]> git.ipfire.org Git - thirdparty/openssl.git/blob - ssl/t1_lib.c
Check index >= 0 as 0 is a valid index.
[thirdparty/openssl.git] / ssl / t1_lib.c
1 /*
2 * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the OpenSSL license (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 #include <stdio.h>
11 #include <stdlib.h>
12 #include <openssl/objects.h>
13 #include <openssl/evp.h>
14 #include <openssl/hmac.h>
15 #include <openssl/ocsp.h>
16 #include <openssl/conf.h>
17 #include <openssl/x509v3.h>
18 #include <openssl/dh.h>
19 #include <openssl/bn.h>
20 #include "ssl_locl.h"
21 #include <openssl/ct.h>
22
23 SSL3_ENC_METHOD const TLSv1_enc_data = {
24 tls1_enc,
25 tls1_mac,
26 tls1_setup_key_block,
27 tls1_generate_master_secret,
28 tls1_change_cipher_state,
29 tls1_final_finish_mac,
30 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
31 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
32 tls1_alert_code,
33 tls1_export_keying_material,
34 0,
35 ssl3_set_handshake_header,
36 tls_close_construct_packet,
37 ssl3_handshake_write
38 };
39
40 SSL3_ENC_METHOD const TLSv1_1_enc_data = {
41 tls1_enc,
42 tls1_mac,
43 tls1_setup_key_block,
44 tls1_generate_master_secret,
45 tls1_change_cipher_state,
46 tls1_final_finish_mac,
47 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
48 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
49 tls1_alert_code,
50 tls1_export_keying_material,
51 SSL_ENC_FLAG_EXPLICIT_IV,
52 ssl3_set_handshake_header,
53 tls_close_construct_packet,
54 ssl3_handshake_write
55 };
56
57 SSL3_ENC_METHOD const TLSv1_2_enc_data = {
58 tls1_enc,
59 tls1_mac,
60 tls1_setup_key_block,
61 tls1_generate_master_secret,
62 tls1_change_cipher_state,
63 tls1_final_finish_mac,
64 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
65 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
66 tls1_alert_code,
67 tls1_export_keying_material,
68 SSL_ENC_FLAG_EXPLICIT_IV | SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF
69 | SSL_ENC_FLAG_TLS1_2_CIPHERS,
70 ssl3_set_handshake_header,
71 tls_close_construct_packet,
72 ssl3_handshake_write
73 };
74
75 SSL3_ENC_METHOD const TLSv1_3_enc_data = {
76 tls13_enc,
77 tls1_mac,
78 tls13_setup_key_block,
79 tls13_generate_master_secret,
80 tls13_change_cipher_state,
81 tls13_final_finish_mac,
82 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
83 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
84 tls13_alert_code,
85 tls1_export_keying_material,
86 SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF,
87 ssl3_set_handshake_header,
88 tls_close_construct_packet,
89 ssl3_handshake_write
90 };
91
92 long tls1_default_timeout(void)
93 {
94 /*
95 * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for
96 * http, the cache would over fill
97 */
98 return (60 * 60 * 2);
99 }
100
101 int tls1_new(SSL *s)
102 {
103 if (!ssl3_new(s))
104 return (0);
105 s->method->ssl_clear(s);
106 return (1);
107 }
108
109 void tls1_free(SSL *s)
110 {
111 OPENSSL_free(s->ext.session_ticket);
112 ssl3_free(s);
113 }
114
115 void tls1_clear(SSL *s)
116 {
117 ssl3_clear(s);
118 if (s->method->version == TLS_ANY_VERSION)
119 s->version = TLS_MAX_VERSION;
120 else
121 s->version = s->method->version;
122 }
123
124 #ifndef OPENSSL_NO_EC
125
126 typedef struct {
127 int nid; /* Curve NID */
128 int secbits; /* Bits of security (from SP800-57) */
129 unsigned int flags; /* Flags: currently just field type */
130 } tls_curve_info;
131
132 /*
133 * Table of curve information.
134 * Do not delete entries or reorder this array! It is used as a lookup
135 * table: the index of each entry is one less than the TLS curve id.
136 */
137 static const tls_curve_info nid_list[] = {
138 {NID_sect163k1, 80, TLS_CURVE_CHAR2}, /* sect163k1 (1) */
139 {NID_sect163r1, 80, TLS_CURVE_CHAR2}, /* sect163r1 (2) */
140 {NID_sect163r2, 80, TLS_CURVE_CHAR2}, /* sect163r2 (3) */
141 {NID_sect193r1, 80, TLS_CURVE_CHAR2}, /* sect193r1 (4) */
142 {NID_sect193r2, 80, TLS_CURVE_CHAR2}, /* sect193r2 (5) */
143 {NID_sect233k1, 112, TLS_CURVE_CHAR2}, /* sect233k1 (6) */
144 {NID_sect233r1, 112, TLS_CURVE_CHAR2}, /* sect233r1 (7) */
145 {NID_sect239k1, 112, TLS_CURVE_CHAR2}, /* sect239k1 (8) */
146 {NID_sect283k1, 128, TLS_CURVE_CHAR2}, /* sect283k1 (9) */
147 {NID_sect283r1, 128, TLS_CURVE_CHAR2}, /* sect283r1 (10) */
148 {NID_sect409k1, 192, TLS_CURVE_CHAR2}, /* sect409k1 (11) */
149 {NID_sect409r1, 192, TLS_CURVE_CHAR2}, /* sect409r1 (12) */
150 {NID_sect571k1, 256, TLS_CURVE_CHAR2}, /* sect571k1 (13) */
151 {NID_sect571r1, 256, TLS_CURVE_CHAR2}, /* sect571r1 (14) */
152 {NID_secp160k1, 80, TLS_CURVE_PRIME}, /* secp160k1 (15) */
153 {NID_secp160r1, 80, TLS_CURVE_PRIME}, /* secp160r1 (16) */
154 {NID_secp160r2, 80, TLS_CURVE_PRIME}, /* secp160r2 (17) */
155 {NID_secp192k1, 80, TLS_CURVE_PRIME}, /* secp192k1 (18) */
156 {NID_X9_62_prime192v1, 80, TLS_CURVE_PRIME}, /* secp192r1 (19) */
157 {NID_secp224k1, 112, TLS_CURVE_PRIME}, /* secp224k1 (20) */
158 {NID_secp224r1, 112, TLS_CURVE_PRIME}, /* secp224r1 (21) */
159 {NID_secp256k1, 128, TLS_CURVE_PRIME}, /* secp256k1 (22) */
160 {NID_X9_62_prime256v1, 128, TLS_CURVE_PRIME}, /* secp256r1 (23) */
161 {NID_secp384r1, 192, TLS_CURVE_PRIME}, /* secp384r1 (24) */
162 {NID_secp521r1, 256, TLS_CURVE_PRIME}, /* secp521r1 (25) */
163 {NID_brainpoolP256r1, 128, TLS_CURVE_PRIME}, /* brainpoolP256r1 (26) */
164 {NID_brainpoolP384r1, 192, TLS_CURVE_PRIME}, /* brainpoolP384r1 (27) */
165 {NID_brainpoolP512r1, 256, TLS_CURVE_PRIME}, /* brainpool512r1 (28) */
166 {NID_X25519, 128, TLS_CURVE_CUSTOM}, /* X25519 (29) */
167 };
168
169 static const unsigned char ecformats_default[] = {
170 TLSEXT_ECPOINTFORMAT_uncompressed,
171 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime,
172 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2
173 };
174
175 /* The default curves */
176 static const unsigned char eccurves_default[] = {
177 0, 29, /* X25519 (29) */
178 0, 23, /* secp256r1 (23) */
179 0, 25, /* secp521r1 (25) */
180 0, 24, /* secp384r1 (24) */
181 };
182
183 static const unsigned char suiteb_curves[] = {
184 0, TLSEXT_curve_P_256,
185 0, TLSEXT_curve_P_384
186 };
187
188 int tls1_ec_curve_id2nid(int curve_id, unsigned int *pflags)
189 {
190 const tls_curve_info *cinfo;
191 /* ECC curves from RFC 4492 and RFC 7027 */
192 if ((curve_id < 1) || ((unsigned int)curve_id > OSSL_NELEM(nid_list)))
193 return 0;
194 cinfo = nid_list + curve_id - 1;
195 if (pflags)
196 *pflags = cinfo->flags;
197 return cinfo->nid;
198 }
199
200 int tls1_ec_nid2curve_id(int nid)
201 {
202 size_t i;
203 for (i = 0; i < OSSL_NELEM(nid_list); i++) {
204 if (nid_list[i].nid == nid)
205 return (int)(i + 1);
206 }
207 return 0;
208 }
209
210 /*
211 * Get curves list, if "sess" is set return client curves otherwise
212 * preferred list.
213 * Sets |num_curves| to the number of curves in the list, i.e.,
214 * the length of |pcurves| is 2 * num_curves.
215 * Returns 1 on success and 0 if the client curves list has invalid format.
216 * The latter indicates an internal error: we should not be accepting such
217 * lists in the first place.
218 * TODO(emilia): we should really be storing the curves list in explicitly
219 * parsed form instead. (However, this would affect binary compatibility
220 * so cannot happen in the 1.0.x series.)
221 */
222 int tls1_get_curvelist(SSL *s, int sess, const unsigned char **pcurves,
223 size_t *num_curves)
224 {
225 size_t pcurveslen = 0;
226
227 if (sess) {
228 *pcurves = s->session->ext.supportedgroups;
229 pcurveslen = s->session->ext.supportedgroups_len;
230 } else {
231 /* For Suite B mode only include P-256, P-384 */
232 switch (tls1_suiteb(s)) {
233 case SSL_CERT_FLAG_SUITEB_128_LOS:
234 *pcurves = suiteb_curves;
235 pcurveslen = sizeof(suiteb_curves);
236 break;
237
238 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
239 *pcurves = suiteb_curves;
240 pcurveslen = 2;
241 break;
242
243 case SSL_CERT_FLAG_SUITEB_192_LOS:
244 *pcurves = suiteb_curves + 2;
245 pcurveslen = 2;
246 break;
247 default:
248 *pcurves = s->ext.supportedgroups;
249 pcurveslen = s->ext.supportedgroups_len;
250 }
251 if (!*pcurves) {
252 *pcurves = eccurves_default;
253 pcurveslen = sizeof(eccurves_default);
254 }
255 }
256
257 /* We do not allow odd length arrays to enter the system. */
258 if (pcurveslen & 1) {
259 SSLerr(SSL_F_TLS1_GET_CURVELIST, ERR_R_INTERNAL_ERROR);
260 *num_curves = 0;
261 return 0;
262 }
263 *num_curves = pcurveslen / 2;
264 return 1;
265 }
266
267 /* See if curve is allowed by security callback */
268 int tls_curve_allowed(SSL *s, const unsigned char *curve, int op)
269 {
270 const tls_curve_info *cinfo;
271 if (curve[0])
272 return 1;
273 if ((curve[1] < 1) || ((size_t)curve[1] > OSSL_NELEM(nid_list)))
274 return 0;
275 cinfo = &nid_list[curve[1] - 1];
276 # ifdef OPENSSL_NO_EC2M
277 if (cinfo->flags & TLS_CURVE_CHAR2)
278 return 0;
279 # endif
280 return ssl_security(s, op, cinfo->secbits, cinfo->nid, (void *)curve);
281 }
282
283 /* Check a curve is one of our preferences */
284 int tls1_check_curve(SSL *s, const unsigned char *p, size_t len)
285 {
286 const unsigned char *curves;
287 size_t num_curves, i;
288 unsigned int suiteb_flags = tls1_suiteb(s);
289 if (len != 3 || p[0] != NAMED_CURVE_TYPE)
290 return 0;
291 /* Check curve matches Suite B preferences */
292 if (suiteb_flags) {
293 unsigned long cid = s->s3->tmp.new_cipher->id;
294 if (p[1])
295 return 0;
296 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) {
297 if (p[2] != TLSEXT_curve_P_256)
298 return 0;
299 } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) {
300 if (p[2] != TLSEXT_curve_P_384)
301 return 0;
302 } else /* Should never happen */
303 return 0;
304 }
305 if (!tls1_get_curvelist(s, 0, &curves, &num_curves))
306 return 0;
307 for (i = 0; i < num_curves; i++, curves += 2) {
308 if (p[1] == curves[0] && p[2] == curves[1])
309 return tls_curve_allowed(s, p + 1, SSL_SECOP_CURVE_CHECK);
310 }
311 return 0;
312 }
313
314 /*-
315 * For nmatch >= 0, return the NID of the |nmatch|th shared group or NID_undef
316 * if there is no match.
