalg_lookup_cache = cache;
958 cache = NULL;
959
960 ret = 1;
961 err:
962 OPENSSL_free(cache);
963 EVP_PKEY_free(tmpkey);
964 return ret;
965 }
966
967 /* Lookup TLS signature algorithm */
968 static const SIGALG_LOOKUP *tls1_lookup_sigalg(const SSL *s, uint16_t sigalg)
969 {
970 size_t i;
971 const SIGALG_LOOKUP *lu;
972
973 for (i = 0, lu = s->ctx->sigalg_lookup_cache;
974 /* cache should have the same number of elements as sigalg_lookup_tbl */
975 i < OSSL_NELEM(sigalg_lookup_tbl);
976 lu++, i++) {
977 if (lu->sigalg == sigalg)
978 return lu;
979 }
980 return NULL;
981 }
982 /* Lookup hash: return 0 if invalid or not enabled */
983 int tls1_lookup_md(SSL_CTX *ctx, const SIGALG_LOOKUP *lu, const EVP_MD **pmd)
984 {
985 const EVP_MD *md;
986 if (lu == NULL)
987 return 0;
988 /* lu->hash == NID_undef means no associated digest */
989 if (lu->hash == NID_undef) {
990 md = NULL;
991 } else {
992 md = ssl_md(ctx, lu->hash_idx);
993 if (md == NULL)
994 return 0;
995 }
996 if (pmd)
997 *pmd = md;
998 return 1;
999 }
1000
1001 /*
1002 * Check if key is large enough to generate RSA-PSS signature.
1003 *
1004 * The key must greater than or equal to 2 * hash length + 2.
1005 * SHA512 has a hash length of 64 bytes, which is incompatible
1006 * with a 128 byte (1024 bit) key.
1007 */
1008 #define RSA_PSS_MINIMUM_KEY_SIZE(md) (2 * EVP_MD_size(md) + 2)
1009 static int rsa_pss_check_min_key_size(SSL_CTX *ctx, const EVP_PKEY *pkey,
1010 const SIGALG_LOOKUP *lu)
1011 {
1012 const EVP_MD *md;
1013
1014 if (pkey == NULL)
1015 return 0;
1016 if (!tls1_lookup_md(ctx, lu, &md) || md == NULL)
1017 return 0;
1018 if (EVP_PKEY_size(pkey) < RSA_PSS_MINIMUM_KEY_SIZE(md))
1019 return 0;
1020 return 1;
1021 }
1022
1023 /*
1024 * Returns a signature algorithm when the peer did not send a list of supported
1025 * signature algorithms. The signature algorithm is fixed for the certificate
1026 * type. |idx| is a certificate type index (SSL_PKEY_*). When |idx| is -1 the
1027 * certificate type from |s| will be used.
1028 * Returns the signature algorithm to use, or NULL on error.
1029 */
1030 static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL *s, int idx)
1031 {
1032 if (idx == -1) {
1033 if (s->server) {
1034 size_t i;
1035
1036 /* Work out index corresponding to ciphersuite */
1037 for (i = 0; i < SSL_PKEY_NUM; i++) {
1038 const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(i);
1039
1040 if (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) {
1041 idx = i;
1042 break;
1043 }
1044 }
1045
1046 /*
1047 * Some GOST ciphersuites allow more than one signature algorithms
1048 * */
1049 if (idx == SSL_PKEY_GOST01 && s->s3.tmp.new_cipher->algorithm_auth != SSL_aGOST01) {
1050 int real_idx;
1051
1052 for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST01;
1053 real_idx--) {
1054 if (s->cert->pkeys[real_idx].privatekey != NULL) {
1055 idx = real_idx;
1056 break;
1057 }
1058 }
1059 }
1060 /*
1061 * As both SSL_PKEY_GOST12_512 and SSL_PKEY_GOST12_256 indices can be used
1062 * with new (aGOST12-only) ciphersuites, we should find out which one is available really.
1063 */
1064 else if (idx == SSL_PKEY_GOST12_256) {
1065 int real_idx;
1066
1067 for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST12_256;
1068 real_idx--) {
1069 if (s->cert->pkeys[real_idx].privatekey != NULL) {
1070 idx = real_idx;
1071 break;
1072 }
1073 }
1074 }
1075 } else {
1076 idx = s->cert->key - s->cert->pkeys;
1077 }
1078 }
1079 if (idx < 0 || idx >= (int)OSSL_NELEM(tls_default_sigalg))
1080 return NULL;
1081 if (SSL_USE_SIGALGS(s) || idx != SSL_PKEY_RSA) {
1082 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, tls_default_sigalg[idx]);
1083
1084 if (!tls1_lookup_md(s->ctx, lu, NULL))
1085 return NULL;
1086 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
1087 return NULL;
1088 return lu;
1089 }
1090 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, &legacy_rsa_sigalg))
1091 return NULL;
1092 return &legacy_rsa_sigalg;
1093 }
1094 /* Set peer sigalg based key type */
1095 int tls1_set_peer_legacy_sigalg(SSL *s, const EVP_PKEY *pkey)
1096 {
1097 size_t idx;
1098 const SIGALG_LOOKUP *lu;
1099
1100 if (ssl_cert_lookup_by_pkey(pkey, &idx) == NULL)
1101 return 0;
1102 lu = tls1_get_legacy_sigalg(s, idx);
1103 if (lu == NULL)
1104 return 0;
1105 s->s3.tmp.peer_sigalg = lu;
1106 return 1;
1107 }
1108
1109 size_t tls12_get_psigalgs(SSL *s, int sent, const uint16_t **psigs)
1110 {
1111 /*
1112 * If Suite B mode use Suite B sigalgs only, ignore any other
1113 * preferences.
1114 */
1115 #ifndef OPENSSL_NO_EC
1116 switch (tls1_suiteb(s)) {
1117 case SSL_CERT_FLAG_SUITEB_128_LOS:
1118 *psigs = suiteb_sigalgs;
1119 return OSSL_NELEM(suiteb_sigalgs);
1120
1121 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
1122 *psigs = suiteb_sigalgs;
1123 return 1;
1124
1125 case SSL_CERT_FLAG_SUITEB_192_LOS:
1126 *psigs = suiteb_sigalgs + 1;
1127 return 1;
1128 }
1129 #endif
1130 /*
1131 * We use client_sigalgs (if not NULL) if we're a server
1132 * and sending a certificate request or if we're a client and
1133 * determining which shared algorithm to use.
1134 */
1135 if ((s->server == sent) && s->cert->client_sigalgs != NULL) {
1136 *psigs = s->cert->client_sigalgs;
1137 return s->cert->client_sigalgslen;
1138 } else if (s->cert->conf_sigalgs) {
1139 *psigs = s->cert->conf_sigalgs;
1140 return s->cert->conf_sigalgslen;
1141 } else {
1142 *psigs = tls12_sigalgs;
1143 return OSSL_NELEM(tls12_sigalgs);
1144 }
1145 }
1146
1147 #ifndef OPENSSL_NO_EC
1148 /*
1149 * Called by servers only. Checks that we have a sig alg that supports the
1150 * specified EC curve.
1151 */
1152 int tls_check_sigalg_curve(const SSL *s, int curve)
1153 {
1154 const uint16_t *sigs;
1155 size_t siglen, i;
1156
1157 if (s->cert->conf_sigalgs) {
1158 sigs = s->cert->conf_sigalgs;
1159 siglen = s->cert->conf_sigalgslen;
1160 } else {
1161 sigs = tls12_sigalgs;
1162 siglen = OSSL_NELEM(tls12_sigalgs);
1163 }
1164
1165 for (i = 0; i < siglen; i++) {
1166 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, sigs[i]);
1167
1168 if (lu == NULL)
1169 continue;
1170 if (lu->sig == EVP_PKEY_EC
1171 && lu->curve != NID_undef
1172 && curve == lu->curve)
1173 return 1;
1174 }
1175
1176 return 0;
1177 }
1178 #endif
1179
1180 /*
1181 * Return the number of security bits for the signature algorithm, or 0 on
1182 * error.
1183 */
1184 static int sigalg_security_bits(SSL_CTX *ctx, const SIGALG_LOOKUP *lu)
1185 {
1186 const EVP_MD *md = NULL;
1187 int secbits = 0;
1188
1189 if (!tls1_lookup_md(ctx, lu, &md))
1190 return 0;
1191 if (md != NULL)
1192 {
1193 /* Security bits: half digest bits */
1194 secbits = EVP_MD_size(md) * 4;
1195 } else {
1196 /* Values from https://tools.ietf.org/html/rfc8032#section-8.5 */
1197 if (lu->sigalg == TLSEXT_SIGALG_ed25519)
1198 secbits = 128;
1199 else if (lu->sigalg == TLSEXT_SIGALG_ed448)
1200 secbits = 224;
1201 }
1202 return secbits;
1203 }
1204
1205 /*
1206 * Check signature algorithm is consistent with sent supported signature
1207 * algorithms and if so set relevant digest and signature scheme in
1208 * s.
1209 */
1210 int tls12_check_peer_sigalg(SSL *s, uint16_t sig, EVP_PKEY *pkey)
1211 {
1212 const uint16_t *sent_sigs;
1213 const EVP_MD *md = NULL;
1214 char sigalgstr[2];
1215 size_t sent_sigslen, i, cidx;
1216 int pkeyid = -1;
1217 const SIGALG_LOOKUP *lu;
1218 int secbits = 0;
1219
1220 /*
1221 * TODO(3.0) Remove this when we adapted this function for provider
1222 * side keys. We know that EVP_PKEY_get0() downgrades an EVP_PKEY
1223 * to contain a legacy key.
