]> git.ipfire.org Git - thirdparty/glibc.git/blob - sysdeps/i386/fpu/e_powf.S
(__ieee754_powf): Don't generate invalid exception if |y| >= 1U<<31.
[thirdparty/glibc.git] / sysdeps / i386 / fpu / e_powf.S
1 /* ix87 specific implementation of pow function.
2 Copyright (C) 1996, 1997, 1999, 2001, 2004 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4 Contributed by Ulrich Drepper <drepper@cygnus.com>, 1996.
5
6 The GNU C Library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Lesser General Public
8 License as published by the Free Software Foundation; either
9 version 2.1 of the License, or (at your option) any later version.
10
11 The GNU C Library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Lesser General Public License for more details.
15
16 You should have received a copy of the GNU Lesser General Public
17 License along with the GNU C Library; if not, write to the Free
18 Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
19 02111-1307 USA. */
20
21 #include <machine/asm.h>
22
23 #ifdef __ELF__
24 .section .rodata
25 #else
26 .text
27 #endif
28
29 .align ALIGNARG(4)
30 ASM_TYPE_DIRECTIVE(infinity,@object)
31 inf_zero:
32 infinity:
33 .byte 0, 0, 0, 0, 0, 0, 0xf0, 0x7f
34 ASM_SIZE_DIRECTIVE(infinity)
35 ASM_TYPE_DIRECTIVE(zero,@object)
36 zero: .double 0.0
37 ASM_SIZE_DIRECTIVE(zero)
38 ASM_TYPE_DIRECTIVE(minf_mzero,@object)
39 minf_mzero:
40 minfinity:
41 .byte 0, 0, 0, 0, 0, 0, 0xf0, 0xff
42 mzero:
43 .byte 0, 0, 0, 0, 0, 0, 0, 0x80
44 ASM_SIZE_DIRECTIVE(minf_mzero)
45 ASM_TYPE_DIRECTIVE(one,@object)
46 one: .double 1.0
47 ASM_SIZE_DIRECTIVE(one)
48 ASM_TYPE_DIRECTIVE(limit,@object)
49 limit: .double 0.29
50 ASM_SIZE_DIRECTIVE(limit)
51 ASM_TYPE_DIRECTIVE(p31,@object)
52 p31: .byte 0, 0, 0, 0, 0, 0, 0xe0, 0x41
53 ASM_SIZE_DIRECTIVE(p31)
54
55 #ifdef PIC
56 #define MO(op) op##@GOTOFF(%ecx)
57 #define MOX(op,x,f) op##@GOTOFF(%ecx,x,f)
58 #else
59 #define MO(op) op
60 #define MOX(op,x,f) op(,x,f)
61 #endif
62
63 .text
64 ENTRY(__ieee754_powf)
65 flds 8(%esp) // y
66 fxam
67
68 #ifdef PIC
69 call 1f
70 1: popl %ecx
71 addl $_GLOBAL_OFFSET_TABLE_+[.-1b], %ecx
72 #endif
73
74 fnstsw
75 movb %ah, %dl
76 andb $0x45, %ah
77 cmpb $0x40, %ah // is y == 0 ?
78 je 11f
79
80 cmpb $0x05, %ah // is y == ±inf ?
81 je 12f
82
83 cmpb $0x01, %ah // is y == NaN ?
84 je 30f
85
86 flds 4(%esp) // x : y
87
88 subl $4, %esp
89
90 fxam
91 fnstsw
92 movb %ah, %dh
93 andb $0x45, %ah
94 cmpb $0x40, %ah
95 je 20f // x is ±0
96
97 cmpb $0x05, %ah
98 je 15f // x is ±inf
99
100 fxch // y : x
101
102 /* fistpl raises invalid exception for |y| >= 1L<<31. */
103 fld %st // y : y : x
104 fabs // |y| : y : x
105 fcompl MO(p31) // y : x
106 fnstsw
107 sahf
108 jnc 2f
109
110 /* First see whether `y' is a natural number. In this case we
111 can use a more precise algorithm. */
112 fld %st // y : y : x
113 fistpl (%esp) // y : x
114 fildl (%esp) // int(y) : y : x
115 fucomp %st(1) // y : x
116 fnstsw
117 sahf
118 jne 2f
119
120 /* OK, we have an integer value for y. */
121 popl %edx
122 orl $0, %edx
123 fstp %st(0) // x
124 jns 4f // y >= 0, jump
125 fdivrl MO(one) // 1/x (now referred to as x)
126 negl %edx
127 4: fldl MO(one) // 1 : x
128 fxch
129
130 6: shrl $1, %edx
131 jnc 5f
132 fxch
133 fmul %st(1) // x : ST*x
134 fxch
135 5: fmul %st(0), %st // x*x : ST*x
136 testl %edx, %edx
137 jnz 6b
138 fstp %st(0) // ST*x
139 ret
140
141 /* y is ±NAN */
142 30: flds 4(%esp) // x : y
143 fldl MO(one) // 1.0 : x : y
144 fucomp %st(1) // x : y
145 fnstsw
146 sahf
147 je 31f
148 fxch // y : x
149 31: fstp %st(1)
150 ret
151
152 .align ALIGNARG(4)
153 2: /* y is a real number. */
154 fxch // x : y
155 fldl MO(one) // 1.0 : x : y
156 fld %st(1) // x : 1.0 : x : y
157 fsub %st(1) // x-1 : 1.0 : x : y
158 fabs // |x-1| : 1.0 : x : y
159 fcompl MO(limit) // 1.0 : x : y
160 fnstsw
161 fxch // x : 1.0 : y
162 sahf
163 ja 7f
