]> git.ipfire.org Git - thirdparty/glibc.git/blob - sysdeps/hppa/dl-machine.h
Update copyright dates with scripts/update-copyrights.
[thirdparty/glibc.git] / sysdeps / hppa / dl-machine.h
1 /* Machine-dependent ELF dynamic relocation inline functions. PA-RISC version.
2 Copyright (C) 1995-2017 Free Software Foundation, Inc.
3 Contributed by David Huggins-Daines <dhd@debian.org>
4 This file is part of the GNU C Library.
5
6 The GNU C Library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Lesser General Public
8 License as published by the Free Software Foundation; either
9 version 2.1 of the License, or (at your option) any later version.
10
11 The GNU C Library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Lesser General Public License for more details.
15
16 You should have received a copy of the GNU Lesser General Public
17 License along with the GNU C Library. If not, see
18 <http://www.gnu.org/licenses/>. */
19
20 #ifndef dl_machine_h
21 #define dl_machine_h 1
22
23 #define ELF_MACHINE_NAME "hppa"
24
25 #include <sys/param.h>
26 #include <assert.h>
27 #include <string.h>
28 #include <link.h>
29 #include <errno.h>
30 #include <dl-fptr.h>
31 #include <abort-instr.h>
32 #include <tls.h>
33
34 /* These two definitions must match the definition of the stub in
35 bfd/elf32-hppa.c (see plt_stub[]).
36
37 a. Define the size of the *entire* stub we place at the end of the PLT
38 table (right up against the GOT).
39
40 b. Define the number of bytes back from the GOT to the entry point of
41 the PLT stub. You see the PLT stub must be entered in the middle
42 so it can depwi to find it's own address (long jump stub)
43
44 c. Define the size of a single PLT entry so we can jump over the
45 last entry to get the stub address */
46
47 #define SIZEOF_PLT_STUB (7*4)
48 #define GOT_FROM_PLT_STUB (4*4)
49 #define PLT_ENTRY_SIZE (2*4)
50
51 /* Initialize the function descriptor table before relocations */
52 static inline void
53 __hppa_init_bootstrap_fdesc_table (struct link_map *map)
54 {
55 ElfW(Addr) *boot_table;
56
57 /* Careful: this will be called before got has been relocated... */
58 ELF_MACHINE_LOAD_ADDRESS(boot_table,_dl_boot_fptr_table);
59
60 map->l_mach.fptr_table_len = ELF_MACHINE_BOOT_FPTR_TABLE_LEN;
61 map->l_mach.fptr_table = boot_table;
62 }
63
64 #define ELF_MACHINE_BEFORE_RTLD_RELOC(dynamic_info) \
65 __hppa_init_bootstrap_fdesc_table (&bootstrap_map); \
66 _dl_fptr_init();
67
68 /* Return nonzero iff ELF header is compatible with the running host. */
69 static inline int
70 elf_machine_matches_host (const Elf32_Ehdr *ehdr)
71 {
72 return ehdr->e_machine == EM_PARISC;
73 }
74
75 /* Return the link-time address of _DYNAMIC. */
76 static inline Elf32_Addr
77 elf_machine_dynamic (void) __attribute__ ((const));
78
79 static inline Elf32_Addr
80 elf_machine_dynamic (void)
81 {
82 Elf32_Addr dynamic;
83
84 asm ("b,l 1f,%0\n"
85 " depi 0,31,2,%0\n"
86 "1: addil L'_GLOBAL_OFFSET_TABLE_ - ($PIC_pcrel$0 - 8),%0\n"
87 " ldw R'_GLOBAL_OFFSET_TABLE_ - ($PIC_pcrel$0 - 12)(%%r1),%0\n"
88 : "=r" (dynamic) : : "r1");
89
90 return dynamic;
91 }
92
93 /* Return the run-time load address of the shared object. */
94 static inline Elf32_Addr
95 elf_machine_load_address (void) __attribute__ ((const));
96
97 static inline Elf32_Addr
98 elf_machine_load_address (void)