317 * For nmatch == -1, return number of matches
318 * For nmatch == -2, return the NID of the group to use for
319 * an EC tmp key, or NID_undef if there is no match.
320 */
321 int tls1_shared_group(SSL *s, int nmatch)
322 {
323 const unsigned char *pref, *supp;
324 size_t num_pref, num_supp, i, j;
325 int k;
326
327 /* Can't do anything on client side */
328 if (s->server == 0)
329 return -1;
330 if (nmatch == -2) {
331 if (tls1_suiteb(s)) {
332 /*
333 * For Suite B ciphersuite determines curve: we already know
334 * these are acceptable due to previous checks.
335 */
336 unsigned long cid = s->s3->tmp.new_cipher->id;
337
338 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
339 return NID_X9_62_prime256v1; /* P-256 */
340 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
341 return NID_secp384r1; /* P-384 */
342 /* Should never happen */
343 return NID_undef;
344 }
345 /* If not Suite B just return first preference shared curve */
346 nmatch = 0;
347 }
348 /*
349 * Avoid truncation. tls1_get_curvelist takes an int
350 * but s->options is a long...
351 */
352 if (!tls1_get_curvelist(s,
353 (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) != 0,
354 &supp, &num_supp))
355 /* In practice, NID_undef == 0 but let's be precise. */
356 return nmatch == -1 ? 0 : NID_undef;
357 if (!tls1_get_curvelist(s,
358 (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) == 0,
359 &pref, &num_pref))
360 return nmatch == -1 ? 0 : NID_undef;
361
362 for (k = 0, i = 0; i < num_pref; i++, pref += 2) {
363 const unsigned char *tsupp = supp;
364
365 for (j = 0; j < num_supp; j++, tsupp += 2) {
366 if (pref[0] == tsupp[0] && pref[1] == tsupp[1]) {
367 if (!tls_curve_allowed(s, pref, SSL_SECOP_CURVE_SHARED))
368 continue;
369 if (nmatch == k) {
370 int id = (pref[0] << 8) | pref[1];
371
372 return tls1_ec_curve_id2nid(id, NULL);
373 }
374 k++;
375 }
376 }
377 }
378 if (nmatch == -1)
379 return k;
380 /* Out of range (nmatch > k). */
381 return NID_undef;
382 }
383
384 int tls1_set_groups(unsigned char **pext, size_t *pextlen,
385 int *groups, size_t ngroups)
386 {
387 unsigned char *glist, *p;
388 size_t i;
389 /*
390 * Bitmap of groups included to detect duplicates: only works while group
391 * ids < 32
392 */
393 unsigned long dup_list = 0;
394 glist = OPENSSL_malloc(ngroups * 2);
395 if (glist == NULL)
396 return 0;
397 for (i = 0, p = glist; i < ngroups; i++) {
398 unsigned long idmask;
399 int id;
400 /* TODO(TLS1.3): Convert for DH groups */
401 id = tls1_ec_nid2curve_id(groups[i]);
402 idmask = 1L << id;
403 if (!id || (dup_list & idmask)) {
404 OPENSSL_free(glist);
405 return 0;
406 }
407 dup_list |= idmask;
408 s2n(id, p);
409 }
410 OPENSSL_free(*pext);
411 *pext = glist;
412 *pextlen = ngroups * 2;
413 return 1;
414 }
415
416 # define MAX_CURVELIST 28
417
418 typedef struct {
419 size_t nidcnt;
420 int nid_arr[MAX_CURVELIST];
421 } nid_cb_st;
422
423 static int nid_cb(const char *elem, int len, void *arg)
424 {
425 nid_cb_st *narg = arg;
426 size_t i;
427 int nid;
428 char etmp[20];
429 if (elem == NULL)
430 return 0;
431 if (narg->nidcnt == MAX_CURVELIST)
432 return 0;
433 if (len > (int)(sizeof(etmp) - 1))
434 return 0;
435 memcpy(etmp, elem, len);
436 etmp[len] = 0;
437 nid = EC_curve_nist2nid(etmp);
438 if (nid == NID_undef)
439 nid = OBJ_sn2nid(etmp);
440 if (nid == NID_undef)
441 nid = OBJ_ln2nid(etmp);
442 if (nid == NID_undef)
443 return 0;
444 for (i = 0; i < narg->nidcnt; i++)
445 if (narg->nid_arr[i] == nid)
446 return 0;
447 narg->nid_arr[narg->nidcnt++] = nid;
448 return 1;
449 }
450
451 /* Set groups based on a colon separate list */
452 int tls1_set_groups_list(unsigned char **pext, size_t *pextlen, const char *str)
453 {
454 nid_cb_st ncb;
455 ncb.nidcnt = 0;
456 if (!CONF_parse_list(str, ':', 1, nid_cb, &ncb))
457 return 0;
458 if (pext == NULL)
459 return 1;
460 return tls1_set_groups(pext, pextlen, ncb.nid_arr, ncb.nidcnt);
461 }
462
463 /* For an EC key set TLS id and required compression based on parameters */
464 static int tls1_set_ec_id(unsigned char *curve_id, unsigned char *comp_id,
465 EC_KEY *ec)
466 {
467 int id;
468 const EC_GROUP *grp;
469 if (!ec)
470 return 0;
471 /* Determine if it is a prime field */
472 grp = EC_KEY_get0_group(ec);
473 if (!grp)
474 return 0;
475 /* Determine curve ID */
476 id = EC_GROUP_get_curve_name(grp);
477 id = tls1_ec_nid2curve_id(id);
478 /* If no id return error: we don't support arbitrary explicit curves */
479 if (id == 0)
480 return 0;
481 curve_id[0] = 0;
482 curve_id[1] = (unsigned char)id;
483 if (comp_id) {
484 if (EC_KEY_get0_public_key(ec) == NULL)
485 return 0;
486 if (EC_KEY_get_conv_form(ec) == POINT_CONVERSION_UNCOMPRESSED) {
487 *comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;
488 } else {
489 if ((nid_list[id - 1].flags & TLS_CURVE_TYPE) == TLS_CURVE_PRIME)
490 *comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime;
491 else
492 *comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2;
493 }
494 }
495 return 1;
496 }
497
498 /* Check an EC key is compatible with extensions */
499 static int tls1_check_ec_key(SSL *s,
500 unsigned char *curve_id, unsigned char *comp_id)
501 {
502 const unsigned char *pformats, *pcurves;
503 size_t num_formats, num_curves, i;
504 int j;
505 /*
506 * If point formats extension present check it, otherwise everything is
507 * supported (see RFC4492).
508 */
509 if (comp_id && s->session->ext.ecpointformats) {
510 pformats = s->session->ext.ecpointformats;
511 num_formats = s->session->ext.ecpointformats_len;
512 for (i = 0; i < num_formats; i++, pformats++) {
513 if (*comp_id == *pformats)
514 break;
515 }
516 if (i == num_formats)
517 return 0;
518 }
519 if (!curve_id)
520 return 1;
521 /* Check curve is consistent with client and server preferences */
522 for (j = 0; j <= 1; j++) {
523 if (!tls1_get_curvelist(s, j, &pcurves, &num_curves))
524 return 0;
525 if (j == 1 && num_curves == 0) {
526 /*
527 * If we've not received any curves then skip this check.
528 * RFC 4492 does not require the supported elliptic curves extension
529 * so if it is not sent we can just choose any curve.
530 * It is invalid to send an empty list in the elliptic curves
531 * extension, so num_curves == 0 always means no extension.
532 */
533 break;
534 }
535 for (i = 0; i < num_curves; i++, pcurves += 2) {
536 if (pcurves[0] == curve_id[0] && pcurves[1] == curve_id[1])
537 break;
538 }
539 if (i == num_curves)
540 return 0;
541 /* For clients can only check sent curve list */
542 if (!s->server)
543 break;
544 }
545 return 1;
546 }
547
548 void tls1_get_formatlist(SSL *s, const unsigned char **pformats,
549 size_t *num_formats)
550 {
551 /*
552 * If we have a custom point format list use it otherwise use default
553 */
554 if (s->ext.ecpointformats) {
555 *pformats = s->ext.ecpointformats;
556 *num_formats = s->ext.ecpointformats_len;
557 } else {
558 *pformats = ecformats_default;
559 /* For Suite B we don't support char2 fields */
560 if (tls1_suiteb(s))
561 *num_formats = sizeof(ecformats_default) - 1;
562 else
563 *num_formats = sizeof(ecformats_default);
564 }
565 }
566
567 /*
568 * Check cert parameters compatible with extensions: currently just checks EC
569 * certificates have compatible curves and compression.
570 */
571 static int tls1_check_cert_param(SSL *s, X509 *x, int set_ee_md)
572 {
573 unsigned char comp_id, curve_id[2];
574 EVP_PKEY *pkey;
575 int rv;
576 pkey = X509_get0_pubkey(x);
577 if (!pkey)
578 return 0;
579 /* If not EC nothing to do */
580 if (EVP_PKEY_id(pkey) != EVP_PKEY_EC)
581 return 1;
582 rv = tls1_set_ec_id(curve_id, &comp_id, EVP_PKEY_get0_EC_KEY(pkey));
583 if (!rv)
584 return 0;
585 /*
586 * Can't check curve_id for client certs as we don't have a supported
587 * curves extension.
588 */
589 rv = tls1_check_ec_key(s, s->server ? curve_id : NULL, &comp_id);
590 if (!rv)
591 return 0;
592 /*
593 * Special case for suite B. We *MUST* sign using SHA256+P-256 or
594 * SHA384+P-384, adjust digest if necessary.
