]> git.ipfire.org Git - thirdparty/glibc.git/blob - stdio-common/printf_fp.c
Update.
[thirdparty/glibc.git] / stdio-common / printf_fp.c
1 /* Floating point output for `printf'.
2 Copyright (C) 1995, 1996, 1997 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4 Written by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1995.
5
6 The GNU C Library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Library General Public License as
8 published by the Free Software Foundation; either version 2 of the
9 License, or (at your option) any later version.
10
11 The GNU C Library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Library General Public License for more details.
15
16 You should have received a copy of the GNU Library General Public
17 License along with the GNU C Library; see the file COPYING.LIB. If not,
18 write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21 /* The gmp headers need some configuration frobs. */
22 #define HAVE_ALLOCA 1
23
24 #ifdef USE_IN_LIBIO
25 # include <libioP.h>
26 #else
27 # include <stdio.h>
28 #endif
29 #include <alloca.h>
30 #include <ctype.h>
31 #include <float.h>
32 #include <gmp-mparam.h>
33 #include <stdlib/gmp.h>
34 #include <stdlib/gmp-impl.h>
35 #include <stdlib/longlong.h>
36 #include <stdlib/fpioconst.h>
37 #include <locale/localeinfo.h>
38 #include <limits.h>
39 #include <math.h>
40 #include <printf.h>
41 #include <string.h>
42 #include <unistd.h>
43 #include <stdlib.h>
44
45 #define NDEBUG /* Undefine this for debugging assertions. */
46 #include <assert.h>
47
48 /* This defines make it possible to use the same code for GNU C library and
49 the GNU I/O library. */
50 #ifdef USE_IN_LIBIO
51 # define PUT(f, s, n) _IO_sputn (f, s, n)
52 # define PAD(f, c, n) _IO_padn (f, c, n)
53 /* We use this file GNU C library and GNU I/O library. So make
54 names equal. */
55 # undef putc
56 # define putc(c, f) _IO_putc_unlocked (c, f)
57 # define size_t _IO_size_t
58 # define FILE _IO_FILE
59 #else /* ! USE_IN_LIBIO */
60 # define PUT(f, s, n) fwrite (s, 1, n, f)
61 # define PAD(f, c, n) __printf_pad (f, c, n)
62 ssize_t __printf_pad __P ((FILE *, char pad, int n)); /* In vfprintf.c. */
63 #endif /* USE_IN_LIBIO */
64 \f
65 /* Macros for doing the actual output. */
66
67 #define outchar(ch) \
68 do \
69 { \
70 register const int outc = (ch); \
71 if (putc (outc, fp) == EOF) \
72 return -1; \
73 ++done; \
74 } while (0)
75
76 #define PRINT(ptr, len) \
77 do \
78 { \
79 register size_t outlen = (len); \
80 if (len > 20) \
81 { \
82 if (PUT (fp, ptr, outlen) != outlen) \
83 return -1; \
84 ptr += outlen; \
85 done += outlen; \
86 } \
87 else \
88 { \
89 while (outlen-- > 0) \
90 outchar (*ptr++); \
91 } \
92 } while (0)
93
94 #define PADN(ch, len) \
95 do \
96 { \
97 if (PAD (fp, ch, len) != len) \
98 return -1; \
99 done += len; \
100 } \
101 while (0)
102 \f
103 /* We use the GNU MP library to handle large numbers.