99 {
100 Elf32_Addr dynamic;
101
102 asm (
103 " b,l 1f,%0\n"
104 " depi 0,31,2,%0\n"
105 "1: addil L'_DYNAMIC - ($PIC_pcrel$0 - 8),%0\n"
106 " ldo R'_DYNAMIC - ($PIC_pcrel$0 - 12)(%%r1),%0\n"
107 : "=r" (dynamic) : : "r1");
108
109 return dynamic - elf_machine_dynamic ();
110 }
111
112 /* Fixup a PLT entry to bounce directly to the function at VALUE. */
113 static inline struct fdesc __attribute__ ((always_inline))
114 elf_machine_fixup_plt (struct link_map *map, lookup_t t,
115 const Elf32_Rela *reloc,
116 Elf32_Addr *reloc_addr, struct fdesc value)
117 {
118 volatile Elf32_Addr *rfdesc = reloc_addr;
119 /* map is the link_map for the caller, t is the link_map for the object
120 being called */
121 rfdesc[1] = value.gp;
122 /* Need to ensure that the gp is visible before the code
123 entry point is updated */
124 rfdesc[0] = value.ip;
125 return value;
126 }
127
128 /* Return the final value of a plt relocation. */
129 static inline struct fdesc
130 elf_machine_plt_value (struct link_map *map, const Elf32_Rela *reloc,
131 struct fdesc value)
132 {
133 /* We are rela only, return a function descriptor as a plt entry. */
134 return (struct fdesc) { value.ip + reloc->r_addend, value.gp };
135 }
136
137 /* Set up the loaded object described by L so its unrelocated PLT
138 entries will jump to the on-demand fixup code in dl-runtime.c. */
139
140 static inline int
141 elf_machine_runtime_setup (struct link_map *l, int lazy, int profile)
142 {
143 Elf32_Addr *got = NULL;
144 Elf32_Addr l_addr, iplt, jmprel, end_jmprel, r_type, r_sym;
145 const Elf32_Rela *reloc;
146 struct fdesc *fptr;
147 static union {
148 unsigned char c[8];
149 Elf32_Addr i[2];
150 } sig = {{0x00,0xc0,0xff,0xee, 0xde,0xad,0xbe,0xef}};
151
152 /* If we don't have a PLT we can just skip all this... */
153 if (__builtin_expect (l->l_info[DT_JMPREL] == NULL,0))
154 return lazy;
155
156 /* All paths use these values */
157 l_addr = l->l_addr;
158 jmprel = D_PTR(l, l_info[DT_JMPREL]);
159 end_jmprel = jmprel + l->l_info[DT_PLTRELSZ]->d_un.d_val;
160
161 extern void _dl_runtime_resolve (void);
162 extern void _dl_runtime_profile (void);
163
164 /* Linking lazily */
165 if (lazy)
166 {
167 /* FIXME: Search for the got, but backwards through the relocs, technically we should
168 find it on the first try. However, assuming the relocs got out of order the
169 routine is made a bit more robust by searching them all in case of failure. */
170 for (iplt = (end_jmprel - sizeof(Elf32_Rela)); iplt >= jmprel; iplt -= sizeof (Elf32_Rela))
171 {
172
173 reloc = (const Elf32_Rela *) iplt;
174 r_type = ELF32_R_TYPE (reloc->r_info);
175 r_sym = ELF32_R_SYM (reloc->r_info);
176
177 got = (Elf32_Addr *) (reloc->r_offset + l_addr + PLT_ENTRY_SIZE + SIZEOF_PLT_STUB);
178
179 /* If we aren't an IPLT, and we aren't NONE then it's a bad reloc */
180 if (__builtin_expect (r_type != R_PARISC_IPLT, 0))
181 {
182 if (__builtin_expect (r_type != R_PARISC_NONE, 0))
183 _dl_reloc_bad_type (l, r_type, 1);
184 continue;
185 }
186
187 /* Check for the plt_stub that binutils placed here for us
188 to use with _dl_runtime_resolve */
189 if (got[-2] != sig.i[0] || got[-1] != sig.i[1])
190 {
191 got = NULL; /* Not the stub... keep looking */
192 }
193 else
194 {
195 /* Found the GOT! */
196 register Elf32_Addr ltp __asm__ ("%r19");
197
