]> git.ipfire.org Git - thirdparty/glibc.git/blob - stdio-common/printf_fp.c
[BZ #2510, BZ #2830, BZ #3137, BZ #3313, BZ #3426, BZ #3465, BZ #3480, BZ #3483,...
[thirdparty/glibc.git] / stdio-common / printf_fp.c
1 /* Floating point output for `printf'.
2 Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2006
3 Free Software Foundation, Inc.
4 This file is part of the GNU C Library.
5 Written by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1995.
6
7 The GNU C Library is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Lesser General Public
9 License as published by the Free Software Foundation; either
10 version 2.1 of the License, or (at your option) any later version.
11
12 The GNU C Library is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 Lesser General Public License for more details.
16
17 You should have received a copy of the GNU Lesser General Public
18 License along with the GNU C Library; if not, write to the Free
19 Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
20 02111-1307 USA. */
21
22 /* The gmp headers need some configuration frobs. */
23 #define HAVE_ALLOCA 1
24
25 #include <libioP.h>
26 #include <alloca.h>
27 #include <ctype.h>
28 #include <float.h>
29 #include <gmp-mparam.h>
30 #include <gmp.h>
31 #include <stdlib/gmp-impl.h>
32 #include <stdlib/longlong.h>
33 #include <stdlib/fpioconst.h>
34 #include <locale/localeinfo.h>
35 #include <limits.h>
36 #include <math.h>
37 #include <printf.h>
38 #include <string.h>
39 #include <unistd.h>
40 #include <stdlib.h>
41 #include <wchar.h>
42
43 #ifdef COMPILE_WPRINTF
44 # define CHAR_T wchar_t
45 #else
46 # define CHAR_T char
47 #endif
48
49 #include "_i18n_number.h"
50
51 #ifndef NDEBUG
52 # define NDEBUG /* Undefine this for debugging assertions. */
53 #endif
54 #include <assert.h>
55
56 /* This defines make it possible to use the same code for GNU C library and
57 the GNU I/O library. */
58 #define PUT(f, s, n) _IO_sputn (f, s, n)
59 #define PAD(f, c, n) (wide ? _IO_wpadn (f, c, n) : INTUSE(_IO_padn) (f, c, n))
60 /* We use this file GNU C library and GNU I/O library. So make
61 names equal. */
62 #undef putc
63 #define putc(c, f) (wide \
64 ? (int)_IO_putwc_unlocked (c, f) : _IO_putc_unlocked (c, f))
65 #define size_t _IO_size_t
66 #define FILE _IO_FILE
67 \f
68 /* Macros for doing the actual output. */
69
70 #define outchar(ch) \
71 do \
72 { \
73 register const int outc = (ch); \
74 if (putc (outc, fp) == EOF) \
75 { \
76 if (buffer_malloced) \
77 free (wbuffer); \
78 return -1; \
79 } \
80 ++done; \
81 } while (0)
82
83 #define PRINT(ptr, wptr, len) \
84 do \
85 { \
86 register size_t outlen = (len); \
87 if (len > 20) \
88 { \
89 if (PUT (fp, wide ? (const char *) wptr : ptr, outlen) != outlen) \
90 { \
91 if (buffer_malloced) \
92 free (wbuffer); \
93 return -1; \
94 } \
95 ptr += outlen; \
96 done += outlen; \
97 } \
98 else \
99 { \
100 if (wide) \
101 while (outlen-- > 0) \
102 outchar (*wptr++); \
103 else \
104 while (outlen-- > 0) \
105 outchar (*ptr++); \
106 } \
107 } while (0)
108
109 #define PADN(ch, len) \
110 do \
111 { \
112 if (PAD (fp, ch, len) != len) \
113 { \
114 if (buffer_malloced) \
115 free (wbuffer); \
116 return -1; \
117 } \
118 done += len; \
119 } \
120 while (0)
121 \f
122 /* We use the GNU MP library to handle large numbers.