104
105 An MP variable occupies a varying number of entries in its array. We keep
106 track of this number for efficiency reasons. Otherwise we would always
107 have to process the whole array. */
108 #define MPN_VAR(name) mp_limb_t *name; mp_size_t name##size
109
110 #define MPN_ASSIGN(dst,src) \
111 memcpy (dst, src, (dst##size = src##size) * sizeof (mp_limb_t))
112 #define MPN_GE(u,v) \
113 (u##size > v##size || (u##size == v##size && __mpn_cmp (u, v, u##size) >= 0))
114
115 extern int __isinfl (long double), __isnanl (long double);
116
117 extern mp_size_t __mpn_extract_double (mp_ptr res_ptr, mp_size_t size,
118 int *expt, int *is_neg,
119 double value);
120 extern mp_size_t __mpn_extract_long_double (mp_ptr res_ptr, mp_size_t size,
121 int *expt, int *is_neg,
122 long double value);
123 extern unsigned int __guess_grouping (unsigned int intdig_max,
124 const char *grouping, wchar_t sepchar);
125
126
127 static char *group_number (char *buf, char *bufend, unsigned int intdig_no,
128 const char *grouping, wchar_t thousands_sep);
129
130
131 int
132 __printf_fp (FILE *fp,
133 const struct printf_info *info,
134 const void *const *args)
135 {
136 /* The floating-point value to output. */
137 union
138 {
139 double dbl;
140 __long_double_t ldbl;
141 }
142 fpnum;
143
144 /* Locale-dependent representation of decimal point. */
145 wchar_t decimal;
146
147 /* Locale-dependent thousands separator and grouping specification. */
148 wchar_t thousands_sep;
149 const char *grouping;
150
151 /* "NaN" or "Inf" for the special cases. */
152 const char *special = NULL;
153
154 /* We need just a few limbs for the input before shifting to the right
155 position. */
156 mp_limb_t fp_input[(LDBL_MANT_DIG + BITS_PER_MP_LIMB - 1) / BITS_PER_MP_LIMB];
157 /* We need to shift the contents of fp_input by this amount of bits. */
158 int to_shift = 0;
159
160 /* The fraction of the floting-point value in question */
161 MPN_VAR(frac);
162 /* and the exponent. */
163 int exponent;
164 /* Sign of the exponent. */
165 int expsign = 0;
166 /* Sign of float number. */
167 int is_neg = 0;
168
169 /* Scaling factor. */
170 MPN_VAR(scale);
171
172 /* Temporary bignum value. */
173 MPN_VAR(tmp);
174
175 /* Digit which is result of last hack_digit() call. */
176 int digit;
177
178 /* The type of output format that will be used: 'e'/'E' or 'f'. */
179 int type;
180
181 /* Counter for number of written characters. */
182 int done = 0;
183
184 /* General helper (carry limb). */
185 mp_limb_t cy;
186
187 char hack_digit (void)
188 {
189 mp_limb_t hi;
190
191 if (expsign != 0 && type == 'f' && exponent-- > 0)
192 hi = 0;
193 else if (scalesize == 0)
194 {
195 hi = frac[fracsize - 1];
196 cy = __mpn_mul_1 (frac, frac, fracsize - 1, 10);
197 frac[fracsize - 1] = cy;
198 }
199 else
200 {
201 if (fracsize < scalesize)
202 hi = 0;
203 else
204 {
205 hi = mpn_divmod (tmp, frac, fracsize, scale, scalesize);
206 tmp[fracsize - scalesize] = hi;
207 hi = tmp[0];
208
209 fracsize = scalesize;
210 while (fracsize != 0 && frac[fracsize - 1] == 0)
211 --fracsize;
212 if (fracsize == 0)
213 {
214 /* We're not prepared for an mpn variable with zero
215 limbs. */
216 fracsize = 1;
217 return '0' + hi;
218 }
219 }
220
221 cy = __mpn_mul_1 (frac, frac, fracsize, 10);
222 if (cy != 0)
223 frac[fracsize++] = cy;
224 }
225
226 return '0' + hi;
227 }
228
229
230 /* Figure out the decimal point character. */
231 if (info->extra == 0)
232 {
233 if (mbtowc (&decimal, _NL_CURRENT (LC_NUMERIC, DECIMAL_POINT),
234 strlen (_NL_CURRENT (LC_NUMERIC, DECIMAL_POINT))) <= 0)
235 decimal = (wchar_t) *_NL_CURRENT (LC_NUMERIC, DECIMAL_POINT);
236 }
237 else
238 {
239 if (mbtowc (&decimal, _NL_CURRENT (LC_MONETARY, MON_DECIMAL_POINT),
