]> git.ipfire.org Git - thirdparty/openssl.git/blob - ssl/t1_lib.c
Simplify sigalgs code.
[thirdparty/openssl.git] / ssl / t1_lib.c
1 /*
2 * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the OpenSSL license (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 #include <stdio.h>
11 #include <stdlib.h>
12 #include <openssl/objects.h>
13 #include <openssl/evp.h>
14 #include <openssl/hmac.h>
15 #include <openssl/ocsp.h>
16 #include <openssl/conf.h>
17 #include <openssl/x509v3.h>
18 #include <openssl/dh.h>
19 #include <openssl/bn.h>
20 #include "ssl_locl.h"
21 #include <openssl/ct.h>
22
23 SSL3_ENC_METHOD const TLSv1_enc_data = {
24 tls1_enc,
25 tls1_mac,
26 tls1_setup_key_block,
27 tls1_generate_master_secret,
28 tls1_change_cipher_state,
29 tls1_final_finish_mac,
30 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
31 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
32 tls1_alert_code,
33 tls1_export_keying_material,
34 0,
35 ssl3_set_handshake_header,
36 tls_close_construct_packet,
37 ssl3_handshake_write
38 };
39
40 SSL3_ENC_METHOD const TLSv1_1_enc_data = {
41 tls1_enc,
42 tls1_mac,
43 tls1_setup_key_block,
44 tls1_generate_master_secret,
45 tls1_change_cipher_state,
46 tls1_final_finish_mac,
47 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
48 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
49 tls1_alert_code,
50 tls1_export_keying_material,
51 SSL_ENC_FLAG_EXPLICIT_IV,
52 ssl3_set_handshake_header,
53 tls_close_construct_packet,
54 ssl3_handshake_write
55 };
56
57 SSL3_ENC_METHOD const TLSv1_2_enc_data = {
58 tls1_enc,
59 tls1_mac,
60 tls1_setup_key_block,
61 tls1_generate_master_secret,
62 tls1_change_cipher_state,
63 tls1_final_finish_mac,
64 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
65 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
66 tls1_alert_code,
67 tls1_export_keying_material,
68 SSL_ENC_FLAG_EXPLICIT_IV | SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF
69 | SSL_ENC_FLAG_TLS1_2_CIPHERS,
70 ssl3_set_handshake_header,
71 tls_close_construct_packet,
72 ssl3_handshake_write
73 };
74
75 SSL3_ENC_METHOD const TLSv1_3_enc_data = {
76 tls13_enc,
77 tls1_mac,
78 tls13_setup_key_block,
79 tls13_generate_master_secret,
80 tls13_change_cipher_state,
81 tls13_final_finish_mac,
82 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
83 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
84 tls13_alert_code,
85 tls1_export_keying_material,
86 SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF,
87 ssl3_set_handshake_header,
88 tls_close_construct_packet,
89 ssl3_handshake_write
90 };
91
92 long tls1_default_timeout(void)
93 {
94 /*
95 * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for
96 * http, the cache would over fill
97 */
98 return (60 * 60 * 2);
99 }
100
101 int tls1_new(SSL *s)
102 {
103 if (!ssl3_new(s))
104 return (0);
105 s->method->ssl_clear(s);
106 return (1);
107 }
108
109 void tls1_free(SSL *s)
110 {
111 OPENSSL_free(s->ext.session_ticket);
112 ssl3_free(s);
113 }
114
115 void tls1_clear(SSL *s)
116 {
117 ssl3_clear(s);
118 if (s->method->version == TLS_ANY_VERSION)
119 s->version = TLS_MAX_VERSION;
120 else
121 s->version = s->method->version;
122 }
123
124 #ifndef OPENSSL_NO_EC
125
126 typedef struct {
127 int nid; /* Curve NID */
128 int secbits; /* Bits of security (from SP800-57) */
129 unsigned int flags; /* Flags: currently just field type */
130 } tls_curve_info;
131
132 /*
133 * Table of curve information.
134 * Do not delete entries or reorder this array! It is used as a lookup
135 * table: the index of each entry is one less than the TLS curve id.
136 */
137 static const tls_curve_info nid_list[] = {
138 {NID_sect163k1, 80, TLS_CURVE_CHAR2}, /* sect163k1 (1) */
139 {NID_sect163r1, 80, TLS_CURVE_CHAR2}, /* sect163r1 (2) */
140 {NID_sect163r2, 80, TLS_CURVE_CHAR2}, /* sect163r2 (3) */
141 {NID_sect193r1, 80, TLS_CURVE_CHAR2}, /* sect193r1 (4) */
142 {NID_sect193r2, 80, TLS_CURVE_CHAR2}, /* sect193r2 (5) */
143 {NID_sect233k1, 112, TLS_CURVE_CHAR2}, /* sect233k1 (6) */
144 {NID_sect233r1, 112, TLS_CURVE_CHAR2}, /* sect233r1 (7) */
145 {NID_sect239k1, 112, TLS_CURVE_CHAR2}, /* sect239k1 (8) */
146 {NID_sect283k1, 128, TLS_CURVE_CHAR2}, /* sect283k1 (9) */
147 {NID_sect283r1, 128, TLS_CURVE_CHAR2}, /* sect283r1 (10) */
148 {NID_sect409k1, 192, TLS_CURVE_CHAR2}, /* sect409k1 (11) */
149 {NID_sect409r1, 192, TLS_CURVE_CHAR2}, /* sect409r1 (12) */
150 {NID_sect571k1, 256, TLS_CURVE_CHAR2}, /* sect571k1 (13) */
151 {NID_sect571r1, 256, TLS_CURVE_CHAR2}, /* sect571r1 (14) */
152 {NID_secp160k1, 80, TLS_CURVE_PRIME}, /* secp160k1 (15) */
153 {NID_secp160r1, 80, TLS_CURVE_PRIME}, /* secp160r1 (16) */
154 {NID_secp160r2, 80, TLS_CURVE_PRIME}, /* secp160r2 (17) */
155 {NID_secp192k1, 80, TLS_CURVE_PRIME}, /* secp192k1 (18) */
156 {NID_X9_62_prime192v1, 80, TLS_CURVE_PRIME}, /* secp192r1 (19) */
157 {NID_secp224k1, 112, TLS_CURVE_PRIME}, /* secp224k1 (20) */
158 {NID_secp224r1, 112, TLS_CURVE_PRIME}, /* secp224r1 (21) */
159 {NID_secp256k1, 128, TLS_CURVE_PRIME}, /* secp256k1 (22) */
160 {NID_X9_62_prime256v1, 128, TLS_CURVE_PRIME}, /* secp256r1 (23) */
161 {NID_secp384r1, 192, TLS_CURVE_PRIME}, /* secp384r1 (24) */
162 {NID_secp521r1, 256, TLS_CURVE_PRIME}, /* secp521r1 (25) */
163 {NID_brainpoolP256r1, 128, TLS_CURVE_PRIME}, /* brainpoolP256r1 (26) */
164 {NID_brainpoolP384r1, 192, TLS_CURVE_PRIME}, /* brainpoolP384r1 (27) */
165 {NID_brainpoolP512r1, 256, TLS_CURVE_PRIME}, /* brainpool512r1 (28) */
166 {NID_X25519, 128, TLS_CURVE_CUSTOM}, /* X25519 (29) */
167 };
168
169 static const unsigned char ecformats_default[] = {
170 TLSEXT_ECPOINTFORMAT_uncompressed,
171 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime,
172 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2
173 };
174
175 /* The default curves */
176 static const unsigned char eccurves_default[] = {
177 0, 29, /* X25519 (29) */
178 0, 23, /* secp256r1 (23) */
179 0, 25, /* secp521r1 (25) */
180 0, 24, /* secp384r1 (24) */
181 };
182
183 static const unsigned char suiteb_curves[] = {
184 0, TLSEXT_curve_P_256,
185 0, TLSEXT_curve_P_384
186 };
187
188 int tls1_ec_curve_id2nid(int curve_id, unsigned int *pflags)
189 {
190 const tls_curve_info *cinfo;
191 /* ECC curves from RFC 4492 and RFC 7027 */
192 if ((curve_id < 1) || ((unsigned int)curve_id > OSSL_NELEM(nid_list)))
193 return 0;
194 cinfo = nid_list + curve_id - 1;
195 if (pflags)
196 *pflags = cinfo->flags;
197 return cinfo->nid;
198 }
199
200 int tls1_ec_nid2curve_id(int nid)
201 {
202 size_t i;
203 for (i = 0; i < OSSL_NELEM(nid_list); i++) {
204 if (nid_list[i].nid == nid)
205 return (int)(i + 1);
206 }
207 return 0;
208 }
209
210 /*
211 * Get curves list, if "sess" is set return client curves otherwise
212 * preferred list.
213 * Sets |num_curves| to the number of curves in the list, i.e.,
214 * the length of |pcurves| is 2 * num_curves.
215 * Returns 1 on success and 0 if the client curves list has invalid format.
216 * The latter indicates an internal error: we should not be accepting such
217 * lists in the first place.
218 * TODO(emilia): we should really be storing the curves list in explicitly
219 * parsed form instead. (However, this would affect binary compatibility
220 * so cannot happen in the 1.0.x series.)