123
124 An MP variable occupies a varying number of entries in its array. We keep
125 track of this number for efficiency reasons. Otherwise we would always
126 have to process the whole array. */
127 #define MPN_VAR(name) mp_limb_t *name; mp_size_t name##size
128
129 #define MPN_ASSIGN(dst,src) \
130 memcpy (dst, src, (dst##size = src##size) * sizeof (mp_limb_t))
131 #define MPN_GE(u,v) \
132 (u##size > v##size || (u##size == v##size && __mpn_cmp (u, v, u##size) >= 0))
133
134 extern int __isinfl_internal (long double) attribute_hidden;
135 extern int __isnanl_internal (long double) attribute_hidden;
136
137 extern mp_size_t __mpn_extract_double (mp_ptr res_ptr, mp_size_t size,
138 int *expt, int *is_neg,
139 double value);
140 extern mp_size_t __mpn_extract_long_double (mp_ptr res_ptr, mp_size_t size,
141 int *expt, int *is_neg,
142 long double value);
143 extern unsigned int __guess_grouping (unsigned int intdig_max,
144 const char *grouping);
145
146
147 static wchar_t *group_number (wchar_t *buf, wchar_t *bufend,
148 unsigned int intdig_no, const char *grouping,
149 wchar_t thousands_sep, int ngroups)
150 internal_function;
151
152
153 int
154 ___printf_fp (FILE *fp,
155 const struct printf_info *info,
156 const void *const *args)
157 {
158 /* The floating-point value to output. */
159 union
160 {
161 double dbl;
162 __long_double_t ldbl;
163 }
164 fpnum;
165
166 /* Locale-dependent representation of decimal point. */
167 const char *decimal;
168 wchar_t decimalwc;
169
170 /* Locale-dependent thousands separator and grouping specification. */
171 const char *thousands_sep = NULL;
172 wchar_t thousands_sepwc = 0;
173 const char *grouping;
174
175 /* "NaN" or "Inf" for the special cases. */
176 const char *special = NULL;
177 const wchar_t *wspecial = NULL;
178
179 /* We need just a few limbs for the input before shifting to the right
180 position. */
181 mp_limb_t fp_input[(LDBL_MANT_DIG + BITS_PER_MP_LIMB - 1) / BITS_PER_MP_LIMB];
182 /* We need to shift the contents of fp_input by this amount of bits. */
183 int to_shift = 0;
184
185 /* The fraction of the floting-point value in question */
186 MPN_VAR(frac);
187 /* and the exponent. */
188 int exponent;
189 /* Sign of the exponent. */
190 int expsign = 0;
191 /* Sign of float number. */
192 int is_neg = 0;
193
194 /* Scaling factor. */
195 MPN_VAR(scale);
196
197 /* Temporary bignum value. */
198 MPN_VAR(tmp);
199
200 /* Digit which is result of last hack_digit() call. */
201 wchar_t digit;
202
203 /* The type of output format that will be used: 'e'/'E' or 'f'. */
204 int type;
205
206 /* Counter for number of written characters. */
207 int done = 0;
208
209 /* General helper (carry limb). */
210 mp_limb_t cy;
211
212 /* Nonzero if this is output on a wide character stream. */
213 int wide = info->wide;
214
215 /* Buffer in which we produce the output. */
216 wchar_t *wbuffer = NULL;
217 /* Flag whether wbuffer is malloc'ed or not. */
218 int buffer_malloced = 0;
219
220 auto wchar_t hack_digit (void);
221
222 wchar_t hack_digit (void)
223 {
224 mp_limb_t hi;
225
226 if (expsign != 0 && type == 'f' && exponent-- > 0)
227 hi = 0;
228 else if (scalesize == 0)
229 {
230 hi = frac[fracsize - 1];
231 frac[fracsize - 1] = __mpn_mul_1 (frac, frac, fracsize - 1, 10);
232 }
233 else
234 {
235 if (fracsize < scalesize)
236 hi = 0;
237 else
238 {
239 hi = mpn_divmod (tmp, frac, fracsize, scale, scalesize);
240 tmp[fracsize - scalesize] = hi;
241 hi = tmp[0];
242
243 fracsize = scalesize;
244 while (fracsize != 0 && frac[fracsize - 1] == 0)
245 --fracsize;
246 if (fracsize == 0)
247 {
248 /* We're not prepared for an mpn variable with zero
249 limbs. */
250 fracsize = 1;
251 return L'0' + hi;
252 }
253 }
254
255 mp_limb_t _cy = __mpn_mul_1 (frac, frac, fracsize, 10);
256 if (_cy != 0)
257 frac[fracsize++] = _cy;
258 }
259
260 return L'0' + hi;
261 }
262
263
264 /* Figure out the decimal point character. */
265 if (info->extra == 0)
266 {
267 decimal = _NL_CURRENT (LC_NUMERIC, DECIMAL_POINT);
268 decimalwc = _NL_CURRENT_WORD (LC_NUMERIC, _NL_NUMERIC_DECIMAL_POINT_WC);
269 }
270 else
271 {
272 decimal = _NL_CURRENT (LC_MONETARY, MON_DECIMAL_POINT);
273 if (*decimal == '\0')
274 decimal = _NL_CURRENT (LC_NUMERIC, DECIMAL_POINT);
275 decimalwc = _NL_CURRENT_WORD (LC_MONETARY,
276 _NL_MONETARY_DECIMAL_POINT_WC);
277 if (decimalwc == L'\0')
278 decimalwc = _NL_CURRENT_WORD (LC_NUMERIC,
279 _NL_NUMERIC_DECIMAL_POINT_WC);
280 }