1224 *
1225 * THIS IS TEMPORARY
1226 */
1227 EVP_PKEY_get0(pkey);
1228 if (EVP_PKEY_id(pkey) == EVP_PKEY_NONE)
1229 return 0;
1230
1231 pkeyid = EVP_PKEY_id(pkey);
1232 /* Should never happen */
1233 if (pkeyid == -1)
1234 return -1;
1235 if (SSL_IS_TLS13(s)) {
1236 /* Disallow DSA for TLS 1.3 */
1237 if (pkeyid == EVP_PKEY_DSA) {
1238 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_TLS12_CHECK_PEER_SIGALG,
1239 SSL_R_WRONG_SIGNATURE_TYPE);
1240 return 0;
1241 }
1242 /* Only allow PSS for TLS 1.3 */
1243 if (pkeyid == EVP_PKEY_RSA)
1244 pkeyid = EVP_PKEY_RSA_PSS;
1245 }
1246 lu = tls1_lookup_sigalg(s, sig);
1247 /*
1248 * Check sigalgs is known. Disallow SHA1/SHA224 with TLS 1.3. Check key type
1249 * is consistent with signature: RSA keys can be used for RSA-PSS
1250 */
1251 if (lu == NULL
1252 || (SSL_IS_TLS13(s) && (lu->hash == NID_sha1 || lu->hash == NID_sha224))
1253 || (pkeyid != lu->sig
1254 && (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) {
1255 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_TLS12_CHECK_PEER_SIGALG,
1256 SSL_R_WRONG_SIGNATURE_TYPE);
1257 return 0;
1258 }
1259 /* Check the sigalg is consistent with the key OID */
1260 if (!ssl_cert_lookup_by_nid(EVP_PKEY_id(pkey), &cidx)
1261 || lu->sig_idx != (int)cidx) {
1262 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_TLS12_CHECK_PEER_SIGALG,
1263 SSL_R_WRONG_SIGNATURE_TYPE);
1264 return 0;
1265 }
1266
1267 #ifndef OPENSSL_NO_EC
1268 if (pkeyid == EVP_PKEY_EC) {
1269
1270 /* Check point compression is permitted */
1271 if (!tls1_check_pkey_comp(s, pkey)) {
1272 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
1273 SSL_F_TLS12_CHECK_PEER_SIGALG,
1274 SSL_R_ILLEGAL_POINT_COMPRESSION);
1275 return 0;
1276 }
1277
1278 /* For TLS 1.3 or Suite B check curve matches signature algorithm */
1279 if (SSL_IS_TLS13(s) || tls1_suiteb(s)) {
1280 int curve = evp_pkey_get_EC_KEY_curve_nid(pkey);
1281
1282 if (lu->curve != NID_undef && curve != lu->curve) {
1283 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
1284 SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_CURVE);
1285 return 0;
1286 }
1287 }
1288 if (!SSL_IS_TLS13(s)) {
1289 /* Check curve matches extensions */
1290 if (!tls1_check_group_id(s, tls1_get_group_id(pkey), 1)) {
1291 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
1292 SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_CURVE);
1293 return 0;
1294 }
1295 if (tls1_suiteb(s)) {
1296 /* Check sigalg matches a permissible Suite B value */
1297 if (sig != TLSEXT_SIGALG_ecdsa_secp256r1_sha256
1298 && sig != TLSEXT_SIGALG_ecdsa_secp384r1_sha384) {
1299 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
1300 SSL_F_TLS12_CHECK_PEER_SIGALG,
1301 SSL_R_WRONG_SIGNATURE_TYPE);
1302 return 0;
1303 }
1304 }
1305 }
1306 } else if (tls1_suiteb(s)) {
1307 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS12_CHECK_PEER_SIGALG,
1308 SSL_R_WRONG_SIGNATURE_TYPE);
1309 return 0;
1310 }
1311 #endif
1312
1313 /* Check signature matches a type we sent */
1314 sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
1315 for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
1316 if (sig == *sent_sigs)
1317 break;
1318 }
1319 /* Allow fallback to SHA1 if not strict mode */
1320 if (i == sent_sigslen && (lu->hash != NID_sha1
1321 || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) {
1322 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS12_CHECK_PEER_SIGALG,
1323 SSL_R_WRONG_SIGNATURE_TYPE);
1324 return 0;
1325 }
1326 if (!tls1_lookup_md(s->ctx, lu, &md)) {
1327 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS12_CHECK_PEER_SIGALG,
1328 SSL_R_UNKNOWN_DIGEST);
1329 return 0;
1330 }
1331 /*
1332 * Make sure security callback allows algorithm. For historical
1333 * reasons we have to pass the sigalg as a two byte char array.
1334 */
1335 sigalgstr[0] = (sig >> 8) & 0xff;
1336 sigalgstr[1] = sig & 0xff;
1337 secbits = sigalg_security_bits(s->ctx, lu);
1338 if (secbits == 0 ||
1339 !ssl_security(s, SSL_SECOP_SIGALG_CHECK, secbits,
1340 md != NULL ? EVP_MD_type(md) : NID_undef,
1341 (void *)sigalgstr)) {
1342 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS12_CHECK_PEER_SIGALG,
1343 SSL_R_WRONG_SIGNATURE_TYPE);
1344 return 0;
1345 }
1346 /* Store the sigalg the peer uses */
1347 s->s3.tmp.peer_sigalg = lu;
1348 return 1;
1349 }
1350
1351 int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid)
1352 {
1353 if (s->s3.tmp.peer_sigalg == NULL)
1354 return 0;
1355 *pnid = s->s3.tmp.peer_sigalg->sig;
1356 return 1;
1357 }
1358
1359 int SSL_get_signature_type_nid(const SSL *s, int *pnid)
1360 {
1361 if (s->s3.tmp.sigalg == NULL)
1362 return 0;
1363 *pnid = s->s3.tmp.sigalg->sig;
1364 return 1;
1365 }
1366
1367 /*
1368 * Set a mask of disabled algorithms: an algorithm is disabled if it isn't
1369 * supported, doesn't appear in supported signature algorithms, isn't supported
1370 * by the enabled protocol versions or by the security level.
1371 *
1372 * This function should only be used for checking which ciphers are supported
1373 * by the client.
1374 *
1375 * Call ssl_cipher_disabled() to check that it's enabled or not.
1376 */
1377 int ssl_set_client_disabled(SSL *s)
1378 {
1379 s->s3.tmp.mask_a = 0;
1380 s->s3.tmp.mask_k = 0;
1381 ssl_set_sig_mask(&s->s3.tmp.mask_a, s, SSL_SECOP_SIGALG_MASK);
1382 if (ssl_get_min_max_version(s, &s->s3.tmp.min_ver,
1383 &s->s3.tmp.max_ver, NULL) != 0)
1384 return 0;
1385 #ifndef OPENSSL_NO_PSK
1386 /* with PSK there must be client callback set */
1387 if (!s->psk_client_callback) {
1388 s->s3.tmp.mask_a |= SSL_aPSK;
1389 s->s3.tmp.mask_k |= SSL_PSK;
1390 }
1391 #endif /* OPENSSL_NO_PSK */
1392 #ifndef OPENSSL_NO_SRP
1393 if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) {
1394 s->s3.tmp.mask_a |= SSL_aSRP;
1395 s->s3.tmp.mask_k |= SSL_kSRP;
1396 }
1397 #endif
1398 return 1;
1399 }
1400
1401 /*
1402 * ssl_cipher_disabled - check that a cipher is disabled or not
1403 * @s: SSL connection that you want to use the cipher on
1404 * @c: cipher to check
1405 * @op: Security check that you want to do
1406 * @ecdhe: If set to 1 then TLSv1 ECDHE ciphers are also allowed in SSLv3
1407 *
1408 * Returns 1 when it's disabled, 0 when enabled.
1409 */
1410 int ssl_cipher_disabled(const SSL *s, const SSL_CIPHER *c, int op, int ecdhe)
1411 {
1412 if (c->algorithm_mkey & s->s3.tmp.mask_k
1413 || c->algorithm_auth & s->s3.tmp.mask_a)
1414 return 1;
1415 if (s->s3.tmp.max_ver == 0)
1416 return 1;
1417 if (!SSL_IS_DTLS(s)) {
1418 int min_tls = c->min_tls;
1419
1420 /*
1421 * For historical reasons we will allow ECHDE to be selected by a server
1422 * in SSLv3 if we are a client
1423 */
1424 if (min_tls == TLS1_VERSION && ecdhe
1425 && (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0)
1426 min_tls = SSL3_VERSION;
1427
1428 if ((min_tls > s->s3.tmp.max_ver) || (c->max_tls < s->s3.tmp.min_ver))
1429 return 1;
1430 }
1431 if (SSL_IS_DTLS(s) && (DTLS_VERSION_GT(c->min_dtls, s->s3.tmp.max_ver)
1432 || DTLS_VERSION_LT(c->max_dtls, s->s3.tmp.min_ver)))
1433 return 1;
1434
1435 return !ssl_security(s, op, c->strength_bits, 0, (void *)c);
1436 }
1437
1438 int tls_use_ticket(SSL *s)
1439 {
1440 if ((s->options & SSL_OP_NO_TICKET))
1441 return 0;
1442 return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL);
1443 }
1444
1445 int tls1_set_server_sigalgs(SSL *s)
1446 {
1447 size_t i;
1448
1449 /* Clear any shared signature algorithms */
1450 OPENSSL_free(s->shared_sigalgs);
1451 s->shared_sigalgs = NULL;
1452 s->shared_sigalgslen = 0;
1453 /* Clear certificate validity flags */
1454 for (i = 0; i < SSL_PKEY_NUM; i++)
1455 s->s3.tmp.valid_flags[i] = 0;
1456 /*
1457 * If peer sent no signature algorithms check to see if we support
1458 * the default algorithm for each certificate type
1459 */
1460 if (s->s3.tmp.peer_cert_sigalgs == NULL
1461 && s->s3.tmp.peer_sigalgs == NULL) {
1462 const uint16_t *sent_sigs;
1463 size_t sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
1464
1465 for (i = 0; i < SSL_PKEY_NUM; i++) {
1466 const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, i);
1467 size_t j;
1468
1469 if (lu == NULL)
1470 continue;
1471 /* Check default matches a type we sent */
1472 for (j = 0; j < sent_sigslen; j++) {
1473 if (lu->sigalg == sent_sigs[j]) {
1474 s->s3.tmp.valid_flags[i] = CERT_PKEY_SIGN;
1475 break;
1476 }
1477 }
1478 }
1479 return 1;
1480 }
1481
1482 if (!tls1_process_sigalgs(s)) {
1483 SSLfatal(s, SSL_AD_INTERNAL_ERROR,
1484 SSL_F_TLS1_SET_SERVER_SIGALGS, ERR_R_INTERNAL_ERROR);
1485 return 0;
1486 }
1487 if (s->shared_sigalgs != NULL)
1488 return 1;
1489
1490 /* Fatal error if no shared signature algorithms */
1491 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS1_SET_SERVER_SIGALGS,
1492 SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS);
1493 return 0;
1494 }
1495
1496 /*-
1497 * Gets the ticket information supplied by the client if any.
1498 *
1499 * hello: The parsed ClientHello data
1500 * ret: (output) on return, if a ticket was decrypted, then this is set to
1501 * point to the resulting session.
1502 */
1503 SSL_TICKET_STATUS tls_get_ticket_from_client(SSL *s, CLIENTHELLO_MSG *hello,
1504 SSL_SESSION **ret)
1505 {
1506 size_t size;
1507 RAW_EXTENSION *ticketext;
1508
1509 *ret = NULL;
1510 s->ext.ticket_expected = 0;
1511
1512 /*
1513 * If tickets disabled or not supported by the protocol version
1514 * (e.g. TLSv1.3) behave as if no ticket present to permit stateful
1515 * resumption.
1516 */
1517 if (s->version <= SSL3_VERSION || !tls_use_ticket(s))
1518 return SSL_TICKET_NONE;
1519
1520 ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket];
1521 if (!ticketext->present)
1522 return SSL_TICKET_NONE;
1523
1524 size = PACKET_remaining(&ticketext->data);
1525
1526 return tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size,
1527 hello->session_id, hello->session_id_len, ret);
1528 }
1529
1530 /*-
1531 * tls_decrypt_ticket attempts to decrypt a session ticket.