221 */
222 int tls1_get_curvelist(SSL *s, int sess, const unsigned char **pcurves,
223 size_t *num_curves)
224 {
225 size_t pcurveslen = 0;
226
227 if (sess) {
228 *pcurves = s->session->ext.supportedgroups;
229 pcurveslen = s->session->ext.supportedgroups_len;
230 } else {
231 /* For Suite B mode only include P-256, P-384 */
232 switch (tls1_suiteb(s)) {
233 case SSL_CERT_FLAG_SUITEB_128_LOS:
234 *pcurves = suiteb_curves;
235 pcurveslen = sizeof(suiteb_curves);
236 break;
237
238 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
239 *pcurves = suiteb_curves;
240 pcurveslen = 2;
241 break;
242
243 case SSL_CERT_FLAG_SUITEB_192_LOS:
244 *pcurves = suiteb_curves + 2;
245 pcurveslen = 2;
246 break;
247 default:
248 *pcurves = s->ext.supportedgroups;
249 pcurveslen = s->ext.supportedgroups_len;
250 }
251 if (!*pcurves) {
252 *pcurves = eccurves_default;
253 pcurveslen = sizeof(eccurves_default);
254 }
255 }
256
257 /* We do not allow odd length arrays to enter the system. */
258 if (pcurveslen & 1) {
259 SSLerr(SSL_F_TLS1_GET_CURVELIST, ERR_R_INTERNAL_ERROR);
260 *num_curves = 0;
261 return 0;
262 }
263 *num_curves = pcurveslen / 2;
264 return 1;
265 }
266
267 /* See if curve is allowed by security callback */
268 int tls_curve_allowed(SSL *s, const unsigned char *curve, int op)
269 {
270 const tls_curve_info *cinfo;
271 if (curve[0])
272 return 1;
273 if ((curve[1] < 1) || ((size_t)curve[1] > OSSL_NELEM(nid_list)))
274 return 0;
275 cinfo = &nid_list[curve[1] - 1];
276 # ifdef OPENSSL_NO_EC2M
277 if (cinfo->flags & TLS_CURVE_CHAR2)
278 return 0;
279 # endif
280 return ssl_security(s, op, cinfo->secbits, cinfo->nid, (void *)curve);
281 }
282
283 /* Check a curve is one of our preferences */
284 int tls1_check_curve(SSL *s, const unsigned char *p, size_t len)
285 {
286 const unsigned char *curves;
287 size_t num_curves, i;
288 unsigned int suiteb_flags = tls1_suiteb(s);
289 if (len != 3 || p[0] != NAMED_CURVE_TYPE)
290 return 0;
291 /* Check curve matches Suite B preferences */
292 if (suiteb_flags) {
293 unsigned long cid = s->s3->tmp.new_cipher->id;
294 if (p[1])
295 return 0;
296 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) {
297 if (p[2] != TLSEXT_curve_P_256)
298 return 0;
299 } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) {
300 if (p[2] != TLSEXT_curve_P_384)
301 return 0;
302 } else /* Should never happen */
303 return 0;
304 }
305 if (!tls1_get_curvelist(s, 0, &curves, &num_curves))
306 return 0;
307 for (i = 0; i < num_curves; i++, curves += 2) {
308 if (p[1] == curves[0] && p[2] == curves[1])
309 return tls_curve_allowed(s, p + 1, SSL_SECOP_CURVE_CHECK);
310 }
311 return 0;
312 }
313
314 /*-
315 * For nmatch >= 0, return the NID of the |nmatch|th shared group or NID_undef
316 * if there is no match.
317 * For nmatch == -1, return number of matches
318 * For nmatch == -2, return the NID of the group to use for
319 * an EC tmp key, or NID_undef if there is no match.
320 */
321 int tls1_shared_group(SSL *s, int nmatch)
322 {
323 const unsigned char *pref, *supp;
324 size_t num_pref, num_supp, i, j;
325 int k;
326
327 /* Can't do anything on client side */
328 if (s->server == 0)
329 return -1;
330 if (nmatch == -2) {
331 if (tls1_suiteb(s)) {
332 /*
333 * For Suite B ciphersuite determines curve: we already know
334 * these are acceptable due to previous checks.
335 */
336 unsigned long cid = s->s3->tmp.new_cipher->id;
337
338 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
339 return NID_X9_62_prime256v1; /* P-256 */
340 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
341 return NID_secp384r1; /* P-384 */
342 /* Should never happen */
343 return NID_undef;
344 }
345 /* If not Suite B just return first preference shared curve */
346 nmatch = 0;
347 }
348 /*
349 * Avoid truncation. tls1_get_curvelist takes an int
350 * but s->options is a long...
351 */
352 if (!tls1_get_curvelist(s,
353 (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) != 0,
354 &supp, &num_supp))
355 /* In practice, NID_undef == 0 but let's be precise. */
356 return nmatch == -1 ? 0 : NID_undef;
357 if (!tls1_get_curvelist(s,
358 (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) == 0,
359 &pref, &num_pref))
360 return nmatch == -1 ? 0 : NID_undef;
361
362 for (k = 0, i = 0; i < num_pref; i++, pref += 2) {
363 const unsigned char *tsupp = supp;
364
365 for (j = 0; j < num_supp; j++, tsupp += 2) {
366 if (pref[0] == tsupp[0] && pref[1] == tsupp[1]) {
367 if (!tls_curve_allowed(s, pref, SSL_SECOP_CURVE_SHARED))
368 continue;
369 if (nmatch == k) {
370 int id = (pref[0] << 8) | pref[1];
371
372 return tls1_ec_curve_id2nid(id, NULL);
373 }
374 k++;
375 }
376 }
377 }
378 if (nmatch == -1)
379 return k;
380 /* Out of range (nmatch > k). */
381 return NID_undef;
382 }
383
384 int tls1_set_groups(unsigned char **pext, size_t *pextlen,
385 int *groups, size_t ngroups)
386 {
387 unsigned char *glist, *p;
388 size_t i;
389 /*
390 * Bitmap of groups included to detect duplicates: only works while group
391 * ids < 32
392 */
393 unsigned long dup_list = 0;
394 glist = OPENSSL_malloc(ngroups * 2);
395 if (glist == NULL)
396 return 0;
397 for (i = 0, p = glist; i < ngroups; i++) {
398 unsigned long idmask;
399 int id;
400 /* TODO(TLS1.3): Convert for DH groups */
401 id = tls1_ec_nid2curve_id(groups[i]);
402 idmask = 1L << id;
403 if (!id || (dup_list & idmask)) {
404 OPENSSL_free(glist);
405 return 0;
406 }
407 dup_list |= idmask;
408 s2n(id, p);
409 }
410 OPENSSL_free(*pext);
411 *pext = glist;
412 *pextlen = ngroups * 2;
413 return 1;
414 }
415
416 # define MAX_CURVELIST 28
417
418 typedef struct {
419 size_t nidcnt;
420 int nid_arr[MAX_CURVELIST];
421 } nid_cb_st;
422
423 static int nid_cb(const char *elem, int len, void *arg)
424 {
425 nid_cb_st *narg = arg;
426 size_t i;
427 int nid;
428 char etmp[20];
429 if (elem == NULL)
430 return 0;
431 if (narg->nidcnt == MAX_CURVELIST)
432 return 0;
433 if (len > (int)(sizeof(etmp) - 1))
434 return 0;
435 memcpy(etmp, elem, len);
436 etmp[len] = 0;
437 nid = EC_curve_nist2nid(etmp);
438 if (nid == NID_undef)
439 nid = OBJ_sn2nid(etmp);
440 if (nid == NID_undef)
441 nid = OBJ_ln2nid(etmp);
442 if (nid == NID_undef)
443 return 0;
444 for (i = 0; i < narg->nidcnt; i++)
445 if (narg->nid_arr[i] == nid)
446 return 0;
447 narg->nid_arr[narg->nidcnt++] = nid;
448 return 1;
449 }
450
451 /* Set groups based on a colon separate list */
452 int tls1_set_groups_list(unsigned char **pext, size_t *pextlen, const char *str)
453 {
454 nid_cb_st ncb;
455 ncb.nidcnt = 0;
456 if (!CONF_parse_list(str, ':', 1, nid_cb, &ncb))
457 return 0;
458 if (pext == NULL)
459 return 1;
460 return tls1_set_groups(pext, pextlen, ncb.nid_arr, ncb.nidcnt);
461 }
462
463 /* For an EC key set TLS id and required compression based on parameters */
464 static int tls1_set_ec_id(unsigned char *curve_id, unsigned char *comp_id,
465 EC_KEY *ec)
466 {
467 int id;
468 const EC_GROUP *grp;
469 if (!ec)
470 return 0;
471 /* Determine if it is a prime field */
472 grp = EC_KEY_get0_group(ec);
473 if (!grp)
474 return 0;
475 /* Determine curve ID */
476 id = EC_GROUP_get_curve_name(grp);
477 id = tls1_ec_nid2curve_id(id);
478 /* If no id return error: we don't support arbitrary explicit curves */
479 if (id == 0)
480 return 0;
481 curve_id[0] = 0;
482 curve_id[1] = (unsigned char)id;
483 if (comp_id) {
484 if (EC_KEY_get0_public_key(ec) == NULL)
485 return 0;
486 if (EC_KEY_get_conv_form(ec) == POINT_CONVERSION_UNCOMPRESSED) {
487 *comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;
488 } else {
489 if ((nid_list[id - 1].flags & TLS_CURVE_TYPE) == TLS_CURVE_PRIME)
490 *comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime;
491 else
492 *comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2;
493 }
494 }
495 return 1;
496 }
497
498 /* Check an EC key is compatible with extensions */
499 static int tls1_check_ec_key(SSL *s,
500 unsigned char *curve_id, unsigned char *comp_id)
501 {
502 const unsigned char *pformats, *pcurves;
503 size_t num_formats, num_curves, i;
504 int j;
505 /*
506 * If point formats extension present check it, otherwise everything is
507 * supported (see RFC4492).
508 */
509 if (comp_id && s->session->ext.ecpointformats) {
510 pformats = s->session->ext.ecpointformats;
511 num_formats = s->session->ext.ecpointformats_len;
512 for (i = 0; i < num_formats; i++, pformats++) {
513 if (*comp_id == *pformats)
514 break;
515 }
516 if (i == num_formats)
517 return 0;
518 }
519 if (!curve_id)
520 return 1;
521 /* Check curve is consistent with client and server preferences */
522 for (j = 0; j <= 1; j++) {
523 if (!tls1_get_curvelist(s, j, &pcurves, &num_curves))
524 return 0;
525 if (j == 1 && num_curves == 0) {
526 /*
527 * If we've not received any curves then skip this check.
528 * RFC 4492 does not require the supported elliptic curves extension
529 * so if it is not sent we can just choose any curve.
530 * It is invalid to send an empty list in the elliptic curves
531 * extension, so num_curves == 0 always means no extension.
532 */
533 break;
534 }
535 for (i = 0; i < num_curves; i++, pcurves += 2) {
536 if (pcurves[0] == curve_id[0] && pcurves[1] == curve_id[1])
537 break;
538 }
539 if (i == num_curves)
540 return 0;
541 /* For clients can only check sent curve list */
542 if (!s->server)
543 break;
544 }
545 return 1;
546 }
547
548 void tls1_get_formatlist(SSL *s, const unsigned char **pformats,
549 size_t *num_formats)
550 {
551 /*
552 * If we have a custom point format list use it otherwise use default
553 */
554 if (s->ext.ecpointformats) {
555 *pformats = s->ext.ecpointformats;
556 *num_formats = s->ext.ecpointformats_len;
557 } else {
558 *pformats = ecformats_default;
559 /* For Suite B we don't support char2 fields */
560 if (tls1_suiteb(s))
561 *num_formats = sizeof(ecformats_default) - 1;
562 else
563 *num_formats = sizeof(ecformats_default);
564 }
565 }
566
567 /*
568 * Check cert parameters compatible with extensions: currently just checks EC
569 * certificates have compatible curves and compression.
570 */
571 static int tls1_check_cert_param(SSL *s, X509 *x, int set_ee_md)
572 {
573 unsigned char comp_id, curve_id[2];
574 EVP_PKEY *pkey;
575 int rv;
576 pkey = X509_get0_pubkey(x);
577 if (!pkey)
578 return 0;
579 /* If not EC nothing to do */
580 if (EVP_PKEY_id(pkey) != EVP_PKEY_EC)
581 return 1;
582 rv = tls1_set_ec_id(curve_id, &comp_id, EVP_PKEY_get0_EC_KEY(pkey));
583 if (!rv)
584 return 0;
585 /*
586 * Can't check curve_id for client certs as we don't have a supported
587 * curves extension.