198 /* Identify this shared object. Second entry in the got. */
199 got[1] = (Elf32_Addr) l;
200
201 /* This function will be called to perform the relocation. */
202 if (__builtin_expect (!profile, 1))
203 {
204 /* If a static application called us, then _dl_runtime_resolve is not
205 a function descriptor, but the *real* address of the function... */
206 if((unsigned long) &_dl_runtime_resolve & 3)
207 {
208 got[-2] = (Elf32_Addr) ((struct fdesc *)
209 ((unsigned long) &_dl_runtime_resolve & ~3))->ip;
210 }
211 else
212 {
213 /* Static executable! */
214 got[-2] = (Elf32_Addr) &_dl_runtime_resolve;
215 }
216 }
217 else
218 {
219 if (GLRO(dl_profile) != NULL
220 && _dl_name_match_p (GLRO(dl_profile), l))
221 {
222 /* This is the object we are looking for. Say that
223 we really want profiling and the timers are
224 started. */
225 GL(dl_profile_map) = l;
226 }
227
228 if((unsigned long) &_dl_runtime_profile & 3)
229 {
230 got[-2] = (Elf32_Addr) ((struct fdesc *)
231 ((unsigned long) &_dl_runtime_profile & ~3))->ip;
232 }
233 else
234 {
235 /* Static executable */
236 got[-2] = (Elf32_Addr) &_dl_runtime_profile;
237 }
238 }
239 /* Plunk in the gp of this function descriptor so we
240 can make the call to _dl_runtime_xxxxxx */
241 got[-1] = ltp;
242 break;
243 /* Done looking for the GOT, and stub is setup */
244 } /* else we found the GOT */
245 } /* for, walk the relocs backwards */
246
247 if(!got)
248 return 0; /* No lazy linking for you! */
249
250 /* Process all the relocs, now that we know the GOT... */
251 for (iplt = jmprel; iplt < end_jmprel; iplt += sizeof (Elf32_Rela))
252 {
253 reloc = (const Elf32_Rela *) iplt;
254 r_type = ELF32_R_TYPE (reloc->r_info);
255 r_sym = ELF32_R_SYM (reloc->r_info);
256
257 if (__builtin_expect (r_type == R_PARISC_IPLT, 1))
258 {
259 fptr = (struct fdesc *) (reloc->r_offset + l_addr);
260 if (r_sym != 0)
261 {
262 /* Relocate the pointer to the stub. */
263 fptr->ip = (Elf32_Addr) got - GOT_FROM_PLT_STUB;
264
265 /* Instead of the LTP value, we put the reloc offset
266 here. The trampoline code will load the proper
267 LTP and pass the reloc offset to the fixup
268 function. */
269 fptr->gp = iplt - jmprel;
270 } /* r_sym != 0 */
271 else
272 {
273 /* Relocate this *ABS* entry. */
274 fptr->ip = reloc->r_addend + l_addr;
275 fptr->gp = D_PTR (l, l_info[DT_PLTGOT]);
276 }
277 } /* r_type == R_PARISC_IPLT */
278 } /* for all the relocations */
279 } /* if lazy */
280 else
281 {
282 for (iplt = jmprel; iplt < end_jmprel; iplt += sizeof (Elf32_Rela))
283 {
284 reloc = (const Elf32_Rela *) iplt;
285 r_type = ELF32_R_TYPE (reloc->r_info);
286 r_sym = ELF32_R_SYM (reloc->r_info);
287
288 if (__builtin_expect ((r_type == R_PARISC_IPLT) && (r_sym == 0), 1))
289 {
290 fptr = (struct fdesc *) (reloc->r_offset + l_addr);
291 /* Relocate this *ABS* entry, set only the gp, the rest is set later
292 when elf_machine_rela_relative is called (WITHOUT the linkmap) */
293 fptr->gp = D_PTR (l, l_info[DT_PLTGOT]);
294 } /* r_type == R_PARISC_IPLT */
295 } /* for all the relocations */
296 }
297 return lazy;
298 }
299
300
301 /* Names of the architecture-specific auditing callback functions. */
302 #define ARCH_LA_PLTENTER hppa_gnu_pltenter
303 #define ARCH_LA_PLTEXIT hppa_gnu_pltexit
304
305 /* Initial entry point code for the dynamic linker.