281 /* The decimal point character must not be zero. */
282 assert (*decimal != '\0');
283 assert (decimalwc != L'\0');
284
285 if (info->group)
286 {
287 if (info->extra == 0)
288 grouping = _NL_CURRENT (LC_NUMERIC, GROUPING);
289 else
290 grouping = _NL_CURRENT (LC_MONETARY, MON_GROUPING);
291
292 if (*grouping <= 0 || *grouping == CHAR_MAX)
293 grouping = NULL;
294 else
295 {
296 /* Figure out the thousands separator character. */
297 if (wide)
298 {
299 if (info->extra == 0)
300 thousands_sepwc =
301 _NL_CURRENT_WORD (LC_NUMERIC, _NL_NUMERIC_THOUSANDS_SEP_WC);
302 else
303 thousands_sepwc =
304 _NL_CURRENT_WORD (LC_MONETARY,
305 _NL_MONETARY_THOUSANDS_SEP_WC);
306 }
307 else
308 {
309 if (info->extra == 0)
310 thousands_sep = _NL_CURRENT (LC_NUMERIC, THOUSANDS_SEP);
311 else
312 thousands_sep = _NL_CURRENT (LC_MONETARY, MON_THOUSANDS_SEP);
313 }
314
315 if ((wide && thousands_sepwc == L'\0')
316 || (! wide && *thousands_sep == '\0'))
317 grouping = NULL;
318 else if (thousands_sepwc == L'\0')
319 /* If we are printing multibyte characters and there is a
320 multibyte representation for the thousands separator,
321 we must ensure the wide character thousands separator
322 is available, even if it is fake. */
323 thousands_sepwc = 0xfffffffe;
324 }
325 }
326 else
327 grouping = NULL;
328
329 /* Fetch the argument value. */
330 #ifndef __NO_LONG_DOUBLE_MATH
331 if (info->is_long_double && sizeof (long double) > sizeof (double))
332 {
333 fpnum.ldbl = *(const long double *) args[0];
334
335 /* Check for special values: not a number or infinity. */
336 if (__isnanl (fpnum.ldbl))
337 {
338 if (isupper (info->spec))
339 {
340 special = "NAN";
341 wspecial = L"NAN";
342 }
343 else
344 {
345 special = "nan";
346 wspecial = L"nan";
347 }
348 is_neg = 0;
349 }
350 else if (__isinfl (fpnum.ldbl))
351 {
352 if (isupper (info->spec))
353 {
354 special = "INF";
355 wspecial = L"INF";
356 }
357 else
358 {
359 special = "inf";
360 wspecial = L"inf";
361 }
362 is_neg = fpnum.ldbl < 0;
363 }
364 else
365 {
366 fracsize = __mpn_extract_long_double (fp_input,
367 (sizeof (fp_input) /
368 sizeof (fp_input[0])),
369 &exponent, &is_neg,
370 fpnum.ldbl);
371 to_shift = 1 + fracsize * BITS_PER_MP_LIMB - LDBL_MANT_DIG;
372 }
373 }
374 else
375 #endif /* no long double */
376 {
377 fpnum.dbl = *(const double *) args[0];
378
379 /* Check for special values: not a number or infinity. */
380 if (__isnan (fpnum.dbl))
381 {
382 is_neg = 0;
383 if (isupper (info->spec))
384 {
385 special = "NAN";
386 wspecial = L"NAN";
387 }
388 else
389 {
390 special = "nan";
391 wspecial = L"nan";
392 }
393 }
394 else if (__isinf (fpnum.dbl))
395 {
396 is_neg = fpnum.dbl < 0;
397 if (isupper (info->spec))
398 {
399 special = "INF";
400 wspecial = L"INF";
401 }
402 else
403 {
404 special = "inf";
405 wspecial = L"inf";
406 }
407 }
408 else
409 {
410 fracsize = __mpn_extract_double (fp_input,
411 (sizeof (fp_input)
412 / sizeof (fp_input[0])),
413 &exponent, &is_neg, fpnum.dbl);
414 to_shift = 1 + fracsize * BITS_PER_MP_LIMB - DBL_MANT_DIG;
415 }
416 }
417
418 if (special)
419 {
420 int width = info->width;
421
422 if (is_neg || info->showsign || info->space)
423 --width;
424 width -= 3;
425
426 if (!info->left && width > 0)
427 PADN (' ', width);
428
429 if (is_neg)
430 outchar ('-');
431 else if (info->showsign)
432 outchar ('+');
433 else if (info->space)
434 outchar (' ');
435
436 PRINT (special, wspecial, 3);
437
438 if (info->left && width > 0)
439 PADN (' ', width);
440
441 return done;
442 }
443
444
445 /* We need three multiprecision variables. Now that we have the exponent
446 of the number we can allocate the needed memory. It would be more
447 efficient to use variables of the fixed maximum size but because this
448 would be really big it could lead to memory problems. */
449 {
450 mp_size_t bignum_size = ((ABS (exponent) + BITS_PER_MP_LIMB - 1)
451 / BITS_PER_MP_LIMB
452 + (LDBL_MANT_DIG / BITS_PER_MP_LIMB > 2 ? 8 : 4))
453 * sizeof (mp_limb_t);
454 frac = (mp_limb_t *) alloca (bignum_size);
455 tmp = (mp_limb_t *) alloca (bignum_size);
456 scale = (mp_limb_t *) alloca (bignum_size);
457 }
458
459 /* We now have to distinguish between numbers with positive and negative
460 exponents because the method used for the one is not applicable/efficient
461 for the other. */
462 scalesize = 0;
463 if (exponent > 2)
464 {
465 /* |FP| >= 8.0. */
466 int scaleexpo = 0;
467 int explog = LDBL_MAX_10_EXP_LOG;