588 */
589 rv = tls1_check_ec_key(s, s->server ? curve_id : NULL, &comp_id);
590 if (!rv)
591 return 0;
592 /*
593 * Special case for suite B. We *MUST* sign using SHA256+P-256 or
594 * SHA384+P-384, adjust digest if necessary.
595 */
596 if (set_ee_md && tls1_suiteb(s)) {
597 int check_md;
598 size_t i;
599 CERT *c = s->cert;
600 if (curve_id[0])
601 return 0;
602 /* Check to see we have necessary signing algorithm */
603 if (curve_id[1] == TLSEXT_curve_P_256)
604 check_md = NID_ecdsa_with_SHA256;
605 else if (curve_id[1] == TLSEXT_curve_P_384)
606 check_md = NID_ecdsa_with_SHA384;
607 else
608 return 0; /* Should never happen */
609 for (i = 0; i < c->shared_sigalgslen; i++)
610 if (check_md == c->shared_sigalgs[i]->sigandhash)
611 break;
612 if (i == c->shared_sigalgslen)
613 return 0;
614 if (set_ee_md == 2) {
615 if (check_md == NID_ecdsa_with_SHA256)
616 s->s3->tmp.md[SSL_PKEY_ECC] = EVP_sha256();
617 else
618 s->s3->tmp.md[SSL_PKEY_ECC] = EVP_sha384();
619 }
620 }
621 return rv;
622 }
623
624 # ifndef OPENSSL_NO_EC
625 /*
626 * tls1_check_ec_tmp_key - Check EC temporary key compatibility
627 * @s: SSL connection
628 * @cid: Cipher ID we're considering using
629 *
630 * Checks that the kECDHE cipher suite we're considering using
631 * is compatible with the client extensions.
632 *
633 * Returns 0 when the cipher can't be used or 1 when it can.
634 */
635 int tls1_check_ec_tmp_key(SSL *s, unsigned long cid)
636 {
637 /*
638 * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other
639 * curves permitted.
640 */
641 if (tls1_suiteb(s)) {
642 unsigned char curve_id[2];
643 /* Curve to check determined by ciphersuite */
644 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
645 curve_id[1] = TLSEXT_curve_P_256;
646 else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
647 curve_id[1] = TLSEXT_curve_P_384;
648 else
649 return 0;
650 curve_id[0] = 0;
651 /* Check this curve is acceptable */
652 if (!tls1_check_ec_key(s, curve_id, NULL))
653 return 0;
654 return 1;
655 }
656 /* Need a shared curve */
657 if (tls1_shared_group(s, 0))
658 return 1;
659 return 0;
660 }
661 # endif /* OPENSSL_NO_EC */
662
663 #else
664
665 static int tls1_check_cert_param(SSL *s, X509 *x, int set_ee_md)
666 {
667 return 1;
668 }
669
670 #endif /* OPENSSL_NO_EC */
671
672 /* Default sigalg schemes */
673 static const uint16_t tls12_sigalgs[] = {
674 #ifndef OPENSSL_NO_EC
675 TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
676 TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
677 TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
678 #endif
679
680 TLSEXT_SIGALG_rsa_pss_sha256,
681 TLSEXT_SIGALG_rsa_pss_sha384,
682 TLSEXT_SIGALG_rsa_pss_sha512,
683
684 TLSEXT_SIGALG_rsa_pkcs1_sha256,
685 TLSEXT_SIGALG_rsa_pkcs1_sha384,
686 TLSEXT_SIGALG_rsa_pkcs1_sha512,
687
688 #ifndef OPENSSL_NO_EC
689 TLSEXT_SIGALG_ecdsa_sha1,
690 #endif
691 TLSEXT_SIGALG_rsa_pkcs1_sha1,
692 #ifndef OPENSSL_NO_DSA
693 TLSEXT_SIGALG_dsa_sha1,
694
695 TLSEXT_SIGALG_dsa_sha256,
696 TLSEXT_SIGALG_dsa_sha384,
697 TLSEXT_SIGALG_dsa_sha512
698 #endif
699 };
700
701 #ifndef OPENSSL_NO_EC
702 static const uint16_t suiteb_sigalgs[] = {
703 TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
704 TLSEXT_SIGALG_ecdsa_secp384r1_sha384
705 };
706 #endif
707
708 static const SIGALG_LOOKUP sigalg_lookup_tbl[] = {
709 #ifndef OPENSSL_NO_EC
710 {"ecdsa_secp256r1_sha256", TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
711 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
712 NID_ecdsa_with_SHA256, NID_X9_62_prime256v1},
713 {"ecdsa_secp384r1_sha384", TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
714 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
715 NID_ecdsa_with_SHA384, NID_secp384r1},
716 {"ecdsa_secp521r1_sha512", TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
717 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
718 NID_ecdsa_with_SHA512, NID_secp521r1},
719 {NULL, TLSEXT_SIGALG_ecdsa_sha1,
720 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
721 NID_ecdsa_with_SHA1, NID_undef},
722 #endif
723 {"rsa_pss_sha256", TLSEXT_SIGALG_rsa_pss_sha256,
724 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
725 NID_undef, NID_undef},
726 {"rsa_pss_sha384", TLSEXT_SIGALG_rsa_pss_sha384,
727 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
728 NID_undef, NID_undef},
729 {"rsa_pss_sha512", TLSEXT_SIGALG_rsa_pss_sha512,
730 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
731 NID_undef, NID_undef},
732 {"rsa_pkcs1_sha256", TLSEXT_SIGALG_rsa_pkcs1_sha256,
733 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA_SIGN,
734 NID_sha256WithRSAEncryption, NID_undef},
735 {"rsa_pkcs1_sha384", TLSEXT_SIGALG_rsa_pkcs1_sha384,
736 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA_SIGN,
737 NID_sha384WithRSAEncryption, NID_undef},
738 {"rsa_pkcs1_sha512", TLSEXT_SIGALG_rsa_pkcs1_sha512,
739 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA_SIGN,
740 NID_sha512WithRSAEncryption, NID_undef},
741 {"rsa_pkcs1_sha1", TLSEXT_SIGALG_rsa_pkcs1_sha1,
742 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA_SIGN,
743 NID_sha1WithRSAEncryption, NID_undef},
744 #ifndef OPENSSL_NO_DSA
745 {NULL, TLSEXT_SIGALG_dsa_sha256,
746 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
747 NID_dsa_with_SHA256, NID_undef},
748 {NULL, TLSEXT_SIGALG_dsa_sha384,
749 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
750 NID_undef, NID_undef},
751 {NULL, TLSEXT_SIGALG_dsa_sha512,
752 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
753 NID_undef, NID_undef},
754 {NULL, TLSEXT_SIGALG_dsa_sha1,
755 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
756 NID_dsaWithSHA1, NID_undef},
757 #endif
758 #ifndef OPENSSL_NO_GOST
759 {NULL, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
760 NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
761 NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
762 NID_undef, NID_undef},
763 {NULL, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
764 NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
765 NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
766 NID_undef, NID_undef},
767 {NULL, TLSEXT_SIGALG_gostr34102001_gostr3411,
768 NID_id_GostR3411_94, SSL_MD_GOST94_IDX,
769 NID_id_GostR3410_2001, SSL_PKEY_GOST01,
770 NID_undef, NID_undef}
771 #endif
772 };
773
774 /* Lookup TLS signature algorithm */
775 static const SIGALG_LOOKUP *tls1_lookup_sigalg(uint16_t sigalg)
776 {
777 size_t i;
778 const SIGALG_LOOKUP *s;
779
780 for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
781 i++, s++) {
782 if (s->sigalg == sigalg)
783 return s;
784 }
785 return NULL;
786 }
787
788 static int tls_sigalg_get_sig(uint16_t sigalg)
789 {
790 const SIGALG_LOOKUP *r = tls1_lookup_sigalg(sigalg);
791
792 return r != NULL ? r->sig : 0;
793 }
794
795 size_t tls12_get_psigalgs(SSL *s, int sent, const uint16_t **psigs)
796 {
797 /*
798 * If Suite B mode use Suite B sigalgs only, ignore any other
799 * preferences.
800 */
801 #ifndef OPENSSL_NO_EC
802 switch (tls1_suiteb(s)) {
803 case SSL_CERT_FLAG_SUITEB_128_LOS:
804 *psigs = suiteb_sigalgs;
805 return OSSL_NELEM(suiteb_sigalgs);
806
807 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
808 *psigs = suiteb_sigalgs;
809 return 1;
810
811 case SSL_CERT_FLAG_SUITEB_192_LOS:
812 *psigs = suiteb_sigalgs + 1;
813 return 1;
814 }
815 #endif
816 /*
817 * We use client_sigalgs (if not NULL) if we're a server
818 * and sending a certificate request or if we're a client and
819 * determining which shared algorithm to use.
820 */
821 if ((s->server == sent) && s->cert->client_sigalgs != NULL) {
822 *psigs = s->cert->client_sigalgs;
823 return s->cert->client_sigalgslen;
824 } else if (s->cert->conf_sigalgs) {
825 *psigs = s->cert->conf_sigalgs;
826 return s->cert->conf_sigalgslen;
827 } else {
828 *psigs = tls12_sigalgs;
829 return OSSL_NELEM(tls12_sigalgs);
830 }
831 }
832
833 /*
834 * Check signature algorithm is consistent with sent supported signature
835 * algorithms and if so set relevant digest and signature scheme in
836 * s.
