]> git.ipfire.org Git - thirdparty/glibc.git/blob - sysdeps/i386/dl-machine.h
Mon Jun 3 00:30:35 1996 Roland McGrath <roland@delasyd.gnu.ai.mit.edu>
[thirdparty/glibc.git] / sysdeps / i386 / dl-machine.h
1 /* Machine-dependent ELF dynamic relocation inline functions. i386 version.
2 Copyright (C) 1995, 1996 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4
5 The GNU C Library is free software; you can redistribute it and/or
6 modify it under the terms of the GNU Library General Public License as
7 published by the Free Software Foundation; either version 2 of the
8 License, or (at your option) any later version.
9
10 The GNU C Library is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 Library General Public License for more details.
14
15 You should have received a copy of the GNU Library General Public
16 License along with the GNU C Library; see the file COPYING.LIB. If
17 not, write to the Free Software Foundation, Inc., 675 Mass Ave,
18 Cambridge, MA 02139, USA. */
19
20 #define ELF_MACHINE_NAME "i386"
21
22 #include <assert.h>
23 #include <string.h>
24 #include <link.h>
25
26
27 /* Return nonzero iff E_MACHINE is compatible with the running host. */
28 static inline int
29 elf_machine_matches_host (Elf32_Half e_machine)
30 {
31 switch (e_machine)
32 {
33 case EM_386:
34 case EM_486:
35 return 1;
36 default:
37 return 0;
38 }
39 }
40
41
42 /* Return the run-time address of the _GLOBAL_OFFSET_TABLE_.
43 Must be inlined in a function which uses global data. */
44 static inline Elf32_Addr *
45 elf_machine_got (void)
46 {
47 register Elf32_Addr *got asm ("%ebx");
48 return got;
49 }
50
51
52 /* Return the run-time load address of the shared object. */
53 static inline Elf32_Addr
54 elf_machine_load_address (void)
55 {
56 Elf32_Addr addr;
57 asm (" call here\n"
58 "here: popl %0\n"
59 " subl $here, %0"
60 : "=r" (addr));
61 return addr;
62 }
63 /* The `subl' insn above will contain an R_386_32 relocation entry
64 intended to insert the run-time address of the label `here'.
65 This will be the first relocation in the text of the dynamic linker;
66 we skip it to avoid trying to modify read-only text in this early stage. */
67 #define ELF_MACHINE_BEFORE_RTLD_RELOC(dynamic_info) \
68 ++(const Elf32_Rel *) (dynamic_info)[DT_REL]->d_un.d_ptr; \
69 (dynamic_info)[DT_RELSZ]->d_un.d_val -= sizeof (Elf32_Rel);
70
71 /* Perform the relocation specified by RELOC and SYM (which is fully resolved).
72 MAP is the object containing the reloc. */
73
74 static inline void
75 elf_machine_rel (struct link_map *map,
76 const Elf32_Rel *reloc, const Elf32_Sym *sym,
77 Elf32_Addr (*resolve) (const Elf32_Sym **ref,
78 Elf32_Addr reloc_addr,
79 int noplt))
80 {
81 Elf32_Addr *const reloc_addr = (void *) (map->l_addr + reloc->r_offset);
82 Elf32_Addr loadbase;
83
84 switch (ELF32_R_TYPE (reloc->r_info))
85 {
86 case R_386_COPY:
87 loadbase = (*resolve) (&sym, (Elf32_Addr) reloc_addr, 0);
88 memcpy (reloc_addr, (void *) (loadbase + sym->st_value), sym->st_size);
89 break;
90 case R_386_GLOB_DAT:
91 loadbase = (resolve ? (*resolve) (&sym, (Elf32_Addr) reloc_addr, 0) :
92 /* RESOLVE is null during bootstrap relocation. */
93 map->l_addr);
94 *reloc_addr = sym ? (loadbase + sym->st_value) : 0;
95 break;
96 case R_386_JMP_SLOT:
97 loadbase = (resolve ? (*resolve) (&sym, (Elf32_Addr) reloc_addr, 1) :
98 /* RESOLVE is null during bootstrap relocation. */
99 map->l_addr);
100 *reloc_addr = sym ? (loadbase + sym->st_value) : 0;
101 break;
102 case R_386_32:
103 if (map->l_type == lt_interpreter)
104 {
105 /* Undo the relocation done here during bootstrapping. Now we will
106 relocate it anew, possibly using a binding found in the user
107 program or a loaded library rather than the dynamic linker's
108 built-in definitions used while loading those libraries. */
109 const Elf32_Sym *const dlsymtab
110 = (void *) (map->l_addr + map->l_info[DT_SYMTAB]->d_un.d_ptr);
111 *reloc_addr -= (map->l_addr +
112 dlsymtab[ELF32_R_SYM (reloc->r_info)].st_value);
113 }
114 loadbase = (*resolve) (&sym, (Elf32_Addr) reloc_addr, 0);
115 *reloc_addr += sym ? (loadbase + sym->st_value) : 0;
116 break;
117 case R_386_RELATIVE:
118 if (map->l_type != lt_interpreter) /* Already done in dynamic linker. */
119 *reloc_addr += map->l_addr;
120 break;
121 case R_386_PC32:
122 loadbase = (*resolve) (&sym, (Elf32_Addr) reloc_addr, 0);