468 int exp10 = 0;
469 const struct mp_power *powers = &_fpioconst_pow10[explog + 1];
470 int cnt_h, cnt_l, i;
471
472 if ((exponent + to_shift) % BITS_PER_MP_LIMB == 0)
473 {
474 MPN_COPY_DECR (frac + (exponent + to_shift) / BITS_PER_MP_LIMB,
475 fp_input, fracsize);
476 fracsize += (exponent + to_shift) / BITS_PER_MP_LIMB;
477 }
478 else
479 {
480 cy = __mpn_lshift (frac + (exponent + to_shift) / BITS_PER_MP_LIMB,
481 fp_input, fracsize,
482 (exponent + to_shift) % BITS_PER_MP_LIMB);
483 fracsize += (exponent + to_shift) / BITS_PER_MP_LIMB;
484 if (cy)
485 frac[fracsize++] = cy;
486 }
487 MPN_ZERO (frac, (exponent + to_shift) / BITS_PER_MP_LIMB);
488
489 assert (powers > &_fpioconst_pow10[0]);
490 do
491 {
492 --powers;
493
494 /* The number of the product of two binary numbers with n and m
495 bits respectively has m+n or m+n-1 bits. */
496 if (exponent >= scaleexpo + powers->p_expo - 1)
497 {
498 if (scalesize == 0)
499 {
500 #ifndef __NO_LONG_DOUBLE_MATH
501 if (LDBL_MANT_DIG > _FPIO_CONST_OFFSET * BITS_PER_MP_LIMB
502 && info->is_long_double)
503 {
504 #define _FPIO_CONST_SHIFT \
505 (((LDBL_MANT_DIG + BITS_PER_MP_LIMB - 1) / BITS_PER_MP_LIMB) \
506 - _FPIO_CONST_OFFSET)
507 /* 64bit const offset is not enough for
508 IEEE quad long double. */
509 tmpsize = powers->arraysize + _FPIO_CONST_SHIFT;
510 memcpy (tmp + _FPIO_CONST_SHIFT,
511 &__tens[powers->arrayoff],
512 tmpsize * sizeof (mp_limb_t));
513 MPN_ZERO (tmp, _FPIO_CONST_SHIFT);
514 /* Adjust exponent, as scaleexpo will be this much
515 bigger too. */
516 exponent += _FPIO_CONST_SHIFT * BITS_PER_MP_LIMB;
517 }
518 else
519 #endif
520 {
521 tmpsize = powers->arraysize;
522 memcpy (tmp, &__tens[powers->arrayoff],
523 tmpsize * sizeof (mp_limb_t));
524 }
525 }
526 else
527 {
528 cy = __mpn_mul (tmp, scale, scalesize,
529 &__tens[powers->arrayoff
530 + _FPIO_CONST_OFFSET],
531 powers->arraysize - _FPIO_CONST_OFFSET);
532 tmpsize = scalesize + powers->arraysize - _FPIO_CONST_OFFSET;
533 if (cy == 0)
534 --tmpsize;
535 }
536
537 if (MPN_GE (frac, tmp))
538 {
539 int cnt;
540 MPN_ASSIGN (scale, tmp);
541 count_leading_zeros (cnt, scale[scalesize - 1]);
542 scaleexpo = (scalesize - 2) * BITS_PER_MP_LIMB - cnt - 1;
543 exp10 |= 1 << explog;
544 }
545 }
546 --explog;
547 }
548 while (powers > &_fpioconst_pow10[0]);
549 exponent = exp10;
550
551 /* Optimize number representations. We want to represent the numbers
552 with the lowest number of bytes possible without losing any
553 bytes. Also the highest bit in the scaling factor has to be set
554 (this is a requirement of the MPN division routines). */
555 if (scalesize > 0)
556 {
557 /* Determine minimum number of zero bits at the end of
558 both numbers. */
559 for (i = 0; scale[i] == 0 && frac[i] == 0; i++)
560 ;
561
562 /* Determine number of bits the scaling factor is misplaced. */
563 count_leading_zeros (cnt_h, scale[scalesize - 1]);
564
565 if (cnt_h == 0)
566 {
567 /* The highest bit of the scaling factor is already set. So
568 we only have to remove the trailing empty limbs. */
569 if (i > 0)
570 {
571 MPN_COPY_INCR (scale, scale + i, scalesize - i);
572 scalesize -= i;
573 MPN_COPY_INCR (frac, frac + i, fracsize - i);
574 fracsize -= i;
575 }
576 }
577 else
578 {
579 if (scale[i] != 0)
580 {
581 count_trailing_zeros (cnt_l, scale[i]);
582 if (frac[i] != 0)
583 {
584 int cnt_l2;
585 count_trailing_zeros (cnt_l2, frac[i]);
586 if (cnt_l2 < cnt_l)
587 cnt_l = cnt_l2;
588 }
589 }
590 else
591 count_trailing_zeros (cnt_l, frac[i]);
592
593 /* Now shift the numbers to their optimal position. */
594 if (i == 0 && BITS_PER_MP_LIMB - cnt_h > cnt_l)
595 {
596 /* We cannot save any memory. So just roll both numbers
597 so that the scaling factor has its highest bit set. */
598
599 (void) __mpn_lshift (scale, scale, scalesize, cnt_h);
600 cy = __mpn_lshift (frac, frac, fracsize, cnt_h);
601 if (cy != 0)
602 frac[fracsize++] = cy;
603 }
604 else if (BITS_PER_MP_LIMB - cnt_h <= cnt_l)
605 {
606 /* We can save memory by removing the trailing zero limbs
607 and by packing the non-zero limbs which gain another
608 free one. */
609
610 (void) __mpn_rshift (scale, scale + i, scalesize - i,
611 BITS_PER_MP_LIMB - cnt_h);
612 scalesize -= i + 1;
613 (void) __mpn_rshift (frac, frac + i, fracsize - i,
614 BITS_PER_MP_LIMB - cnt_h);
615 fracsize -= frac[fracsize - i - 1] == 0 ? i + 1 : i;
616 }
617 else
618 {
619 /* We can only save the memory of the limbs which are zero.