837 */
838 int tls12_check_peer_sigalg(SSL *s, uint16_t sig, EVP_PKEY *pkey)
839 {
840 const uint16_t *sent_sigs;
841 const EVP_MD *md = NULL;
842 char sigalgstr[2];
843 size_t sent_sigslen, i;
844 int pkeyid = EVP_PKEY_id(pkey);
845 const SIGALG_LOOKUP *lu;
846
847 /* Should never happen */
848 if (pkeyid == -1)
849 return -1;
850 /* Only allow PSS for TLS 1.3 */
851 if (SSL_IS_TLS13(s) && pkeyid == EVP_PKEY_RSA)
852 pkeyid = EVP_PKEY_RSA_PSS;
853 lu = tls1_lookup_sigalg(sig);
854 /*
855 * Check sigalgs is known and key type is consistent with signature:
856 * RSA keys can be used for RSA-PSS
857 */
858 if (lu == NULL || (pkeyid != lu->sig
859 && (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) {
860 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_SIGNATURE_TYPE);
861 return 0;
862 }
863 #ifndef OPENSSL_NO_EC
864 if (pkeyid == EVP_PKEY_EC) {
865 EC_KEY *ec = EVP_PKEY_get0_EC_KEY(pkey);
866
867 if (SSL_IS_TLS13(s)) {
868 /* For TLS 1.3 check curve matches signature algorithm */
869 int curve = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec));
870
871 if (curve != lu->curve) {
872 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_CURVE);
873 return 0;
874 }
875 } else {
876 unsigned char curve_id[2], comp_id;
877
878 /* Check compression and curve matches extensions */
879 if (!tls1_set_ec_id(curve_id, &comp_id, ec))
880 return 0;
881 if (!s->server && !tls1_check_ec_key(s, curve_id, &comp_id)) {
882 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_CURVE);
883 return 0;
884 }
885 /* If Suite B only P-384+SHA384 or P-256+SHA-256 allowed */
886 if (tls1_suiteb(s)) {
887 if (curve_id[0])
888 return 0;
889 if (curve_id[1] == TLSEXT_curve_P_256) {
890 if (lu->hash != NID_sha256) {
891 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG,
892 SSL_R_ILLEGAL_SUITEB_DIGEST);
893 return 0;
894 }
895 } else if (curve_id[1] == TLSEXT_curve_P_384) {
896 if (lu->hash != NID_sha384) {
897 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG,
898 SSL_R_ILLEGAL_SUITEB_DIGEST);
899 return 0;
900 }
901 } else {
902 return 0;
903 }
904 }
905 }
906 } else if (tls1_suiteb(s)) {
907 return 0;
908 }
909 #endif
910
911 /* Check signature matches a type we sent */
912 sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
913 for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
914 if (sig == *sent_sigs)
915 break;
916 }
917 /* Allow fallback to SHA1 if not strict mode */
918 if (i == sent_sigslen && (lu->hash != NID_sha1
919 || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) {
920 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_SIGNATURE_TYPE);
921 return 0;
922 }
923 md = ssl_md(lu->hash_idx);
924 if (md == NULL) {
925 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_UNKNOWN_DIGEST);
926 return 0;
927 }
928 /*
929 * Make sure security callback allows algorithm. For historical reasons we
930 * have to pass the sigalg as a two byte char array.
931 */
932 sigalgstr[0] = (sig >> 8) & 0xff;
933 sigalgstr[1] = sig & 0xff;
934 if (!ssl_security(s, SSL_SECOP_SIGALG_CHECK,
935 EVP_MD_size(md) * 4, EVP_MD_type(md),
936 (void *)sigalgstr)) {
937 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_SIGNATURE_TYPE);
938 return 0;
939 }
940 /*
941 * Store the digest used so applications can retrieve it if they wish.
942 */
943 s->s3->tmp.peer_md = md;
944 s->s3->tmp.peer_sigalg = lu;
945 return 1;
946 }
947
948 int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid)
949 {
950 if (s->s3->tmp.peer_sigalg == NULL)
951 return 0;
952 *pnid = s->s3->tmp.peer_sigalg->sig;
953 return 1;
954 }
955
956 /*
957 * Set a mask of disabled algorithms: an algorithm is disabled if it isn't
958 * supported, doesn't appear in supported signature algorithms, isn't supported
959 * by the enabled protocol versions or by the security level.
960 *
961 * This function should only be used for checking which ciphers are supported
962 * by the client.
963 *
964 * Call ssl_cipher_disabled() to check that it's enabled or not.
965 */
966 void ssl_set_client_disabled(SSL *s)
967 {
968 s->s3->tmp.mask_a = 0;
969 s->s3->tmp.mask_k = 0;
970 ssl_set_sig_mask(&s->s3->tmp.mask_a, s, SSL_SECOP_SIGALG_MASK);
971 ssl_get_client_min_max_version(s, &s->s3->tmp.min_ver, &s->s3->tmp.max_ver);
972 #ifndef OPENSSL_NO_PSK
973 /* with PSK there must be client callback set */
974 if (!s->psk_client_callback) {
975 s->s3->tmp.mask_a |= SSL_aPSK;
976 s->s3->tmp.mask_k |= SSL_PSK;
977 }
978 #endif /* OPENSSL_NO_PSK */
979 #ifndef OPENSSL_NO_SRP
980 if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) {
981 s->s3->tmp.mask_a |= SSL_aSRP;
982 s->s3->tmp.mask_k |= SSL_kSRP;
983 }
984 #endif
985 }
986
987 /*
988 * ssl_cipher_disabled - check that a cipher is disabled or not
989 * @s: SSL connection that you want to use the cipher on
990 * @c: cipher to check
991 * @op: Security check that you want to do
992 *
993 * Returns 1 when it's disabled, 0 when enabled.
994 */
995 int ssl_cipher_disabled(SSL *s, const SSL_CIPHER *c, int op)
996 {
997 if (c->algorithm_mkey & s->s3->tmp.mask_k
998 || c->algorithm_auth & s->s3->tmp.mask_a)
999 return 1;
1000 if (s->s3->tmp.max_ver == 0)
1001 return 1;
1002 if (!SSL_IS_DTLS(s) && ((c->min_tls > s->s3->tmp.max_ver)
1003 || (c->max_tls < s->s3->tmp.min_ver)))
1004 return 1;
1005 if (SSL_IS_DTLS(s) && (DTLS_VERSION_GT(c->min_dtls, s->s3->tmp.max_ver)
1006 || DTLS_VERSION_LT(c->max_dtls, s->s3->tmp.min_ver)))
1007 return 1;
1008
1009 return !ssl_security(s, op, c->strength_bits, 0, (void *)c);
1010 }
1011
1012 int tls_use_ticket(SSL *s)
1013 {
1014 if ((s->options & SSL_OP_NO_TICKET))
1015 return 0;
1016 return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL);
1017 }
1018
1019 /* Initialise digests to default values */
1020 void ssl_set_default_md(SSL *s)
1021 {
1022 const EVP_MD **pmd = s->s3->tmp.md;
1023 #ifndef OPENSSL_NO_DSA
1024 pmd[SSL_PKEY_DSA_SIGN] = ssl_md(SSL_MD_SHA1_IDX);
1025 #endif
1026 #ifndef OPENSSL_NO_RSA
1027 if (SSL_USE_SIGALGS(s))
1028 pmd[SSL_PKEY_RSA_SIGN] = ssl_md(SSL_MD_SHA1_IDX);
1029 else
1030 pmd[SSL_PKEY_RSA_SIGN] = ssl_md(SSL_MD_MD5_SHA1_IDX);
1031 pmd[SSL_PKEY_RSA_ENC] = pmd[SSL_PKEY_RSA_SIGN];
1032 #endif
1033 #ifndef OPENSSL_NO_EC
1034 pmd[SSL_PKEY_ECC] = ssl_md(SSL_MD_SHA1_IDX);
1035 #endif
1036 #ifndef OPENSSL_NO_GOST
1037 pmd[SSL_PKEY_GOST01] = ssl_md(SSL_MD_GOST94_IDX);
1038 pmd[SSL_PKEY_GOST12_256] = ssl_md(SSL_MD_GOST12_256_IDX);
1039 pmd[SSL_PKEY_GOST12_512] = ssl_md(SSL_MD_GOST12_512_IDX);
1040 #endif
1041 }
1042
1043 int tls1_set_server_sigalgs(SSL *s)
1044 {
1045 int al;
1046 size_t i;
1047
1048 /* Clear any shared signature algorithms */
1049 OPENSSL_free(s->cert->shared_sigalgs);
1050 s->cert->shared_sigalgs = NULL;
1051 s->cert->shared_sigalgslen = 0;
1052 /* Clear certificate digests and validity flags */
1053 for (i = 0; i < SSL_PKEY_NUM; i++) {
1054 s->s3->tmp.md[i] = NULL;
1055 s->s3->tmp.valid_flags[i] = 0;
1056 }
1057
1058 /* If sigalgs received process it. */
1059 if (s->s3->tmp.peer_sigalgs) {
1060 if (!tls1_process_sigalgs(s)) {
1061 SSLerr(SSL_F_TLS1_SET_SERVER_SIGALGS, ERR_R_MALLOC_FAILURE);
1062 al = SSL_AD_INTERNAL_ERROR;
1063 goto err;
1064 }
1065 /* Fatal error is no shared signature algorithms */
1066 if (!s->cert->shared_sigalgs) {
1067 SSLerr(SSL_F_TLS1_SET_SERVER_SIGALGS,
1068 SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS);
1069 al = SSL_AD_ILLEGAL_PARAMETER;
1070 goto err;
1071 }
1072 } else {
1073 ssl_set_default_md(s);
1074 }
1075 return 1;
1076 err:
1077 ssl3_send_alert(s, SSL3_AL_FATAL, al);
1078 return 0;
1079 }
1080
1081 /*-
1082 * Gets the ticket information supplied by the client if any.
1083 *
1084 * hello: The parsed ClientHello data
1085 * ret: (output) on return, if a ticket was decrypted, then this is set to
1086 * point to the resulting session.
1087 *
1088 * If s->tls_session_secret_cb is set then we are expecting a pre-shared key
1089 * ciphersuite, in which case we have no use for session tickets and one will
1090 * never be decrypted, nor will s->ext.ticket_expected be set to 1.
1091 *
1092 * Returns:
1093 * -1: fatal error, either from parsing or decrypting the ticket.
1094 * 0: no ticket was found (or was ignored, based on settings).
1095 * 1: a zero length extension was found, indicating that the client supports
1096 * session tickets but doesn't currently have one to offer.
1097 * 2: either s->tls_session_secret_cb was set, or a ticket was offered but
1098 * couldn't be decrypted because of a non-fatal error.
1099 * 3: a ticket was successfully decrypted and *ret was set.
1100 *
1101 * Side effects:
1102 * Sets s->ext.ticket_expected to 1 if the server will have to issue
1103 * a new session ticket to the client because the client indicated support
1104 * (and s->tls_session_secret_cb is NULL) but the client either doesn't have
1105 * a session ticket or we couldn't use the one it gave us, or if
1106 * s->ctx->ext.ticket_key_cb asked to renew the client's ticket.
1107 * Otherwise, s->ext.ticket_expected is set to 0.
1108 */
1109 TICKET_RETURN tls_get_ticket_from_client(SSL *s, CLIENTHELLO_MSG *hello,
1110 SSL_SESSION **ret)
1111 {
1112 int retv;
1113 size_t size;
1114 RAW_EXTENSION *ticketext;
1115
1116 *ret = NULL;
1117 s->ext.ticket_expected = 0;
1118
1119 /*
1120 * If tickets disabled or not supported by the protocol version
1121 * (e.g. TLSv1.3) behave as if no ticket present to permit stateful
1122 * resumption.
1123 */
1124 if (s->version <= SSL3_VERSION || !tls_use_ticket(s))
1125 return TICKET_NONE;
1126
1127 ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket];
1128 if (!ticketext->present)
1129 return TICKET_NONE;
1130
1131 size = PACKET_remaining(&ticketext->data);
1132 if (size == 0) {
1133 /*
1134 * The client will accept a ticket but doesn't currently have
1135 * one.