306 The C function `_dl_start' is the real entry point;
307 its return value is the user program's entry point. */
308
309 #define RTLD_START \
310 /* Set up dp for any non-PIC lib constructors that may be called. */ \
311 static struct link_map * __attribute__((used)) \
312 set_dp (struct link_map *map) \
313 { \
314 register Elf32_Addr dp asm ("%r27"); \
315 dp = D_PTR (map, l_info[DT_PLTGOT]); \
316 asm volatile ("" : : "r" (dp)); \
317 return map; \
318 } \
319 \
320 asm ( \
321 " .text\n" \
322 " .globl _start\n" \
323 " .type _start,@function\n" \
324 "_start:\n" \
325 /* The kernel does not give us an initial stack frame. */ \
326 " ldo 64(%sp),%sp\n" \
327 /* Save the relevant arguments (yes, those are the correct \
328 registers, the kernel is weird) in their stack slots. */ \
329 " stw %r25,-40(%sp)\n" /* argc */ \
330 " stw %r24,-44(%sp)\n" /* argv */ \
331 \
332 /* We need the LTP, and we need it now. \
333 $PIC_pcrel$0 points 8 bytes past the current instruction, \
334 just like a branch reloc. This sequence gets us the \
335 runtime address of _DYNAMIC. */ \
336 " bl 0f,%r19\n" \
337 " depi 0,31,2,%r19\n" /* clear priviledge bits */ \
338 "0: addil L'_DYNAMIC - ($PIC_pcrel$0 - 8),%r19\n" \
339 " ldo R'_DYNAMIC - ($PIC_pcrel$0 - 12)(%r1),%r26\n" \
340 \
341 /* The link time address is stored in the first entry of the \
342 GOT. */ \
343 " addil L'_GLOBAL_OFFSET_TABLE_ - ($PIC_pcrel$0 - 16),%r19\n" \
344 " ldw R'_GLOBAL_OFFSET_TABLE_ - ($PIC_pcrel$0 - 20)(%r1),%r20\n" \
345 \
346 " sub %r26,%r20,%r20\n" /* Calculate load offset */ \
347 \
348 /* Rummage through the dynamic entries, looking for \
349 DT_PLTGOT. */ \
350 " ldw,ma 8(%r26),%r19\n" \
351 "1: cmpib,=,n 3,%r19,2f\n" /* tag == DT_PLTGOT? */ \
352 " cmpib,<>,n 0,%r19,1b\n" \
353 " ldw,ma 8(%r26),%r19\n" \
354 \
355 /* Uh oh! We didn't find one. Abort. */ \
356 " iitlbp %r0,(%sr0,%r0)\n" \
357 \
358 "2: ldw -4(%r26),%r19\n" /* Found it, load value. */ \
359 " add %r19,%r20,%r19\n" /* And add the load offset. */ \
360 \
361 /* Our initial stack layout is rather different from everyone \
362 else's due to the unique PA-RISC ABI. As far as I know it \
363 looks like this: \
364 \
365 ----------------------------------- (this frame created above) \
366 | 32 bytes of magic | \
367 |---------------------------------| \
368 | 32 bytes argument/sp save area | \
369 |---------------------------------| ((current->mm->env_end) \
370 | N bytes of slack | + 63 & ~63) \
371 |---------------------------------| \
372 | envvar and arg strings | \
373 |---------------------------------| \
374 | ELF auxiliary info | \
375 | (up to 28 words) | \
376 |---------------------------------| \
377 | Environment variable pointers | \
378 | upwards to NULL | \
379 |---------------------------------| \
380 | Argument pointers | \
381 | upwards to NULL | \
382 |---------------------------------| \