620 The non-zero parts occupy the same number of limbs. */
621
622 (void) __mpn_rshift (scale, scale + (i - 1),
623 scalesize - (i - 1),
624 BITS_PER_MP_LIMB - cnt_h);
625 scalesize -= i;
626 (void) __mpn_rshift (frac, frac + (i - 1),
627 fracsize - (i - 1),
628 BITS_PER_MP_LIMB - cnt_h);
629 fracsize -= frac[fracsize - (i - 1) - 1] == 0 ? i : i - 1;
630 }
631 }
632 }
633 }
634 else if (exponent < 0)
635 {
636 /* |FP| < 1.0. */
637 int exp10 = 0;
638 int explog = LDBL_MAX_10_EXP_LOG;
639 const struct mp_power *powers = &_fpioconst_pow10[explog + 1];
640 mp_size_t used_limbs = fracsize - 1;
641
642 /* Now shift the input value to its right place. */
643 cy = __mpn_lshift (frac, fp_input, fracsize, to_shift);
644 frac[fracsize++] = cy;
645 assert (cy == 1 || (frac[fracsize - 2] == 0 && frac[0] == 0));
646
647 expsign = 1;
648 exponent = -exponent;
649
650 assert (powers != &_fpioconst_pow10[0]);
651 do
652 {
653 --powers;
654
655 if (exponent >= powers->m_expo)
656 {
657 int i, incr, cnt_h, cnt_l;
658 mp_limb_t topval[2];
659
660 /* The __mpn_mul function expects the first argument to be
661 bigger than the second. */
662 if (fracsize < powers->arraysize - _FPIO_CONST_OFFSET)
663 cy = __mpn_mul (tmp, &__tens[powers->arrayoff
664 + _FPIO_CONST_OFFSET],
665 powers->arraysize - _FPIO_CONST_OFFSET,
666 frac, fracsize);
667 else
668 cy = __mpn_mul (tmp, frac, fracsize,
669 &__tens[powers->arrayoff + _FPIO_CONST_OFFSET],
670 powers->arraysize - _FPIO_CONST_OFFSET);
671 tmpsize = fracsize + powers->arraysize - _FPIO_CONST_OFFSET;
672 if (cy == 0)
673 --tmpsize;
674
675 count_leading_zeros (cnt_h, tmp[tmpsize - 1]);
676 incr = (tmpsize - fracsize) * BITS_PER_MP_LIMB
677 + BITS_PER_MP_LIMB - 1 - cnt_h;
678
679 assert (incr <= powers->p_expo);
680
681 /* If we increased the exponent by exactly 3 we have to test
682 for overflow. This is done by comparing with 10 shifted
683 to the right position. */
684 if (incr == exponent + 3)
685 {
686 if (cnt_h <= BITS_PER_MP_LIMB - 4)
687 {
688 topval[0] = 0;
689 topval[1]
690 = ((mp_limb_t) 10) << (BITS_PER_MP_LIMB - 4 - cnt_h);
691 }
692 else
693 {
694 topval[0] = ((mp_limb_t) 10) << (BITS_PER_MP_LIMB - 4);
695 topval[1] = 0;
696 (void) __mpn_lshift (topval, topval, 2,
697 BITS_PER_MP_LIMB - cnt_h);
698 }
699 }
700
701 /* We have to be careful when multiplying the last factor.
702 If the result is greater than 1.0 be have to test it
703 against 10.0. If it is greater or equal to 10.0 the
704 multiplication was not valid. This is because we cannot
705 determine the number of bits in the result in advance. */
706 if (incr < exponent + 3
707 || (incr == exponent + 3 &&
708 (tmp[tmpsize - 1] < topval[1]
709 || (tmp[tmpsize - 1] == topval[1]
710 && tmp[tmpsize - 2] < topval[0]))))
711 {
712 /* The factor is right. Adapt binary and decimal
713 exponents. */
714 exponent -= incr;
715 exp10 |= 1 << explog;
716
717 /* If this factor yields a number greater or equal to
718 1.0, we must not shift the non-fractional digits down. */
719 if (exponent < 0)
720 cnt_h += -exponent;
721
722 /* Now we optimize the number representation. */
723 for (i = 0; tmp[i] == 0; ++i);
724 if (cnt_h == BITS_PER_MP_LIMB - 1)
725 {
726 MPN_COPY (frac, tmp + i, tmpsize - i);
727 fracsize = tmpsize - i;
728 }
729 else
730 {
731 count_trailing_zeros (cnt_l, tmp[i]);
732
733 /* Now shift the numbers to their optimal position. */
734 if (i == 0 && BITS_PER_MP_LIMB - 1 - cnt_h > cnt_l)
735 {
736 /* We cannot save any memory. Just roll the
737 number so that the leading digit is in a
738 separate limb. */
739
740 cy = __mpn_lshift (frac, tmp, tmpsize, cnt_h + 1);
741 fracsize = tmpsize + 1;
742 frac[fracsize - 1] = cy;
743 }
744 else if (BITS_PER_MP_LIMB - 1 - cnt_h <= cnt_l)
745 {
746 (void) __mpn_rshift (frac, tmp + i, tmpsize - i,
747 BITS_PER_MP_LIMB - 1 - cnt_h);
748 fracsize = tmpsize - i;
749 }
750 else
751 {
752 /* We can only save the memory of the limbs which
753 are zero. The non-zero parts occupy the same
754 number of limbs. */
755
756 (void) __mpn_rshift (frac, tmp + (i - 1),
757 tmpsize - (i - 1),
758 BITS_PER_MP_LIMB - 1 - cnt_h);
759 fracsize = tmpsize - (i - 1);
760 }
761 }
762 used_limbs = fracsize - 1;
763 }
764 }
765 --explog;
766 }
767 while (powers != &_fpioconst_pow10[1] && exponent > 0);
768 /* All factors but 10^-1 are tested now. */
769 if (exponent > 0)
770 {
771 int cnt_l;
772
773 cy = __mpn_mul_1 (tmp, frac, fracsize, 10);