1136 */
1137 s->ext.ticket_expected = 1;
1138 return TICKET_EMPTY;
1139 }
1140 if (s->ext.session_secret_cb) {
1141 /*
1142 * Indicate that the ticket couldn't be decrypted rather than
1143 * generating the session from ticket now, trigger
1144 * abbreviated handshake based on external mechanism to
1145 * calculate the master secret later.
1146 */
1147 return TICKET_NO_DECRYPT;
1148 }
1149
1150 retv = tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size,
1151 hello->session_id, hello->session_id_len, ret);
1152 switch (retv) {
1153 case TICKET_NO_DECRYPT:
1154 s->ext.ticket_expected = 1;
1155 return TICKET_NO_DECRYPT;
1156
1157 case TICKET_SUCCESS:
1158 return TICKET_SUCCESS;
1159
1160 case TICKET_SUCCESS_RENEW:
1161 s->ext.ticket_expected = 1;
1162 return TICKET_SUCCESS;
1163
1164 default:
1165 return TICKET_FATAL_ERR_OTHER;
1166 }
1167 }
1168
1169 /*-
1170 * tls_decrypt_ticket attempts to decrypt a session ticket.
1171 *
1172 * etick: points to the body of the session ticket extension.
1173 * eticklen: the length of the session tickets extension.
1174 * sess_id: points at the session ID.
1175 * sesslen: the length of the session ID.
1176 * psess: (output) on return, if a ticket was decrypted, then this is set to
1177 * point to the resulting session.
1178 */
1179 TICKET_RETURN tls_decrypt_ticket(SSL *s, const unsigned char *etick,
1180 size_t eticklen, const unsigned char *sess_id,
1181 size_t sesslen, SSL_SESSION **psess)
1182 {
1183 SSL_SESSION *sess;
1184 unsigned char *sdec;
1185 const unsigned char *p;
1186 int slen, renew_ticket = 0, declen;
1187 TICKET_RETURN ret = TICKET_FATAL_ERR_OTHER;
1188 size_t mlen;
1189 unsigned char tick_hmac[EVP_MAX_MD_SIZE];
1190 HMAC_CTX *hctx = NULL;
1191 EVP_CIPHER_CTX *ctx;
1192 SSL_CTX *tctx = s->initial_ctx;
1193
1194 /* Initialize session ticket encryption and HMAC contexts */
1195 hctx = HMAC_CTX_new();
1196 if (hctx == NULL)
1197 return TICKET_FATAL_ERR_MALLOC;
1198 ctx = EVP_CIPHER_CTX_new();
1199 if (ctx == NULL) {
1200 ret = TICKET_FATAL_ERR_MALLOC;
1201 goto err;
1202 }
1203 if (tctx->ext.ticket_key_cb) {
1204 unsigned char *nctick = (unsigned char *)etick;
1205 int rv = tctx->ext.ticket_key_cb(s, nctick, nctick + 16,
1206 ctx, hctx, 0);
1207 if (rv < 0)
1208 goto err;
1209 if (rv == 0) {
1210 ret = TICKET_NO_DECRYPT;
1211 goto err;
1212 }
1213 if (rv == 2)
1214 renew_ticket = 1;
1215 } else {
1216 /* Check key name matches */
1217 if (memcmp(etick, tctx->ext.tick_key_name,
1218 sizeof(tctx->ext.tick_key_name)) != 0) {
1219 ret = TICKET_NO_DECRYPT;
1220 goto err;
1221 }
1222 if (HMAC_Init_ex(hctx, tctx->ext.tick_hmac_key,
1223 sizeof(tctx->ext.tick_hmac_key),
1224 EVP_sha256(), NULL) <= 0
1225 || EVP_DecryptInit_ex(ctx, EVP_aes_256_cbc(), NULL,
1226 tctx->ext.tick_aes_key,
1227 etick
1228 + sizeof(tctx->ext.tick_key_name)) <= 0) {
1229 goto err;
1230 }
1231 }
1232 /*
1233 * Attempt to process session ticket, first conduct sanity and integrity
1234 * checks on ticket.
1235 */
1236 mlen = HMAC_size(hctx);
1237 if (mlen == 0) {
1238 goto err;
1239 }
1240 /* Sanity check ticket length: must exceed keyname + IV + HMAC */
1241 if (eticklen <=
1242 TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_iv_length(ctx) + mlen) {
1243 ret = TICKET_NO_DECRYPT;
1244 goto err;
1245 }
1246 eticklen -= mlen;
1247 /* Check HMAC of encrypted ticket */
1248 if (HMAC_Update(hctx, etick, eticklen) <= 0
1249 || HMAC_Final(hctx, tick_hmac, NULL) <= 0) {
1250 goto err;
1251 }
1252 HMAC_CTX_free(hctx);
1253 if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) {
1254 EVP_CIPHER_CTX_free(ctx);
1255 return TICKET_NO_DECRYPT;
1256 }
1257 /* Attempt to decrypt session data */
1258 /* Move p after IV to start of encrypted ticket, update length */
1259 p = etick + 16 + EVP_CIPHER_CTX_iv_length(ctx);
1260 eticklen -= 16 + EVP_CIPHER_CTX_iv_length(ctx);
1261 sdec = OPENSSL_malloc(eticklen);
1262 if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p,
1263 (int)eticklen) <= 0) {
1264 EVP_CIPHER_CTX_free(ctx);
1265 OPENSSL_free(sdec);
1266 return TICKET_FATAL_ERR_OTHER;
1267 }
1268 if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) {
1269 EVP_CIPHER_CTX_free(ctx);
1270 OPENSSL_free(sdec);
1271 return TICKET_NO_DECRYPT;
1272 }
1273 slen += declen;
1274 EVP_CIPHER_CTX_free(ctx);
1275 ctx = NULL;
1276 p = sdec;
1277
1278 sess = d2i_SSL_SESSION(NULL, &p, slen);
1279 OPENSSL_free(sdec);
1280 if (sess) {
1281 /*
1282 * The session ID, if non-empty, is used by some clients to detect
1283 * that the ticket has been accepted. So we copy it to the session
1284 * structure. If it is empty set length to zero as required by
1285 * standard.
1286 */
1287 if (sesslen)
1288 memcpy(sess->session_id, sess_id, sesslen);
1289 sess->session_id_length = sesslen;
1290 *psess = sess;
1291 if (renew_ticket)
1292 return TICKET_SUCCESS_RENEW;
1293 else
1294 return TICKET_SUCCESS;
1295 }
1296 ERR_clear_error();
1297 /*
1298 * For session parse failure, indicate that we need to send a new ticket.
1299 */
1300 return TICKET_NO_DECRYPT;
1301 err:
1302 EVP_CIPHER_CTX_free(ctx);
1303 HMAC_CTX_free(hctx);
1304 return ret;
1305 }
1306
1307 int tls12_get_sigandhash(SSL *s, WPACKET *pkt, const EVP_PKEY *pk,
1308 const EVP_MD *md, int *ispss)
1309 {
1310 int md_id, sig_id;
1311 size_t i;
1312 const SIGALG_LOOKUP *curr;
1313
1314 if (md == NULL)
1315 return 0;
1316 md_id = EVP_MD_type(md);
1317 sig_id = EVP_PKEY_id(pk);
1318 if (md_id == NID_undef)
1319 return 0;
1320 /* For TLS 1.3 only allow RSA-PSS */
1321 if (SSL_IS_TLS13(s) && sig_id == EVP_PKEY_RSA)
1322 sig_id = EVP_PKEY_RSA_PSS;
1323
1324 if (s->s3->tmp.peer_sigalgs == NULL) {
1325 /* Should never happen: we abort if no sigalgs extension and TLS 1.3 */
1326 if (SSL_IS_TLS13(s))
1327 return 0;
1328 /* For TLS 1.2 and no sigalgs lookup using complete table */
1329 for (i = 0, curr = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
1330 i++, curr++) {
1331 if (curr->hash == md_id && curr->sig == sig_id) {
1332 if (!WPACKET_put_bytes_u16(pkt, curr->sigalg))
1333 return 0;
1334 *ispss = curr->sig == EVP_PKEY_RSA_PSS;
1335 return 1;
1336 }
1337 }
1338 return 0;
1339 }
1340
1341 for (i = 0; i < s->cert->shared_sigalgslen; i++) {
1342 curr = s->cert->shared_sigalgs[i];
1343
1344 /*
1345 * Look for matching key and hash. If key type is RSA also match PSS
1346 * signature type.
1347 */
1348 if (curr->hash == md_id && (curr->sig == sig_id
1349 || (sig_id == EVP_PKEY_RSA && curr->sig == EVP_PKEY_RSA_PSS))){
1350 if (!WPACKET_put_bytes_u16(pkt, curr->sigalg))
1351 return 0;
1352 *ispss = curr->sig == EVP_PKEY_RSA_PSS;
1353 return 1;
1354 }
1355 }
1356 return 0;
1357 }
1358
1359 static int tls12_get_pkey_idx(int sig_nid)
1360 {
1361 switch (sig_nid) {
1362 #ifndef OPENSSL_NO_RSA
1363 case EVP_PKEY_RSA:
1364 return SSL_PKEY_RSA_SIGN;
1365 /*
1366 * For now return RSA key for PSS. When we support PSS only keys
1367 * this will need to be updated.
1368 */
1369 case EVP_PKEY_RSA_PSS:
1370 return SSL_PKEY_RSA_SIGN;
1371 #endif
1372 #ifndef OPENSSL_NO_DSA
1373 case EVP_PKEY_DSA:
1374 return SSL_PKEY_DSA_SIGN;
1375 #endif
1376 #ifndef OPENSSL_NO_EC
1377 case EVP_PKEY_EC:
1378 return SSL_PKEY_ECC;
1379 #endif
1380 #ifndef OPENSSL_NO_GOST
1381 case NID_id_GostR3410_2001:
1382 return SSL_PKEY_GOST01;
1383
1384 case NID_id_GostR3410_2012_256:
1385 return SSL_PKEY_GOST12_256;
1386
1387 case NID_id_GostR3410_2012_512:
1388 return SSL_PKEY_GOST12_512;
1389 #endif
1390 }
1391 return -1;
1392 }
1393
1394 /* Check to see if a signature algorithm is allowed */
1395 static int tls12_sigalg_allowed(SSL *s, int op, uint16_t ptmp)
1396 {
1397 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(ptmp);
1398 unsigned char sigalgstr[2];
1399 int secbits;
1400
1401 /* See if sigalgs is recognised and if hash is enabled */
1402 if (lu == NULL || ssl_md(lu->hash_idx) == NULL)
1403 return 0;
1404 /* See if public key algorithm allowed */
1405 if (tls12_get_pkey_idx(lu->sig) == -1)
1406 return 0;
1407 /* Security bits: half digest bits */
1408 secbits = EVP_MD_size(ssl_md(lu->hash_idx)) * 4;
1409 /* Finally see if security callback allows it */
1410 sigalgstr[0] = (ptmp >> 8) & 0xff;
1411 sigalgstr[1] = ptmp & 0xff;
1412 return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr);
1413 }
1414
1415 /*
1416 * Get a mask of disabled public key algorithms based on supported signature
1417 * algorithms. For example if no signature algorithm supports RSA then RSA is
1418 * disabled.