383 | argc (1 word) | \
384 ----------------------------------- \
385 \
386 So, obviously, we can't just pass %sp to _dl_start. That's \
387 okay, argv-4 will do just fine. \
388 \
389 The pleasant part of this is that if we need to skip \
390 arguments we can just decrement argc and move argv, because \
391 the stack pointer is utterly unrelated to the location of \
392 the environment and argument vectors. */ \
393 \
394 /* This is always within range so we'll be okay. */ \
395 " bl _dl_start,%rp\n" \
396 " ldo -4(%r24),%r26\n" \
397 \
398 " .globl _dl_start_user\n" \
399 " .type _dl_start_user,@function\n" \
400 "_dl_start_user:\n" \
401 /* Save the entry point in %r3. */ \
402 " copy %ret0,%r3\n" \
403 \
404 /* Remember the lowest stack address. */ \
405 " addil LT'__libc_stack_end,%r19\n" \
406 " ldw RT'__libc_stack_end(%r1),%r20\n" \
407 " stw %sp,0(%r20)\n" \
408 \
409 /* See if we were called as a command with the executable file \
410 name as an extra leading argument. */ \
411 " addil LT'_dl_skip_args,%r19\n" \
412 " ldw RT'_dl_skip_args(%r1),%r20\n" \
413 " ldw 0(%r20),%r20\n" \
414 \
415 " ldw -40(%sp),%r25\n" /* argc */ \
416 " comib,= 0,%r20,.Lnofix\n" /* FIXME: Mispredicted branch */\
417 " ldw -44(%sp),%r24\n" /* argv (delay slot) */ \
418 \
419 " sub %r25,%r20,%r25\n" \
420 " stw %r25,-40(%sp)\n" \
421 " sh2add %r20,%r24,%r24\n" \
422 " stw %r24,-44(%sp)\n" \
423 \
424 ".Lnofix:\n" \
425 " addil LT'_rtld_local,%r19\n" \
426 " ldw RT'_rtld_local(%r1),%r26\n" \
427 " bl set_dp, %r2\n" \
428 " ldw 0(%r26),%r26\n" \
429 \
430 /* Call _dl_init(_dl_loaded, argc, argv, envp). */ \
431 " copy %r28,%r26\n" \
432 \
433 /* envp = argv + argc + 1 */ \
434 " sh2add %r25,%r24,%r23\n" \
435 " bl _dl_init,%r2\n" \
436 " ldo 4(%r23),%r23\n" /* delay slot */ \
437 \
438 /* Reload argc, argv to the registers start.S expects. */ \
439 " ldw -40(%sp),%r25\n" \
440 " ldw -44(%sp),%r24\n" \
441 \
442 /* _dl_fini is a local function in the loader, so we construct \
443 a false OPD here and pass this to the application. */ \
444 /* FIXME: Should be able to use P%, and LR RR to have the \
445 the linker construct a proper OPD. */ \
446 " .section .data\n" \
447 "__dl_fini_plabel:\n" \
448 " .word _dl_fini\n" \
449 " .word 0xdeadbeef\n" \
450 " .previous\n" \
451 \
452 /* %r3 contains a function pointer, we need to mask out the \
453 lower bits and load the gp and jump address. */ \
454 " depi 0,31,2,%r3\n" \
455 " ldw 0(%r3),%r2\n" \
456 " addil LT'__dl_fini_plabel,%r19\n" \
457 " ldw RT'__dl_fini_plabel(%r1),%r23\n" \
458 " stw %r19,4(%r23)\n" \
459 " ldw 4(%r3),%r19\n" /* load the object's gp */ \
460 " bv %r0(%r2)\n" \
461 " depi 2,31,2,%r23\n" /* delay slot */ \
462 );
463
464 /* ELF_RTYPE_CLASS_PLT iff TYPE describes relocation of a PLT entry or
465 a TLS variable, so references should not be allowed to define the value.