240 strlen (_NL_CURRENT (LC_MONETARY, MON_DECIMAL_POINT))) <= 0)
241 decimal = (wchar_t) *_NL_CURRENT (LC_MONETARY, MON_DECIMAL_POINT);
242 }
243 /* Give default value. */
244 if (decimal == L'\0')
245 decimal = L'.';
246
247
248 if (info->group)
249 {
250 if (info->extra == 0)
251 grouping = _NL_CURRENT (LC_NUMERIC, GROUPING);
252 else
253 grouping = _NL_CURRENT (LC_MONETARY, MON_GROUPING);
254
255 if (*grouping <= 0 || *grouping == CHAR_MAX)
256 grouping = NULL;
257 else
258 {
259 /* Figure out the thousands separator character. */
260 if (info->extra == 0)
261 {
262 if (mbtowc (&thousands_sep, _NL_CURRENT (LC_NUMERIC,
263 THOUSANDS_SEP),
264 strlen (_NL_CURRENT (LC_NUMERIC, THOUSANDS_SEP)))
265 <= 0)
266 thousands_sep = (wchar_t) *_NL_CURRENT (LC_NUMERIC,
267 THOUSANDS_SEP);
268 }
269 else
270 {
271 if (mbtowc (&thousands_sep, _NL_CURRENT (LC_MONETARY,
272 MON_THOUSANDS_SEP),
273 strlen (_NL_CURRENT (LC_MONETARY,
274 MON_THOUSANDS_SEP))) <= 0)
275 thousands_sep = (wchar_t) *_NL_CURRENT (LC_MONETARY,
276 MON_THOUSANDS_SEP);
277 }
278
279 if (thousands_sep == L'\0')
280 grouping = NULL;
281 }
282 }
283 else
284 grouping = NULL;
285
286 /* Fetch the argument value. */
287 if (info->is_long_double && sizeof (long double) > sizeof (double))
288 {
289 fpnum.ldbl = *(const long double *) args[0];
290
291 /* Check for special values: not a number or infinity. */
292 if (__isnanl (fpnum.ldbl))
293 {
294 special = isupper (info->spec) ? "NAN" : "nan";
295 is_neg = 0;
296 }
297 else if (__isinfl (fpnum.ldbl))
298 {
299 special = isupper (info->spec) ? "INF" : "inf";
300 is_neg = fpnum.ldbl < 0;
301 }
302 else
303 {
304 fracsize = __mpn_extract_long_double (fp_input,
305 (sizeof (fp_input) /
306 sizeof (fp_input[0])),
307 &exponent, &is_neg,
308 fpnum.ldbl);
309 to_shift = 1 + fracsize * BITS_PER_MP_LIMB - LDBL_MANT_DIG;
310 }
311 }
312 else
313 {
314 fpnum.dbl = *(const double *) args[0];
315
316 /* Check for special values: not a number or infinity. */
317 if (__isnan (fpnum.dbl))
318 {
319 special = isupper (info->spec) ? "NAN" : "nan";
320 is_neg = 0;
321 }
322 else if (__isinf (fpnum.dbl))
323 {
324 special = isupper (info->spec) ? "INF" : "inf";
325 is_neg = fpnum.dbl < 0;
326 }
327 else
328 {
329 fracsize = __mpn_extract_double (fp_input,
330 (sizeof (fp_input)
331 / sizeof (fp_input[0])),
332 &exponent, &is_neg, fpnum.dbl);
333 to_shift = 1 + fracsize * BITS_PER_MP_LIMB - DBL_MANT_DIG;
334 }
335 }
336
337 if (special)
338 {
339 int width = info->width;
340
341 if (is_neg || info->showsign || info->space)
342 --width;
343 width -= 3;
344
345 if (!info->left && width > 0)
346 PADN (' ', width);
347
348 if (is_neg)
349 outchar ('-');
350 else if (info->showsign)
351 outchar ('+');
352 else if (info->space)
353 outchar (' ');
354
355 PRINT (special, 3);
356
357 if (info->left && width > 0)
358 PADN (' ', width);
359
360 return done;
361 }
362
363
364 /* We need three multiprecision variables. Now that we have the exponent
365 of the number we can allocate the needed memory. It would be more
366 efficient to use variables of the fixed maximum size but because this
367 would be really big it could lead to memory problems. */
368 {
369 mp_size_t bignum_size = ((ABS (exponent) + BITS_PER_MP_LIMB - 1)
370 / BITS_PER_MP_LIMB + 4) * sizeof (mp_limb_t);
371 frac = (mp_limb_t *) alloca (bignum_size);
372 tmp = (mp_limb_t *) alloca (bignum_size);
373 scale = (mp_limb_t *) alloca (bignum_size);
374 }
375
376 /* We now have to distinguish between numbers with positive and negative
377 exponents because the method used for the one is not applicable/efficient
378 for the other. */
379 scalesize = 0;
380 if (exponent > 2)
381 {