1419 */
1420
1421 void ssl_set_sig_mask(uint32_t *pmask_a, SSL *s, int op)
1422 {
1423 const uint16_t *sigalgs;
1424 size_t i, sigalgslen;
1425 int have_rsa = 0, have_dsa = 0, have_ecdsa = 0;
1426 /*
1427 * Now go through all signature algorithms seeing if we support any for
1428 * RSA, DSA, ECDSA. Do this for all versions not just TLS 1.2. To keep
1429 * down calls to security callback only check if we have to.
1430 */
1431 sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs);
1432 for (i = 0; i < sigalgslen; i ++, sigalgs++) {
1433 switch (tls_sigalg_get_sig(*sigalgs)) {
1434 #ifndef OPENSSL_NO_RSA
1435 /* Any RSA-PSS signature algorithms also mean we allow RSA */
1436 case EVP_PKEY_RSA_PSS:
1437 case EVP_PKEY_RSA:
1438 if (!have_rsa && tls12_sigalg_allowed(s, op, *sigalgs))
1439 have_rsa = 1;
1440 break;
1441 #endif
1442 #ifndef OPENSSL_NO_DSA
1443 case EVP_PKEY_DSA:
1444 if (!have_dsa && tls12_sigalg_allowed(s, op, *sigalgs))
1445 have_dsa = 1;
1446 break;
1447 #endif
1448 #ifndef OPENSSL_NO_EC
1449 case EVP_PKEY_EC:
1450 if (!have_ecdsa && tls12_sigalg_allowed(s, op, *sigalgs))
1451 have_ecdsa = 1;
1452 break;
1453 #endif
1454 }
1455 }
1456 if (!have_rsa)
1457 *pmask_a |= SSL_aRSA;
1458 if (!have_dsa)
1459 *pmask_a |= SSL_aDSS;
1460 if (!have_ecdsa)
1461 *pmask_a |= SSL_aECDSA;
1462 }
1463
1464 int tls12_copy_sigalgs(SSL *s, WPACKET *pkt,
1465 const uint16_t *psig, size_t psiglen)
1466 {
1467 size_t i;
1468
1469 for (i = 0; i < psiglen; i++, psig++) {
1470 if (tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, *psig)) {
1471 if (!WPACKET_put_bytes_u16(pkt, *psig))
1472 return 0;
1473 }
1474 }
1475 return 1;
1476 }
1477
1478 /* Given preference and allowed sigalgs set shared sigalgs */
1479 static size_t tls12_shared_sigalgs(SSL *s, const SIGALG_LOOKUP **shsig,
1480 const uint16_t *pref, size_t preflen,
1481 const uint16_t *allow, size_t allowlen)
1482 {
1483 const uint16_t *ptmp, *atmp;
1484 size_t i, j, nmatch = 0;
1485 for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) {
1486 /* Skip disabled hashes or signature algorithms */
1487 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, *ptmp))
1488 continue;
1489 for (j = 0, atmp = allow; j < allowlen; j++, atmp++) {
1490 if (*ptmp == *atmp) {
1491 nmatch++;
1492 if (shsig) {
1493 *shsig = tls1_lookup_sigalg(*ptmp);
1494 shsig++;
1495 }
1496 break;
1497 }
1498 }
1499 }
1500 return nmatch;
1501 }
1502
1503 /* Set shared signature algorithms for SSL structures */
1504 static int tls1_set_shared_sigalgs(SSL *s)
1505 {
1506 const uint16_t *pref, *allow, *conf;
1507 size_t preflen, allowlen, conflen;
1508 size_t nmatch;
1509 const SIGALG_LOOKUP **salgs = NULL;
1510 CERT *c = s->cert;
1511 unsigned int is_suiteb = tls1_suiteb(s);
1512
1513 OPENSSL_free(c->shared_sigalgs);
1514 c->shared_sigalgs = NULL;
1515 c->shared_sigalgslen = 0;
1516 /* If client use client signature algorithms if not NULL */
1517 if (!s->server && c->client_sigalgs && !is_suiteb) {
1518 conf = c->client_sigalgs;
1519 conflen = c->client_sigalgslen;
1520 } else if (c->conf_sigalgs && !is_suiteb) {
1521 conf = c->conf_sigalgs;
1522 conflen = c->conf_sigalgslen;
1523 } else
1524 conflen = tls12_get_psigalgs(s, 0, &conf);
1525 if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) {
1526 pref = conf;
1527 preflen = conflen;
1528 allow = s->s3->tmp.peer_sigalgs;
1529 allowlen = s->s3->tmp.peer_sigalgslen;
1530 } else {
1531 allow = conf;
1532 allowlen = conflen;
1533 pref = s->s3->tmp.peer_sigalgs;
1534 preflen = s->s3->tmp.peer_sigalgslen;
1535 }
1536 nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen);
1537 if (nmatch) {
1538 salgs = OPENSSL_malloc(nmatch * sizeof(*salgs));
1539 if (salgs == NULL)
1540 return 0;
1541 nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen);
1542 } else {
1543 salgs = NULL;
1544 }
1545 c->shared_sigalgs = salgs;
1546 c->shared_sigalgslen = nmatch;
1547 return 1;
1548 }
1549
1550 /* Set preferred digest for each key type */
1551
1552 int tls1_save_sigalgs(SSL *s, PACKET *pkt)
1553 {
1554 CERT *c = s->cert;
1555 unsigned int stmp;
1556 size_t size, i;
1557
1558 /* Extension ignored for inappropriate versions */
1559 if (!SSL_USE_SIGALGS(s))
1560 return 1;
1561 /* Should never happen */
1562 if (!c)
1563 return 0;
1564
1565 size = PACKET_remaining(pkt);
1566
1567 /* Invalid data length */
1568 if ((size & 1) != 0)
1569 return 0;
1570
1571 size >>= 1;
1572
1573 OPENSSL_free(s->s3->tmp.peer_sigalgs);
1574 s->s3->tmp.peer_sigalgs = OPENSSL_malloc(size
1575 * sizeof(*s->s3->tmp.peer_sigalgs));
1576 if (s->s3->tmp.peer_sigalgs == NULL)
1577 return 0;
1578 s->s3->tmp.peer_sigalgslen = size;
1579 for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++)
1580 s->s3->tmp.peer_sigalgs[i] = stmp;
1581
1582 if (i != size)
1583 return 0;
1584
1585 return 1;
1586 }
1587
1588 int tls1_process_sigalgs(SSL *s)
1589 {
1590 int idx;
1591 size_t i;
1592 const EVP_MD *md;
1593 const EVP_MD **pmd = s->s3->tmp.md;
1594 uint32_t *pvalid = s->s3->tmp.valid_flags;
1595 CERT *c = s->cert;
1596
1597 if (!tls1_set_shared_sigalgs(s))
1598 return 0;
1599
1600 for (i = 0; i < c->shared_sigalgslen; i++) {
1601 const SIGALG_LOOKUP *sigptr = c->shared_sigalgs[i];
1602
1603 /* Ignore PKCS1 based sig algs in TLSv1.3 */
1604 if (SSL_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA)
1605 continue;
1606 idx = tls12_get_pkey_idx(sigptr->sig);
1607 if (idx > 0 && pmd[idx] == NULL) {
1608 md = ssl_md(sigptr->hash_idx);
1609 pmd[idx] = md;
1610 pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN;
1611 if (idx == SSL_PKEY_RSA_SIGN) {
1612 pvalid[SSL_PKEY_RSA_ENC] = CERT_PKEY_EXPLICIT_SIGN;
1613 pmd[SSL_PKEY_RSA_ENC] = md;
1614 }
1615 }
1616 }
1617 /*
1618 * In strict mode or TLS1.3 leave unset digests as NULL to indicate we can't
1619 * use the certificate for signing.
1620 */
1621 if (!(s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)
1622 && !SSL_IS_TLS13(s)) {
1623 /*
1624 * Set any remaining keys to default values. NOTE: if alg is not
1625 * supported it stays as NULL.