466 ELF_RTYPE_CLASS_COPY iff TYPE should not be allowed to resolve to one
467 of the main executable's symbols, as for a COPY reloc. */
468 #if !defined RTLD_BOOTSTRAP
469 # define elf_machine_type_class(type) \
470 ((((type) == R_PARISC_IPLT \
471 || (type) == R_PARISC_EPLT \
472 || (type) == R_PARISC_TLS_DTPMOD32 \
473 || (type) == R_PARISC_TLS_DTPOFF32 \
474 || (type) == R_PARISC_TLS_TPREL32) \
475 * ELF_RTYPE_CLASS_PLT) \
476 | (((type) == R_PARISC_COPY) * ELF_RTYPE_CLASS_COPY))
477 #else
478 #define elf_machine_type_class(type) \
479 ((((type) == R_PARISC_IPLT \
480 || (type) == R_PARISC_EPLT) \
481 * ELF_RTYPE_CLASS_PLT) \
482 | (((type) == R_PARISC_COPY) * ELF_RTYPE_CLASS_COPY))
483 #endif
484
485 /* Used by the runtime in fixup to figure out if reloc is *really* PLT */
486 #define ELF_MACHINE_JMP_SLOT R_PARISC_IPLT
487 #define ELF_MACHINE_SIZEOF_JMP_SLOT PLT_ENTRY_SIZE
488
489 /* We only use RELA. */
490 #define ELF_MACHINE_NO_REL 1
491 #define ELF_MACHINE_NO_RELA 0
492
493 /* Return the address of the entry point. */
494 #define ELF_MACHINE_START_ADDRESS(map, start) \
495 ({ \
496 ElfW(Addr) addr; \
497 DL_DT_FUNCTION_ADDRESS(map, start, static, addr) \
498 addr; \
499 })
500
501 /* We define an initialization functions. This is called very early in
502 * _dl_sysdep_start. */
503 #define DL_PLATFORM_INIT dl_platform_init ()
504
505 static inline void __attribute__ ((unused))
506 dl_platform_init (void)
507 {
508 if (GLRO(dl_platform) != NULL && *GLRO(dl_platform) == '\0')
509 /* Avoid an empty string which would disturb us. */
510 GLRO(dl_platform) = NULL;
511 }
512
513 #endif /* !dl_machine_h */
514
515 /* These are only actually used where RESOLVE_MAP is defined, anyway. */
516 #ifdef RESOLVE_MAP
517
518 #define reassemble_21(as21) \
519 ( (((as21) & 0x100000) >> 20) \
520 | (((as21) & 0x0ffe00) >> 8) \
521 | (((as21) & 0x000180) << 7) \
522 | (((as21) & 0x00007c) << 14) \
523 | (((as21) & 0x000003) << 12))
524
525 #define reassemble_14(as14) \
526 ( (((as14) & 0x1fff) << 1) \
527 | (((as14) & 0x2000) >> 13))
528
529 auto void __attribute__((always_inline))
530 elf_machine_rela (struct link_map *map,
531 const Elf32_Rela *reloc,
532 const Elf32_Sym *sym,
533 const struct r_found_version *version,
534 void *const reloc_addr_arg,
535 int skip_ifunc)
536 {
537 Elf32_Addr *const reloc_addr = reloc_addr_arg;
538 const Elf32_Sym *const refsym = sym;
539 unsigned long const r_type = ELF32_R_TYPE (reloc->r_info);
540 struct link_map *sym_map;
541 Elf32_Addr value;
542
543 # if !defined RTLD_BOOTSTRAP && !defined HAVE_Z_COMBRELOC && !defined SHARED
544 /* This is defined in rtld.c, but nowhere in the static libc.a; make the
545 reference weak so static programs can still link. This declaration
546 cannot be done when compiling rtld.c (i.e. #ifdef RTLD_BOOTSTRAP)
547 because rtld.c contains the common defn for _dl_rtld_map, which is
548 incompatible with a weak decl in the same file. */
549 weak_extern (GL(dl_rtld_map));
550 # endif
551
552 /* RESOLVE_MAP will return a null value for undefined syms, and
553 non-null for all other syms. In particular, relocs with no
554 symbol (symbol index of zero), also called *ABS* relocs, will be
555 resolved to MAP. (The first entry in a symbol table is all
556 zeros, and an all zero Elf32_Sym has a binding of STB_LOCAL.)