1532 *
1533 * If s->tls_session_secret_cb is set and we're not doing TLSv1.3 then we are
1534 * expecting a pre-shared key ciphersuite, in which case we have no use for
1535 * session tickets and one will never be decrypted, nor will
1536 * s->ext.ticket_expected be set to 1.
1537 *
1538 * Side effects:
1539 * Sets s->ext.ticket_expected to 1 if the server will have to issue
1540 * a new session ticket to the client because the client indicated support
1541 * (and s->tls_session_secret_cb is NULL) but the client either doesn't have
1542 * a session ticket or we couldn't use the one it gave us, or if
1543 * s->ctx->ext.ticket_key_cb asked to renew the client's ticket.
1544 * Otherwise, s->ext.ticket_expected is set to 0.
1545 *
1546 * etick: points to the body of the session ticket extension.
1547 * eticklen: the length of the session tickets extension.
1548 * sess_id: points at the session ID.
1549 * sesslen: the length of the session ID.
1550 * psess: (output) on return, if a ticket was decrypted, then this is set to
1551 * point to the resulting session.
1552 */
1553 SSL_TICKET_STATUS tls_decrypt_ticket(SSL *s, const unsigned char *etick,
1554 size_t eticklen, const unsigned char *sess_id,
1555 size_t sesslen, SSL_SESSION **psess)
1556 {
1557 SSL_SESSION *sess = NULL;
1558 unsigned char *sdec;
1559 const unsigned char *p;
1560 int slen, renew_ticket = 0, declen;
1561 SSL_TICKET_STATUS ret = SSL_TICKET_FATAL_ERR_OTHER;
1562 size_t mlen;
1563 unsigned char tick_hmac[EVP_MAX_MD_SIZE];
1564 SSL_HMAC *hctx = NULL;
1565 EVP_CIPHER_CTX *ctx = NULL;
1566 SSL_CTX *tctx = s->session_ctx;
1567
1568 if (eticklen == 0) {
1569 /*
1570 * The client will accept a ticket but doesn't currently have
1571 * one (TLSv1.2 and below), or treated as a fatal error in TLSv1.3
1572 */
1573 ret = SSL_TICKET_EMPTY;
1574 goto end;
1575 }
1576 if (!SSL_IS_TLS13(s) && s->ext.session_secret_cb) {
1577 /*
1578 * Indicate that the ticket couldn't be decrypted rather than
1579 * generating the session from ticket now, trigger
1580 * abbreviated handshake based on external mechanism to
1581 * calculate the master secret later.
1582 */
1583 ret = SSL_TICKET_NO_DECRYPT;
1584 goto end;
1585 }
1586
1587 /* Need at least keyname + iv */
1588 if (eticklen < TLSEXT_KEYNAME_LENGTH + EVP_MAX_IV_LENGTH) {
1589 ret = SSL_TICKET_NO_DECRYPT;
1590 goto end;
1591 }
1592
1593 /* Initialize session ticket encryption and HMAC contexts */
1594 hctx = ssl_hmac_new(tctx);
1595 if (hctx == NULL) {
1596 ret = SSL_TICKET_FATAL_ERR_MALLOC;
1597 goto end;
1598 }
1599 ctx = EVP_CIPHER_CTX_new();
1600 if (ctx == NULL) {
1601 ret = SSL_TICKET_FATAL_ERR_MALLOC;
1602 goto end;
1603 }
1604 #ifndef OPENSSL_NO_DEPRECATED_3_0
1605 if (tctx->ext.ticket_key_evp_cb != NULL || tctx->ext.ticket_key_cb != NULL)
1606 #else
1607 if (tctx->ext.ticket_key_evp_cb != NULL)
1608 #endif
1609 {
1610 unsigned char *nctick = (unsigned char *)etick;
1611 int rv = 0;
1612
1613 if (tctx->ext.ticket_key_evp_cb != NULL)
1614 rv = tctx->ext.ticket_key_evp_cb(s, nctick,
1615 nctick + TLSEXT_KEYNAME_LENGTH,
1616 ctx,
1617 ssl_hmac_get0_EVP_MAC_CTX(hctx),
1618 0);
1619 #ifndef OPENSSL_NO_DEPRECATED_3_0
1620 else if (tctx->ext.ticket_key_cb != NULL)
1621 /* if 0 is returned, write an empty ticket */
1622 rv = tctx->ext.ticket_key_cb(s, nctick,
1623 nctick + TLSEXT_KEYNAME_LENGTH,
1624 ctx, ssl_hmac_get0_HMAC_CTX(hctx), 0);
1625 #endif
1626 if (rv < 0) {
1627 ret = SSL_TICKET_FATAL_ERR_OTHER;
1628 goto end;
1629 }
1630 if (rv == 0) {
1631 ret = SSL_TICKET_NO_DECRYPT;
1632 goto end;
1633 }
1634 if (rv == 2)
1635 renew_ticket = 1;
1636 } else {
1637 EVP_CIPHER *aes256cbc = NULL;
1638
1639 /* Check key name matches */
1640 if (memcmp(etick, tctx->ext.tick_key_name,
1641 TLSEXT_KEYNAME_LENGTH) != 0) {
1642 ret = SSL_TICKET_NO_DECRYPT;
1643 goto end;
1644 }
1645
1646 aes256cbc = EVP_CIPHER_fetch(s->ctx->libctx, "AES-256-CBC",
1647 s->ctx->propq);
1648 if (aes256cbc == NULL
1649 || ssl_hmac_init(hctx, tctx->ext.secure->tick_hmac_key,
1650 sizeof(tctx->ext.secure->tick_hmac_key),
1651 "SHA256") <= 0
1652 || EVP_DecryptInit_ex(ctx, aes256cbc, NULL,
1653 tctx->ext.secure->tick_aes_key,
1654 etick + TLSEXT_KEYNAME_LENGTH) <= 0) {
1655 EVP_CIPHER_free(aes256cbc);
1656 ret = SSL_TICKET_FATAL_ERR_OTHER;
1657 goto end;
1658 }
1659 EVP_CIPHER_free(aes256cbc);
1660 if (SSL_IS_TLS13(s))
1661 renew_ticket = 1;
1662 }
1663 /*
1664 * Attempt to process session ticket, first conduct sanity and integrity
1665 * checks on ticket.
1666 */
1667 mlen = ssl_hmac_size(hctx);
1668 if (mlen == 0) {
1669 ret = SSL_TICKET_FATAL_ERR_OTHER;
1670 goto end;
1671 }
1672
1673 /* Sanity check ticket length: must exceed keyname + IV + HMAC */
1674 if (eticklen <=
1675 TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_iv_length(ctx) + mlen) {
1676 ret = SSL_TICKET_NO_DECRYPT;
1677 goto end;
1678 }
1679 eticklen -= mlen;
1680 /* Check HMAC of encrypted ticket */
1681 if (ssl_hmac_update(hctx, etick, eticklen) <= 0
1682 || ssl_hmac_final(hctx, tick_hmac, NULL, sizeof(tick_hmac)) <= 0) {
1683 ret = SSL_TICKET_FATAL_ERR_OTHER;
1684 goto end;
1685 }
1686
1687 if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) {
1688 ret = SSL_TICKET_NO_DECRYPT;
1689 goto end;
1690 }
1691 /* Attempt to decrypt session data */
1692 /* Move p after IV to start of encrypted ticket, update length */
1693 p = etick + TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_iv_length(ctx);
1694 eticklen -= TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_iv_length(ctx);
1695 sdec = OPENSSL_malloc(eticklen);
1696 if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p,
1697 (int)eticklen) <= 0) {
1698 OPENSSL_free(sdec);
1699 ret = SSL_TICKET_FATAL_ERR_OTHER;
1700 goto end;
1701 }
1702 if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) {
1703 OPENSSL_free(sdec);
1704 ret = SSL_TICKET_NO_DECRYPT;
1705 goto end;
1706 }
1707 slen += declen;
1708 p = sdec;
1709
1710 sess = d2i_SSL_SESSION(NULL, &p, slen);
1711 slen -= p - sdec;
1712 OPENSSL_free(sdec);
1713 if (sess) {
1714 /* Some additional consistency checks */
1715 if (slen != 0) {
1716 SSL_SESSION_free(sess);
1717 sess = NULL;
1718 ret = SSL_TICKET_NO_DECRYPT;
1719 goto end;
1720 }
1721 /*
1722 * The session ID, if non-empty, is used by some clients to detect
1723 * that the ticket has been accepted. So we copy it to the session
1724 * structure. If it is empty set length to zero as required by
1725 * standard.
1726 */
1727 if (sesslen) {
1728 memcpy(sess->session_id, sess_id, sesslen);
1729 sess->session_id_length = sesslen;
1730 }
1731 if (renew_ticket)
1732 ret = SSL_TICKET_SUCCESS_RENEW;
1733 else
1734 ret = SSL_TICKET_SUCCESS;
1735 goto end;
1736 }
1737 ERR_clear_error();
1738 /*
1739 * For session parse failure, indicate that we need to send a new ticket.