1626 */
1627 #ifndef OPENSSL_NO_DSA
1628 if (pmd[SSL_PKEY_DSA_SIGN] == NULL)
1629 pmd[SSL_PKEY_DSA_SIGN] = EVP_sha1();
1630 #endif
1631 #ifndef OPENSSL_NO_RSA
1632 if (pmd[SSL_PKEY_RSA_SIGN] == NULL) {
1633 pmd[SSL_PKEY_RSA_SIGN] = EVP_sha1();
1634 pmd[SSL_PKEY_RSA_ENC] = EVP_sha1();
1635 }
1636 #endif
1637 #ifndef OPENSSL_NO_EC
1638 if (pmd[SSL_PKEY_ECC] == NULL)
1639 pmd[SSL_PKEY_ECC] = EVP_sha1();
1640 #endif
1641 #ifndef OPENSSL_NO_GOST
1642 if (pmd[SSL_PKEY_GOST01] == NULL)
1643 pmd[SSL_PKEY_GOST01] = EVP_get_digestbynid(NID_id_GostR3411_94);
1644 if (pmd[SSL_PKEY_GOST12_256] == NULL)
1645 pmd[SSL_PKEY_GOST12_256] =
1646 EVP_get_digestbynid(NID_id_GostR3411_2012_256);
1647 if (pmd[SSL_PKEY_GOST12_512] == NULL)
1648 pmd[SSL_PKEY_GOST12_512] =
1649 EVP_get_digestbynid(NID_id_GostR3411_2012_512);
1650 #endif
1651 }
1652 return 1;
1653 }
1654
1655 int SSL_get_sigalgs(SSL *s, int idx,
1656 int *psign, int *phash, int *psignhash,
1657 unsigned char *rsig, unsigned char *rhash)
1658 {
1659 uint16_t *psig = s->s3->tmp.peer_sigalgs;
1660 size_t numsigalgs = s->s3->tmp.peer_sigalgslen;
1661 if (psig == NULL || numsigalgs > INT_MAX)
1662 return 0;
1663 if (idx >= 0) {
1664 const SIGALG_LOOKUP *lu;
1665
1666 if (idx >= (int)numsigalgs)
1667 return 0;
1668 psig += idx;
1669 if (rhash != NULL)
1670 *rhash = (unsigned char)((*psig >> 8) & 0xff);
1671 if (rsig != NULL)
1672 *rsig = (unsigned char)(*psig & 0xff);
1673 lu = tls1_lookup_sigalg(*psig);
1674 if (psign != NULL)
1675 *psign = lu != NULL ? lu->sig : NID_undef;
1676 if (phash != NULL)
1677 *phash = lu != NULL ? lu->hash : NID_undef;
1678 if (psignhash != NULL)
1679 *psignhash = lu != NULL ? lu->sigandhash : NID_undef;
1680 }
1681 return (int)numsigalgs;
1682 }
1683
1684 int SSL_get_shared_sigalgs(SSL *s, int idx,
1685 int *psign, int *phash, int *psignhash,
1686 unsigned char *rsig, unsigned char *rhash)
1687 {
1688 const SIGALG_LOOKUP *shsigalgs;
1689 if (s->cert->shared_sigalgs == NULL
1690 || idx >= (int)s->cert->shared_sigalgslen
1691 || s->cert->shared_sigalgslen > INT_MAX)
1692 return 0;
1693 shsigalgs = s->cert->shared_sigalgs[idx];
1694 if (phash != NULL)
1695 *phash = shsigalgs->hash;
1696 if (psign != NULL)
1697 *psign = shsigalgs->sig;
1698 if (psignhash != NULL)
1699 *psignhash = shsigalgs->sigandhash;
1700 if (rsig != NULL)
1701 *rsig = (unsigned char)(shsigalgs->sigalg & 0xff);
1702 if (rhash != NULL)
1703 *rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff);
1704 return (int)s->cert->shared_sigalgslen;
1705 }
1706
1707 /* Maximum possible number of unique entries in sigalgs array */
1708 #define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2)
1709
1710 typedef struct {
1711 size_t sigalgcnt;
1712 int sigalgs[TLS_MAX_SIGALGCNT];
1713 } sig_cb_st;
1714
1715 static void get_sigorhash(int *psig, int *phash, const char *str)
1716 {
1717 if (strcmp(str, "RSA") == 0) {
1718 *psig = EVP_PKEY_RSA;
1719 } else if (strcmp(str, "RSA-PSS") == 0 || strcmp(str, "PSS") == 0) {
1720 *psig = EVP_PKEY_RSA_PSS;
1721 } else if (strcmp(str, "DSA") == 0) {
1722 *psig = EVP_PKEY_DSA;
1723 } else if (strcmp(str, "ECDSA") == 0) {
1724 *psig = EVP_PKEY_EC;
1725 } else {
1726 *phash = OBJ_sn2nid(str);
1727 if (*phash == NID_undef)
1728 *phash = OBJ_ln2nid(str);
1729 }
1730 }
1731 /* Maximum length of a signature algorithm string component */
1732 #define TLS_MAX_SIGSTRING_LEN 40
1733
1734 static int sig_cb(const char *elem, int len, void *arg)
1735 {
1736 sig_cb_st *sarg = arg;
1737 size_t i;
1738 char etmp[TLS_MAX_SIGSTRING_LEN], *p;
1739 int sig_alg = NID_undef, hash_alg = NID_undef;
1740 if (elem == NULL)
1741 return 0;
1742 if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT)
1743 return 0;
1744 if (len > (int)(sizeof(etmp) - 1))
1745 return 0;
1746 memcpy(etmp, elem, len);
1747 etmp[len] = 0;
1748 p = strchr(etmp, '+');
1749 /* See if we have a match for TLS 1.3 names */
1750 if (p == NULL) {
1751 const SIGALG_LOOKUP *s;
1752
1753 for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
1754 i++, s++) {
1755 if (s->name != NULL && strcmp(etmp, s->name) == 0) {
1756 sig_alg = s->sig;
1757 hash_alg = s->hash;
1758 break;
1759 }
1760 }
1761 } else {
1762 *p = 0;
1763 p++;
1764 if (*p == 0)
1765 return 0;
1766 get_sigorhash(&sig_alg, &hash_alg, etmp);
1767 get_sigorhash(&sig_alg, &hash_alg, p);
1768 }
1769
1770 if (sig_alg == NID_undef || hash_alg == NID_undef)
1771 return 0;
1772
1773 for (i = 0; i < sarg->sigalgcnt; i += 2) {
1774 if (sarg->sigalgs[i] == sig_alg && sarg->sigalgs[i + 1] == hash_alg)
1775 return 0;
1776 }
1777 sarg->sigalgs[sarg->sigalgcnt++] = hash_alg;
1778 sarg->sigalgs[sarg->sigalgcnt++] = sig_alg;
1779 return 1;
1780 }
1781
1782 /*
1783 * Set supported signature algorithms based on a colon separated list of the
1784 * form sig+hash e.g. RSA+SHA512:DSA+SHA512
1785 */
1786 int tls1_set_sigalgs_list(CERT *c, const char *str, int client)
1787 {
1788 sig_cb_st sig;
1789 sig.sigalgcnt = 0;
1790 if (!CONF_parse_list(str, ':', 1, sig_cb, &sig))
1791 return 0;
1792 if (c == NULL)
1793 return 1;
1794 return tls1_set_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client);
1795 }
1796
1797 int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client)
1798 {
1799 uint16_t *sigalgs, *sptr;
1800 size_t i;
1801
1802 if (salglen & 1)
1803 return 0;
1804 sigalgs = OPENSSL_malloc((salglen / 2) * sizeof(*sigalgs));
1805 if (sigalgs == NULL)
1806 return 0;
1807 for (i = 0, sptr = sigalgs; i < salglen; i += 2) {
1808 size_t j;
1809 const SIGALG_LOOKUP *curr;
1810 int md_id = *psig_nids++;
1811 int sig_id = *psig_nids++;
1812
1813 for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl);
1814 j++, curr++) {
1815 if (curr->hash == md_id && curr->sig == sig_id) {
1816 *sptr++ = curr->sigalg;
1817 break;
1818 }
1819 }
1820
1821 if (j == OSSL_NELEM(sigalg_lookup_tbl))
1822 goto err;
1823 }
1824
1825 if (client) {
1826 OPENSSL_free(c->client_sigalgs);
1827 c->client_sigalgs = sigalgs;
1828 c->client_sigalgslen = salglen / 2;
1829 } else {
1830 OPENSSL_free(c->conf_sigalgs);
1831 c->conf_sigalgs = sigalgs;
1832 c->conf_sigalgslen = salglen / 2;
1833 }
1834
1835 return 1;
1836
1837 err:
1838 OPENSSL_free(sigalgs);
1839 return 0;
1840 }
1841
1842 static int tls1_check_sig_alg(CERT *c, X509 *x, int default_nid)
1843 {
1844 int sig_nid;
1845 size_t i;
1846 if (default_nid == -1)
1847 return 1;
1848 sig_nid = X509_get_signature_nid(x);
1849 if (default_nid)
1850 return sig_nid == default_nid ? 1 : 0;
1851 for (i = 0; i < c->shared_sigalgslen; i++)
1852 if (sig_nid == c->shared_sigalgs[i]->sigandhash)
1853 return 1;
1854 return 0;
1855 }
1856
1857 /* Check to see if a certificate issuer name matches list of CA names */
1858 static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x)
1859 {
1860 X509_NAME *nm;
1861 int i;
1862 nm = X509_get_issuer_name(x);
1863 for (i = 0; i < sk_X509_NAME_num(names); i++) {
1864 if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i)))
1865 return 1;
1866 }
1867 return 0;
1868 }
1869
1870 /*
1871 * Check certificate chain is consistent with TLS extensions and is usable by
1872 * server. This servers two purposes: it allows users to check chains before
1873 * passing them to the server and it allows the server to check chains before
1874 * attempting to use them.
1875 */
1876
1877 /* Flags which need to be set for a certificate when stict mode not set */
1878
1879 #define CERT_PKEY_VALID_FLAGS \
1880 (CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM)
1881 /* Strict mode flags */
1882 #define CERT_PKEY_STRICT_FLAGS \
1883 (CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \
1884 | CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE)
1885
1886 int tls1_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain,
1887 int idx)
1888 {
1889 int i;
1890 int rv = 0;
1891 int check_flags = 0, strict_mode;
1892 CERT_PKEY *cpk = NULL;
1893 CERT *c = s->cert;
1894 uint32_t *pvalid;
1895 unsigned int suiteb_flags = tls1_suiteb(s);
1896 /* idx == -1 means checking server chains */
1897 if (idx != -1) {
1898 /* idx == -2 means checking client certificate chains */
1899 if (idx == -2) {
1900 cpk = c->key;
1901 idx = (int)(cpk - c->pkeys);
1902 } else
1903 cpk = c->pkeys + idx;
1904 pvalid = s->s3->tmp.valid_flags + idx;
1905 x = cpk->x509;
1906 pk = cpk->privatekey;
1907 chain = cpk->chain;
1908 strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT;
1909 /* If no cert or key, forget it */
1910 if (!x || !pk)
1911 goto end;
1912 } else {
1913 if (!x || !pk)
1914 return 0;
1915 idx = ssl_cert_type(x, pk);
1916 if (idx == -1)
1917 return 0;
1918 pvalid = s->s3->tmp.valid_flags + idx;
1919
1920 if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)
1921 check_flags = CERT_PKEY_STRICT_FLAGS;
1922 else
1923 check_flags = CERT_PKEY_VALID_FLAGS;
1924 strict_mode = 1;
1925 }
1926
1927 if (suiteb_flags) {
1928 int ok;
1929 if (check_flags)
1930 check_flags |= CERT_PKEY_SUITEB;
1931 ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags);
1932 if (ok == X509_V_OK)
1933 rv |= CERT_PKEY_SUITEB;
1934 else if (!check_flags)
1935 goto end;
1936 }
1937
1938 /*
1939 * Check all signature algorithms are consistent with signature
1940 * algorithms extension if TLS 1.2 or later and strict mode.
1941 */
1942 if (TLS1_get_version(s) >= TLS1_2_VERSION && strict_mode) {
1943 int default_nid;
1944 int rsign = 0;
1945 if (s->s3->tmp.peer_sigalgs)
1946 default_nid = 0;
1947 /* If no sigalgs extension use defaults from RFC5246 */
1948 else {
1949 switch (idx) {
1950 case SSL_PKEY_RSA_ENC:
1951 case SSL_PKEY_RSA_SIGN:
1952 rsign = EVP_PKEY_RSA;
1953 default_nid = NID_sha1WithRSAEncryption;
1954 break;
1955
1956 case SSL_PKEY_DSA_SIGN:
1957 rsign = EVP_PKEY_DSA;
1958 default_nid = NID_dsaWithSHA1;
1959 break;
1960
1961 case SSL_PKEY_ECC:
1962 rsign = EVP_PKEY_EC;
1963 default_nid = NID_ecdsa_with_SHA1;
1964 break;
1965
1966 case SSL_PKEY_GOST01:
1967 rsign = NID_id_GostR3410_2001;
1968 default_nid = NID_id_GostR3411_94_with_GostR3410_2001;
1969 break;
1970
1971 case SSL_PKEY_GOST12_256:
1972 rsign = NID_id_GostR3410_2012_256;
1973 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256;
1974 break;
1975
1976 case SSL_PKEY_GOST12_512:
1977 rsign = NID_id_GostR3410_2012_512;
1978 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512;
1979 break;
1980
1981 default:
1982 default_nid = -1;
1983 break;
1984 }
1985 }
1986 /*
1987 * If peer sent no signature algorithms extension and we have set
1988 * preferred signature algorithms check we support sha1.