382 /* |FP| >= 8.0. */
383 int scaleexpo = 0;
384 int explog = LDBL_MAX_10_EXP_LOG;
385 int exp10 = 0;
386 const struct mp_power *tens = &_fpioconst_pow10[explog + 1];
387 int cnt_h, cnt_l, i;
388
389 if ((exponent + to_shift) % BITS_PER_MP_LIMB == 0)
390 {
391 MPN_COPY_DECR (frac + (exponent + to_shift) / BITS_PER_MP_LIMB,
392 fp_input, fracsize);
393 fracsize += (exponent + to_shift) / BITS_PER_MP_LIMB;
394 }
395 else
396 {
397 cy = __mpn_lshift (frac + (exponent + to_shift) / BITS_PER_MP_LIMB,
398 fp_input, fracsize,
399 (exponent + to_shift) % BITS_PER_MP_LIMB);
400 fracsize += (exponent + to_shift) / BITS_PER_MP_LIMB;
401 if (cy)
402 frac[fracsize++] = cy;
403 }
404 MPN_ZERO (frac, (exponent + to_shift) / BITS_PER_MP_LIMB);
405
406 assert (tens > &_fpioconst_pow10[0]);
407 do
408 {
409 --tens;
410
411 /* The number of the product of two binary numbers with n and m
412 bits respectively has m+n or m+n-1 bits. */
413 if (exponent >= scaleexpo + tens->p_expo - 1)
414 {
415 if (scalesize == 0)
416 MPN_ASSIGN (tmp, tens->array);
417 else
418 {
419 cy = __mpn_mul (tmp, scale, scalesize,
420 &tens->array[_FPIO_CONST_OFFSET],
421 tens->arraysize - _FPIO_CONST_OFFSET);
422 tmpsize = scalesize + tens->arraysize - _FPIO_CONST_OFFSET;
423 if (cy == 0)
424 --tmpsize;
425 }
426
427 if (MPN_GE (frac, tmp))
428 {
429 int cnt;
430 MPN_ASSIGN (scale, tmp);
431 count_leading_zeros (cnt, scale[scalesize - 1]);
432 scaleexpo = (scalesize - 2) * BITS_PER_MP_LIMB - cnt - 1;
433 exp10 |= 1 << explog;
434 }
435 }
436 --explog;
437 }
438 while (tens > &_fpioconst_pow10[0]);
439 exponent = exp10;
440
441 /* Optimize number representations. We want to represent the numbers
442 with the lowest number of bytes possible without losing any
443 bytes. Also the highest bit in the scaling factor has to be set
444 (this is a requirement of the MPN division routines). */
445 if (scalesize > 0)
446 {
447 /* Determine minimum number of zero bits at the end of
448 both numbers. */
449 for (i = 0; scale[i] == 0 && frac[i] == 0; i++)
450 ;
451
452 /* Determine number of bits the scaling factor is misplaced. */
453 count_leading_zeros (cnt_h, scale[scalesize - 1]);
454
455 if (cnt_h == 0)
456 {
457 /* The highest bit of the scaling factor is already set. So
458 we only have to remove the trailing empty limbs. */
459 if (i > 0)
460 {
461 MPN_COPY_INCR (scale, scale + i, scalesize - i);
462 scalesize -= i;
463 MPN_COPY_INCR (frac, frac + i, fracsize - i);
464 fracsize -= i;
465 }
466 }
467 else
468 {
469 if (scale[i] != 0)
470 {
471 count_trailing_zeros (cnt_l, scale[i]);
472 if (frac[i] != 0)
473 {
474 int cnt_l2;
475 count_trailing_zeros (cnt_l2, frac[i]);
476 if (cnt_l2 < cnt_l)
477 cnt_l = cnt_l2;
478 }
479 }
480 else
481 count_trailing_zeros (cnt_l, frac[i]);
482
483 /* Now shift the numbers to their optimal position. */
484 if (i == 0 && BITS_PER_MP_LIMB - cnt_h > cnt_l)
485 {
486 /* We cannot save any memory. So just roll both numbers
487 so that the scaling factor has its highest bit set. */
488
489 (void) __mpn_lshift (scale, scale, scalesize, cnt_h);
490 cy = __mpn_lshift (frac, frac, fracsize, cnt_h);
491 if (cy != 0)
492 frac[fracsize++] = cy;
493 }
494 else if (BITS_PER_MP_LIMB - cnt_h <= cnt_l)
495 {
496 /* We can save memory by removing the trailing zero limbs
497 and by packing the non-zero limbs which gain another
498 free one. */
499
500 (void) __mpn_rshift (scale, scale + i, scalesize - i,
501 BITS_PER_MP_LIMB - cnt_h);
502 scalesize -= i + 1;
503 (void) __mpn_rshift (frac, frac + i, fracsize - i,
504 BITS_PER_MP_LIMB - cnt_h);
505 fracsize -= frac[fracsize - i - 1] == 0 ? i + 1 : i;
506 }
507 else
508 {
509 /* We can only save the memory of the limbs which are zero.