1740 */
1741 ret = SSL_TICKET_NO_DECRYPT;
1742
1743 end:
1744 EVP_CIPHER_CTX_free(ctx);
1745 ssl_hmac_free(hctx);
1746
1747 /*
1748 * If set, the decrypt_ticket_cb() is called unless a fatal error was
1749 * detected above. The callback is responsible for checking |ret| before it
1750 * performs any action
1751 */
1752 if (s->session_ctx->decrypt_ticket_cb != NULL
1753 && (ret == SSL_TICKET_EMPTY
1754 || ret == SSL_TICKET_NO_DECRYPT
1755 || ret == SSL_TICKET_SUCCESS
1756 || ret == SSL_TICKET_SUCCESS_RENEW)) {
1757 size_t keyname_len = eticklen;
1758 int retcb;
1759
1760 if (keyname_len > TLSEXT_KEYNAME_LENGTH)
1761 keyname_len = TLSEXT_KEYNAME_LENGTH;
1762 retcb = s->session_ctx->decrypt_ticket_cb(s, sess, etick, keyname_len,
1763 ret,
1764 s->session_ctx->ticket_cb_data);
1765 switch (retcb) {
1766 case SSL_TICKET_RETURN_ABORT:
1767 ret = SSL_TICKET_FATAL_ERR_OTHER;
1768 break;
1769
1770 case SSL_TICKET_RETURN_IGNORE:
1771 ret = SSL_TICKET_NONE;
1772 SSL_SESSION_free(sess);
1773 sess = NULL;
1774 break;
1775
1776 case SSL_TICKET_RETURN_IGNORE_RENEW:
1777 if (ret != SSL_TICKET_EMPTY && ret != SSL_TICKET_NO_DECRYPT)
1778 ret = SSL_TICKET_NO_DECRYPT;
1779 /* else the value of |ret| will already do the right thing */
1780 SSL_SESSION_free(sess);
1781 sess = NULL;
1782 break;
1783
1784 case SSL_TICKET_RETURN_USE:
1785 case SSL_TICKET_RETURN_USE_RENEW:
1786 if (ret != SSL_TICKET_SUCCESS
1787 && ret != SSL_TICKET_SUCCESS_RENEW)
1788 ret = SSL_TICKET_FATAL_ERR_OTHER;
1789 else if (retcb == SSL_TICKET_RETURN_USE)
1790 ret = SSL_TICKET_SUCCESS;
1791 else
1792 ret = SSL_TICKET_SUCCESS_RENEW;
1793 break;
1794
1795 default:
1796 ret = SSL_TICKET_FATAL_ERR_OTHER;
1797 }
1798 }
1799
1800 if (s->ext.session_secret_cb == NULL || SSL_IS_TLS13(s)) {
1801 switch (ret) {
1802 case SSL_TICKET_NO_DECRYPT:
1803 case SSL_TICKET_SUCCESS_RENEW:
1804 case SSL_TICKET_EMPTY:
1805 s->ext.ticket_expected = 1;
1806 }
1807 }
1808
1809 *psess = sess;
1810
1811 return ret;
1812 }
1813
1814 /* Check to see if a signature algorithm is allowed */
1815 static int tls12_sigalg_allowed(const SSL *s, int op, const SIGALG_LOOKUP *lu)
1816 {
1817 unsigned char sigalgstr[2];
1818 int secbits;
1819
1820 if (lu == NULL || !lu->enabled)
1821 return 0;
1822 /* DSA is not allowed in TLS 1.3 */
1823 if (SSL_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA)
1824 return 0;
1825 /* TODO(OpenSSL1.2) fully axe DSA/etc. in ClientHello per TLS 1.3 spec */
1826 if (!s->server && !SSL_IS_DTLS(s) && s->s3.tmp.min_ver >= TLS1_3_VERSION
1827 && (lu->sig == EVP_PKEY_DSA || lu->hash_idx == SSL_MD_SHA1_IDX
1828 || lu->hash_idx == SSL_MD_MD5_IDX
1829 || lu->hash_idx == SSL_MD_SHA224_IDX))
1830 return 0;
1831
1832 /* See if public key algorithm allowed */
1833 if (ssl_cert_is_disabled(lu->sig_idx))
1834 return 0;
1835
1836 if (lu->sig == NID_id_GostR3410_2012_256
1837 || lu->sig == NID_id_GostR3410_2012_512
1838 || lu->sig == NID_id_GostR3410_2001) {
1839 /* We never allow GOST sig algs on the server with TLSv1.3 */
1840 if (s->server && SSL_IS_TLS13(s))
1841 return 0;
1842 if (!s->server
1843 && s->method->version == TLS_ANY_VERSION
1844 && s->s3.tmp.max_ver >= TLS1_3_VERSION) {
1845 int i, num;
1846 STACK_OF(SSL_CIPHER) *sk;
1847
1848 /*
1849 * We're a client that could negotiate TLSv1.3. We only allow GOST
1850 * sig algs if we could negotiate TLSv1.2 or below and we have GOST
1851 * ciphersuites enabled.
1852 */
1853
1854 if (s->s3.tmp.min_ver >= TLS1_3_VERSION)
1855 return 0;
1856
1857 sk = SSL_get_ciphers(s);
1858 num = sk != NULL ? sk_SSL_CIPHER_num(sk) : 0;
1859 for (i = 0; i < num; i++) {
1860 const SSL_CIPHER *c;
1861
1862 c = sk_SSL_CIPHER_value(sk, i);
1863 /* Skip disabled ciphers */
1864 if (ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0))
1865 continue;
1866
1867 if ((c->algorithm_mkey & (SSL_kGOST | SSL_kGOST18)) != 0)
1868 break;
1869 }
1870 if (i == num)
1871 return 0;
1872 }
1873 }
1874
1875 /* Finally see if security callback allows it */
1876 secbits = sigalg_security_bits(s->ctx, lu);
1877 sigalgstr[0] = (lu->sigalg >> 8) & 0xff;
1878 sigalgstr[1] = lu->sigalg & 0xff;
1879 return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr);
1880 }
1881
1882 /*
1883 * Get a mask of disabled public key algorithms based on supported signature
1884 * algorithms. For example if no signature algorithm supports RSA then RSA is
1885 * disabled.
1886 */
1887
1888 void ssl_set_sig_mask(uint32_t *pmask_a, SSL *s, int op)
1889 {
1890 const uint16_t *sigalgs;
1891 size_t i, sigalgslen;
1892 uint32_t disabled_mask = SSL_aRSA | SSL_aDSS | SSL_aECDSA;
1893 /*
1894 * Go through all signature algorithms seeing if we support any
1895 * in disabled_mask.
1896 */
1897 sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs);
1898 for (i = 0; i < sigalgslen; i++, sigalgs++) {
1899 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *sigalgs);
1900 const SSL_CERT_LOOKUP *clu;
1901
1902 if (lu == NULL)
1903 continue;
1904
1905 clu = ssl_cert_lookup_by_idx(lu->sig_idx);
1906 if (clu == NULL)
1907 continue;
1908
1909 /* If algorithm is disabled see if we can enable it */
1910 if ((clu->amask & disabled_mask) != 0
1911 && tls12_sigalg_allowed(s, op, lu))
1912 disabled_mask &= ~clu->amask;
1913 }
1914 *pmask_a |= disabled_mask;
1915 }
1916
1917 int tls12_copy_sigalgs(SSL *s, WPACKET *pkt,
1918 const uint16_t *psig, size_t psiglen)
1919 {
1920 size_t i;
1921 int rv = 0;
1922
1923 for (i = 0; i < psiglen; i++, psig++) {
1924 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *psig);
1925
1926 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
1927 continue;
1928 if (!WPACKET_put_bytes_u16(pkt, *psig))
1929 return 0;
1930 /*
1931 * If TLS 1.3 must have at least one valid TLS 1.3 message
1932 * signing algorithm: i.e. neither RSA nor SHA1/SHA224
1933 */
1934 if (rv == 0 && (!SSL_IS_TLS13(s)
1935 || (lu->sig != EVP_PKEY_RSA
1936 && lu->hash != NID_sha1
1937 && lu->hash != NID_sha224)))
1938 rv = 1;
1939 }
1940 if (rv == 0)
1941 SSLerr(SSL_F_TLS12_COPY_SIGALGS, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
1942 return rv;
1943 }
1944
1945 /* Given preference and allowed sigalgs set shared sigalgs */
1946 static size_t tls12_shared_sigalgs(SSL *s, const SIGALG_LOOKUP **shsig,
1947 const uint16_t *pref, size_t preflen,
1948 const uint16_t *allow, size_t allowlen)
1949 {
1950 const uint16_t *ptmp, *atmp;
1951 size_t i, j, nmatch = 0;
1952 for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) {
1953 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *ptmp);
1954
1955 /* Skip disabled hashes or signature algorithms */
1956 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, lu))
1957 continue;
1958 for (j = 0, atmp = allow; j < allowlen; j++, atmp++) {
1959 if (*ptmp == *atmp) {
1960 nmatch++;
1961 if (shsig)
1962 *shsig++ = lu;
1963 break;
1964 }
1965 }
1966 }
1967 return nmatch;
1968 }
1969
1970 /* Set shared signature algorithms for SSL structures */
1971 static int tls1_set_shared_sigalgs(SSL *s)
1972 {
1973 const uint16_t *pref, *allow, *conf;
1974 size_t preflen, allowlen, conflen;
1975 size_t nmatch;
1976 const SIGALG_LOOKUP **salgs = NULL;
1977 CERT *c = s->cert;
1978 unsigned int is_suiteb = tls1_suiteb(s);
1979
1980 OPENSSL_free(s->shared_sigalgs);
1981 s->shared_sigalgs = NULL;
1982 s->shared_sigalgslen = 0;
1983 /* If client use client signature algorithms if not NULL */
1984 if (!s->server && c->client_sigalgs && !is_suiteb) {
1985 conf = c->client_sigalgs;
1986 conflen = c->client_sigalgslen;
1987 } else if (c->conf_sigalgs && !is_suiteb) {
1988 conf = c->conf_sigalgs;
1989 conflen = c->conf_sigalgslen;
1990 } else
1991 conflen = tls12_get_psigalgs(s, 0, &conf);
1992 if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) {
1993 pref = conf;
1994 preflen = conflen;
1995 allow = s->s3.tmp.peer_sigalgs;
1996 allowlen = s->s3.tmp.peer_sigalgslen;
1997 } else {
1998 allow = conf;
1999 allowlen = conflen;
2000 pref = s->s3.tmp.peer_sigalgs;
2001 preflen = s->s3.tmp.peer_sigalgslen;
2002 }
2003 nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen);
2004 if (nmatch) {
2005 if ((salgs = OPENSSL_malloc(nmatch * sizeof(*salgs))) == NULL) {
2006 SSLerr(SSL_F_TLS1_SET_SHARED_SIGALGS, ERR_R_MALLOC_FAILURE);
2007 return 0;
2008 }
2009 nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen);
2010 } else {
2011 salgs = NULL;
2012 }
2013 s->shared_sigalgs = salgs;
2014 s->shared_sigalgslen = nmatch;
2015 return 1;
2016 }
2017
2018 int tls1_save_u16(PACKET *pkt, uint16_t **pdest, size_t *pdestlen)
2019 {
2020 unsigned int stmp;
2021 size_t size, i;
2022 uint16_t *buf;
2023
2024 size = PACKET_remaining(pkt);
2025
2026 /* Invalid data length */
2027 if (size == 0 || (size & 1) != 0)
2028 return 0;
2029
2030 size >>= 1;
2031
2032 if ((buf = OPENSSL_malloc(size * sizeof(*buf))) == NULL) {
2033 SSLerr(SSL_F_TLS1_SAVE_U16, ERR_R_MALLOC_FAILURE);
2034 return 0;
2035 }