557 See RESOLVE_MAP definition in elf/dl-reloc.c */
558 # ifdef RTLD_BOOTSTRAP
559 /* RESOLVE_MAP in rtld.c doesn't have the local sym test. */
560 sym_map = (ELF32_ST_BIND (sym->st_info) != STB_LOCAL
561 ? RESOLVE_MAP (&sym, version, r_type) : map);
562 # else
563 sym_map = RESOLVE_MAP (&sym, version, r_type);
564 # endif
565
566 if (sym_map)
567 {
568 value = sym ? sym_map->l_addr + sym->st_value : 0;
569 value += reloc->r_addend;
570 }
571 else
572 value = 0;
573
574 switch (r_type)
575 {
576 case R_PARISC_DIR32:
577 /* .eh_frame can have unaligned relocs. */
578 if ((unsigned long) reloc_addr_arg & 3)
579 {
580 char *rel_addr = (char *) reloc_addr_arg;
581 rel_addr[0] = value >> 24;
582 rel_addr[1] = value >> 16;
583 rel_addr[2] = value >> 8;
584 rel_addr[3] = value;
585 return;
586 }
587 break;
588
589 case R_PARISC_DIR21L:
590 {
591 unsigned int insn = *(unsigned int *)reloc_addr;
592 value = sym_map->l_addr + sym->st_value
593 + ((reloc->r_addend + 0x1000) & -0x2000);
594 value = value >> 11;
595 insn = (insn &~ 0x1fffff) | reassemble_21 (value);
596 *(unsigned int *)reloc_addr = insn;
597 }
598 return;
599
600 case R_PARISC_DIR14R:
601 {
602 unsigned int insn = *(unsigned int *)reloc_addr;
603 value = ((sym_map->l_addr + sym->st_value) & 0x7ff)
604 + (((reloc->r_addend & 0x1fff) ^ 0x1000) - 0x1000);
605 insn = (insn &~ 0x3fff) | reassemble_14 (value);
606 *(unsigned int *)reloc_addr = insn;
607 }
608 return;
609
610 case R_PARISC_PLABEL32:
611 /* Easy rule: If there is a symbol and it is global, then we
612 need to make a dynamic function descriptor. Otherwise we
613 have the address of a PLT slot for a local symbol which we
614 know to be unique. */
615 if (sym == NULL
616 || sym_map == NULL
617 || ELF32_ST_BIND (sym->st_info) == STB_LOCAL)
618 {
619 break;
620 }
621 /* Set bit 30 to indicate to $$dyncall that this is a PLABEL.
622 We have to do this outside of the generic function descriptor
623 code, since it doesn't know about our requirement for setting
624 protection bits */
625 value = (Elf32_Addr)((unsigned int)_dl_make_fptr (sym_map, sym, value) | 2);
626 break;
627
628 case R_PARISC_PLABEL21L:
629 case R_PARISC_PLABEL14R:
630 {
631 unsigned int insn = *(unsigned int *)reloc_addr;
632
633 if (__builtin_expect (sym == NULL, 0))
634 break;
635
636 value = (Elf32_Addr)((unsigned int)_dl_make_fptr (sym_map, sym, value) | 2);
637
638 if (r_type == R_PARISC_PLABEL21L)
639 {
640 value >>= 11;
641 insn = (insn &~ 0x1fffff) | reassemble_21 (value);
642 }
643 else
644 {
645 value &= 0x7ff;
646 insn = (insn &~ 0x3fff) | reassemble_14 (value);
647 }
648
649 *(unsigned int *)reloc_addr = insn;
650 }
651 return;
652
653 case R_PARISC_IPLT:
654 if (__builtin_expect (sym_map != NULL, 1))
655 {
656 elf_machine_fixup_plt (NULL, sym_map, reloc, reloc_addr,
657 DL_FIXUP_MAKE_VALUE(sym_map, value));
658 }
659 else
660 {
661 /* If we get here, it's a (weak) undefined sym. */
662 elf_machine_fixup_plt (NULL, map, reloc, reloc_addr,
663 DL_FIXUP_MAKE_VALUE(map, value));
664 }
665 return;
666
667 case R_PARISC_COPY:
668 if (__builtin_expect (sym == NULL, 0))
669 /* This can happen in trace mode if an object could not be
670 found. */
671 break;
672 if (__builtin_expect (sym->st_size > refsym->st_size, 0)
673 || (__builtin_expect (sym->st_size < refsym->st_size, 0)
674 && __builtin_expect (GLRO(dl_verbose), 0)))
675 {
676 const char *strtab;
677
678 strtab = (const char *) D_PTR (map, l_info[DT_STRTAB]);
679 _dl_error_printf ("%s: Symbol `%s' has different size in shared object, "
680 "consider re-linking\n",
681 RTLD_PROGNAME, strtab + refsym->st_name);
682 }
683 memcpy (reloc_addr_arg, (void *) value,
684 MIN (sym->st_size, refsym->st_size));
685 return;
686
687 #if !defined RTLD_BOOTSTRAP
688 case R_PARISC_TLS_DTPMOD32:
689 value = sym_map->l_tls_modid;
690 break;
691
692 case R_PARISC_TLS_DTPOFF32:
693 /* During relocation all TLS symbols are defined and used.