510 The non-zero parts occupy the same number of limbs. */
511
512 (void) __mpn_rshift (scale, scale + (i - 1),
513 scalesize - (i - 1),
514 BITS_PER_MP_LIMB - cnt_h);
515 scalesize -= i;
516 (void) __mpn_rshift (frac, frac + (i - 1),
517 fracsize - (i - 1),
518 BITS_PER_MP_LIMB - cnt_h);
519 fracsize -= frac[fracsize - (i - 1) - 1] == 0 ? i : i - 1;
520 }
521 }
522 }
523 }
524 else if (exponent < 0)
525 {
526 /* |FP| < 1.0. */
527 int exp10 = 0;
528 int explog = LDBL_MAX_10_EXP_LOG;
529 const struct mp_power *tens = &_fpioconst_pow10[explog + 1];
530 mp_size_t used_limbs = fracsize - 1;
531
532 /* Now shift the input value to its right place. */
533 cy = __mpn_lshift (frac, fp_input, fracsize, to_shift);
534 frac[fracsize++] = cy;
535 assert (cy == 1 || (frac[fracsize - 2] == 0 && frac[0] == 0));
536
537 expsign = 1;
538 exponent = -exponent;
539
540 assert (tens != &_fpioconst_pow10[0]);
541 do
542 {
543 --tens;
544
545 if (exponent >= tens->m_expo)
546 {
547 int i, incr, cnt_h, cnt_l;
548 mp_limb_t topval[2];
549
550 /* The __mpn_mul function expects the first argument to be
551 bigger than the second. */
552 if (fracsize < tens->arraysize - _FPIO_CONST_OFFSET)
553 cy = __mpn_mul (tmp, &tens->array[_FPIO_CONST_OFFSET],
554 tens->arraysize - _FPIO_CONST_OFFSET,
555 frac, fracsize);
556 else
557 cy = __mpn_mul (tmp, frac, fracsize,
558 &tens->array[_FPIO_CONST_OFFSET],
559 tens->arraysize - _FPIO_CONST_OFFSET);
560 tmpsize = fracsize + tens->arraysize - _FPIO_CONST_OFFSET;
561 if (cy == 0)
562 --tmpsize;
563
564 count_leading_zeros (cnt_h, tmp[tmpsize - 1]);
565 incr = (tmpsize - fracsize) * BITS_PER_MP_LIMB
566 + BITS_PER_MP_LIMB - 1 - cnt_h;
567
568 assert (incr <= tens->p_expo);
569
570 /* If we increased the exponent by exactly 3 we have to test
571 for overflow. This is done by comparing with 10 shifted
572 to the right position. */
573 if (incr == exponent + 3)
574 if (cnt_h <= BITS_PER_MP_LIMB - 4)
575 {
576 topval[0] = 0;
577 topval[1]
578 = ((mp_limb_t) 10) << (BITS_PER_MP_LIMB - 4 - cnt_h);
579 }
580 else
581 {
582 topval[0] = ((mp_limb_t) 10) << (BITS_PER_MP_LIMB - 4);
583 topval[1] = 0;
584 (void) __mpn_lshift (topval, topval, 2,
585 BITS_PER_MP_LIMB - cnt_h);
586 }
587
588 /* We have to be careful when multiplying the last factor.
589 If the result is greater than 1.0 be have to test it
590 against 10.0. If it is greater or equal to 10.0 the
591 multiplication was not valid. This is because we cannot
592 determine the number of bits in the result in advance. */
593 if (incr < exponent + 3
594 || (incr == exponent + 3 &&
595 (tmp[tmpsize - 1] < topval[1]
596 || (tmp[tmpsize - 1] == topval[1]
597 && tmp[tmpsize - 2] < topval[0]))))
598 {
599 /* The factor is right. Adapt binary and decimal
600 exponents. */
601 exponent -= incr;
602 exp10 |= 1 << explog;
603
604 /* If this factor yields a number greater or equal to
605 1.0, we must not shift the non-fractional digits down. */
606 if (exponent < 0)
607 cnt_h += -exponent;
608
609 /* Now we optimize the number representation. */
610 for (i = 0; tmp[i] == 0; ++i);
611 if (cnt_h == BITS_PER_MP_LIMB - 1)
612 {
613 MPN_COPY (frac, tmp + i, tmpsize - i);
614 fracsize = tmpsize - i;
615 }
616 else
617 {
618 count_trailing_zeros (cnt_l, tmp[i]);
619
620 /* Now shift the numbers to their optimal position. */
621 if (i == 0 && BITS_PER_MP_LIMB - 1 - cnt_h > cnt_l)
622 {
623 /* We cannot save any memory. Just roll the
624 number so that the leading digit is in a