2036 for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++)
2037 buf[i] = stmp;
2038
2039 if (i != size) {
2040 OPENSSL_free(buf);
2041 return 0;
2042 }
2043
2044 OPENSSL_free(*pdest);
2045 *pdest = buf;
2046 *pdestlen = size;
2047
2048 return 1;
2049 }
2050
2051 int tls1_save_sigalgs(SSL *s, PACKET *pkt, int cert)
2052 {
2053 /* Extension ignored for inappropriate versions */
2054 if (!SSL_USE_SIGALGS(s))
2055 return 1;
2056 /* Should never happen */
2057 if (s->cert == NULL)
2058 return 0;
2059
2060 if (cert)
2061 return tls1_save_u16(pkt, &s->s3.tmp.peer_cert_sigalgs,
2062 &s->s3.tmp.peer_cert_sigalgslen);
2063 else
2064 return tls1_save_u16(pkt, &s->s3.tmp.peer_sigalgs,
2065 &s->s3.tmp.peer_sigalgslen);
2066
2067 }
2068
2069 /* Set preferred digest for each key type */
2070
2071 int tls1_process_sigalgs(SSL *s)
2072 {
2073 size_t i;
2074 uint32_t *pvalid = s->s3.tmp.valid_flags;
2075
2076 if (!tls1_set_shared_sigalgs(s))
2077 return 0;
2078
2079 for (i = 0; i < SSL_PKEY_NUM; i++)
2080 pvalid[i] = 0;
2081
2082 for (i = 0; i < s->shared_sigalgslen; i++) {
2083 const SIGALG_LOOKUP *sigptr = s->shared_sigalgs[i];
2084 int idx = sigptr->sig_idx;
2085
2086 /* Ignore PKCS1 based sig algs in TLSv1.3 */
2087 if (SSL_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA)
2088 continue;
2089 /* If not disabled indicate we can explicitly sign */
2090 if (pvalid[idx] == 0 && !ssl_cert_is_disabled(idx))
2091 pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
2092 }
2093 return 1;
2094 }
2095
2096 int SSL_get_sigalgs(SSL *s, int idx,
2097 int *psign, int *phash, int *psignhash,
2098 unsigned char *rsig, unsigned char *rhash)
2099 {
2100 uint16_t *psig = s->s3.tmp.peer_sigalgs;
2101 size_t numsigalgs = s->s3.tmp.peer_sigalgslen;
2102 if (psig == NULL || numsigalgs > INT_MAX)
2103 return 0;
2104 if (idx >= 0) {
2105 const SIGALG_LOOKUP *lu;
2106
2107 if (idx >= (int)numsigalgs)
2108 return 0;
2109 psig += idx;
2110 if (rhash != NULL)
2111 *rhash = (unsigned char)((*psig >> 8) & 0xff);
2112 if (rsig != NULL)
2113 *rsig = (unsigned char)(*psig & 0xff);
2114 lu = tls1_lookup_sigalg(s, *psig);
2115 if (psign != NULL)
2116 *psign = lu != NULL ? lu->sig : NID_undef;
2117 if (phash != NULL)
2118 *phash = lu != NULL ? lu->hash : NID_undef;
2119 if (psignhash != NULL)
2120 *psignhash = lu != NULL ? lu->sigandhash : NID_undef;
2121 }
2122 return (int)numsigalgs;
2123 }
2124
2125 int SSL_get_shared_sigalgs(SSL *s, int idx,
2126 int *psign, int *phash, int *psignhash,
2127 unsigned char *rsig, unsigned char *rhash)
2128 {
2129 const SIGALG_LOOKUP *shsigalgs;
2130 if (s->shared_sigalgs == NULL
2131 || idx < 0
2132 || idx >= (int)s->shared_sigalgslen
2133 || s->shared_sigalgslen > INT_MAX)
2134 return 0;
2135 shsigalgs = s->shared_sigalgs[idx];
2136 if (phash != NULL)
2137 *phash = shsigalgs->hash;
2138 if (psign != NULL)
2139 *psign = shsigalgs->sig;
2140 if (psignhash != NULL)
2141 *psignhash = shsigalgs->sigandhash;
2142 if (rsig != NULL)
2143 *rsig = (unsigned char)(shsigalgs->sigalg & 0xff);
2144 if (rhash != NULL)
2145 *rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff);
2146 return (int)s->shared_sigalgslen;
2147 }
2148
2149 /* Maximum possible number of unique entries in sigalgs array */
2150 #define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2)
2151
2152 typedef struct {
2153 size_t sigalgcnt;
2154 /* TLSEXT_SIGALG_XXX values */
2155 uint16_t sigalgs[TLS_MAX_SIGALGCNT];
2156 } sig_cb_st;
2157
2158 static void get_sigorhash(int *psig, int *phash, const char *str)
2159 {
2160 if (strcmp(str, "RSA") == 0) {
2161 *psig = EVP_PKEY_RSA;
2162 } else if (strcmp(str, "RSA-PSS") == 0 || strcmp(str, "PSS") == 0) {
2163 *psig = EVP_PKEY_RSA_PSS;
2164 } else if (strcmp(str, "DSA") == 0) {
2165 *psig = EVP_PKEY_DSA;
2166 } else if (strcmp(str, "ECDSA") == 0) {
2167 *psig = EVP_PKEY_EC;
2168 } else {
2169 *phash = OBJ_sn2nid(str);
2170 if (*phash == NID_undef)
2171 *phash = OBJ_ln2nid(str);
2172 }
2173 }
2174 /* Maximum length of a signature algorithm string component */
2175 #define TLS_MAX_SIGSTRING_LEN 40
2176
2177 static int sig_cb(const char *elem, int len, void *arg)
2178 {
2179 sig_cb_st *sarg = arg;
2180 size_t i;
2181 const SIGALG_LOOKUP *s;
2182 char etmp[TLS_MAX_SIGSTRING_LEN], *p;
2183 int sig_alg = NID_undef, hash_alg = NID_undef;
2184 if (elem == NULL)
2185 return 0;
2186 if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT)
2187 return 0;
2188 if (len > (int)(sizeof(etmp) - 1))
2189 return 0;
2190 memcpy(etmp, elem, len);
2191 etmp[len] = 0;
2192 p = strchr(etmp, '+');
2193 /*
2194 * We only allow SignatureSchemes listed in the sigalg_lookup_tbl;
2195 * if there's no '+' in the provided name, look for the new-style combined
2196 * name. If not, match both sig+hash to find the needed SIGALG_LOOKUP.
2197 * Just sig+hash is not unique since TLS 1.3 adds rsa_pss_pss_* and
2198 * rsa_pss_rsae_* that differ only by public key OID; in such cases
2199 * we will pick the _rsae_ variant, by virtue of them appearing earlier
2200 * in the table.
2201 */
2202 if (p == NULL) {
2203 for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
2204 i++, s++) {
2205 if (s->name != NULL && strcmp(etmp, s->name) == 0) {
2206 sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
2207 break;
2208 }
2209 }
2210 if (i == OSSL_NELEM(sigalg_lookup_tbl))
2211 return 0;
2212 } else {
2213 *p = 0;
2214 p++;
2215 if (*p == 0)
2216 return 0;
2217 get_sigorhash(&sig_alg, &hash_alg, etmp);
2218 get_sigorhash(&sig_alg, &hash_alg, p);
2219 if (sig_alg == NID_undef || hash_alg == NID_undef)
2220 return 0;
2221 for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
2222 i++, s++) {
2223 if (s->hash == hash_alg && s->sig == sig_alg) {
2224 sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
2225 break;
2226 }
2227 }
2228 if (i == OSSL_NELEM(sigalg_lookup_tbl))
2229 return 0;
2230 }
2231
2232 /* Reject duplicates */
2233 for (i = 0; i < sarg->sigalgcnt - 1; i++) {
2234 if (sarg->sigalgs[i] == sarg->sigalgs[sarg->sigalgcnt - 1]) {
2235 sarg->sigalgcnt--;
2236 return 0;
2237 }
2238 }
2239 return 1;
2240 }
2241
2242 /*
2243 * Set supported signature algorithms based on a colon separated list of the
2244 * form sig+hash e.g. RSA+SHA512:DSA+SHA512
2245 */
2246 int tls1_set_sigalgs_list(CERT *c, const char *str, int client)
2247 {
2248 sig_cb_st sig;
2249 sig.sigalgcnt = 0;
2250 if (!CONF_parse_list(str, ':', 1, sig_cb, &sig))
2251 return 0;
2252 if (c == NULL)
2253 return 1;
2254 return tls1_set_raw_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client);
2255 }
2256
2257 int tls1_set_raw_sigalgs(CERT *c, const uint16_t *psigs, size_t salglen,
2258 int client)
2259 {
2260 uint16_t *sigalgs;
2261
2262 if ((sigalgs = OPENSSL_malloc(salglen * sizeof(*sigalgs))) == NULL) {
2263 SSLerr(SSL_F_TLS1_SET_RAW_SIGALGS, ERR_R_MALLOC_FAILURE);
2264 return 0;
2265 }
2266 memcpy(sigalgs, psigs, salglen * sizeof(*sigalgs));
2267
2268 if (client) {
2269 OPENSSL_free(c->client_sigalgs);
2270 c->client_sigalgs = sigalgs;
2271 c->client_sigalgslen = salglen;
2272 } else {
2273 OPENSSL_free(c->conf_sigalgs);
2274 c->conf_sigalgs = sigalgs;
2275 c->conf_sigalgslen = salglen;
2276 }
2277
2278 return 1;
2279 }
2280
2281 int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client)
2282 {
2283 uint16_t *sigalgs, *sptr;
2284 size_t i;
2285
2286 if (salglen & 1)
2287 return 0;
2288 if ((sigalgs = OPENSSL_malloc((salglen / 2) * sizeof(*sigalgs))) == NULL) {
2289 SSLerr(SSL_F_TLS1_SET_SIGALGS, ERR_R_MALLOC_FAILURE);
2290 return 0;
2291 }
2292 for (i = 0, sptr = sigalgs; i < salglen; i += 2) {
2293 size_t j;
2294 const SIGALG_LOOKUP *curr;
2295 int md_id = *psig_nids++;
2296 int sig_id = *psig_nids++;
2297
2298 for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl);
2299 j++, curr++) {
2300 if (curr->hash == md_id && curr->sig == sig_id) {
2301 *sptr++ = curr->sigalg;
2302 break;
2303 }
2304 }
2305
2306 if (j == OSSL_NELEM(sigalg_lookup_tbl))
2307 goto err;
2308 }
2309
2310 if (client) {
2311 OPENSSL_free(c->client_sigalgs);
2312 c->client_sigalgs = sigalgs;
2313 c->client_sigalgslen = salglen / 2;
2314 } else {
2315 OPENSSL_free(c->conf_sigalgs);
2316 c->conf_sigalgs = sigalgs;
2317 c->conf_sigalgslen = salglen / 2;
2318 }
2319
2320 return 1;
2321
2322 err:
2323 OPENSSL_free(sigalgs);
2324 return 0;
2325 }
2326
2327 static int tls1_check_sig_alg(SSL *s, X509 *x, int default_nid)
2328 {
2329 int sig_nid, use_pc_sigalgs = 0;
2330 size_t i;
2331 const SIGALG_LOOKUP *sigalg;
2332 size_t sigalgslen;
2333 if (default_nid == -1)
2334 return 1;
2335 sig_nid = X509_get_signature_nid(x);
2336 if (default_nid)
2337 return sig_nid == default_nid ? 1 : 0;
2338
2339 if (SSL_IS_TLS13(s) && s->s3.tmp.peer_cert_sigalgs != NULL) {
2340 /*
2341 * If we're in TLSv1.3 then we only get here if we're checking the
2342 * chain. If the peer has specified peer_cert_sigalgs then we use them
2343 * otherwise we default to normal sigalgs.
