]> git.ipfire.org Git - thirdparty/glibc.git/blob - sysdeps/i386/fpu/e_powf.S
* intl/Makefile (tst-gettext[45].out): Pass also $(run-program-prefix)
[thirdparty/glibc.git] / sysdeps / i386 / fpu / e_powf.S
1 /* ix87 specific implementation of pow function.
2 Copyright (C) 1996, 1997, 1999, 2001, 2004, 2005
3 Free Software Foundation, Inc.
4 This file is part of the GNU C Library.
5 Contributed by Ulrich Drepper <drepper@cygnus.com>, 1996.
6
7 The GNU C Library is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Lesser General Public
9 License as published by the Free Software Foundation; either
10 version 2.1 of the License, or (at your option) any later version.
11
12 The GNU C Library is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 Lesser General Public License for more details.
16
17 You should have received a copy of the GNU Lesser General Public
18 License along with the GNU C Library; if not, write to the Free
19 Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
20 02111-1307 USA. */
21
22 #include <machine/asm.h>
23
24 #ifdef __ELF__
25 .section .rodata
26 #else
27 .text
28 #endif
29
30 .align ALIGNARG(4)
31 ASM_TYPE_DIRECTIVE(infinity,@object)
32 inf_zero:
33 infinity:
34 .byte 0, 0, 0, 0, 0, 0, 0xf0, 0x7f
35 ASM_SIZE_DIRECTIVE(infinity)
36 ASM_TYPE_DIRECTIVE(zero,@object)
37 zero: .double 0.0
38 ASM_SIZE_DIRECTIVE(zero)
39 ASM_TYPE_DIRECTIVE(minf_mzero,@object)
40 minf_mzero:
41 minfinity:
42 .byte 0, 0, 0, 0, 0, 0, 0xf0, 0xff
43 mzero:
44 .byte 0, 0, 0, 0, 0, 0, 0, 0x80
45 ASM_SIZE_DIRECTIVE(minf_mzero)
46 ASM_TYPE_DIRECTIVE(one,@object)
47 one: .double 1.0
48 ASM_SIZE_DIRECTIVE(one)
49 ASM_TYPE_DIRECTIVE(limit,@object)
50 limit: .double 0.29
51 ASM_SIZE_DIRECTIVE(limit)
52 ASM_TYPE_DIRECTIVE(p31,@object)
53 p31: .byte 0, 0, 0, 0, 0, 0, 0xe0, 0x41
54 ASM_SIZE_DIRECTIVE(p31)
55
56 #ifdef PIC
57 #define MO(op) op##@GOTOFF(%ecx)
58 #define MOX(op,x,f) op##@GOTOFF(%ecx,x,f)
59 #else
60 #define MO(op) op
61 #define MOX(op,x,f) op(,x,f)
62 #endif
63
64 .text
65 ENTRY(__ieee754_powf)
66 flds 8(%esp) // y
67 fxam
68
69 #ifdef PIC
70 LOAD_PIC_REG (cx)
71 #endif
72
73 fnstsw
74 movb %ah, %dl
75 andb $0x45, %ah
76 cmpb $0x40, %ah // is y == 0 ?
77 je 11f
78
79 cmpb $0x05, %ah // is y == ±inf ?
80 je 12f
81
82 cmpb $0x01, %ah // is y == NaN ?
83 je 30f
84
85 flds 4(%esp) // x : y
86
87 subl $4, %esp
88 cfi_adjust_cfa_offset (4)
89
90 fxam
91 fnstsw
92 movb %ah, %dh
93 andb $0x45, %ah
94 cmpb $0x40, %ah
95 je 20f // x is ±0
96
97 cmpb $0x05, %ah
98 je 15f // x is ±inf
99
100 fxch // y : x
101
102 /* fistpl raises invalid exception for |y| >= 1L<<31. */
103 fld %st // y : y : x
104 fabs // |y| : y : x
105 fcompl MO(p31) // y : x
106 fnstsw
107 sahf
108 jnc 2f
109
110 /* First see whether `y' is a natural number. In this case we
111 can use a more precise algorithm. */
112 fld %st // y : y : x
113 fistpl (%esp) // y : x
114 fildl (%esp) // int(y) : y : x
115 fucomp %st(1) // y : x
116 fnstsw
117 sahf
118 jne 2f
119
120 /* OK, we have an integer value for y. */
121 popl %edx
122 cfi_adjust_cfa_offset (-4)
123 orl $0, %edx
124 fstp %st(0) // x
125 jns 4f // y >= 0, jump
126 fdivrl MO(one) // 1/x (now referred to as x)
127 negl %edx
128 4: fldl MO(one) // 1 : x
129 fxch
130
131 6: shrl $1, %edx
132 jnc 5f
133 fxch
134 fmul %st(1) // x : ST*x
135 fxch
136 5: fmul %st(0), %st // x*x : ST*x
137 testl %edx, %edx
138 jnz 6b
139 fstp %st(0) // ST*x
140 ret
141
142 /* y is ±NAN */
143 30: flds 4(%esp) // x : y
144 fldl MO(one) // 1.0 : x : y
145 fucomp %st(1) // x : y
146 fnstsw
147 sahf
148 je 31f
149 fxch // y : x
150 31: fstp %st(1)
151 ret
152
153 cfi_adjust_cfa_offset (4)
154 .align ALIGNARG(4)
155 2: /* y is a real number. */
156 fxch // x : y
157 fldl MO(one) // 1.0 : x : y
158 fld %st(1) // x : 1.0 : x : y
159 fsub %st(1) // x-1 : 1.0 : x : y
160 fabs // |x-1| : 1.0 : x : y
161 fcompl MO(limit) // 1.0 : x : y
162 fnstsw
163 fxch // x : 1.0 : y
164 sahf
165 ja 7f
166 fsub %st(1) // x-1 : 1.0 : y