774 tmpsize = fracsize;
775 assert (cy == 0 || tmp[tmpsize - 1] < 20);
776
777 count_trailing_zeros (cnt_l, tmp[0]);
778 if (cnt_l < MIN (4, exponent))
779 {
780 cy = __mpn_lshift (frac, tmp, tmpsize,
781 BITS_PER_MP_LIMB - MIN (4, exponent));
782 if (cy != 0)
783 frac[tmpsize++] = cy;
784 }
785 else
786 (void) __mpn_rshift (frac, tmp, tmpsize, MIN (4, exponent));
787 fracsize = tmpsize;
788 exp10 |= 1;
789 assert (frac[fracsize - 1] < 10);
790 }
791 exponent = exp10;
792 }
793 else
794 {
795 /* This is a special case. We don't need a factor because the
796 numbers are in the range of 0.0 <= fp < 8.0. We simply
797 shift it to the right place and divide it by 1.0 to get the
798 leading digit. (Of course this division is not really made.) */
799 assert (0 <= exponent && exponent < 3 &&
800 exponent + to_shift < BITS_PER_MP_LIMB);
801
802 /* Now shift the input value to its right place. */
803 cy = __mpn_lshift (frac, fp_input, fracsize, (exponent + to_shift));
804 frac[fracsize++] = cy;
805 exponent = 0;
806 }
807
808 {
809 int width = info->width;
810 wchar_t *wstartp, *wcp;
811 int chars_needed;
812 int expscale;
813 int intdig_max, intdig_no = 0;
814 int fracdig_min, fracdig_max, fracdig_no = 0;
815 int dig_max;
816 int significant;
817 int ngroups = 0;
818
819 if (_tolower (info->spec) == 'e')
820 {
821 type = info->spec;
822 intdig_max = 1;
823 fracdig_min = fracdig_max = info->prec < 0 ? 6 : info->prec;
824 chars_needed = 1 + 1 + fracdig_max + 1 + 1 + 4;
825 /* d . ddd e +- ddd */
826 dig_max = INT_MAX; /* Unlimited. */
827 significant = 1; /* Does not matter here. */
828 }
829 else if (_tolower (info->spec) == 'f')
830 {
831 type = 'f';
832 fracdig_min = fracdig_max = info->prec < 0 ? 6 : info->prec;
833 dig_max = INT_MAX; /* Unlimited. */
834 significant = 1; /* Does not matter here. */
835 if (expsign == 0)
836 {
837 intdig_max = exponent + 1;
838 /* This can be really big! */ /* XXX Maybe malloc if too big? */
839 chars_needed = exponent + 1 + 1 + fracdig_max;
840 }
841 else
842 {
843 intdig_max = 1;
844 chars_needed = 1 + 1 + fracdig_max;
845 }
846 }
847 else
848 {
849 dig_max = info->prec < 0 ? 6 : (info->prec == 0 ? 1 : info->prec);
850 if ((expsign == 0 && exponent >= dig_max)
851 || (expsign != 0 && exponent > 4))
852 {
853 if ('g' - 'G' == 'e' - 'E')
854 type = 'E' + (info->spec - 'G');
855 else
856 type = isupper (info->spec) ? 'E' : 'e';
857 fracdig_max = dig_max - 1;
858 intdig_max = 1;
859 chars_needed = 1 + 1 + fracdig_max + 1 + 1 + 4;
860 }
861 else
862 {
863 type = 'f';
864 intdig_max = expsign == 0 ? exponent + 1 : 0;
865 fracdig_max = dig_max - intdig_max;
866 /* We need space for the significant digits and perhaps
867 for leading zeros when < 1.0. The number of leading
868 zeros can be as many as would be required for
869 exponential notation with a negative two-digit
870 exponent, which is 4. */
871 chars_needed = dig_max + 1 + 4;
872 }
873 fracdig_min = info->alt ? fracdig_max : 0;
874 significant = 0; /* We count significant digits. */
875 }
876
877 if (grouping)
878 {
879 /* Guess the number of groups we will make, and thus how
880 many spaces we need for separator characters. */
881 ngroups = __guess_grouping (intdig_max, grouping);
882 chars_needed += ngroups;
883 }
884
885 /* Allocate buffer for output. We need two more because while rounding
886 it is possible that we need two more characters in front of all the
887 other output. If the amount of memory we have to allocate is too
888 large use `malloc' instead of `alloca'. */
889 buffer_malloced = ! __libc_use_alloca (chars_needed * 2 * sizeof (wchar_t));
890 if (buffer_malloced)
891 {
892 wbuffer = (wchar_t *) malloc ((2 + chars_needed) * sizeof (wchar_t));
893 if (wbuffer == NULL)
894 /* Signal an error to the caller. */
895 return -1;
896 }
897 else
898 wbuffer = (wchar_t *) alloca ((2 + chars_needed) * sizeof (wchar_t));
899 wcp = wstartp = wbuffer + 2; /* Let room for rounding. */
900
901 /* Do the real work: put digits in allocated buffer. */
902 if (expsign == 0 || type != 'f')
903 {
904 assert (expsign == 0 || intdig_max == 1);
905 while (intdig_no < intdig_max)
906 {
907 ++intdig_no;
908 *wcp++ = hack_digit ();
909 }
910 significant = 1;
911 if (info->alt
912 || fracdig_min > 0
913 || (fracdig_max > 0 && (fracsize > 1 || frac[0] != 0)))
914 *wcp++ = decimalwc;
915 }
916 else
917 {
918 /* |fp| < 1.0 and the selected type is 'f', so put "0."