595 */
596 if (set_ee_md && tls1_suiteb(s)) {
597 int check_md;
598 size_t i;
599 CERT *c = s->cert;
600 if (curve_id[0])
601 return 0;
602 /* Check to see we have necessary signing algorithm */
603 if (curve_id[1] == TLSEXT_curve_P_256)
604 check_md = NID_ecdsa_with_SHA256;
605 else if (curve_id[1] == TLSEXT_curve_P_384)
606 check_md = NID_ecdsa_with_SHA384;
607 else
608 return 0; /* Should never happen */
609 for (i = 0; i < c->shared_sigalgslen; i++)
610 if (check_md == c->shared_sigalgs[i]->sigandhash)
611 break;
612 if (i == c->shared_sigalgslen)
613 return 0;
614 if (set_ee_md == 2) {
615 if (check_md == NID_ecdsa_with_SHA256)
616 s->s3->tmp.md[SSL_PKEY_ECC] = EVP_sha256();
617 else
618 s->s3->tmp.md[SSL_PKEY_ECC] = EVP_sha384();
619 }
620 }
621 return rv;
622 }
623
624 # ifndef OPENSSL_NO_EC
625 /*
626 * tls1_check_ec_tmp_key - Check EC temporary key compatibility
627 * @s: SSL connection
628 * @cid: Cipher ID we're considering using
629 *
630 * Checks that the kECDHE cipher suite we're considering using
631 * is compatible with the client extensions.
632 *
633 * Returns 0 when the cipher can't be used or 1 when it can.
634 */
635 int tls1_check_ec_tmp_key(SSL *s, unsigned long cid)
636 {
637 /*
638 * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other
639 * curves permitted.
640 */
641 if (tls1_suiteb(s)) {
642 unsigned char curve_id[2];
643 /* Curve to check determined by ciphersuite */
644 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
645 curve_id[1] = TLSEXT_curve_P_256;
646 else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
647 curve_id[1] = TLSEXT_curve_P_384;
648 else
649 return 0;
650 curve_id[0] = 0;
651 /* Check this curve is acceptable */
652 if (!tls1_check_ec_key(s, curve_id, NULL))
653 return 0;
654 return 1;
655 }
656 /* Need a shared curve */
657 if (tls1_shared_group(s, 0))
658 return 1;
659 return 0;
660 }
661 # endif /* OPENSSL_NO_EC */
662
663 #else
664
665 static int tls1_check_cert_param(SSL *s, X509 *x, int set_ee_md)
666 {
667 return 1;
668 }
669
670 #endif /* OPENSSL_NO_EC */
671
672 /* Default sigalg schemes */
673 static const uint16_t tls12_sigalgs[] = {
674 #ifndef OPENSSL_NO_EC
675 TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
676 TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
677 TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
678 #endif
679
680 TLSEXT_SIGALG_rsa_pss_sha256,
681 TLSEXT_SIGALG_rsa_pss_sha384,
682 TLSEXT_SIGALG_rsa_pss_sha512,
683
684 TLSEXT_SIGALG_rsa_pkcs1_sha256,
685 TLSEXT_SIGALG_rsa_pkcs1_sha384,
686 TLSEXT_SIGALG_rsa_pkcs1_sha512,
687
688 #ifndef OPENSSL_NO_EC
689 TLSEXT_SIGALG_ecdsa_sha1,
690 #endif
691 TLSEXT_SIGALG_rsa_pkcs1_sha1,
692 #ifndef OPENSSL_NO_DSA
693 TLSEXT_SIGALG_dsa_sha1,
694
695 TLSEXT_SIGALG_dsa_sha256,
696 TLSEXT_SIGALG_dsa_sha384,
697 TLSEXT_SIGALG_dsa_sha512
698 #endif
699 };
700
701 #ifndef OPENSSL_NO_EC
702 static const uint16_t suiteb_sigalgs[] = {
703 TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
704 TLSEXT_SIGALG_ecdsa_secp384r1_sha384
705 };
706 #endif
707
708 static const SIGALG_LOOKUP sigalg_lookup_tbl[] = {
709 #ifndef OPENSSL_NO_EC
710 {"ecdsa_secp256r1_sha256", TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
711 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
712 NID_ecdsa_with_SHA256, NID_X9_62_prime256v1},
713 {"ecdsa_secp384r1_sha384", TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
714 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
715 NID_ecdsa_with_SHA384, NID_secp384r1},
716 {"ecdsa_secp521r1_sha512", TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
717 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
718 NID_ecdsa_with_SHA512, NID_secp521r1},
719 {NULL, TLSEXT_SIGALG_ecdsa_sha1,
720 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
721 NID_ecdsa_with_SHA1, NID_undef},
722 #endif
723 {"rsa_pss_sha256", TLSEXT_SIGALG_rsa_pss_sha256,
724 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
725 NID_undef, NID_undef},
726 {"rsa_pss_sha384", TLSEXT_SIGALG_rsa_pss_sha384,
727 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
728 NID_undef, NID_undef},
729 {"rsa_pss_sha512", TLSEXT_SIGALG_rsa_pss_sha512,
730 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
731 NID_undef, NID_undef},
732 {"rsa_pkcs1_sha256", TLSEXT_SIGALG_rsa_pkcs1_sha256,
733 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA_SIGN,
734 NID_sha256WithRSAEncryption, NID_undef},
735 {"rsa_pkcs1_sha384", TLSEXT_SIGALG_rsa_pkcs1_sha384,
736 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA_SIGN,
737 NID_sha384WithRSAEncryption, NID_undef},
738 {"rsa_pkcs1_sha512", TLSEXT_SIGALG_rsa_pkcs1_sha512,
739 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA_SIGN,
740 NID_sha512WithRSAEncryption, NID_undef},
741 {"rsa_pkcs1_sha1", TLSEXT_SIGALG_rsa_pkcs1_sha1,
742 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA_SIGN,
743 NID_sha1WithRSAEncryption, NID_undef},
744 #ifndef OPENSSL_NO_DSA
745 {NULL, TLSEXT_SIGALG_dsa_sha256,
746 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
747 NID_dsa_with_SHA256, NID_undef},
748 {NULL, TLSEXT_SIGALG_dsa_sha384,
749 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
750 NID_undef, NID_undef},
751 {NULL, TLSEXT_SIGALG_dsa_sha512,
752 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
753 NID_undef, NID_undef},
754 {NULL, TLSEXT_SIGALG_dsa_sha1,
755 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
756 NID_dsaWithSHA1, NID_undef},
757 #endif
758 #ifndef OPENSSL_NO_GOST
759 {NULL, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
760 NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
761 NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
762 NID_undef, NID_undef},
763 {NULL, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
764 NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
765 NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
766 NID_undef, NID_undef},
767 {NULL, TLSEXT_SIGALG_gostr34102001_gostr3411,
768 NID_id_GostR3411_94, SSL_MD_GOST94_IDX,
769 NID_id_GostR3410_2001, SSL_PKEY_GOST01,
770 NID_undef, NID_undef}
771 #endif
772 };
773
774 /* Lookup TLS signature algorithm */
775 static const SIGALG_LOOKUP *tls1_lookup_sigalg(uint16_t sigalg)
776 {
777 size_t i;
778 const SIGALG_LOOKUP *s;
779
780 for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
781 i++, s++) {
782 if (s->sigalg == sigalg)
783 return s;
784 }
785 return NULL;
786 }
787
788 static int tls_sigalg_get_sig(uint16_t sigalg)
789 {
790 const SIGALG_LOOKUP *r = tls1_lookup_sigalg(sigalg);
791
792 return r != NULL ? r->sig : 0;
793 }
794
795 size_t tls12_get_psigalgs(SSL *s, int sent, const uint16_t **psigs)
796 {
797 /*
798 * If Suite B mode use Suite B sigalgs only, ignore any other
799 * preferences.
800 */
801 #ifndef OPENSSL_NO_EC
802 switch (tls1_suiteb(s)) {
803 case SSL_CERT_FLAG_SUITEB_128_LOS:
804 *psigs = suiteb_sigalgs;
805 return OSSL_NELEM(suiteb_sigalgs);
806
807 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
808 *psigs = suiteb_sigalgs;
809 return 1;
810
811 case SSL_CERT_FLAG_SUITEB_192_LOS:
812 *psigs = suiteb_sigalgs + 1;
813 return 1;
814 }
815 #endif
816 /*
817 * We use client_sigalgs (if not NULL) if we're a server
818 * and sending a certificate request or if we're a client and
819 * determining which shared algorithm to use.
820 */
821 if ((s->server == sent) && s->cert->client_sigalgs != NULL) {
822 *psigs = s->cert->client_sigalgs;
823 return s->cert->client_sigalgslen;
824 } else if (s->cert->conf_sigalgs) {
825 *psigs = s->cert->conf_sigalgs;
826 return s->cert->conf_sigalgslen;
827 } else {
828 *psigs = tls12_sigalgs;
829 return OSSL_NELEM(tls12_sigalgs);
830 }
831 }
832
833 /*
834 * Check signature algorithm is consistent with sent supported signature
835 * algorithms and if so set relevant digest and signature scheme in
836 * s.
837 */
838 int tls12_check_peer_sigalg(SSL *s, uint16_t sig, EVP_PKEY *pkey)
839 {
840 const uint16_t *sent_sigs;
841 const EVP_MD *md = NULL;
842 char sigalgstr[2];
843 size_t sent_sigslen, i;
844 int pkeyid = EVP_PKEY_id(pkey);
845 const SIGALG_LOOKUP *lu;
846
847 /* Should never happen */
848 if (pkeyid == -1)
849 return -1;
850 /* Only allow PSS for TLS 1.3 */
851 if (SSL_IS_TLS13(s) && pkeyid == EVP_PKEY_RSA)
852 pkeyid = EVP_PKEY_RSA_PSS;
853 lu = tls1_lookup_sigalg(sig);
854 /*
855 * Check sigalgs is known and key type is consistent with signature:
856 * RSA keys can be used for RSA-PSS
857 */
858 if (lu == NULL || (pkeyid != lu->sig
859 && (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) {
860 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_SIGNATURE_TYPE);
861 return 0;
862 }
863 #ifndef OPENSSL_NO_EC
864 if (pkeyid == EVP_PKEY_EC) {
865 EC_KEY *ec = EVP_PKEY_get0_EC_KEY(pkey);
866 int curve = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec));
867
868 if (SSL_IS_TLS13(s)) {
869 /* For TLS 1.3 check curve matches signature algorithm */
870
871 if (curve != lu->curve) {
872 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_CURVE);
873 return 0;
874 }
875 } else {
876 unsigned char curve_id[2], comp_id;
877
878 /* Check compression and curve matches extensions */
879 if (!tls1_set_ec_id(curve_id, &comp_id, ec))
880 return 0;
881 if (!s->server && !tls1_check_ec_key(s, curve_id, &comp_id)) {
882 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_CURVE);
883 return 0;
884 }
885 if (tls1_suiteb(s)) {
886 /* Check sigalg matches a permissible Suite B value */
887 if (sig != TLSEXT_SIGALG_ecdsa_secp256r1_sha256
888 && sig != TLSEXT_SIGALG_ecdsa_secp384r1_sha384) {
889 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG,
890 SSL_R_WRONG_SIGNATURE_TYPE);
891 return 0;
892 }
893 /*
894 * Suite B also requires P-256+SHA256 and P-384+SHA384:
895 * this matches the TLS 1.3 requirements so we can just
896 * check the curve is the expected TLS 1.3 value.