694 Therefore the offset is already correct. */
695 if (sym != NULL)
696 *reloc_addr = sym->st_value;
697 return;
698
699 case R_PARISC_TLS_TPREL32:
700 /* The offset is negative, forward from the thread pointer */
701 if (sym != NULL)
702 {
703 CHECK_STATIC_TLS (map, sym_map);
704 value = sym_map->l_tls_offset + sym->st_value + reloc->r_addend;
705 }
706 break;
707 #endif /* use TLS */
708
709 case R_PARISC_NONE: /* Alright, Wilbur. */
710 return;
711
712 default:
713 _dl_reloc_bad_type (map, r_type, 0);
714 }
715
716 *reloc_addr = value;
717 }
718
719 /* hppa doesn't have an R_PARISC_RELATIVE reloc, but uses relocs with
720 ELF32_R_SYM (info) == 0 for a similar purpose. */
721 auto void __attribute__((always_inline))
722 elf_machine_rela_relative (Elf32_Addr l_addr,
723 const Elf32_Rela *reloc,
724 void *const reloc_addr_arg)
725 {
726 unsigned long const r_type = ELF32_R_TYPE (reloc->r_info);
727 Elf32_Addr *const reloc_addr = reloc_addr_arg;
728 static char msgbuf[] = { "Unknown" };
729 struct link_map map;
730 Elf32_Addr value;
731
732 value = l_addr + reloc->r_addend;
733
734 if (ELF32_R_SYM (reloc->r_info) != 0){
735 _dl_error_printf ("%s: In elf_machine_rela_relative "
736 "ELF32_R_SYM (reloc->r_info) != 0. Aborting.",
737 RTLD_PROGNAME);
738 ABORT_INSTRUCTION; /* Crash. */
739 }
740
741 switch (r_type)
742 {
743 case R_PARISC_DIR32:
744 /* .eh_frame can have unaligned relocs. */
745 if ((unsigned long) reloc_addr_arg & 3)
746 {
747 char *rel_addr = (char *) reloc_addr_arg;
748 rel_addr[0] = value >> 24;
749 rel_addr[1] = value >> 16;
750 rel_addr[2] = value >> 8;
751 rel_addr[3] = value;
752 return;
753 }
754 break;
755
756 case R_PARISC_PLABEL32:
757 break;
758
759 case R_PARISC_IPLT: /* elf_machine_runtime_setup already set gp */
760 break;
761
762 case R_PARISC_NONE:
763 return;
764
765 default: /* Bad reloc, map unknown (really it's the current map) */
766 map.l_name = msgbuf;
767 _dl_reloc_bad_type (&map, r_type, 0);
768 return;
769 }
770
771 *reloc_addr = value;
772 }
773
774 auto void __attribute__((always_inline))
775 elf_machine_lazy_rel (struct link_map *map,
776 Elf32_Addr l_addr, const Elf32_Rela *reloc,
777 int skip_ifunc)
778 {
779 /* We don't have anything to do here. elf_machine_runtime_setup has
780 done all the relocs already. */
781 }
782
783 #endif /* RESOLVE_MAP */