625 separate limb. */
626
627 cy = __mpn_lshift (frac, tmp, tmpsize, cnt_h + 1);
628 fracsize = tmpsize + 1;
629 frac[fracsize - 1] = cy;
630 }
631 else if (BITS_PER_MP_LIMB - 1 - cnt_h <= cnt_l)
632 {
633 (void) __mpn_rshift (frac, tmp + i, tmpsize - i,
634 BITS_PER_MP_LIMB - 1 - cnt_h);
635 fracsize = tmpsize - i;
636 }
637 else
638 {
639 /* We can only save the memory of the limbs which
640 are zero. The non-zero parts occupy the same
641 number of limbs. */
642
643 (void) __mpn_rshift (frac, tmp + (i - 1),
644 tmpsize - (i - 1),
645 BITS_PER_MP_LIMB - 1 - cnt_h);
646 fracsize = tmpsize - (i - 1);
647 }
648 }
649 used_limbs = fracsize - 1;
650 }
651 }
652 --explog;
653 }
654 while (tens != &_fpioconst_pow10[1] && exponent > 0);
655 /* All factors but 10^-1 are tested now. */
656 if (exponent > 0)
657 {
658 int cnt_l;
659
660 cy = __mpn_mul_1 (tmp, frac, fracsize, 10);
661 tmpsize = fracsize;
662 assert (cy == 0 || tmp[tmpsize - 1] < 20);
663
664 count_trailing_zeros (cnt_l, tmp[0]);
665 if (cnt_l < MIN (4, exponent))
666 {
667 cy = __mpn_lshift (frac, tmp, tmpsize,
668 BITS_PER_MP_LIMB - MIN (4, exponent));
669 if (cy != 0)
670 frac[tmpsize++] = cy;
671 }
672 else
673 (void) __mpn_rshift (frac, tmp, tmpsize, MIN (4, exponent));
674 fracsize = tmpsize;
675 exp10 |= 1;
676 assert (frac[fracsize - 1] < 10);
677 }
678 exponent = exp10;
679 }
680 else
681 {
682 /* This is a special case. We don't need a factor because the
683 numbers are in the range of 0.0 <= fp < 8.0. We simply
684 shift it to the right place and divide it by 1.0 to get the
685 leading digit. (Of course this division is not really made.) */
686 assert (0 <= exponent && exponent < 3 &&
687 exponent + to_shift < BITS_PER_MP_LIMB);
688
689 /* Now shift the input value to its right place. */
690 cy = __mpn_lshift (frac, fp_input, fracsize, (exponent + to_shift));
691 frac[fracsize++] = cy;
692 exponent = 0;
693 }
694
695 {
696 int width = info->width;
697 char *buffer, *startp, *cp;
698 int chars_needed;
699 int expscale;
700 int intdig_max, intdig_no = 0;
701 int fracdig_min, fracdig_max, fracdig_no = 0;
702 int dig_max;
703 int significant;
704
705 if (tolower (info->spec) == 'e')
706 {
707 type = info->spec;
708 intdig_max = 1;
709 fracdig_min = fracdig_max = info->prec < 0 ? 6 : info->prec;
710 chars_needed = 1 + 1 + fracdig_max + 1 + 1 + 4;
711 /* d . ddd e +- ddd */
712 dig_max = INT_MAX; /* Unlimited. */
713 significant = 1; /* Does not matter here. */
714 }
715 else if (info->spec == 'f')
716 {
717 type = 'f';
718 fracdig_min = fracdig_max = info->prec < 0 ? 6 : info->prec;
719 if (expsign == 0)
720 {
721 intdig_max = exponent + 1;
722 /* This can be really big! */ /* XXX Maybe malloc if too big? */
723 chars_needed = exponent + 1 + 1 + fracdig_max;
724 }
725 else
726 {
727 intdig_max = 1;
728 chars_needed = 1 + 1 + fracdig_max;
729 }
730 dig_max = INT_MAX; /* Unlimited. */
731 significant = 1; /* Does not matter here. */
732 }
733 else
734 {
735 dig_max = info->prec < 0 ? 6 : (info->prec == 0 ? 1 : info->prec);
736 if ((expsign == 0 && exponent >= dig_max)
737 || (expsign != 0 && exponent > 4))
738 {
739 type = isupper (info->spec) ? 'E' : 'e';
740 fracdig_max = dig_max - 1;
741 intdig_max = 1;
742 chars_needed = 1 + 1 + fracdig_max + 1 + 1 + 4;
743 }
744 else
745 {
746 type = 'f';
747 intdig_max = expsign == 0 ? exponent + 1 : 0;
748 fracdig_max = dig_max - intdig_max;
749 /* We need space for the significant digits and perhaps for