164 fsub %st(1) // x-1 : 1.0 : y
165 fyl2xp1 // log2(x) : y
166 jmp 8f
167
168 7: fyl2x // log2(x) : y
169 8: fmul %st(1) // y*log2(x) : y
170 fst %st(1) // y*log2(x) : y*log2(x)
171 frndint // int(y*log2(x)) : y*log2(x)
172 fsubr %st, %st(1) // int(y*log2(x)) : fract(y*log2(x))
173 fxch // fract(y*log2(x)) : int(y*log2(x))
174 f2xm1 // 2^fract(y*log2(x))-1 : int(y*log2(x))
175 faddl MO(one) // 2^fract(y*log2(x)) : int(y*log2(x))
176 fscale // 2^fract(y*log2(x))*2^int(y*log2(x)) : int(y*log2(x))
177 addl $4, %esp
178 fstp %st(1) // 2^fract(y*log2(x))*2^int(y*log2(x))
179 ret
180
181
182 // pow(x,±0) = 1
183 .align ALIGNARG(4)
184 11: fstp %st(0) // pop y
185 fldl MO(one)
186 ret
187
188 // y == ±inf
189 .align ALIGNARG(4)
190 12: fstp %st(0) // pop y
191 flds 4(%esp) // x
192 fabs
193 fcompl MO(one) // < 1, == 1, or > 1
194 fnstsw
195 andb $0x45, %ah
196 cmpb $0x45, %ah
197 je 13f // jump if x is NaN
198
199 cmpb $0x40, %ah
200 je 14f // jump if |x| == 1
201
202 shlb $1, %ah
203 xorb %ah, %dl
204 andl $2, %edx
205 fldl MOX(inf_zero, %edx, 4)
206 ret
207
208 .align ALIGNARG(4)
209 14: fldl MO(one)
210 ret
211
212 .align ALIGNARG(4)
213 13: flds 4(%esp) // load x == NaN
214 ret
215
216 .align ALIGNARG(4)
217 // x is ±inf
218 15: fstp %st(0) // y
219 testb $2, %dh
220 jz 16f // jump if x == +inf
221
222 // We must find out whether y is an odd integer.
223 fld %st // y : y
224 fistpl (%esp) // y
225 fildl (%esp) // int(y) : y
226 fucompp // <empty>
227 fnstsw
228 sahf
229 jne 17f
230
231 // OK, the value is an integer, but is the number of bits small
232 // enough so that all are coming from the mantissa?
233 popl %edx
234 testb $1, %dl
235 jz 18f // jump if not odd
236 movl %edx, %eax
237 orl %edx, %edx
238 jns 155f
239 negl %eax
240 155: cmpl $0x01000000, %eax
241 ja 18f // does not fit in mantissa bits
242 // It's an odd integer.
243 shrl $31, %edx
244 fldl MOX(minf_mzero, %edx, 8)
245 ret
246
247 .align ALIGNARG(4)
248 16: fcompl MO(zero)
249 addl $4, %esp
250 fnstsw
251 shrl $5, %eax
252 andl $8, %eax
253 fldl MOX(inf_zero, %eax, 1)
254 ret
255
256 .align ALIGNARG(4)
257 17: shll $30, %edx // sign bit for y in right position
258 addl $4, %esp
259 18: shrl $31, %edx
260 fldl MOX(inf_zero, %edx, 8)
261 ret
262
263 .align ALIGNARG(4)
264 // x is ±0
265 20: fstp %st(0) // y
266 testb $2, %dl
267 jz 21f // y > 0
268
269 // x is ±0 and y is < 0. We must find out whether y is an odd integer.
270 testb $2, %dh
271 jz 25f
272
273 fld %st // y : y
274 fistpl (%esp) // y
275 fildl (%esp) // int(y) : y
276 fucompp // <empty>
277 fnstsw
278 sahf
279 jne 26f
280
281 // OK, the value is an integer, but is the number of bits small
282 // enough so that all are coming from the mantissa?
283 popl %edx
284 testb $1, %dl
285 jz 27f // jump if not odd
286 cmpl $0xff000000, %edx
287 jbe 27f // does not fit in mantissa bits
288 // It's an odd integer.
289 // Raise divide-by-zero exception and get minus infinity value.
290 fldl MO(one)
291 fdivl MO(zero)
292 fchs
293 ret
294
295 25: fstp %st(0)
296 26: addl $4, %esp
297 27: // Raise divide-by-zero exception and get infinity value.
298 fldl MO(one)
299 fdivl MO(zero)
300 ret
301
302 .align ALIGNARG(4)
303 // x is ±0 and y is > 0. We must find out whether y is an odd integer.
304 21: testb $2, %dh
305 jz 22f
306
307 fld %st // y : y
308 fistpl (%esp) // y
309 fildl (%esp) // int(y) : y
310 fucompp // <empty>
311 fnstsw
312 sahf
313 jne 23f
314
315 // OK, the value is an integer, but is the number of bits small
316 // enough so that all are coming from the mantissa?
317 popl %edx
318 testb $1, %dl
319 jz 24f // jump if not odd
320 cmpl $0xff000000, %edx
321 jae 24f // does not fit in mantissa bits
322 // It's an odd integer.
323 fldl MO(mzero)
324 ret
325
326 22: fstp %st(0)
327 23: addl $4, %esp // Don't use pop.
328 24: fldl MO(zero)
329 ret
330
331 END(__ieee754_powf)