897 * If this fails an inappropriate digest is being used.
898 */
899 if (curve != lu->curve) {
900 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG,
901 SSL_R_ILLEGAL_SUITEB_DIGEST);
902 return 0;
903 }
904 }
905 }
906 } else if (tls1_suiteb(s)) {
907 return 0;
908 }
909 #endif
910
911 /* Check signature matches a type we sent */
912 sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
913 for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
914 if (sig == *sent_sigs)
915 break;
916 }
917 /* Allow fallback to SHA1 if not strict mode */
918 if (i == sent_sigslen && (lu->hash != NID_sha1
919 || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) {
920 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_SIGNATURE_TYPE);
921 return 0;
922 }
923 md = ssl_md(lu->hash_idx);
924 if (md == NULL) {
925 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_UNKNOWN_DIGEST);
926 return 0;
927 }
928 /*
929 * Make sure security callback allows algorithm. For historical reasons we
930 * have to pass the sigalg as a two byte char array.
931 */
932 sigalgstr[0] = (sig >> 8) & 0xff;
933 sigalgstr[1] = sig & 0xff;
934 if (!ssl_security(s, SSL_SECOP_SIGALG_CHECK,
935 EVP_MD_size(md) * 4, EVP_MD_type(md),
936 (void *)sigalgstr)) {
937 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_SIGNATURE_TYPE);
938 return 0;
939 }
940 /* Store the sigalg the peer uses */
941 s->s3->tmp.peer_sigalg = lu;
942 return 1;
943 }
944
945 int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid)
946 {
947 if (s->s3->tmp.peer_sigalg == NULL)
948 return 0;
949 *pnid = s->s3->tmp.peer_sigalg->sig;
950 return 1;
951 }
952
953 /*
954 * Set a mask of disabled algorithms: an algorithm is disabled if it isn't
955 * supported, doesn't appear in supported signature algorithms, isn't supported
956 * by the enabled protocol versions or by the security level.
957 *
958 * This function should only be used for checking which ciphers are supported
959 * by the client.
960 *
961 * Call ssl_cipher_disabled() to check that it's enabled or not.
962 */
963 void ssl_set_client_disabled(SSL *s)
964 {
965 s->s3->tmp.mask_a = 0;
966 s->s3->tmp.mask_k = 0;
967 ssl_set_sig_mask(&s->s3->tmp.mask_a, s, SSL_SECOP_SIGALG_MASK);
968 ssl_get_client_min_max_version(s, &s->s3->tmp.min_ver, &s->s3->tmp.max_ver);
969 #ifndef OPENSSL_NO_PSK
970 /* with PSK there must be client callback set */
971 if (!s->psk_client_callback) {
972 s->s3->tmp.mask_a |= SSL_aPSK;
973 s->s3->tmp.mask_k |= SSL_PSK;
974 }
975 #endif /* OPENSSL_NO_PSK */
976 #ifndef OPENSSL_NO_SRP
977 if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) {
978 s->s3->tmp.mask_a |= SSL_aSRP;
979 s->s3->tmp.mask_k |= SSL_kSRP;
980 }
981 #endif
982 }
983
984 /*
985 * ssl_cipher_disabled - check that a cipher is disabled or not
986 * @s: SSL connection that you want to use the cipher on
987 * @c: cipher to check
988 * @op: Security check that you want to do
989 *
990 * Returns 1 when it's disabled, 0 when enabled.
991 */
992 int ssl_cipher_disabled(SSL *s, const SSL_CIPHER *c, int op)
993 {
994 if (c->algorithm_mkey & s->s3->tmp.mask_k
995 || c->algorithm_auth & s->s3->tmp.mask_a)
996 return 1;
997 if (s->s3->tmp.max_ver == 0)
998 return 1;
999 if (!SSL_IS_DTLS(s) && ((c->min_tls > s->s3->tmp.max_ver)
1000 || (c->max_tls < s->s3->tmp.min_ver)))
1001 return 1;
1002 if (SSL_IS_DTLS(s) && (DTLS_VERSION_GT(c->min_dtls, s->s3->tmp.max_ver)
1003 || DTLS_VERSION_LT(c->max_dtls, s->s3->tmp.min_ver)))
1004 return 1;
1005
1006 return !ssl_security(s, op, c->strength_bits, 0, (void *)c);
1007 }
1008
1009 int tls_use_ticket(SSL *s)
1010 {
1011 if ((s->options & SSL_OP_NO_TICKET))
1012 return 0;
1013 return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL);
1014 }
1015
1016 /* Initialise digests to default values */
1017 void ssl_set_default_md(SSL *s)
1018 {
1019 const EVP_MD **pmd = s->s3->tmp.md;
1020 #ifndef OPENSSL_NO_DSA
1021 pmd[SSL_PKEY_DSA_SIGN] = ssl_md(SSL_MD_SHA1_IDX);
1022 #endif
1023 #ifndef OPENSSL_NO_RSA
1024 if (SSL_USE_SIGALGS(s))
1025 pmd[SSL_PKEY_RSA_SIGN] = ssl_md(SSL_MD_SHA1_IDX);
1026 else
1027 pmd[SSL_PKEY_RSA_SIGN] = ssl_md(SSL_MD_MD5_SHA1_IDX);
1028 pmd[SSL_PKEY_RSA_ENC] = pmd[SSL_PKEY_RSA_SIGN];
1029 #endif
1030 #ifndef OPENSSL_NO_EC
1031 pmd[SSL_PKEY_ECC] = ssl_md(SSL_MD_SHA1_IDX);
1032 #endif
1033 #ifndef OPENSSL_NO_GOST
1034 pmd[SSL_PKEY_GOST01] = ssl_md(SSL_MD_GOST94_IDX);
1035 pmd[SSL_PKEY_GOST12_256] = ssl_md(SSL_MD_GOST12_256_IDX);
1036 pmd[SSL_PKEY_GOST12_512] = ssl_md(SSL_MD_GOST12_512_IDX);
1037 #endif
1038 }
1039
1040 int tls1_set_server_sigalgs(SSL *s)
1041 {
1042 int al;
1043 size_t i;
1044
1045 /* Clear any shared signature algorithms */
1046 OPENSSL_free(s->cert->shared_sigalgs);
1047 s->cert->shared_sigalgs = NULL;
1048 s->cert->shared_sigalgslen = 0;
1049 /* Clear certificate digests and validity flags */
1050 for (i = 0; i < SSL_PKEY_NUM; i++) {
1051 s->s3->tmp.md[i] = NULL;
1052 s->s3->tmp.valid_flags[i] = 0;
1053 }
1054
1055 /* If sigalgs received process it. */
1056 if (s->s3->tmp.peer_sigalgs) {
1057 if (!tls1_process_sigalgs(s)) {
1058 SSLerr(SSL_F_TLS1_SET_SERVER_SIGALGS, ERR_R_MALLOC_FAILURE);
1059 al = SSL_AD_INTERNAL_ERROR;
1060 goto err;
1061 }
1062 /* Fatal error is no shared signature algorithms */
1063 if (!s->cert->shared_sigalgs) {
1064 SSLerr(SSL_F_TLS1_SET_SERVER_SIGALGS,
1065 SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS);
1066 al = SSL_AD_ILLEGAL_PARAMETER;
1067 goto err;
1068 }
1069 } else {
1070 ssl_set_default_md(s);
1071 }
1072 return 1;
1073 err:
1074 ssl3_send_alert(s, SSL3_AL_FATAL, al);
1075 return 0;
1076 }
1077
1078 /*-
1079 * Gets the ticket information supplied by the client if any.
1080 *
1081 * hello: The parsed ClientHello data
1082 * ret: (output) on return, if a ticket was decrypted, then this is set to
1083 * point to the resulting session.
1084 *
1085 * If s->tls_session_secret_cb is set then we are expecting a pre-shared key
1086 * ciphersuite, in which case we have no use for session tickets and one will
1087 * never be decrypted, nor will s->ext.ticket_expected be set to 1.
1088 *
1089 * Returns:
1090 * -1: fatal error, either from parsing or decrypting the ticket.
1091 * 0: no ticket was found (or was ignored, based on settings).
1092 * 1: a zero length extension was found, indicating that the client supports
1093 * session tickets but doesn't currently have one to offer.
1094 * 2: either s->tls_session_secret_cb was set, or a ticket was offered but
1095 * couldn't be decrypted because of a non-fatal error.
1096 * 3: a ticket was successfully decrypted and *ret was set.
1097 *
1098 * Side effects:
1099 * Sets s->ext.ticket_expected to 1 if the server will have to issue
1100 * a new session ticket to the client because the client indicated support
1101 * (and s->tls_session_secret_cb is NULL) but the client either doesn't have
1102 * a session ticket or we couldn't use the one it gave us, or if
1103 * s->ctx->ext.ticket_key_cb asked to renew the client's ticket.
1104 * Otherwise, s->ext.ticket_expected is set to 0.
1105 */
1106 TICKET_RETURN tls_get_ticket_from_client(SSL *s, CLIENTHELLO_MSG *hello,
1107 SSL_SESSION **ret)
1108 {
1109 int retv;
1110 size_t size;
1111 RAW_EXTENSION *ticketext;
1112
1113 *ret = NULL;
1114 s->ext.ticket_expected = 0;
1115
1116 /*
1117 * If tickets disabled or not supported by the protocol version
1118 * (e.g. TLSv1.3) behave as if no ticket present to permit stateful
1119 * resumption.
1120 */
1121 if (s->version <= SSL3_VERSION || !tls_use_ticket(s))
1122 return TICKET_NONE;
1123
1124 ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket];
1125 if (!ticketext->present)
1126 return TICKET_NONE;
1127
1128 size = PACKET_remaining(&ticketext->data);
1129 if (size == 0) {
1130 /*
1131 * The client will accept a ticket but doesn't currently have
1132 * one.
1133 */
1134 s->ext.ticket_expected = 1;
1135 return TICKET_EMPTY;
1136 }
1137 if (s->ext.session_secret_cb) {
1138 /*
1139 * Indicate that the ticket couldn't be decrypted rather than
1140 * generating the session from ticket now, trigger
1141 * abbreviated handshake based on external mechanism to
1142 * calculate the master secret later.
1143 */
1144 return TICKET_NO_DECRYPT;
1145 }
1146
1147 retv = tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size,
1148 hello->session_id, hello->session_id_len, ret);
1149 switch (retv) {
1150 case TICKET_NO_DECRYPT:
1151 s->ext.ticket_expected = 1;
1152 return TICKET_NO_DECRYPT;
1153
1154 case TICKET_SUCCESS:
1155 return TICKET_SUCCESS;
1156
1157 case TICKET_SUCCESS_RENEW:
1158 s->ext.ticket_expected = 1;
1159 return TICKET_SUCCESS;
1160
1161 default:
1162 return TICKET_FATAL_ERR_OTHER;
1163 }
1164 }
1165
1166 /*-
1167 * tls_decrypt_ticket attempts to decrypt a session ticket.