123 *reloc_addr += ((sym ? (loadbase + sym->st_value) : 0) -
124 (Elf32_Addr) reloc_addr);
125 break;
126 case R_386_NONE: /* Alright, Wilbur. */
127 break;
128 default:
129 assert (! "unexpected dynamic reloc type");
130 break;
131 }
132 }
133
134 static inline void
135 elf_machine_lazy_rel (struct link_map *map, const Elf32_Rel *reloc)
136 {
137 Elf32_Addr *const reloc_addr = (void *) (map->l_addr + reloc->r_offset);
138 switch (ELF32_R_TYPE (reloc->r_info))
139 {
140 case R_386_JMP_SLOT:
141 *reloc_addr += map->l_addr;
142 break;
143 default:
144 assert (! "unexpected PLT reloc type");
145 break;
146 }
147 }
148
149 /* Nonzero iff TYPE describes relocation of a PLT entry, so
150 PLT entries should not be allowed to define the value. */
151 #define elf_machine_pltrel_p(type) ((type) == R_386_JMP_SLOT)
152
153 /* The i386 never uses Elf32_Rela relocations. */
154 #define ELF_MACHINE_NO_RELA 1
155
156
157 /* Set up the loaded object described by L so its unrelocated PLT
158 entries will jump to the on-demand fixup code in dl-runtime.c. */
159
160 static inline void
161 elf_machine_runtime_setup (struct link_map *l, int lazy)
162 {
163 Elf32_Addr *got;
164 extern void _dl_runtime_resolve (Elf32_Word);
165
166 if (l->l_info[DT_JMPREL] && lazy)
167 {
168 /* The GOT entries for functions in the PLT have not yet been filled
169 in. Their initial contents will arrange when called to push an
170 offset into the .rel.plt section, push _GLOBAL_OFFSET_TABLE_[1],
171 and then jump to _GLOBAL_OFFSET_TABLE[2]. */
172 got = (Elf32_Addr *) (l->l_addr + l->l_info[DT_PLTGOT]->d_un.d_ptr);
173 got[1] = (Elf32_Addr) l; /* Identify this shared object. */
174 /* This function will get called to fix up the GOT entry indicated by
175 the offset on the stack, and then jump to the resolved address. */
176 got[2] = (Elf32_Addr) &_dl_runtime_resolve;
177 }
178
179 /* This code is used in dl-runtime.c to call the `fixup' function
180 and then redirect to the address it returns. */
181 #define ELF_MACHINE_RUNTIME_TRAMPOLINE asm ("\
182 .globl _dl_runtime_resolve
183 .type _dl_runtime_resolve, @function
184 _dl_runtime_resolve:
185 call fixup # Args pushed by PLT.
186 addl $8, %esp # Pop args.
187 jmp *%eax # Jump to function address.
188 ");
189 /* The PLT uses Elf32_Rel relocs. */
190 #define elf_machine_relplt elf_machine_rel
191 }
192
193 /* Mask identifying addresses reserved for the user program,
194 where the dynamic linker should not map anything. */
195 #define ELF_MACHINE_USER_ADDRESS_MASK 0xf8000000UL
196
197
198
199 /* Initial entry point code for the dynamic linker.
200 The C function `_dl_start' is the real entry point;
201 its return value is the user program's entry point. */
202
203 #define RTLD_START asm ("\
204 .text\n\
205 .globl _start\n\
206 .globl _dl_start_user\n\
207 _start:\n\
208 call _dl_start\n\
209 _dl_start_user:\n\
210 # Save the user entry point address in %edi.\n\
211 movl %eax, %edi\n\
212 # Point %ebx at the GOT.
213 call 0f\n\
214 0: popl %ebx\n\
215 addl $_GLOBAL_OFFSET_TABLE_+[.-0b], %ebx\n\
216 # See if we were run as a command with the executable file\n\
217 # name as an extra leading argument.\n\
218 movl _dl_skip_args@GOT(%ebx), %eax\n\
219 movl (%eax),%eax\n\
220 # Pop the original argument count.\n\
221 popl %ecx\n\
222 # Subtract _dl_skip_args from it.\n\
223 subl %eax, %ecx\n\
224 # Adjust the stack pointer to skip _dl_skip_args words.\n\
225 leal (%esp,%eax,4), %esp\n\
226 # Push back the modified argument count.\n\
227 pushl %ecx\n\
228 # Call _dl_init_next to return the address of an initializer\n\
229 # function to run.\n\
230 0: call _dl_init_next@PLT\n\
231 # Check for zero return, when out of initializers.\n\
232 testl %eax,%eax\n\
233 jz 1f\n\
234 # Call the shared object initializer function.\n\
235 # NOTE: We depend only on the registers (%ebx and %edi)\n\
236 # and the return address pushed by this call;\n\
237 # the initializer is called with the stack just\n\
238 # as it appears on entry, and it is free to move\n\
239 # the stack around, as long as it winds up jumping to\n\
240 # the return address on the top of the stack.\n\
241 call *%eax\n\
242 # Loop to call _dl_init_next for the next initializer.\n\
243 jmp 0b\n\
244 1: # Pass our finalizer function to the user in %edx, as per ELF ABI.\n\
245 movl _dl_fini@GOT(%ebx), %edx\n\
246 # Jump to the user's entry point.\n\
247 jmp *%edi\n\
248 ");