919 in the buffer. */
920 *wcp++ = L'0';
921 --exponent;
922 *wcp++ = decimalwc;
923 }
924
925 /* Generate the needed number of fractional digits. */
926 while (fracdig_no < fracdig_min
927 || (fracdig_no < fracdig_max && (fracsize > 1 || frac[0] != 0)))
928 {
929 ++fracdig_no;
930 *wcp = hack_digit ();
931 if (*wcp++ != L'0')
932 significant = 1;
933 else if (significant == 0)
934 {
935 ++fracdig_max;
936 if (fracdig_min > 0)
937 ++fracdig_min;
938 }
939 }
940
941 /* Do rounding. */
942 digit = hack_digit ();
943 if (digit > L'4')
944 {
945 wchar_t *wtp = wcp;
946
947 if (digit == L'5'
948 && ((*(wcp - 1) != decimalwc && (*(wcp - 1) & 1) == 0)
949 || ((*(wcp - 1) == decimalwc && (*(wcp - 2) & 1) == 0))))
950 {
951 /* This is the critical case. */
952 if (fracsize == 1 && frac[0] == 0)
953 /* Rest of the number is zero -> round to even.
954 (IEEE 754-1985 4.1 says this is the default rounding.) */
955 goto do_expo;
956 else if (scalesize == 0)
957 {
958 /* Here we have to see whether all limbs are zero since no
959 normalization happened. */
960 size_t lcnt = fracsize;
961 while (lcnt >= 1 && frac[lcnt - 1] == 0)
962 --lcnt;
963 if (lcnt == 0)
964 /* Rest of the number is zero -> round to even.
965 (IEEE 754-1985 4.1 says this is the default rounding.) */
966 goto do_expo;
967 }
968 }
969
970 if (fracdig_no > 0)
971 {
972 /* Process fractional digits. Terminate if not rounded or
973 radix character is reached. */
974 while (*--wtp != decimalwc && *wtp == L'9')
975 *wtp = '0';
976 if (*wtp != decimalwc)
977 /* Round up. */
978 (*wtp)++;
979 }
980
981 if (fracdig_no == 0 || *wtp == decimalwc)
982 {
983 /* Round the integer digits. */
984 if (*(wtp - 1) == decimalwc)
985 --wtp;
986
987 while (--wtp >= wstartp && *wtp == L'9')
988 *wtp = L'0';
989
990 if (wtp >= wstartp)
991 /* Round up. */
992 (*wtp)++;
993 else
994 /* It is more critical. All digits were 9's. */
995 {
996 if (type != 'f')
997 {
998 *wstartp = '1';
999 exponent += expsign == 0 ? 1 : -1;
1000 }
1001 else if (intdig_no == dig_max)
1002 {
1003 /* This is the case where for type %g the number fits
1004 really in the range for %f output but after rounding
1005 the number of digits is too big. */
1006 *--wstartp = decimalwc;
1007 *--wstartp = L'1';
1008
1009 if (info->alt || fracdig_no > 0)
1010 {
1011 /* Overwrite the old radix character. */
1012 wstartp[intdig_no + 2] = L'0';
1013 ++fracdig_no;
1014 }
1015
1016 fracdig_no += intdig_no;
1017 intdig_no = 1;
1018 fracdig_max = intdig_max - intdig_no;
1019 ++exponent;
1020 /* Now we must print the exponent. */
1021 type = isupper (info->spec) ? 'E' : 'e';
1022 }
1023 else
1024 {
1025 /* We can simply add another another digit before the
1026 radix. */
1027 *--wstartp = L'1';
1028 ++intdig_no;
1029 }
1030
1031 /* While rounding the number of digits can change.
1032 If the number now exceeds the limits remove some
1033 fractional digits. */
1034 if (intdig_no + fracdig_no > dig_max)
1035 {
1036 wcp -= intdig_no + fracdig_no - dig_max;
1037 fracdig_no -= intdig_no + fracdig_no - dig_max;
1038 }
1039 }
1040 }
1041 }
1042
1043 do_expo:
1044 /* Now remove unnecessary '0' at the end of the string. */
1045 while (fracdig_no > fracdig_min && *(wcp - 1) == L'0')
1046 {
1047 --wcp;
1048 --fracdig_no;
1049 }
1050 /* If we eliminate all fractional digits we perhaps also can remove
1051 the radix character. */
1052 if (fracdig_no == 0 && !info->alt && *(wcp - 1) == decimalwc)
1053 --wcp;
1054
1055 if (grouping)
1056 /* Add in separator characters, overwriting the same buffer. */
1057 wcp = group_number (wstartp, wcp, intdig_no, grouping, thousands_sepwc,
1058 ngroups);
1059
1060 /* Write the exponent if it is needed. */
1061 if (type != 'f')
1062 {
1063 *wcp++ = (wchar_t) type;
1064 *wcp++ = expsign ? L'-' : L'+';
1065
1066 /* Find the magnitude of the exponent. */
1067 expscale = 10;
1068 while (expscale <= exponent)
1069 expscale *= 10;
1070
1071 if (exponent < 10)
1072 /* Exponent always has at least two digits. */
1073 *wcp++ = L'0';
1074 else
1075 do
1076 {
1077 expscale /= 10;
1078 *wcp++ = L'0' + (exponent / expscale);
1079 exponent %= expscale;
1080 }
1081 while (expscale > 10);
1082 *wcp++ = L'0' + exponent;
1083 }
1084
1085 /* Compute number of characters which must be filled with the padding
1086 character. */
1087 if (is_neg || info->showsign || info->space)
1088 --width;
1089 width -= wcp - wstartp;
1090