1168 *
1169 * etick: points to the body of the session ticket extension.
1170 * eticklen: the length of the session tickets extension.
1171 * sess_id: points at the session ID.
1172 * sesslen: the length of the session ID.
1173 * psess: (output) on return, if a ticket was decrypted, then this is set to
1174 * point to the resulting session.
1175 */
1176 TICKET_RETURN tls_decrypt_ticket(SSL *s, const unsigned char *etick,
1177 size_t eticklen, const unsigned char *sess_id,
1178 size_t sesslen, SSL_SESSION **psess)
1179 {
1180 SSL_SESSION *sess;
1181 unsigned char *sdec;
1182 const unsigned char *p;
1183 int slen, renew_ticket = 0, declen;
1184 TICKET_RETURN ret = TICKET_FATAL_ERR_OTHER;
1185 size_t mlen;
1186 unsigned char tick_hmac[EVP_MAX_MD_SIZE];
1187 HMAC_CTX *hctx = NULL;
1188 EVP_CIPHER_CTX *ctx;
1189 SSL_CTX *tctx = s->session_ctx;
1190
1191 /* Initialize session ticket encryption and HMAC contexts */
1192 hctx = HMAC_CTX_new();
1193 if (hctx == NULL)
1194 return TICKET_FATAL_ERR_MALLOC;
1195 ctx = EVP_CIPHER_CTX_new();
1196 if (ctx == NULL) {
1197 ret = TICKET_FATAL_ERR_MALLOC;
1198 goto err;
1199 }
1200 if (tctx->ext.ticket_key_cb) {
1201 unsigned char *nctick = (unsigned char *)etick;
1202 int rv = tctx->ext.ticket_key_cb(s, nctick, nctick + 16,
1203 ctx, hctx, 0);
1204 if (rv < 0)
1205 goto err;
1206 if (rv == 0) {
1207 ret = TICKET_NO_DECRYPT;
1208 goto err;
1209 }
1210 if (rv == 2)
1211 renew_ticket = 1;
1212 } else {
1213 /* Check key name matches */
1214 if (memcmp(etick, tctx->ext.tick_key_name,
1215 sizeof(tctx->ext.tick_key_name)) != 0) {
1216 ret = TICKET_NO_DECRYPT;
1217 goto err;
1218 }
1219 if (HMAC_Init_ex(hctx, tctx->ext.tick_hmac_key,
1220 sizeof(tctx->ext.tick_hmac_key),
1221 EVP_sha256(), NULL) <= 0
1222 || EVP_DecryptInit_ex(ctx, EVP_aes_256_cbc(), NULL,
1223 tctx->ext.tick_aes_key,
1224 etick
1225 + sizeof(tctx->ext.tick_key_name)) <= 0) {
1226 goto err;
1227 }
1228 }
1229 /*
1230 * Attempt to process session ticket, first conduct sanity and integrity
1231 * checks on ticket.
1232 */
1233 mlen = HMAC_size(hctx);
1234 if (mlen == 0) {
1235 goto err;
1236 }
1237 /* Sanity check ticket length: must exceed keyname + IV + HMAC */
1238 if (eticklen <=
1239 TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_iv_length(ctx) + mlen) {
1240 ret = TICKET_NO_DECRYPT;
1241 goto err;
1242 }
1243 eticklen -= mlen;
1244 /* Check HMAC of encrypted ticket */
1245 if (HMAC_Update(hctx, etick, eticklen) <= 0
1246 || HMAC_Final(hctx, tick_hmac, NULL) <= 0) {
1247 goto err;
1248 }
1249 HMAC_CTX_free(hctx);
1250 if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) {
1251 EVP_CIPHER_CTX_free(ctx);
1252 return TICKET_NO_DECRYPT;
1253 }
1254 /* Attempt to decrypt session data */
1255 /* Move p after IV to start of encrypted ticket, update length */
1256 p = etick + 16 + EVP_CIPHER_CTX_iv_length(ctx);
1257 eticklen -= 16 + EVP_CIPHER_CTX_iv_length(ctx);
1258 sdec = OPENSSL_malloc(eticklen);
1259 if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p,
1260 (int)eticklen) <= 0) {
1261 EVP_CIPHER_CTX_free(ctx);
1262 OPENSSL_free(sdec);
1263 return TICKET_FATAL_ERR_OTHER;
1264 }
1265 if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) {
1266 EVP_CIPHER_CTX_free(ctx);
1267 OPENSSL_free(sdec);
1268 return TICKET_NO_DECRYPT;
1269 }
1270 slen += declen;
1271 EVP_CIPHER_CTX_free(ctx);
1272 ctx = NULL;
1273 p = sdec;
1274
1275 sess = d2i_SSL_SESSION(NULL, &p, slen);
1276 OPENSSL_free(sdec);
1277 if (sess) {
1278 /*
1279 * The session ID, if non-empty, is used by some clients to detect
1280 * that the ticket has been accepted. So we copy it to the session
1281 * structure. If it is empty set length to zero as required by
1282 * standard.
1283 */
1284 if (sesslen)
1285 memcpy(sess->session_id, sess_id, sesslen);
1286 sess->session_id_length = sesslen;
1287 *psess = sess;
1288 if (renew_ticket)
1289 return TICKET_SUCCESS_RENEW;
1290 else
1291 return TICKET_SUCCESS;
1292 }
1293 ERR_clear_error();
1294 /*
1295 * For session parse failure, indicate that we need to send a new ticket.
1296 */
1297 return TICKET_NO_DECRYPT;
1298 err:
1299 EVP_CIPHER_CTX_free(ctx);
1300 HMAC_CTX_free(hctx);
1301 return ret;
1302 }
1303
1304 int tls12_get_sigandhash(SSL *s, WPACKET *pkt, const EVP_PKEY *pk,
1305 const EVP_MD *md, int *ispss)
1306 {
1307 int md_id, sig_id;
1308 size_t i;
1309 const SIGALG_LOOKUP *curr;
1310
1311 if (md == NULL)
1312 return 0;
1313 md_id = EVP_MD_type(md);
1314 sig_id = EVP_PKEY_id(pk);
1315 if (md_id == NID_undef)
1316 return 0;
1317 /* For TLS 1.3 only allow RSA-PSS */
1318 if (SSL_IS_TLS13(s) && sig_id == EVP_PKEY_RSA)
1319 sig_id = EVP_PKEY_RSA_PSS;
1320
1321 if (s->s3->tmp.peer_sigalgs == NULL) {
1322 /* Should never happen: we abort if no sigalgs extension and TLS 1.3 */
1323 if (SSL_IS_TLS13(s))
1324 return 0;
1325 /* For TLS 1.2 and no sigalgs lookup using complete table */
1326 for (i = 0, curr = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
1327 i++, curr++) {
1328 if (curr->hash == md_id && curr->sig == sig_id) {
1329 if (!WPACKET_put_bytes_u16(pkt, curr->sigalg))
1330 return 0;
1331 *ispss = curr->sig == EVP_PKEY_RSA_PSS;
1332 return 1;
1333 }
1334 }
1335 return 0;
1336 }
1337
1338 for (i = 0; i < s->cert->shared_sigalgslen; i++) {
1339 curr = s->cert->shared_sigalgs[i];
1340
1341 /*
1342 * Look for matching key and hash. If key type is RSA also match PSS
1343 * signature type.
1344 */
1345 if (curr->hash == md_id && (curr->sig == sig_id
1346 || (sig_id == EVP_PKEY_RSA && curr->sig == EVP_PKEY_RSA_PSS))){
1347 if (!WPACKET_put_bytes_u16(pkt, curr->sigalg))
1348 return 0;
1349 *ispss = curr->sig == EVP_PKEY_RSA_PSS;
1350 return 1;
1351 }
1352 }
1353 return 0;
1354 }
1355
1356 static int tls12_get_pkey_idx(int sig_nid)
1357 {
1358 switch (sig_nid) {
1359 #ifndef OPENSSL_NO_RSA
1360 case EVP_PKEY_RSA:
1361 return SSL_PKEY_RSA_SIGN;
1362 /*
1363 * For now return RSA key for PSS. When we support PSS only keys
1364 * this will need to be updated.
1365 */
1366 case EVP_PKEY_RSA_PSS:
1367 return SSL_PKEY_RSA_SIGN;
1368 #endif
1369 #ifndef OPENSSL_NO_DSA
1370 case EVP_PKEY_DSA:
1371 return SSL_PKEY_DSA_SIGN;
1372 #endif
1373 #ifndef OPENSSL_NO_EC
1374 case EVP_PKEY_EC:
1375 return SSL_PKEY_ECC;
1376 #endif
1377 #ifndef OPENSSL_NO_GOST
1378 case NID_id_GostR3410_2001:
1379 return SSL_PKEY_GOST01;
1380
1381 case NID_id_GostR3410_2012_256:
1382 return SSL_PKEY_GOST12_256;
1383
1384 case NID_id_GostR3410_2012_512:
1385 return SSL_PKEY_GOST12_512;
1386 #endif
1387 }
1388 return -1;
1389 }
1390
1391 /* Check to see if a signature algorithm is allowed */
1392 static int tls12_sigalg_allowed(SSL *s, int op, uint16_t ptmp)
1393 {
1394 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(ptmp);
1395 unsigned char sigalgstr[2];
1396 int secbits;
1397
1398 /* See if sigalgs is recognised and if hash is enabled */
1399 if (lu == NULL || ssl_md(lu->hash_idx) == NULL)
1400 return 0;
1401 /* See if public key algorithm allowed */
1402 if (tls12_get_pkey_idx(lu->sig) == -1)
1403 return 0;
1404 /* Security bits: half digest bits */
1405 secbits = EVP_MD_size(ssl_md(lu->hash_idx)) * 4;
1406 /* Finally see if security callback allows it */
1407 sigalgstr[0] = (ptmp >> 8) & 0xff;
1408 sigalgstr[1] = ptmp & 0xff;
1409 return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr);
1410 }
1411
1412 /*
1413 * Get a mask of disabled public key algorithms based on supported signature
1414 * algorithms. For example if no signature algorithm supports RSA then RSA is
1415 * disabled.
1416 */
1417
1418 void ssl_set_sig_mask(uint32_t *pmask_a, SSL *s, int op)
1419 {
1420 const uint16_t *sigalgs;
1421 size_t i, sigalgslen;
1422 int have_rsa = 0, have_dsa = 0, have_ecdsa = 0;
1423 /*
1424 * Now go through all signature algorithms seeing if we support any for
1425 * RSA, DSA, ECDSA. Do this for all versions not just TLS 1.2. To keep
1426 * down calls to security callback only check if we have to.