2344 */
2345 sigalgslen = s->s3.tmp.peer_cert_sigalgslen;
2346 use_pc_sigalgs = 1;
2347 } else {
2348 sigalgslen = s->shared_sigalgslen;
2349 }
2350 for (i = 0; i < sigalgslen; i++) {
2351 sigalg = use_pc_sigalgs
2352 ? tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i])
2353 : s->shared_sigalgs[i];
2354 if (sigalg != NULL && sig_nid == sigalg->sigandhash)
2355 return 1;
2356 }
2357 return 0;
2358 }
2359
2360 /* Check to see if a certificate issuer name matches list of CA names */
2361 static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x)
2362 {
2363 const X509_NAME *nm;
2364 int i;
2365 nm = X509_get_issuer_name(x);
2366 for (i = 0; i < sk_X509_NAME_num(names); i++) {
2367 if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i)))
2368 return 1;
2369 }
2370 return 0;
2371 }
2372
2373 /*
2374 * Check certificate chain is consistent with TLS extensions and is usable by
2375 * server. This servers two purposes: it allows users to check chains before
2376 * passing them to the server and it allows the server to check chains before
2377 * attempting to use them.
2378 */
2379
2380 /* Flags which need to be set for a certificate when strict mode not set */
2381
2382 #define CERT_PKEY_VALID_FLAGS \
2383 (CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM)
2384 /* Strict mode flags */
2385 #define CERT_PKEY_STRICT_FLAGS \
2386 (CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \
2387 | CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE)
2388
2389 int tls1_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain,
2390 int idx)
2391 {
2392 int i;
2393 int rv = 0;
2394 int check_flags = 0, strict_mode;
2395 CERT_PKEY *cpk = NULL;
2396 CERT *c = s->cert;
2397 uint32_t *pvalid;
2398 unsigned int suiteb_flags = tls1_suiteb(s);
2399 /* idx == -1 means checking server chains */
2400 if (idx != -1) {
2401 /* idx == -2 means checking client certificate chains */
2402 if (idx == -2) {
2403 cpk = c->key;
2404 idx = (int)(cpk - c->pkeys);
2405 } else
2406 cpk = c->pkeys + idx;
2407 pvalid = s->s3.tmp.valid_flags + idx;
2408 x = cpk->x509;
2409 pk = cpk->privatekey;
2410 chain = cpk->chain;
2411 strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT;
2412 /* If no cert or key, forget it */
2413 if (!x || !pk)
2414 goto end;
2415 } else {
2416 size_t certidx;
2417
2418 if (!x || !pk)
2419 return 0;
2420
2421 if (ssl_cert_lookup_by_pkey(pk, &certidx) == NULL)
2422 return 0;
2423 idx = certidx;
2424 pvalid = s->s3.tmp.valid_flags + idx;
2425
2426 if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)
2427 check_flags = CERT_PKEY_STRICT_FLAGS;
2428 else
2429 check_flags = CERT_PKEY_VALID_FLAGS;
2430 strict_mode = 1;
2431 }
2432
2433 if (suiteb_flags) {
2434 int ok;
2435 if (check_flags)
2436 check_flags |= CERT_PKEY_SUITEB;
2437 ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags);
2438 if (ok == X509_V_OK)
2439 rv |= CERT_PKEY_SUITEB;
2440 else if (!check_flags)
2441 goto end;
2442 }
2443
2444 /*
2445 * Check all signature algorithms are consistent with signature
2446 * algorithms extension if TLS 1.2 or later and strict mode.
2447 */
2448 if (TLS1_get_version(s) >= TLS1_2_VERSION && strict_mode) {
2449 int default_nid;
2450 int rsign = 0;
2451 if (s->s3.tmp.peer_cert_sigalgs != NULL
2452 || s->s3.tmp.peer_sigalgs != NULL) {
2453 default_nid = 0;
2454 /* If no sigalgs extension use defaults from RFC5246 */
2455 } else {
2456 switch (idx) {
2457 case SSL_PKEY_RSA:
2458 rsign = EVP_PKEY_RSA;
2459 default_nid = NID_sha1WithRSAEncryption;
2460 break;
2461
2462 case SSL_PKEY_DSA_SIGN:
2463 rsign = EVP_PKEY_DSA;
2464 default_nid = NID_dsaWithSHA1;
2465 break;
2466
2467 case SSL_PKEY_ECC:
2468 rsign = EVP_PKEY_EC;
2469 default_nid = NID_ecdsa_with_SHA1;
2470 break;
2471
2472 case SSL_PKEY_GOST01:
2473 rsign = NID_id_GostR3410_2001;
2474 default_nid = NID_id_GostR3411_94_with_GostR3410_2001;
2475 break;
2476
2477 case SSL_PKEY_GOST12_256:
2478 rsign = NID_id_GostR3410_2012_256;
2479 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256;
2480 break;
2481
2482 case SSL_PKEY_GOST12_512:
2483 rsign = NID_id_GostR3410_2012_512;
2484 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512;
2485 break;
2486
2487 default:
2488 default_nid = -1;
2489 break;
2490 }
2491 }
2492 /*
2493 * If peer sent no signature algorithms extension and we have set
2494 * preferred signature algorithms check we support sha1.
2495 */
2496 if (default_nid > 0 && c->conf_sigalgs) {
2497 size_t j;
2498 const uint16_t *p = c->conf_sigalgs;
2499 for (j = 0; j < c->conf_sigalgslen; j++, p++) {
2500 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *p);
2501
2502 if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign)
2503 break;
2504 }
2505 if (j == c->conf_sigalgslen) {
2506 if (check_flags)
2507 goto skip_sigs;
2508 else
2509 goto end;
2510 }
2511 }
2512 /* Check signature algorithm of each cert in chain */
2513 if (SSL_IS_TLS13(s)) {
2514 /*
2515 * We only get here if the application has called SSL_check_chain(),
2516 * so check_flags is always set.
2517 */
2518 if (find_sig_alg(s, x, pk) != NULL)
2519 rv |= CERT_PKEY_EE_SIGNATURE;
2520 } else if (!tls1_check_sig_alg(s, x, default_nid)) {
2521 if (!check_flags)
2522 goto end;
2523 } else
2524 rv |= CERT_PKEY_EE_SIGNATURE;
2525 rv |= CERT_PKEY_CA_SIGNATURE;
2526 for (i = 0; i < sk_X509_num(chain); i++) {
2527 if (!tls1_check_sig_alg(s, sk_X509_value(chain, i), default_nid)) {
2528 if (check_flags) {
2529 rv &= ~CERT_PKEY_CA_SIGNATURE;
2530 break;
2531 } else
2532 goto end;
2533 }
2534 }
2535 }
2536 /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */
2537 else if (check_flags)
2538 rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE;
2539 skip_sigs:
2540 /* Check cert parameters are consistent */
2541 if (tls1_check_cert_param(s, x, 1))
2542 rv |= CERT_PKEY_EE_PARAM;
2543 else if (!check_flags)
2544 goto end;
2545 if (!s->server)
2546 rv |= CERT_PKEY_CA_PARAM;
2547 /* In strict mode check rest of chain too */
2548 else if (strict_mode) {
2549 rv |= CERT_PKEY_CA_PARAM;
2550 for (i = 0; i < sk_X509_num(chain); i++) {
2551 X509 *ca = sk_X509_value(chain, i);
2552 if (!tls1_check_cert_param(s, ca, 0)) {
2553 if (check_flags) {
2554 rv &= ~CERT_PKEY_CA_PARAM;
2555 break;
2556 } else
2557 goto end;
2558 }
2559 }
2560 }
2561 if (!s->server && strict_mode) {
2562 STACK_OF(X509_NAME) *ca_dn;
2563 int check_type = 0;
2564
2565 if (EVP_PKEY_is_a(pk, "RSA"))
2566 check_type = TLS_CT_RSA_SIGN;
2567 else if (EVP_PKEY_is_a(pk, "DSA"))
2568 check_type = TLS_CT_DSS_SIGN;
2569 else if (EVP_PKEY_is_a(pk, "EC"))
2570 check_type = TLS_CT_ECDSA_SIGN;
2571
2572 if (check_type) {
2573 const uint8_t *ctypes = s->s3.tmp.ctype;
2574 size_t j;
2575
2576 for (j = 0; j < s->s3.tmp.ctype_len; j++, ctypes++) {
2577 if (*ctypes == check_type) {
2578 rv |= CERT_PKEY_CERT_TYPE;
2579 break;
2580 }
2581 }
2582 if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags)
2583 goto end;
2584 } else {
2585 rv |= CERT_PKEY_CERT_TYPE;
2586 }
2587
2588 ca_dn = s->s3.tmp.peer_ca_names;
2589
2590 if (!sk_X509_NAME_num(ca_dn))
2591 rv |= CERT_PKEY_ISSUER_NAME;
2592
2593 if (!(rv & CERT_PKEY_ISSUER_NAME)) {
2594 if (ssl_check_ca_name(ca_dn, x))
2595 rv |= CERT_PKEY_ISSUER_NAME;
2596 }
2597 if (!(rv & CERT_PKEY_ISSUER_NAME)) {
2598 for (i = 0; i < sk_X509_num(chain); i++) {
2599 X509 *xtmp = sk_X509_value(chain, i);
2600 if (ssl_check_ca_name(ca_dn, xtmp)) {
2601 rv |= CERT_PKEY_ISSUER_NAME;
2602 break;
2603 }
2604 }
2605 }
2606 if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME))
2607 goto end;
2608 } else
2609 rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE;
2610
2611 if (!check_flags || (rv & check_flags) == check_flags)
2612 rv |= CERT_PKEY_VALID;
2613
2614 end:
2615
2616 if (TLS1_get_version(s) >= TLS1_2_VERSION)
2617 rv |= *pvalid & (CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN);
2618 else
2619 rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN;
2620
2621 /*
2622 * When checking a CERT_PKEY structure all flags are irrelevant if the
2623 * chain is invalid.