1989 */
1990 if (default_nid > 0 && c->conf_sigalgs) {
1991 size_t j;
1992 const uint16_t *p = c->conf_sigalgs;
1993 for (j = 0; j < c->conf_sigalgslen; j++, p++) {
1994 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(*p);
1995
1996 if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign)
1997 break;
1998 }
1999 if (j == c->conf_sigalgslen) {
2000 if (check_flags)
2001 goto skip_sigs;
2002 else
2003 goto end;
2004 }
2005 }
2006 /* Check signature algorithm of each cert in chain */
2007 if (!tls1_check_sig_alg(c, x, default_nid)) {
2008 if (!check_flags)
2009 goto end;
2010 } else
2011 rv |= CERT_PKEY_EE_SIGNATURE;
2012 rv |= CERT_PKEY_CA_SIGNATURE;
2013 for (i = 0; i < sk_X509_num(chain); i++) {
2014 if (!tls1_check_sig_alg(c, sk_X509_value(chain, i), default_nid)) {
2015 if (check_flags) {
2016 rv &= ~CERT_PKEY_CA_SIGNATURE;
2017 break;
2018 } else
2019 goto end;
2020 }
2021 }
2022 }
2023 /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */
2024 else if (check_flags)
2025 rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE;
2026 skip_sigs:
2027 /* Check cert parameters are consistent */
2028 if (tls1_check_cert_param(s, x, check_flags ? 1 : 2))
2029 rv |= CERT_PKEY_EE_PARAM;
2030 else if (!check_flags)
2031 goto end;
2032 if (!s->server)
2033 rv |= CERT_PKEY_CA_PARAM;
2034 /* In strict mode check rest of chain too */
2035 else if (strict_mode) {
2036 rv |= CERT_PKEY_CA_PARAM;
2037 for (i = 0; i < sk_X509_num(chain); i++) {
2038 X509 *ca = sk_X509_value(chain, i);
2039 if (!tls1_check_cert_param(s, ca, 0)) {
2040 if (check_flags) {
2041 rv &= ~CERT_PKEY_CA_PARAM;
2042 break;
2043 } else
2044 goto end;
2045 }
2046 }
2047 }
2048 if (!s->server && strict_mode) {
2049 STACK_OF(X509_NAME) *ca_dn;
2050 int check_type = 0;
2051 switch (EVP_PKEY_id(pk)) {
2052 case EVP_PKEY_RSA:
2053 check_type = TLS_CT_RSA_SIGN;
2054 break;
2055 case EVP_PKEY_DSA:
2056 check_type = TLS_CT_DSS_SIGN;
2057 break;
2058 case EVP_PKEY_EC:
2059 check_type = TLS_CT_ECDSA_SIGN;
2060 break;
2061 }
2062 if (check_type) {
2063 const unsigned char *ctypes;
2064 int ctypelen;
2065 if (c->ctypes) {
2066 ctypes = c->ctypes;
2067 ctypelen = (int)c->ctype_num;
2068 } else {
2069 ctypes = (unsigned char *)s->s3->tmp.ctype;
2070 ctypelen = s->s3->tmp.ctype_num;
2071 }
2072 for (i = 0; i < ctypelen; i++) {
2073 if (ctypes[i] == check_type) {
2074 rv |= CERT_PKEY_CERT_TYPE;
2075 break;
2076 }
2077 }
2078 if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags)
2079 goto end;
2080 } else
2081 rv |= CERT_PKEY_CERT_TYPE;
2082
2083 ca_dn = s->s3->tmp.ca_names;
2084
2085 if (!sk_X509_NAME_num(ca_dn))
2086 rv |= CERT_PKEY_ISSUER_NAME;
2087
2088 if (!(rv & CERT_PKEY_ISSUER_NAME)) {
2089 if (ssl_check_ca_name(ca_dn, x))
2090 rv |= CERT_PKEY_ISSUER_NAME;
2091 }
2092 if (!(rv & CERT_PKEY_ISSUER_NAME)) {
2093 for (i = 0; i < sk_X509_num(chain); i++) {
2094 X509 *xtmp = sk_X509_value(chain, i);
2095 if (ssl_check_ca_name(ca_dn, xtmp)) {
2096 rv |= CERT_PKEY_ISSUER_NAME;
2097 break;
2098 }
2099 }
2100 }
2101 if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME))
2102 goto end;
2103 } else
2104 rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE;
2105
2106 if (!check_flags || (rv & check_flags) == check_flags)
2107 rv |= CERT_PKEY_VALID;
2108
2109 end:
2110
2111 if (TLS1_get_version(s) >= TLS1_2_VERSION) {
2112 if (*pvalid & CERT_PKEY_EXPLICIT_SIGN)
2113 rv |= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
2114 else if (s->s3->tmp.md[idx] != NULL)
2115 rv |= CERT_PKEY_SIGN;
2116 } else
2117 rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN;
2118
2119 /*
2120 * When checking a CERT_PKEY structure all flags are irrelevant if the
2121 * chain is invalid.
2122 */
2123 if (!check_flags) {
2124 if (rv & CERT_PKEY_VALID)
2125 *pvalid = rv;
2126 else {
2127 /* Preserve explicit sign flag, clear rest */
2128 *pvalid &= CERT_PKEY_EXPLICIT_SIGN;
2129 return 0;
2130 }
2131 }
2132 return rv;
2133 }
2134
2135 /* Set validity of certificates in an SSL structure */
2136 void tls1_set_cert_validity(SSL *s)
2137 {
2138 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_ENC);
2139 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_SIGN);
2140 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN);
2141 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC);
2142 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01);
2143 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256);
2144 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512);
2145 }
2146
2147 /* User level utiity function to check a chain is suitable */
2148 int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain)
2149 {
2150 return tls1_check_chain(s, x, pk, chain, -1);
2151 }
2152
2153 #ifndef OPENSSL_NO_DH
2154 DH *ssl_get_auto_dh(SSL *s)
2155 {
2156 int dh_secbits = 80;
2157 if (s->cert->dh_tmp_auto == 2)
2158 return DH_get_1024_160();
2159 if (s->s3->tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) {
2160 if (s->s3->tmp.new_cipher->strength_bits == 256)
2161 dh_secbits = 128;
2162 else
2163 dh_secbits = 80;
2164 } else {
2165 CERT_PKEY *cpk = ssl_get_server_send_pkey(s);
2166 dh_secbits = EVP_PKEY_security_bits(cpk->privatekey);
2167 }
2168
2169 if (dh_secbits >= 128) {
2170 DH *dhp = DH_new();
2171 BIGNUM *p, *g;
2172 if (dhp == NULL)
2173 return NULL;
2174 g = BN_new();
2175 if (g != NULL)
2176 BN_set_word(g, 2);
2177 if (dh_secbits >= 192)
2178 p = BN_get_rfc3526_prime_8192(NULL);
2179 else
2180 p = BN_get_rfc3526_prime_3072(NULL);
2181 if (p == NULL || g == NULL || !DH_set0_pqg(dhp, p, NULL, g)) {
2182 DH_free(dhp);
2183 BN_free(p);
2184 BN_free(g);
2185 return NULL;
2186 }
2187 return dhp;
2188 }
2189 if (dh_secbits >= 112)
2190 return DH_get_2048_224();
2191 return DH_get_1024_160();
2192 }
2193 #endif
2194
2195 static int ssl_security_cert_key(SSL *s, SSL_CTX *ctx, X509 *x, int op)
2196 {
2197 int secbits = -1;
2198 EVP_PKEY *pkey = X509_get0_pubkey(x);
2199 if (pkey) {
2200 /*
2201 * If no parameters this will return -1 and fail using the default
2202 * security callback for any non-zero security level. This will
2203 * reject keys which omit parameters but this only affects DSA and
2204 * omission of parameters is never (?) done in practice.
2205 */
2206 secbits = EVP_PKEY_security_bits(pkey);
2207 }
2208 if (s)
2209 return ssl_security(s, op, secbits, 0, x);
2210 else
2211 return ssl_ctx_security(ctx, op, secbits, 0, x);
2212 }
2213
2214 static int ssl_security_cert_sig(SSL *s, SSL_CTX *ctx, X509 *x, int op)
2215 {
2216 /* Lookup signature algorithm digest */
2217 int secbits = -1, md_nid = NID_undef, sig_nid;
2218 /* Don't check signature if self signed */
2219 if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0)
2220 return 1;
2221 sig_nid = X509_get_signature_nid(x);
2222 if (sig_nid && OBJ_find_sigid_algs(sig_nid, &md_nid, NULL)) {
2223 const EVP_MD *md;
2224 if (md_nid && (md = EVP_get_digestbynid(md_nid)))
2225 secbits = EVP_MD_size(md) * 4;
2226 }
2227 if (s)
2228 return ssl_security(s, op, secbits, md_nid, x);
2229 else
2230 return ssl_ctx_security(ctx, op, secbits, md_nid, x);
2231 }
2232
2233 int ssl_security_cert(SSL *s, SSL_CTX *ctx, X509 *x, int vfy, int is_ee)
2234 {
2235 if (vfy)
2236 vfy = SSL_SECOP_PEER;
2237 if (is_ee) {
2238 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy))
2239 return SSL_R_EE_KEY_TOO_SMALL;
2240 } else {
2241 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy))
2242 return SSL_R_CA_KEY_TOO_SMALL;
2243 }
2244 if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy))
2245 return SSL_R_CA_MD_TOO_WEAK;
2246 return 1;
2247 }
2248
2249 /*
2250 * Check security of a chain, if sk includes the end entity certificate then
2251 * x is NULL. If vfy is 1 then we are verifying a peer chain and not sending
2252 * one to the peer. Return values: 1 if ok otherwise error code to use
2253 */
2254
2255 int ssl_security_cert_chain(SSL *s, STACK_OF(X509) *sk, X509 *x, int vfy)
2256 {
2257 int rv, start_idx, i;
2258 if (x == NULL) {
2259 x = sk_X509_value(sk, 0);
2260 start_idx = 1;
2261 } else
2262 start_idx = 0;
2263
2264 rv = ssl_security_cert(s, NULL, x, vfy, 1);
2265 if (rv != 1)
2266 return rv;
2267
2268 for (i = start_idx; i < sk_X509_num(sk); i++) {
2269 x = sk_X509_value(sk, i);
2270 rv = ssl_security_cert(s, NULL, x, vfy, 0);
2271 if (rv != 1)
2272 return rv;
2273 }
2274 return 1;
2275 }