1427 */
1428 sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs);
1429 for (i = 0; i < sigalgslen; i ++, sigalgs++) {
1430 switch (tls_sigalg_get_sig(*sigalgs)) {
1431 #ifndef OPENSSL_NO_RSA
1432 /* Any RSA-PSS signature algorithms also mean we allow RSA */
1433 case EVP_PKEY_RSA_PSS:
1434 case EVP_PKEY_RSA:
1435 if (!have_rsa && tls12_sigalg_allowed(s, op, *sigalgs))
1436 have_rsa = 1;
1437 break;
1438 #endif
1439 #ifndef OPENSSL_NO_DSA
1440 case EVP_PKEY_DSA:
1441 if (!have_dsa && tls12_sigalg_allowed(s, op, *sigalgs))
1442 have_dsa = 1;
1443 break;
1444 #endif
1445 #ifndef OPENSSL_NO_EC
1446 case EVP_PKEY_EC:
1447 if (!have_ecdsa && tls12_sigalg_allowed(s, op, *sigalgs))
1448 have_ecdsa = 1;
1449 break;
1450 #endif
1451 }
1452 }
1453 if (!have_rsa)
1454 *pmask_a |= SSL_aRSA;
1455 if (!have_dsa)
1456 *pmask_a |= SSL_aDSS;
1457 if (!have_ecdsa)
1458 *pmask_a |= SSL_aECDSA;
1459 }
1460
1461 int tls12_copy_sigalgs(SSL *s, WPACKET *pkt,
1462 const uint16_t *psig, size_t psiglen)
1463 {
1464 size_t i;
1465
1466 for (i = 0; i < psiglen; i++, psig++) {
1467 if (tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, *psig)) {
1468 if (!WPACKET_put_bytes_u16(pkt, *psig))
1469 return 0;
1470 }
1471 }
1472 return 1;
1473 }
1474
1475 /* Given preference and allowed sigalgs set shared sigalgs */
1476 static size_t tls12_shared_sigalgs(SSL *s, const SIGALG_LOOKUP **shsig,
1477 const uint16_t *pref, size_t preflen,
1478 const uint16_t *allow, size_t allowlen)
1479 {
1480 const uint16_t *ptmp, *atmp;
1481 size_t i, j, nmatch = 0;
1482 for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) {
1483 /* Skip disabled hashes or signature algorithms */
1484 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, *ptmp))
1485 continue;
1486 for (j = 0, atmp = allow; j < allowlen; j++, atmp++) {
1487 if (*ptmp == *atmp) {
1488 nmatch++;
1489 if (shsig) {
1490 *shsig = tls1_lookup_sigalg(*ptmp);
1491 shsig++;
1492 }
1493 break;
1494 }
1495 }
1496 }
1497 return nmatch;
1498 }
1499
1500 /* Set shared signature algorithms for SSL structures */
1501 static int tls1_set_shared_sigalgs(SSL *s)
1502 {
1503 const uint16_t *pref, *allow, *conf;
1504 size_t preflen, allowlen, conflen;
1505 size_t nmatch;
1506 const SIGALG_LOOKUP **salgs = NULL;
1507 CERT *c = s->cert;
1508 unsigned int is_suiteb = tls1_suiteb(s);
1509
1510 OPENSSL_free(c->shared_sigalgs);
1511 c->shared_sigalgs = NULL;
1512 c->shared_sigalgslen = 0;
1513 /* If client use client signature algorithms if not NULL */
1514 if (!s->server && c->client_sigalgs && !is_suiteb) {
1515 conf = c->client_sigalgs;
1516 conflen = c->client_sigalgslen;
1517 } else if (c->conf_sigalgs && !is_suiteb) {
1518 conf = c->conf_sigalgs;
1519 conflen = c->conf_sigalgslen;
1520 } else
1521 conflen = tls12_get_psigalgs(s, 0, &conf);
1522 if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) {
1523 pref = conf;
1524 preflen = conflen;
1525 allow = s->s3->tmp.peer_sigalgs;
1526 allowlen = s->s3->tmp.peer_sigalgslen;
1527 } else {
1528 allow = conf;
1529 allowlen = conflen;
1530 pref = s->s3->tmp.peer_sigalgs;
1531 preflen = s->s3->tmp.peer_sigalgslen;
1532 }
1533 nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen);
1534 if (nmatch) {
1535 salgs = OPENSSL_malloc(nmatch * sizeof(*salgs));
1536 if (salgs == NULL)
1537 return 0;
1538 nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen);
1539 } else {
1540 salgs = NULL;
1541 }
1542 c->shared_sigalgs = salgs;
1543 c->shared_sigalgslen = nmatch;
1544 return 1;
1545 }
1546
1547 /* Set preferred digest for each key type */
1548
1549 int tls1_save_sigalgs(SSL *s, PACKET *pkt)
1550 {
1551 CERT *c = s->cert;
1552 unsigned int stmp;
1553 size_t size, i;
1554
1555 /* Extension ignored for inappropriate versions */
1556 if (!SSL_USE_SIGALGS(s))
1557 return 1;
1558 /* Should never happen */
1559 if (!c)
1560 return 0;
1561
1562 size = PACKET_remaining(pkt);
1563
1564 /* Invalid data length */
1565 if ((size & 1) != 0)
1566 return 0;
1567
1568 size >>= 1;
1569
1570 OPENSSL_free(s->s3->tmp.peer_sigalgs);
1571 s->s3->tmp.peer_sigalgs = OPENSSL_malloc(size
1572 * sizeof(*s->s3->tmp.peer_sigalgs));
1573 if (s->s3->tmp.peer_sigalgs == NULL)
1574 return 0;
1575 s->s3->tmp.peer_sigalgslen = size;
1576 for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++)
1577 s->s3->tmp.peer_sigalgs[i] = stmp;
1578
1579 if (i != size)
1580 return 0;
1581
1582 return 1;
1583 }
1584
1585 int tls1_process_sigalgs(SSL *s)
1586 {
1587 int idx;
1588 size_t i;
1589 const EVP_MD *md;
1590 const EVP_MD **pmd = s->s3->tmp.md;
1591 uint32_t *pvalid = s->s3->tmp.valid_flags;
1592 CERT *c = s->cert;
1593
1594 if (!tls1_set_shared_sigalgs(s))
1595 return 0;
1596
1597 for (i = 0; i < c->shared_sigalgslen; i++) {
1598 const SIGALG_LOOKUP *sigptr = c->shared_sigalgs[i];
1599
1600 /* Ignore PKCS1 based sig algs in TLSv1.3 */
1601 if (SSL_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA)
1602 continue;
1603 idx = tls12_get_pkey_idx(sigptr->sig);
1604 if (idx >= 0 && pmd[idx] == NULL) {
1605 md = ssl_md(sigptr->hash_idx);
1606 pmd[idx] = md;
1607 pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN;
1608 if (idx == SSL_PKEY_RSA_SIGN) {
1609 pvalid[SSL_PKEY_RSA_ENC] = CERT_PKEY_EXPLICIT_SIGN;
1610 pmd[SSL_PKEY_RSA_ENC] = md;
1611 }
1612 }
1613 }
1614 /*
1615 * In strict mode or TLS1.3 leave unset digests as NULL to indicate we can't
1616 * use the certificate for signing.
1617 */
1618 if (!(s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)
1619 && !SSL_IS_TLS13(s)) {
1620 /*
1621 * Set any remaining keys to default values. NOTE: if alg is not
1622 * supported it stays as NULL.
1623 */
1624 #ifndef OPENSSL_NO_DSA
1625 if (pmd[SSL_PKEY_DSA_SIGN] == NULL)
1626 pmd[SSL_PKEY_DSA_SIGN] = EVP_sha1();
1627 #endif
1628 #ifndef OPENSSL_NO_RSA
1629 if (pmd[SSL_PKEY_RSA_SIGN] == NULL) {
1630 pmd[SSL_PKEY_RSA_SIGN] = EVP_sha1();
1631 pmd[SSL_PKEY_RSA_ENC] = EVP_sha1();
1632 }
1633 #endif
1634 #ifndef OPENSSL_NO_EC
1635 if (pmd[SSL_PKEY_ECC] == NULL)
1636 pmd[SSL_PKEY_ECC] = EVP_sha1();
1637 #endif
1638 #ifndef OPENSSL_NO_GOST
1639 if (pmd[SSL_PKEY_GOST01] == NULL)
1640 pmd[SSL_PKEY_GOST01] = EVP_get_digestbynid(NID_id_GostR3411_94);
1641 if (pmd[SSL_PKEY_GOST12_256] == NULL)
1642 pmd[SSL_PKEY_GOST12_256] =
1643 EVP_get_digestbynid(NID_id_GostR3411_2012_256);
1644 if (pmd[SSL_PKEY_GOST12_512] == NULL)
1645 pmd[SSL_PKEY_GOST12_512] =
1646 EVP_get_digestbynid(NID_id_GostR3411_2012_512);
1647 #endif
1648 }
1649 return 1;
1650 }
1651
1652 int SSL_get_sigalgs(SSL *s, int idx,
1653 int *psign, int *phash, int *psignhash,
1654 unsigned char *rsig, unsigned char *rhash)
1655 {
1656 uint16_t *psig = s->s3->tmp.peer_sigalgs;
1657 size_t numsigalgs = s->s3->tmp.peer_sigalgslen;
1658 if (psig == NULL || numsigalgs > INT_MAX)
1659 return 0;
1660 if (idx >= 0) {
1661 const SIGALG_LOOKUP *lu;
1662
1663 if (idx >= (int)numsigalgs)
1664 return 0;
1665 psig += idx;
1666 if (rhash != NULL)
1667 *rhash = (unsigned char)((*psig >> 8) & 0xff);
1668 if (rsig != NULL)
1669 *rsig = (unsigned char)(*psig & 0xff);
1670 lu = tls1_lookup_sigalg(*psig);
1671 if (psign != NULL)
1672 *psign = lu != NULL ? lu->sig : NID_undef;
1673 if (phash != NULL)
1674 *phash = lu != NULL ? lu->hash : NID_undef;
1675 if (psignhash != NULL)
1676 *psignhash = lu != NULL ? lu->sigandhash : NID_undef;
1677 }
1678 return (int)numsigalgs;
1679 }
1680
1681 int SSL_get_shared_sigalgs(SSL *s, int idx,
1682 int *psign, int *phash, int *psignhash,
1683 unsigned char *rsig, unsigned char *rhash)
1684 {
1685 const SIGALG_LOOKUP *shsigalgs;
1686 if (s->cert->shared_sigalgs == NULL
1687 || idx < 0
1688 || idx >= (int)s->cert->shared_sigalgslen
1689 || s->cert->shared_sigalgslen > INT_MAX)
1690 return 0;
1691 shsigalgs = s->cert->shared_sigalgs[idx];
1692 if (phash != NULL)
1693 *phash = shsigalgs->hash;
1694 if (psign != NULL)
1695 *psign = shsigalgs->sig;
1696 if (psignhash != NULL)
1697 *psignhash = shsigalgs->sigandhash;
1698 if (rsig != NULL)
1699 *rsig = (unsigned char)(shsigalgs->sigalg & 0xff);
1700 if (rhash != NULL)
1701 *rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff);