2624 */
2625 if (!check_flags) {
2626 if (rv & CERT_PKEY_VALID) {
2627 *pvalid = rv;
2628 } else {
2629 /* Preserve sign and explicit sign flag, clear rest */
2630 *pvalid &= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
2631 return 0;
2632 }
2633 }
2634 return rv;
2635 }
2636
2637 /* Set validity of certificates in an SSL structure */
2638 void tls1_set_cert_validity(SSL *s)
2639 {
2640 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA);
2641 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_PSS_SIGN);
2642 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN);
2643 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC);
2644 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01);
2645 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256);
2646 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512);
2647 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED25519);
2648 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED448);
2649 }
2650
2651 /* User level utility function to check a chain is suitable */
2652 int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain)
2653 {
2654 return tls1_check_chain(s, x, pk, chain, -1);
2655 }
2656
2657 #ifndef OPENSSL_NO_DH
2658 DH *ssl_get_auto_dh(SSL *s)
2659 {
2660 int dh_secbits = 80;
2661 if (s->cert->dh_tmp_auto == 2)
2662 return DH_get_1024_160();
2663 if (s->s3.tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) {
2664 if (s->s3.tmp.new_cipher->strength_bits == 256)
2665 dh_secbits = 128;
2666 else
2667 dh_secbits = 80;
2668 } else {
2669 if (s->s3.tmp.cert == NULL)
2670 return NULL;
2671 dh_secbits = EVP_PKEY_security_bits(s->s3.tmp.cert->privatekey);
2672 }
2673
2674 if (dh_secbits >= 128) {
2675 DH *dhp = DH_new();
2676 BIGNUM *p, *g;
2677 if (dhp == NULL)
2678 return NULL;
2679 g = BN_new();
2680 if (g == NULL || !BN_set_word(g, 2)) {
2681 DH_free(dhp);
2682 BN_free(g);
2683 return NULL;
2684 }
2685 if (dh_secbits >= 192)
2686 p = BN_get_rfc3526_prime_8192(NULL);
2687 else
2688 p = BN_get_rfc3526_prime_3072(NULL);
2689 if (p == NULL || !DH_set0_pqg(dhp, p, NULL, g)) {
2690 DH_free(dhp);
2691 BN_free(p);
2692 BN_free(g);
2693 return NULL;
2694 }
2695 return dhp;
2696 }
2697 if (dh_secbits >= 112)
2698 return DH_get_2048_224();
2699 return DH_get_1024_160();
2700 }
2701 #endif
2702
2703 static int ssl_security_cert_key(SSL *s, SSL_CTX *ctx, X509 *x, int op)
2704 {
2705 int secbits = -1;
2706 EVP_PKEY *pkey = X509_get0_pubkey(x);
2707 if (pkey) {
2708 /*
2709 * If no parameters this will return -1 and fail using the default
2710 * security callback for any non-zero security level. This will
2711 * reject keys which omit parameters but this only affects DSA and
2712 * omission of parameters is never (?) done in practice.
2713 */
2714 secbits = EVP_PKEY_security_bits(pkey);
2715 }
2716 if (s)
2717 return ssl_security(s, op, secbits, 0, x);
2718 else
2719 return ssl_ctx_security(ctx, op, secbits, 0, x);
2720 }
2721
2722 static int ssl_security_cert_sig(SSL *s, SSL_CTX *ctx, X509 *x, int op)
2723 {
2724 /* Lookup signature algorithm digest */
2725 int secbits, nid, pknid;
2726 /* Don't check signature if self signed */
2727 if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0)
2728 return 1;
2729 if (!X509_get_signature_info(x, &nid, &pknid, &secbits, NULL))
2730 secbits = -1;
2731 /* If digest NID not defined use signature NID */
2732 if (nid == NID_undef)
2733 nid = pknid;
2734 if (s)
2735 return ssl_security(s, op, secbits, nid, x);
2736 else
2737 return ssl_ctx_security(ctx, op, secbits, nid, x);
2738 }
2739
2740 int ssl_security_cert(SSL *s, SSL_CTX *ctx, X509 *x, int vfy, int is_ee)
2741 {
2742 if (vfy)
2743 vfy = SSL_SECOP_PEER;
2744 if (is_ee) {
2745 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy))
2746 return SSL_R_EE_KEY_TOO_SMALL;
2747 } else {
2748 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy))
2749 return SSL_R_CA_KEY_TOO_SMALL;
2750 }
2751 if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy))
2752 return SSL_R_CA_MD_TOO_WEAK;
2753 return 1;
2754 }
2755
2756 /*
2757 * Check security of a chain, if |sk| includes the end entity certificate then
2758 * |x| is NULL. If |vfy| is 1 then we are verifying a peer chain and not sending
2759 * one to the peer. Return values: 1 if ok otherwise error code to use
2760 */
2761
2762 int ssl_security_cert_chain(SSL *s, STACK_OF(X509) *sk, X509 *x, int vfy)
2763 {
2764 int rv, start_idx, i;
2765 if (x == NULL) {
2766 x = sk_X509_value(sk, 0);
2767 start_idx = 1;
2768 } else
2769 start_idx = 0;
2770
2771 rv = ssl_security_cert(s, NULL, x, vfy, 1);
2772 if (rv != 1)
2773 return rv;
2774
2775 for (i = start_idx; i < sk_X509_num(sk); i++) {
2776 x = sk_X509_value(sk, i);
2777 rv = ssl_security_cert(s, NULL, x, vfy, 0);
2778 if (rv != 1)
2779 return rv;
2780 }
2781 return 1;
2782 }
2783
2784 /*
2785 * For TLS 1.2 servers check if we have a certificate which can be used
2786 * with the signature algorithm "lu" and return index of certificate.
2787 */
2788
2789 static int tls12_get_cert_sigalg_idx(const SSL *s, const SIGALG_LOOKUP *lu)
2790 {
2791 int sig_idx = lu->sig_idx;
2792 const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(sig_idx);
2793
2794 /* If not recognised or not supported by cipher mask it is not suitable */
2795 if (clu == NULL
2796 || (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) == 0
2797 || (clu->nid == EVP_PKEY_RSA_PSS
2798 && (s->s3.tmp.new_cipher->algorithm_mkey & SSL_kRSA) != 0))
2799 return -1;
2800
2801 return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_VALID ? sig_idx : -1;
2802 }
2803
2804 /*
2805 * Checks the given cert against signature_algorithm_cert restrictions sent by
2806 * the peer (if any) as well as whether the hash from the sigalg is usable with
2807 * the key.
2808 * Returns true if the cert is usable and false otherwise.
2809 */
2810 static int check_cert_usable(SSL *s, const SIGALG_LOOKUP *sig, X509 *x,
2811 EVP_PKEY *pkey)
2812 {
2813 const SIGALG_LOOKUP *lu;
2814 int mdnid, pknid, supported;
2815 size_t i;
2816
2817 /*
2818 * If the given EVP_PKEY cannot supporting signing with this sigalg,
2819 * the answer is simply 'no'.
2820 */
2821 ERR_set_mark();
2822 supported = EVP_PKEY_supports_digest_nid(pkey, sig->hash);
2823 ERR_pop_to_mark();
2824 if (supported == 0)
2825 return 0;
2826
2827 /*
2828 * The TLS 1.3 signature_algorithms_cert extension places restrictions
2829 * on the sigalg with which the certificate was signed (by its issuer).
2830 */
2831 if (s->s3.tmp.peer_cert_sigalgs != NULL) {
2832 if (!X509_get_signature_info(x, &mdnid, &pknid, NULL, NULL))
2833 return 0;
2834 for (i = 0; i < s->s3.tmp.peer_cert_sigalgslen; i++) {
2835 lu = tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i]);
2836 if (lu == NULL)
2837 continue;
2838
2839 /*
2840 * TODO this does not differentiate between the
2841 * rsa_pss_pss_* and rsa_pss_rsae_* schemes since we do not
2842 * have a chain here that lets us look at the key OID in the
2843 * signing certificate.
2844 */
2845 if (mdnid == lu->hash && pknid == lu->sig)
2846 return 1;
2847 }
2848 return 0;
2849 }
2850
2851 /*
2852 * Without signat_algorithms_cert, any certificate for which we have
2853 * a viable public key is permitted.
2854 */
2855 return 1;
2856 }
2857
2858 /*
2859 * Returns true if |s| has a usable certificate configured for use
2860 * with signature scheme |sig|.
2861 * "Usable" includes a check for presence as well as applying
2862 * the signature_algorithm_cert restrictions sent by the peer (if any).
2863 * Returns false if no usable certificate is found.
2864 */
2865 static int has_usable_cert(SSL *s, const SIGALG_LOOKUP *sig, int idx)
2866 {
2867 /* TLS 1.2 callers can override sig->sig_idx, but not TLS 1.3 callers. */
2868 if (idx == -1)
2869 idx = sig->sig_idx;
2870 if (!ssl_has_cert(s, idx))
2871 return 0;
2872
2873 return check_cert_usable(s, sig, s->cert->pkeys[idx].x509,
2874 s->cert->pkeys[idx].privatekey);
2875 }
2876
2877 /*
2878 * Returns true if the supplied cert |x| and key |pkey| is usable with the
2879 * specified signature scheme |sig|, or false otherwise.
2880 */
2881 static int is_cert_usable(SSL *s, const SIGALG_LOOKUP *sig, X509 *x,
2882 EVP_PKEY *pkey)
2883 {
2884 size_t idx;
2885
2886 if (ssl_cert_lookup_by_pkey(pkey, &idx) == NULL)
2887 return 0;
2888
2889 /* Check the key is consistent with the sig alg */
2890 if ((int)idx != sig->sig_idx)
2891 return 0;
2892
2893 return check_cert_usable(s, sig, x, pkey);
2894 }
2895
2896 /*
2897 * Find a signature scheme that works with the supplied certificate |x| and key
2898 * |pkey|. |x| and |pkey| may be NULL in which case we additionally look at our
2899 * available certs/keys to find one that works.
2900 */
2901 static const SIGALG_LOOKUP *find_sig_alg(SSL *s, X509 *x, EVP_PKEY *pkey)
2902 {
2903 const SIGALG_LOOKUP *lu = NULL;
2904 size_t i;
2905 #ifndef OPENSSL_NO_EC
2906 int curve = -1;
2907 #endif
2908 EVP_PKEY *tmppkey;
2909
2910 /* Look for a shared sigalgs matching possible certificates */
2911 for (i = 0; i < s->shared_sigalgslen; i++) {
2912 lu = s->shared_sigalgs[i];
2913
2914 /* Skip SHA1, SHA224, DSA and RSA if not PSS */
2915 if (lu->hash == NID_sha1
2916 || lu->hash == NID_sha224
2917 || lu->sig == EVP_PKEY_DSA
2918 || lu->sig == EVP_PKEY_RSA)
2919 continue;
2920 /* Check that we have a cert, and signature_algorithms_cert */
2921 if (!tls1_lookup_md(s->ctx, lu, NULL))
2922 continue;
2923 if ((pkey == NULL && !has_usable_cert(s, lu, -1))
2924 || (pkey != NULL && !is_cert_usable(s, lu, x, pkey)))
2925 continue;
2926
2927 tmppkey = (pkey != NULL) ? pkey
2928 : s->cert->pkeys[lu->sig_idx].privatekey;
2929
2930 if (lu->sig == EVP_PKEY_EC) {
2931 #ifndef OPENSSL_NO_EC
2932 if (curve == -1)
2933 curve = evp_pkey_get_EC_KEY_curve_nid(tmppkey);
2934 if (lu->curve != NID_undef && curve != lu->curve)
2935 continue;
2936 #else
2937 continue;
2938 #endif
2939 } else if (lu->sig == EVP_PKEY_RSA_PSS) {
2940 /* validate that key is large enough for the signature algorithm */
2941 if (!rsa_pss_check_min_key_size(s->ctx, tmppkey, lu))
2942 continue;
2943 }
2944 break;
2945 }
2946
2947 if (i == s->shared_sigalgslen)
2948 return NULL;
2949
2950 return lu;
2951 }
2952
2953 /*
2954 * Choose an appropriate signature algorithm based on available certificates
2955 * Sets chosen certificate and signature algorithm.