750 leading zeros when < 1.0. Pessimistic guess: dig_max. */
751 chars_needed = dig_max + dig_max + 1;
752 }
753 fracdig_min = info->alt ? fracdig_max : 0;
754 significant = 0; /* We count significant digits. */
755 }
756
757 if (grouping)
758 /* Guess the number of groups we will make, and thus how
759 many spaces we need for separator characters. */
760 chars_needed += __guess_grouping (intdig_max, grouping, thousands_sep);
761
762 /* Allocate buffer for output. We need two more because while rounding
763 it is possible that we need two more characters in front of all the
764 other output. */
765 buffer = alloca (2 + chars_needed);
766 cp = startp = buffer + 2; /* Let room for rounding. */
767
768 /* Do the real work: put digits in allocated buffer. */
769 if (expsign == 0 || type != 'f')
770 {
771 assert (expsign == 0 || intdig_max == 1);
772 while (intdig_no < intdig_max)
773 {
774 ++intdig_no;
775 *cp++ = hack_digit ();
776 }
777 significant = 1;
778 if (info->alt
779 || fracdig_min > 0
780 || (fracdig_max > 0 && (fracsize > 1 || frac[0] != 0)))
781 *cp++ = decimal;
782 }
783 else
784 {
785 /* |fp| < 1.0 and the selected type is 'f', so put "0."
786 in the buffer. */
787 *cp++ = '0';
788 --exponent;
789 *cp++ = decimal;
790 }
791
792 /* Generate the needed number of fractional digits. */
793 while (fracdig_no < fracdig_min
794 || (fracdig_no < fracdig_max && (fracsize > 1 || frac[0] != 0)))
795 {
796 ++fracdig_no;
797 *cp = hack_digit ();
798 if (*cp != '0')
799 significant = 1;
800 else if (significant == 0)
801 {
802 ++fracdig_max;
803 if (fracdig_min > 0)
804 ++fracdig_min;
805 }
806 ++cp;
807 }
808
809 /* Do rounding. */
810 digit = hack_digit ();
811 if (digit > '4')
812 {
813 char *tp = cp;
814
815 if (digit == '5')
816 /* This is the critical case. */
817 if (fracsize == 1 && frac[0] == 0)
818 /* Rest of the number is zero -> round to even.
819 (IEEE 754-1985 4.1 says this is the default rounding.) */
820 if ((*(cp - 1) & 1) == 0)
821 goto do_expo;
822
823 if (fracdig_no > 0)
824 {
825 /* Process fractional digits. Terminate if not rounded or
826 radix character is reached. */
827 while (*--tp != decimal && *tp == '9')
828 *tp = '0';
829 if (*tp != decimal)
830 /* Round up. */
831 (*tp)++;
832 }
833
834 if (fracdig_no == 0 || *tp == decimal)
835 {
836 /* Round the integer digits. */
837 if (*(tp - 1) == decimal)
838 --tp;
839
840 while (--tp >= startp && *tp == '9')
841 *tp = '0';
842
843 if (tp >= startp)
844 /* Round up. */
845 (*tp)++;
846 else
847 /* It is more critical. All digits were 9's. */
848 {
849 if (type != 'f')
850 {
851 *startp = '1';
852 exponent += expsign == 0 ? 1 : -1;
853 }
854 else if (intdig_no == dig_max)
855 {
856 /* This is the case where for type %g the number fits
857 really in the range for %f output but after rounding
858 the number of digits is too big. */
859 *--startp = decimal;
860 *--startp = '1';
861
862 if (info->alt || fracdig_no > 0)
863 {
864 /* Overwrite the old radix character. */
865 startp[intdig_no + 2] = '0';
866 ++fracdig_no;
867 }
868
869 fracdig_no += intdig_no;
870 intdig_no = 1;
871 fracdig_max = intdig_max - intdig_no;
872 ++exponent;
873 /* Now we must print the exponent. */
874 type = isupper (info->spec) ? 'E' : 'e';
875 }
876 else
877 {
878 /* We can simply add another another digit before the
879 radix. */
880 *--startp = '1';
881 ++intdig_no;
882 }
883
884 /* While rounding the number of digits can change.