1702 return (int)s->cert->shared_sigalgslen;
1703 }
1704
1705 /* Maximum possible number of unique entries in sigalgs array */
1706 #define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2)
1707
1708 typedef struct {
1709 size_t sigalgcnt;
1710 int sigalgs[TLS_MAX_SIGALGCNT];
1711 } sig_cb_st;
1712
1713 static void get_sigorhash(int *psig, int *phash, const char *str)
1714 {
1715 if (strcmp(str, "RSA") == 0) {
1716 *psig = EVP_PKEY_RSA;
1717 } else if (strcmp(str, "RSA-PSS") == 0 || strcmp(str, "PSS") == 0) {
1718 *psig = EVP_PKEY_RSA_PSS;
1719 } else if (strcmp(str, "DSA") == 0) {
1720 *psig = EVP_PKEY_DSA;
1721 } else if (strcmp(str, "ECDSA") == 0) {
1722 *psig = EVP_PKEY_EC;
1723 } else {
1724 *phash = OBJ_sn2nid(str);
1725 if (*phash == NID_undef)
1726 *phash = OBJ_ln2nid(str);
1727 }
1728 }
1729 /* Maximum length of a signature algorithm string component */
1730 #define TLS_MAX_SIGSTRING_LEN 40
1731
1732 static int sig_cb(const char *elem, int len, void *arg)
1733 {
1734 sig_cb_st *sarg = arg;
1735 size_t i;
1736 char etmp[TLS_MAX_SIGSTRING_LEN], *p;
1737 int sig_alg = NID_undef, hash_alg = NID_undef;
1738 if (elem == NULL)
1739 return 0;
1740 if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT)
1741 return 0;
1742 if (len > (int)(sizeof(etmp) - 1))
1743 return 0;
1744 memcpy(etmp, elem, len);
1745 etmp[len] = 0;
1746 p = strchr(etmp, '+');
1747 /* See if we have a match for TLS 1.3 names */
1748 if (p == NULL) {
1749 const SIGALG_LOOKUP *s;
1750
1751 for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
1752 i++, s++) {
1753 if (s->name != NULL && strcmp(etmp, s->name) == 0) {
1754 sig_alg = s->sig;
1755 hash_alg = s->hash;
1756 break;
1757 }
1758 }
1759 } else {
1760 *p = 0;
1761 p++;
1762 if (*p == 0)
1763 return 0;
1764 get_sigorhash(&sig_alg, &hash_alg, etmp);
1765 get_sigorhash(&sig_alg, &hash_alg, p);
1766 }
1767
1768 if (sig_alg == NID_undef || hash_alg == NID_undef)
1769 return 0;
1770
1771 for (i = 0; i < sarg->sigalgcnt; i += 2) {
1772 if (sarg->sigalgs[i] == sig_alg && sarg->sigalgs[i + 1] == hash_alg)
1773 return 0;
1774 }
1775 sarg->sigalgs[sarg->sigalgcnt++] = hash_alg;
1776 sarg->sigalgs[sarg->sigalgcnt++] = sig_alg;
1777 return 1;
1778 }
1779
1780 /*
1781 * Set supported signature algorithms based on a colon separated list of the
1782 * form sig+hash e.g. RSA+SHA512:DSA+SHA512
1783 */
1784 int tls1_set_sigalgs_list(CERT *c, const char *str, int client)
1785 {
1786 sig_cb_st sig;
1787 sig.sigalgcnt = 0;
1788 if (!CONF_parse_list(str, ':', 1, sig_cb, &sig))
1789 return 0;
1790 if (c == NULL)
1791 return 1;
1792 return tls1_set_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client);
1793 }
1794
1795 int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client)
1796 {
1797 uint16_t *sigalgs, *sptr;
1798 size_t i;
1799
1800 if (salglen & 1)
1801 return 0;
1802 sigalgs = OPENSSL_malloc((salglen / 2) * sizeof(*sigalgs));
1803 if (sigalgs == NULL)
1804 return 0;
1805 for (i = 0, sptr = sigalgs; i < salglen; i += 2) {
1806 size_t j;
1807 const SIGALG_LOOKUP *curr;
1808 int md_id = *psig_nids++;
1809 int sig_id = *psig_nids++;
1810
1811 for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl);
1812 j++, curr++) {
1813 if (curr->hash == md_id && curr->sig == sig_id) {
1814 *sptr++ = curr->sigalg;
1815 break;
1816 }
1817 }
1818
1819 if (j == OSSL_NELEM(sigalg_lookup_tbl))
1820 goto err;
1821 }
1822
1823 if (client) {
1824 OPENSSL_free(c->client_sigalgs);
1825 c->client_sigalgs = sigalgs;
1826 c->client_sigalgslen = salglen / 2;
1827 } else {
1828 OPENSSL_free(c->conf_sigalgs);
1829 c->conf_sigalgs = sigalgs;
1830 c->conf_sigalgslen = salglen / 2;
1831 }
1832
1833 return 1;
1834
1835 err:
1836 OPENSSL_free(sigalgs);
1837 return 0;
1838 }
1839
1840 static int tls1_check_sig_alg(CERT *c, X509 *x, int default_nid)
1841 {
1842 int sig_nid;
1843 size_t i;
1844 if (default_nid == -1)
1845 return 1;
1846 sig_nid = X509_get_signature_nid(x);
1847 if (default_nid)
1848 return sig_nid == default_nid ? 1 : 0;
1849 for (i = 0; i < c->shared_sigalgslen; i++)
1850 if (sig_nid == c->shared_sigalgs[i]->sigandhash)
1851 return 1;
1852 return 0;
1853 }
1854
1855 /* Check to see if a certificate issuer name matches list of CA names */
1856 static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x)
1857 {
1858 X509_NAME *nm;
1859 int i;
1860 nm = X509_get_issuer_name(x);
1861 for (i = 0; i < sk_X509_NAME_num(names); i++) {
1862 if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i)))
1863 return 1;
1864 }
1865 return 0;
1866 }
1867
1868 /*
1869 * Check certificate chain is consistent with TLS extensions and is usable by
1870 * server. This servers two purposes: it allows users to check chains before
1871 * passing them to the server and it allows the server to check chains before
1872 * attempting to use them.
1873 */
1874
1875 /* Flags which need to be set for a certificate when stict mode not set */
1876
1877 #define CERT_PKEY_VALID_FLAGS \
1878 (CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM)
1879 /* Strict mode flags */
1880 #define CERT_PKEY_STRICT_FLAGS \
1881 (CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \
1882 | CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE)
1883
1884 int tls1_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain,
1885 int idx)
1886 {
1887 int i;
1888 int rv = 0;
1889 int check_flags = 0, strict_mode;
1890 CERT_PKEY *cpk = NULL;
1891 CERT *c = s->cert;
1892 uint32_t *pvalid;
1893 unsigned int suiteb_flags = tls1_suiteb(s);
1894 /* idx == -1 means checking server chains */
1895 if (idx != -1) {
1896 /* idx == -2 means checking client certificate chains */
1897 if (idx == -2) {
1898 cpk = c->key;
1899 idx = (int)(cpk - c->pkeys);
1900 } else
1901 cpk = c->pkeys + idx;
1902 pvalid = s->s3->tmp.valid_flags + idx;
1903 x = cpk->x509;
1904 pk = cpk->privatekey;
1905 chain = cpk->chain;
1906 strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT;
1907 /* If no cert or key, forget it */
1908 if (!x || !pk)
1909 goto end;
1910 } else {
1911 if (!x || !pk)
1912 return 0;
1913 idx = ssl_cert_type(x, pk);
1914 if (idx == -1)
1915 return 0;
1916 pvalid = s->s3->tmp.valid_flags + idx;
1917
1918 if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)
1919 check_flags = CERT_PKEY_STRICT_FLAGS;
1920 else
1921 check_flags = CERT_PKEY_VALID_FLAGS;
1922 strict_mode = 1;
1923 }
1924
1925 if (suiteb_flags) {
1926 int ok;
1927 if (check_flags)
1928 check_flags |= CERT_PKEY_SUITEB;
1929 ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags);
1930 if (ok == X509_V_OK)
1931 rv |= CERT_PKEY_SUITEB;
1932 else if (!check_flags)
1933 goto end;
1934 }
1935
1936 /*
1937 * Check all signature algorithms are consistent with signature
1938 * algorithms extension if TLS 1.2 or later and strict mode.
1939 */
1940 if (TLS1_get_version(s) >= TLS1_2_VERSION && strict_mode) {
1941 int default_nid;
1942 int rsign = 0;
1943 if (s->s3->tmp.peer_sigalgs)
1944 default_nid = 0;
1945 /* If no sigalgs extension use defaults from RFC5246 */
1946 else {
1947 switch (idx) {
1948 case SSL_PKEY_RSA_ENC:
1949 case SSL_PKEY_RSA_SIGN:
1950 rsign = EVP_PKEY_RSA;
1951 default_nid = NID_sha1WithRSAEncryption;
1952 break;
1953
1954 case SSL_PKEY_DSA_SIGN:
1955 rsign = EVP_PKEY_DSA;
1956 default_nid = NID_dsaWithSHA1;
1957 break;
1958
1959 case SSL_PKEY_ECC:
1960 rsign = EVP_PKEY_EC;
1961 default_nid = NID_ecdsa_with_SHA1;
1962 break;
1963
1964 case SSL_PKEY_GOST01:
1965 rsign = NID_id_GostR3410_2001;
1966 default_nid = NID_id_GostR3411_94_with_GostR3410_2001;
1967 break;
1968
1969 case SSL_PKEY_GOST12_256:
1970 rsign = NID_id_GostR3410_2012_256;
1971 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256;
1972 break;
1973
1974 case SSL_PKEY_GOST12_512:
1975 rsign = NID_id_GostR3410_2012_512;
1976 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512;
1977 break;
1978
1979 default:
1980 default_nid = -1;
1981 break;
1982 }
1983 }
1984 /*
1985 * If peer sent no signature algorithms extension and we have set
1986 * preferred signature algorithms check we support sha1.