1091 if (!info->left && info->pad != '0' && width > 0)
1092 PADN (info->pad, width);
1093
1094 if (is_neg)
1095 outchar ('-');
1096 else if (info->showsign)
1097 outchar ('+');
1098 else if (info->space)
1099 outchar (' ');
1100
1101 if (!info->left && info->pad == '0' && width > 0)
1102 PADN ('0', width);
1103
1104 {
1105 char *buffer = NULL;
1106 char *cp = NULL;
1107 char *tmpptr;
1108
1109 if (! wide)
1110 {
1111 /* Create the single byte string. */
1112 size_t decimal_len;
1113 size_t thousands_sep_len;
1114 wchar_t *copywc;
1115
1116 decimal_len = strlen (decimal);
1117
1118 if (thousands_sep == NULL)
1119 thousands_sep_len = 0;
1120 else
1121 thousands_sep_len = strlen (thousands_sep);
1122
1123 if (buffer_malloced)
1124 {
1125 buffer = (char *) malloc (2 + chars_needed + decimal_len
1126 + ngroups * thousands_sep_len);
1127 if (buffer == NULL)
1128 {
1129 /* Signal an error to the caller. */
1130 if (buffer_malloced)
1131 free (wbuffer);
1132 return -1;
1133 }
1134 }
1135 else
1136 buffer = (char *) alloca (2 + chars_needed + decimal_len
1137 + ngroups * thousands_sep_len);
1138
1139 /* Now copy the wide character string. Since the character
1140 (except for the decimal point and thousands separator) must
1141 be coming from the ASCII range we can esily convert the
1142 string without mapping tables. */
1143 for (cp = buffer, copywc = wstartp; copywc < wcp; ++copywc)
1144 if (*copywc == decimalwc)
1145 cp = (char *) __mempcpy (cp, decimal, decimal_len);
1146 else if (*copywc == thousands_sepwc)
1147 cp = (char *) __mempcpy (cp, thousands_sep, thousands_sep_len);
1148 else
1149 *cp++ = (char) *copywc;
1150 }
1151
1152 tmpptr = buffer;
1153 if (__builtin_expect (info->i18n, 0))
1154 {
1155 #ifdef COMPILE_WPRINTF
1156 wstartp = _i18n_number_rewrite (wstartp, wcp);
1157 #else
1158 tmpptr = _i18n_number_rewrite (tmpptr, cp);
1159 #endif
1160 }
1161
1162 PRINT (tmpptr, wstartp, wide ? wcp - wstartp : cp - tmpptr);
1163
1164 /* Free the memory if necessary. */
1165 if (buffer_malloced)
1166 {
1167 free (buffer);
1168 free (wbuffer);
1169 }
1170 }
1171
1172 if (info->left && width > 0)
1173 PADN (info->pad, width);
1174 }
1175 return done;
1176 }
1177 ldbl_hidden_def (___printf_fp, __printf_fp)
1178 ldbl_strong_alias (___printf_fp, __printf_fp)
1179 \f
1180 /* Return the number of extra grouping characters that will be inserted
1181 into a number with INTDIG_MAX integer digits. */
1182
1183 unsigned int
1184 __guess_grouping (unsigned int intdig_max, const char *grouping)
1185 {
1186 unsigned int groups;
1187
1188 /* We treat all negative values like CHAR_MAX. */
1189
1190 if (*grouping == CHAR_MAX || *grouping <= 0)
1191 /* No grouping should be done. */
1192 return 0;
1193
1194 groups = 0;
1195 while (intdig_max > (unsigned int) *grouping)
1196 {
1197 ++groups;
1198 intdig_max -= *grouping++;
1199
1200 if (*grouping == CHAR_MAX
1201 #if CHAR_MIN < 0
1202 || *grouping < 0
1203 #endif
1204 )
1205 /* No more grouping should be done. */
1206 break;
1207 else if (*grouping == 0)
1208 {
1209 /* Same grouping repeats. */
1210 groups += (intdig_max - 1) / grouping[-1];
1211 break;
1212 }
1213 }
1214
1215 return groups;
1216 }
1217
1218 /* Group the INTDIG_NO integer digits of the number in [BUF,BUFEND).
1219 There is guaranteed enough space past BUFEND to extend it.
1220 Return the new end of buffer. */
1221
1222 static wchar_t *
1223 internal_function
1224 group_number (wchar_t *buf, wchar_t *bufend, unsigned int intdig_no,
1225 const char *grouping, wchar_t thousands_sep, int ngroups)
1226 {
1227 wchar_t *p;
1228
1229 if (ngroups == 0)
1230 return bufend;
1231
1232 /* Move the fractional part down. */
1233 __wmemmove (buf + intdig_no + ngroups, buf + intdig_no,
1234 bufend - (buf + intdig_no));
1235
1236 p = buf + intdig_no + ngroups - 1;
1237 do
1238 {
1239 unsigned int len = *grouping++;
1240 do
1241 *p-- = buf[--intdig_no];
1242 while (--len > 0);
1243 *p-- = thousands_sep;
1244
1245 if (*grouping == CHAR_MAX
1246 #if CHAR_MIN < 0
1247 || *grouping < 0
1248 #endif
1249 )
1250 /* No more grouping should be done. */
1251 break;
1252 else if (*grouping == 0)
1253 /* Same grouping repeats. */
1254 --grouping;
1255 } while (intdig_no > (unsigned int) *grouping);
1256
1257 /* Copy the remaining ungrouped digits. */
1258 do
1259 *p-- = buf[--intdig_no];
1260 while (p > buf);
1261
1262 return bufend + ngroups;
1263 }