2956 *
2957 * For servers if we fail to find a required certificate it is a fatal error,
2958 * an appropriate error code is set and a TLS alert is sent.
2959 *
2960 * For clients fatalerrs is set to 0. If a certificate is not suitable it is not
2961 * a fatal error: we will either try another certificate or not present one
2962 * to the server. In this case no error is set.
2963 */
2964 int tls_choose_sigalg(SSL *s, int fatalerrs)
2965 {
2966 const SIGALG_LOOKUP *lu = NULL;
2967 int sig_idx = -1;
2968
2969 s->s3.tmp.cert = NULL;
2970 s->s3.tmp.sigalg = NULL;
2971
2972 if (SSL_IS_TLS13(s)) {
2973 lu = find_sig_alg(s, NULL, NULL);
2974 if (lu == NULL) {
2975 if (!fatalerrs)
2976 return 1;
2977 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS_CHOOSE_SIGALG,
2978 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
2979 return 0;
2980 }
2981 } else {
2982 /* If ciphersuite doesn't require a cert nothing to do */
2983 if (!(s->s3.tmp.new_cipher->algorithm_auth & SSL_aCERT))
2984 return 1;
2985 if (!s->server && !ssl_has_cert(s, s->cert->key - s->cert->pkeys))
2986 return 1;
2987
2988 if (SSL_USE_SIGALGS(s)) {
2989 size_t i;
2990 if (s->s3.tmp.peer_sigalgs != NULL) {
2991 #ifndef OPENSSL_NO_EC
2992 int curve = -1;
2993
2994 /* For Suite B need to match signature algorithm to curve */
2995 if (tls1_suiteb(s))
2996 curve =
2997 evp_pkey_get_EC_KEY_curve_nid(s->cert->pkeys[SSL_PKEY_ECC]
2998 .privatekey);
2999 #endif
3000
3001 /*
3002 * Find highest preference signature algorithm matching
3003 * cert type
3004 */
3005 for (i = 0; i < s->shared_sigalgslen; i++) {
3006 lu = s->shared_sigalgs[i];
3007
3008 if (s->server) {
3009 if ((sig_idx = tls12_get_cert_sigalg_idx(s, lu)) == -1)
3010 continue;
3011 } else {
3012 int cc_idx = s->cert->key - s->cert->pkeys;
3013
3014 sig_idx = lu->sig_idx;
3015 if (cc_idx != sig_idx)
3016 continue;
3017 }
3018 /* Check that we have a cert, and sig_algs_cert */
3019 if (!has_usable_cert(s, lu, sig_idx))
3020 continue;
3021 if (lu->sig == EVP_PKEY_RSA_PSS) {
3022 /* validate that key is large enough for the signature algorithm */
3023 EVP_PKEY *pkey = s->cert->pkeys[sig_idx].privatekey;
3024
3025 if (!rsa_pss_check_min_key_size(s->ctx, pkey, lu))
3026 continue;
3027 }
3028 #ifndef OPENSSL_NO_EC
3029 if (curve == -1 || lu->curve == curve)
3030 #endif
3031 break;
3032 }
3033 #ifndef OPENSSL_NO_GOST
3034 /*
3035 * Some Windows-based implementations do not send GOST algorithms indication
3036 * in supported_algorithms extension, so when we have GOST-based ciphersuite,
3037 * we have to assume GOST support.
3038 */
3039 if (i == s->shared_sigalgslen && s->s3.tmp.new_cipher->algorithm_auth & (SSL_aGOST01 | SSL_aGOST12)) {
3040 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3041 if (!fatalerrs)
3042 return 1;
3043 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3044 SSL_F_TLS_CHOOSE_SIGALG,
3045 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3046 return 0;
3047 } else {
3048 i = 0;
3049 sig_idx = lu->sig_idx;
3050 }
3051 }
3052 #endif
3053 if (i == s->shared_sigalgslen) {
3054 if (!fatalerrs)
3055 return 1;
3056 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3057 SSL_F_TLS_CHOOSE_SIGALG,
3058 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3059 return 0;
3060 }
3061 } else {
3062 /*
3063 * If we have no sigalg use defaults
3064 */
3065 const uint16_t *sent_sigs;
3066 size_t sent_sigslen;
3067
3068 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3069 if (!fatalerrs)
3070 return 1;
3071 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CHOOSE_SIGALG,
3072 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3073 return 0;
3074 }
3075
3076 /* Check signature matches a type we sent */
3077 sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
3078 for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
3079 if (lu->sigalg == *sent_sigs
3080 && has_usable_cert(s, lu, lu->sig_idx))
3081 break;
3082 }
3083 if (i == sent_sigslen) {
3084 if (!fatalerrs)
3085 return 1;
3086 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
3087 SSL_F_TLS_CHOOSE_SIGALG,
3088 SSL_R_WRONG_SIGNATURE_TYPE);
3089 return 0;
3090 }
3091 }
3092 } else {
3093 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3094 if (!fatalerrs)
3095 return 1;
3096 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CHOOSE_SIGALG,
3097 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3098 return 0;
3099 }
3100 }
3101 }
3102 if (sig_idx == -1)
3103 sig_idx = lu->sig_idx;
3104 s->s3.tmp.cert = &s->cert->pkeys[sig_idx];
3105 s->cert->key = s->s3.tmp.cert;
3106 s->s3.tmp.sigalg = lu;
3107 return 1;
3108 }
3109
3110 int SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX *ctx, uint8_t mode)
3111 {
3112 if (mode != TLSEXT_max_fragment_length_DISABLED
3113 && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
3114 SSLerr(SSL_F_SSL_CTX_SET_TLSEXT_MAX_FRAGMENT_LENGTH,
3115 SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
3116 return 0;
3117 }
3118
3119 ctx->ext.max_fragment_len_mode = mode;
3120 return 1;
3121 }
3122
3123 int SSL_set_tlsext_max_fragment_length(SSL *ssl, uint8_t mode)
3124 {
3125 if (mode != TLSEXT_max_fragment_length_DISABLED
3126 && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
3127 SSLerr(SSL_F_SSL_SET_TLSEXT_MAX_FRAGMENT_LENGTH,
3128 SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
3129 return 0;
3130 }
3131
3132 ssl->ext.max_fragment_len_mode = mode;
3133 return 1;
3134 }
3135
3136 uint8_t SSL_SESSION_get_max_fragment_length(const SSL_SESSION *session)
3137 {
3138 return session->ext.max_fragment_len_mode;
3139 }
3140
3141 /*
3142 * Helper functions for HMAC access with legacy support included.
3143 */
3144 SSL_HMAC *ssl_hmac_new(const SSL_CTX *ctx)
3145 {
3146 SSL_HMAC *ret = OPENSSL_zalloc(sizeof(*ret));
3147 EVP_MAC *mac = NULL;
3148
3149 if (ret == NULL)
3150 return NULL;
3151 #ifndef OPENSSL_NO_DEPRECATED_3_0
3152 if (ctx->ext.ticket_key_evp_cb == NULL
3153 && ctx->ext.ticket_key_cb != NULL) {
3154 ret->old_ctx = HMAC_CTX_new();
3155 if (ret->old_ctx == NULL)
3156 goto err;
3157 return ret;
3158 }
3159 #endif
3160 mac = EVP_MAC_fetch(ctx->libctx, "HMAC", NULL);
3161 if (mac == NULL || (ret->ctx = EVP_MAC_CTX_new(mac)) == NULL)
3162 goto err;
3163 EVP_MAC_free(mac);
3164 return ret;
3165 err:
3166 EVP_MAC_CTX_free(ret->ctx);
3167 EVP_MAC_free(mac);
3168 OPENSSL_free(ret);
3169 return NULL;
3170 }
3171
3172 void ssl_hmac_free(SSL_HMAC *ctx)
3173 {
3174 if (ctx != NULL) {
3175 EVP_MAC_CTX_free(ctx->ctx);
3176 #ifndef OPENSSL_NO_DEPRECATED_3_0
3177 HMAC_CTX_free(ctx->old_ctx);
3178 #endif
3179 OPENSSL_free(ctx);
3180 }
3181 }
3182
3183 #ifndef OPENSSL_NO_DEPRECATED_3_0
3184 HMAC_CTX *ssl_hmac_get0_HMAC_CTX(SSL_HMAC *ctx)
3185 {
3186 return ctx->old_ctx;
3187 }
3188 #endif
3189
3190 EVP_MAC_CTX *ssl_hmac_get0_EVP_MAC_CTX(SSL_HMAC *ctx)
3191 {
3192 return ctx->ctx;
3193 }
3194
3195 int ssl_hmac_init(SSL_HMAC *ctx, void *key, size_t len, char *md)
3196 {
3197 OSSL_PARAM params[3], *p = params;
3198
3199 if (ctx->ctx != NULL) {
3200 *p++ = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, md, 0);
3201 *p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_KEY, key, len);
3202 *p = OSSL_PARAM_construct_end();
3203 if (EVP_MAC_CTX_set_params(ctx->ctx, params) && EVP_MAC_init(ctx->ctx))
3204 return 1;
3205 }
3206 #ifndef OPENSSL_NO_DEPRECATED_3_0
3207 if (ctx->old_ctx != NULL)
3208 return HMAC_Init_ex(ctx->old_ctx, key, len,
3209 EVP_get_digestbyname(md), NULL);
3210 #endif
3211 return 0;
3212 }
3213
3214 int ssl_hmac_update(SSL_HMAC *ctx, const unsigned char *data, size_t len)
3215 {
3216 if (ctx->ctx != NULL)
3217 return EVP_MAC_update(ctx->ctx, data, len);
3218 #ifndef OPENSSL_NO_DEPRECATED_3_0
3219 if (ctx->old_ctx != NULL)
3220 return HMAC_Update(ctx->old_ctx, data, len);
3221 #endif
3222 return 0;
3223 }
3224
3225 int ssl_hmac_final(SSL_HMAC *ctx, unsigned char *md, size_t *len,
3226 size_t max_size)
3227 {
3228 if (ctx->ctx != NULL)
3229 return EVP_MAC_final(ctx->ctx, md, len, max_size);
3230 #ifndef OPENSSL_NO_DEPRECATED_3_0
3231 if (ctx->old_ctx != NULL) {
3232 unsigned int l;
3233
3234 if (HMAC_Final(ctx->old_ctx, md, &l) > 0) {
3235 if (len != NULL)
3236 *len = l;
3237 return 1;
3238 }
3239 }
3240 #endif
3241 return 0;
3242 }
3243
3244 size_t ssl_hmac_size(const SSL_HMAC *ctx)
3245 {
3246 if (ctx->ctx != NULL)
3247 return EVP_MAC_size(ctx->ctx);
3248 #ifndef OPENSSL_NO_DEPRECATED_3_0
3249 if (ctx->old_ctx != NULL)
3250 return HMAC_size(ctx->old_ctx);
3251 #endif
3252 return 0;
3253 }
3254