1987 */
1988 if (default_nid > 0 && c->conf_sigalgs) {
1989 size_t j;
1990 const uint16_t *p = c->conf_sigalgs;
1991 for (j = 0; j < c->conf_sigalgslen; j++, p++) {
1992 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(*p);
1993
1994 if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign)
1995 break;
1996 }
1997 if (j == c->conf_sigalgslen) {
1998 if (check_flags)
1999 goto skip_sigs;
2000 else
2001 goto end;
2002 }
2003 }
2004 /* Check signature algorithm of each cert in chain */
2005 if (!tls1_check_sig_alg(c, x, default_nid)) {
2006 if (!check_flags)
2007 goto end;
2008 } else
2009 rv |= CERT_PKEY_EE_SIGNATURE;
2010 rv |= CERT_PKEY_CA_SIGNATURE;
2011 for (i = 0; i < sk_X509_num(chain); i++) {
2012 if (!tls1_check_sig_alg(c, sk_X509_value(chain, i), default_nid)) {
2013 if (check_flags) {
2014 rv &= ~CERT_PKEY_CA_SIGNATURE;
2015 break;
2016 } else
2017 goto end;
2018 }
2019 }
2020 }
2021 /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */
2022 else if (check_flags)
2023 rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE;
2024 skip_sigs:
2025 /* Check cert parameters are consistent */
2026 if (tls1_check_cert_param(s, x, check_flags ? 1 : 2))
2027 rv |= CERT_PKEY_EE_PARAM;
2028 else if (!check_flags)
2029 goto end;
2030 if (!s->server)
2031 rv |= CERT_PKEY_CA_PARAM;
2032 /* In strict mode check rest of chain too */
2033 else if (strict_mode) {
2034 rv |= CERT_PKEY_CA_PARAM;
2035 for (i = 0; i < sk_X509_num(chain); i++) {
2036 X509 *ca = sk_X509_value(chain, i);
2037 if (!tls1_check_cert_param(s, ca, 0)) {
2038 if (check_flags) {
2039 rv &= ~CERT_PKEY_CA_PARAM;
2040 break;
2041 } else
2042 goto end;
2043 }
2044 }
2045 }
2046 if (!s->server && strict_mode) {
2047 STACK_OF(X509_NAME) *ca_dn;
2048 int check_type = 0;
2049 switch (EVP_PKEY_id(pk)) {
2050 case EVP_PKEY_RSA:
2051 check_type = TLS_CT_RSA_SIGN;
2052 break;
2053 case EVP_PKEY_DSA:
2054 check_type = TLS_CT_DSS_SIGN;
2055 break;
2056 case EVP_PKEY_EC:
2057 check_type = TLS_CT_ECDSA_SIGN;
2058 break;
2059 }
2060 if (check_type) {
2061 const unsigned char *ctypes;
2062 int ctypelen;
2063 if (c->ctypes) {
2064 ctypes = c->ctypes;
2065 ctypelen = (int)c->ctype_num;
2066 } else {
2067 ctypes = (unsigned char *)s->s3->tmp.ctype;
2068 ctypelen = s->s3->tmp.ctype_num;
2069 }
2070 for (i = 0; i < ctypelen; i++) {
2071 if (ctypes[i] == check_type) {
2072 rv |= CERT_PKEY_CERT_TYPE;
2073 break;
2074 }
2075 }
2076 if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags)
2077 goto end;
2078 } else
2079 rv |= CERT_PKEY_CERT_TYPE;
2080
2081 ca_dn = s->s3->tmp.ca_names;
2082
2083 if (!sk_X509_NAME_num(ca_dn))
2084 rv |= CERT_PKEY_ISSUER_NAME;
2085
2086 if (!(rv & CERT_PKEY_ISSUER_NAME)) {
2087 if (ssl_check_ca_name(ca_dn, x))
2088 rv |= CERT_PKEY_ISSUER_NAME;
2089 }
2090 if (!(rv & CERT_PKEY_ISSUER_NAME)) {
2091 for (i = 0; i < sk_X509_num(chain); i++) {
2092 X509 *xtmp = sk_X509_value(chain, i);
2093 if (ssl_check_ca_name(ca_dn, xtmp)) {
2094 rv |= CERT_PKEY_ISSUER_NAME;
2095 break;
2096 }
2097 }
2098 }
2099 if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME))
2100 goto end;
2101 } else
2102 rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE;
2103
2104 if (!check_flags || (rv & check_flags) == check_flags)
2105 rv |= CERT_PKEY_VALID;
2106
2107 end:
2108
2109 if (TLS1_get_version(s) >= TLS1_2_VERSION) {
2110 if (*pvalid & CERT_PKEY_EXPLICIT_SIGN)
2111 rv |= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
2112 else if (s->s3->tmp.md[idx] != NULL)
2113 rv |= CERT_PKEY_SIGN;
2114 } else
2115 rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN;
2116
2117 /*
2118 * When checking a CERT_PKEY structure all flags are irrelevant if the
2119 * chain is invalid.
2120 */
2121 if (!check_flags) {
2122 if (rv & CERT_PKEY_VALID)
2123 *pvalid = rv;
2124 else {
2125 /* Preserve explicit sign flag, clear rest */
2126 *pvalid &= CERT_PKEY_EXPLICIT_SIGN;
2127 return 0;
2128 }
2129 }
2130 return rv;
2131 }
2132
2133 /* Set validity of certificates in an SSL structure */
2134 void tls1_set_cert_validity(SSL *s)
2135 {
2136 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_ENC);
2137 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_SIGN);
2138 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN);
2139 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC);
2140 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01);
2141 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256);
2142 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512);
2143 }
2144
2145 /* User level utiity function to check a chain is suitable */
2146 int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain)
2147 {
2148 return tls1_check_chain(s, x, pk, chain, -1);
2149 }
2150
2151 #ifndef OPENSSL_NO_DH
2152 DH *ssl_get_auto_dh(SSL *s)
2153 {
2154 int dh_secbits = 80;
2155 if (s->cert->dh_tmp_auto == 2)
2156 return DH_get_1024_160();
2157 if (s->s3->tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) {
2158 if (s->s3->tmp.new_cipher->strength_bits == 256)
2159 dh_secbits = 128;
2160 else
2161 dh_secbits = 80;
2162 } else {
2163 CERT_PKEY *cpk = ssl_get_server_send_pkey(s);
2164 dh_secbits = EVP_PKEY_security_bits(cpk->privatekey);
2165 }
2166
2167 if (dh_secbits >= 128) {
2168 DH *dhp = DH_new();
2169 BIGNUM *p, *g;
2170 if (dhp == NULL)
2171 return NULL;
2172 g = BN_new();
2173 if (g != NULL)
2174 BN_set_word(g, 2);
2175 if (dh_secbits >= 192)
2176 p = BN_get_rfc3526_prime_8192(NULL);
2177 else
2178 p = BN_get_rfc3526_prime_3072(NULL);
2179 if (p == NULL || g == NULL || !DH_set0_pqg(dhp, p, NULL, g)) {
2180 DH_free(dhp);
2181 BN_free(p);
2182 BN_free(g);
2183 return NULL;
2184 }
2185 return dhp;
2186 }
2187 if (dh_secbits >= 112)
2188 return DH_get_2048_224();
2189 return DH_get_1024_160();
2190 }
2191 #endif
2192
2193 static int ssl_security_cert_key(SSL *s, SSL_CTX *ctx, X509 *x, int op)
2194 {
2195 int secbits = -1;
2196 EVP_PKEY *pkey = X509_get0_pubkey(x);
2197 if (pkey) {
2198 /*
2199 * If no parameters this will return -1 and fail using the default
2200 * security callback for any non-zero security level. This will
2201 * reject keys which omit parameters but this only affects DSA and
2202 * omission of parameters is never (?) done in practice.
2203 */
2204 secbits = EVP_PKEY_security_bits(pkey);
2205 }
2206 if (s)
2207 return ssl_security(s, op, secbits, 0, x);
2208 else
2209 return ssl_ctx_security(ctx, op, secbits, 0, x);
2210 }
2211
2212 static int ssl_security_cert_sig(SSL *s, SSL_CTX *ctx, X509 *x, int op)
2213 {
2214 /* Lookup signature algorithm digest */
2215 int secbits = -1, md_nid = NID_undef, sig_nid;
2216 /* Don't check signature if self signed */
2217 if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0)
2218 return 1;
2219 sig_nid = X509_get_signature_nid(x);
2220 if (sig_nid && OBJ_find_sigid_algs(sig_nid, &md_nid, NULL)) {
2221 const EVP_MD *md;
2222 if (md_nid && (md = EVP_get_digestbynid(md_nid)))
2223 secbits = EVP_MD_size(md) * 4;
2224 }
2225 if (s)
2226 return ssl_security(s, op, secbits, md_nid, x);
2227 else
2228 return ssl_ctx_security(ctx, op, secbits, md_nid, x);
2229 }
2230
2231 int ssl_security_cert(SSL *s, SSL_CTX *ctx, X509 *x, int vfy, int is_ee)
2232 {
2233 if (vfy)
2234 vfy = SSL_SECOP_PEER;
2235 if (is_ee) {
2236 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy))
2237 return SSL_R_EE_KEY_TOO_SMALL;
2238 } else {
2239 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy))
2240 return SSL_R_CA_KEY_TOO_SMALL;
2241 }
2242 if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy))
2243 return SSL_R_CA_MD_TOO_WEAK;
2244 return 1;
2245 }
2246
2247 /*
2248 * Check security of a chain, if sk includes the end entity certificate then
2249 * x is NULL. If vfy is 1 then we are verifying a peer chain and not sending
2250 * one to the peer. Return values: 1 if ok otherwise error code to use
2251 */
2252
2253 int ssl_security_cert_chain(SSL *s, STACK_OF(X509) *sk, X509 *x, int vfy)
2254 {
2255 int rv, start_idx, i;
2256 if (x == NULL) {
2257 x = sk_X509_value(sk, 0);
2258 start_idx = 1;
2259 } else
2260 start_idx = 0;
2261
2262 rv = ssl_security_cert(s, NULL, x, vfy, 1);
2263 if (rv != 1)
2264 return rv;
2265
2266 for (i = start_idx; i < sk_X509_num(sk); i++) {
2267 x = sk_X509_value(sk, i);
2268 rv = ssl_security_cert(s, NULL, x, vfy, 0);
2269 if (rv != 1)
2270 return rv;
2271 }
2272 return 1;
2273 }
2274
2275 /*
2276 * Choose an appropriate signature algorithm based on available certificates
2277 * Set current certificate and digest to match chosen algorithm.
2278 */
2279 int tls_choose_sigalg(SSL *s)
2280 {
2281 if (SSL_IS_TLS13(s)) {
2282 size_t i;
2283 #ifndef OPENSSL_NO_EC
2284 int curve = -1;
2285 #endif
2286
2287 /* Look for a certificate matching shared sigaglgs */
2288 for (i = 0; i < s->cert->shared_sigalgslen; i++) {
2289 const SIGALG_LOOKUP *lu = s->cert->shared_sigalgs[i];
2290 int idx;
2291 const EVP_MD *md;
2292 CERT_PKEY *c;
2293
2294 /* Skip RSA if not PSS */
2295 if (lu->sig == EVP_PKEY_RSA)
2296 continue;
2297 md = ssl_md(lu->hash_idx);
2298 if (md == NULL)
2299 continue;
2300 idx = lu->sig_idx;
2301 c = &s->cert->pkeys[idx];
2302 if (c->x509 == NULL || c->privatekey == NULL) {
2303 if (idx != SSL_PKEY_RSA_SIGN)
2304 continue;
2305 idx = SSL_PKEY_RSA_ENC;
2306 c = s->cert->pkeys + idx;
2307 if (c->x509 == NULL || c->privatekey == NULL)
2308 continue;
2309 }
2310 if (lu->sig == EVP_PKEY_EC) {
2311 #ifndef OPENSSL_NO_EC
2312 if (curve == -1) {
2313 EC_KEY *ec = EVP_PKEY_get0_EC_KEY(c->privatekey);
2314
2315 curve = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec));
2316 }
2317 if (curve != lu->curve)
2318 continue;
2319 #else
2320 continue;
2321 #endif
2322 }
2323 s->s3->tmp.sigalg = lu;
2324 s->s3->tmp.cert_idx = idx;
2325 s->s3->tmp.md[idx] = md;
2326 s->cert->key = s->cert->pkeys + idx;
2327 return 1;
2328 }
2329 return 0;
2330 }
2331 /*
2332 * FIXME: could handle previous TLS versions in an appropriate way
2333 * and tidy up certificate and signature algorithm handling.
2334 */
2335 return 1;
2336 }