885 If the number now exceeds the limits remove some
886 fractional digits. */
887 if (intdig_no + fracdig_no > dig_max)
888 {
889 cp -= intdig_no + fracdig_no - dig_max;
890 fracdig_no -= intdig_no + fracdig_no - dig_max;
891 }
892 }
893 }
894 }
895
896 do_expo:
897 /* Now remove unnecessary '0' at the end of the string. */
898 while (fracdig_no > fracdig_min && *(cp - 1) == '0')
899 {
900 --cp;
901 --fracdig_no;
902 }
903 /* If we eliminate all fractional digits we perhaps also can remove
904 the radix character. */
905 if (fracdig_no == 0 && !info->alt && *(cp - 1) == decimal)
906 --cp;
907
908 if (grouping)
909 /* Add in separator characters, overwriting the same buffer. */
910 cp = group_number (startp, cp, intdig_no, grouping, thousands_sep);
911
912 /* Write the exponent if it is needed. */
913 if (type != 'f')
914 {
915 *cp++ = type;
916 *cp++ = expsign ? '-' : '+';
917
918 /* Find the magnitude of the exponent. */
919 expscale = 10;
920 while (expscale <= exponent)
921 expscale *= 10;
922
923 if (exponent < 10)
924 /* Exponent always has at least two digits. */
925 *cp++ = '0';
926 else
927 do
928 {
929 expscale /= 10;
930 *cp++ = '0' + (exponent / expscale);
931 exponent %= expscale;
932 }
933 while (expscale > 10);
934 *cp++ = '0' + exponent;
935 }
936
937 /* Compute number of characters which must be filled with the padding
938 character. */
939 if (is_neg || info->showsign || info->space)
940 --width;
941 width -= cp - startp;
942
943 if (!info->left && info->pad != '0' && width > 0)
944 PADN (info->pad, width);
945
946 if (is_neg)
947 outchar ('-');
948 else if (info->showsign)
949 outchar ('+');
950 else if (info->space)
951 outchar (' ');
952
953 if (!info->left && info->pad == '0' && width > 0)
954 PADN ('0', width);
955
956 PRINT (startp, cp - startp);
957
958 if (info->left && width > 0)
959 PADN (info->pad, width);
960 }
961 return done;
962 }
963 \f
964 /* Return the number of extra grouping characters that will be inserted
965 into a number with INTDIG_MAX integer digits. */
966
967 unsigned int
968 __guess_grouping (unsigned int intdig_max, const char *grouping,
969 wchar_t sepchar)
970 {
971 unsigned int groups;
972
973 /* We treat all negative values like CHAR_MAX. */
974
975 if (*grouping == CHAR_MAX || *grouping <= 0)
976 /* No grouping should be done. */
977 return 0;
978
979 groups = 0;
980 while (intdig_max > (unsigned int) *grouping)
981 {
982 ++groups;
983 intdig_max -= *grouping++;
984
985 if (*grouping == CHAR_MAX
986 #if CHAR_MIN < 0
987 || *grouping < 0
988 #endif
989 )
990 /* No more grouping should be done. */
991 break;
992 else if (*grouping == 0)
993 {
994 /* Same grouping repeats. */
995 groups += (intdig_max - 1) / grouping[-1];
996 break;
997 }
998 }
999
1000 return groups;
1001 }
1002
1003 /* Group the INTDIG_NO integer digits of the number in [BUF,BUFEND).
1004 There is guaranteed enough space past BUFEND to extend it.
1005 Return the new end of buffer. */
1006
1007 static char *
1008 group_number (char *buf, char *bufend, unsigned int intdig_no,
1009 const char *grouping, wchar_t thousands_sep)
1010 {
1011 unsigned int groups = __guess_grouping (intdig_no, grouping, thousands_sep);
1012 char *p;
1013
1014 if (groups == 0)
1015 return bufend;
1016
1017 /* Move the fractional part down. */
1018 memmove (buf + intdig_no + groups, buf + intdig_no,
1019 bufend - (buf + intdig_no));
1020
1021 p = buf + intdig_no + groups - 1;
1022 do
1023 {
1024 unsigned int len = *grouping++;
1025 do
1026 *p-- = buf[--intdig_no];
1027 while (--len > 0);
1028 *p-- = thousands_sep;
1029
1030 if (*grouping == CHAR_MAX
1031 #if CHAR_MIN < 0
1032 || *grouping < 0
1033 #endif
1034 )
1035 /* No more grouping should be done. */
1036 break;
1037 else if (*grouping == 0)
1038 /* Same grouping repeats. */
1039 --grouping;
1040 } while (intdig_no > (unsigned int) *grouping);
1041
1042 /* Copy the remaining ungrouped digits. */
1043 do
1044 *p-- = buf[--intdig_no];
1045 while (p > buf);
1046
1047 return bufend + groups;
1048 }