167 fyl2xp1 // log2(x) : y
168 jmp 8f
169
170 7: fyl2x // log2(x) : y
171 8: fmul %st(1) // y*log2(x) : y
172 fst %st(1) // y*log2(x) : y*log2(x)
173 frndint // int(y*log2(x)) : y*log2(x)
174 fsubr %st, %st(1) // int(y*log2(x)) : fract(y*log2(x))
175 fxch // fract(y*log2(x)) : int(y*log2(x))
176 f2xm1 // 2^fract(y*log2(x))-1 : int(y*log2(x))
177 faddl MO(one) // 2^fract(y*log2(x)) : int(y*log2(x))
178 fscale // 2^fract(y*log2(x))*2^int(y*log2(x)) : int(y*log2(x))
179 addl $4, %esp
180 cfi_adjust_cfa_offset (-4)
181 fstp %st(1) // 2^fract(y*log2(x))*2^int(y*log2(x))
182 ret
183
184
185 // pow(x,±0) = 1
186 .align ALIGNARG(4)
187 11: fstp %st(0) // pop y
188 fldl MO(one)
189 ret
190
191 // y == ±inf
192 .align ALIGNARG(4)
193 12: fstp %st(0) // pop y
194 flds 4(%esp) // x
195 fabs
196 fcompl MO(one) // < 1, == 1, or > 1
197 fnstsw
198 andb $0x45, %ah
199 cmpb $0x45, %ah
200 je 13f // jump if x is NaN
201
202 cmpb $0x40, %ah
203 je 14f // jump if |x| == 1
204
205 shlb $1, %ah
206 xorb %ah, %dl
207 andl $2, %edx
208 fldl MOX(inf_zero, %edx, 4)
209 ret
210
211 .align ALIGNARG(4)
212 14: fldl MO(one)
213 ret
214
215 .align ALIGNARG(4)
216 13: flds 4(%esp) // load x == NaN
217 ret
218
219 cfi_adjust_cfa_offset (4)
220 .align ALIGNARG(4)
221 // x is ±inf
222 15: fstp %st(0) // y
223 testb $2, %dh
224 jz 16f // jump if x == +inf
225
226 // We must find out whether y is an odd integer.
227 fld %st // y : y
228 fistpl (%esp) // y
229 fildl (%esp) // int(y) : y
230 fucompp // <empty>
231 fnstsw
232 sahf
233 jne 17f
234
235 // OK, the value is an integer, but is the number of bits small
236 // enough so that all are coming from the mantissa?
237 popl %edx
238 cfi_adjust_cfa_offset (-4)
239 testb $1, %dl
240 jz 18f // jump if not odd
241 movl %edx, %eax
242 orl %edx, %edx
243 jns 155f
244 negl %eax
245 155: cmpl $0x01000000, %eax
246 ja 18f // does not fit in mantissa bits
247 // It's an odd integer.
248 shrl $31, %edx
249 fldl MOX(minf_mzero, %edx, 8)
250 ret
251
252 cfi_adjust_cfa_offset (4)
253 .align ALIGNARG(4)
254 16: fcompl MO(zero)
255 addl $4, %esp
256 cfi_adjust_cfa_offset (-4)
257 fnstsw
258 shrl $5, %eax
259 andl $8, %eax
260 fldl MOX(inf_zero, %eax, 1)
261 ret
262
263 cfi_adjust_cfa_offset (4)
264 .align ALIGNARG(4)
265 17: shll $30, %edx // sign bit for y in right position
266 addl $4, %esp
267 cfi_adjust_cfa_offset (-4)
268 18: shrl $31, %edx
269 fldl MOX(inf_zero, %edx, 8)
270 ret
271
272 cfi_adjust_cfa_offset (4)
273 .align ALIGNARG(4)
274 // x is ±0
275 20: fstp %st(0) // y
276 testb $2, %dl
277 jz 21f // y > 0
278
279 // x is ±0 and y is < 0. We must find out whether y is an odd integer.
280 testb $2, %dh
281 jz 25f
282
283 fld %st // y : y
284 fistpl (%esp) // y
285 fildl (%esp) // int(y) : y
286 fucompp // <empty>
287 fnstsw
288 sahf
289 jne 26f
290
291 // OK, the value is an integer, but is the number of bits small
292 // enough so that all are coming from the mantissa?
293 popl %edx
294 cfi_adjust_cfa_offset (-4)
295 testb $1, %dl
296 jz 27f // jump if not odd
297 cmpl $0xff000000, %edx
298 jbe 27f // does not fit in mantissa bits
299 // It's an odd integer.
300 // Raise divide-by-zero exception and get minus infinity value.
301 fldl MO(one)
302 fdivl MO(zero)
303 fchs
304 ret
305
306 cfi_adjust_cfa_offset (4)
307 25: fstp %st(0)
308 26: addl $4, %esp
309 cfi_adjust_cfa_offset (-4)
310 27: // Raise divide-by-zero exception and get infinity value.
311 fldl MO(one)
312 fdivl MO(zero)
313 ret
314
315 cfi_adjust_cfa_offset (4)
316 .align ALIGNARG(4)
317 // x is ±0 and y is > 0. We must find out whether y is an odd integer.
318 21: testb $2, %dh
319 jz 22f
320
321 fld %st // y : y
322 fistpl (%esp) // y
323 fildl (%esp) // int(y) : y
324 fucompp // <empty>
325 fnstsw
326 sahf
327 jne 23f
328
329 // OK, the value is an integer, but is the number of bits small
330 // enough so that all are coming from the mantissa?
331 popl %edx
332 cfi_adjust_cfa_offset (-4)
333 testb $1, %dl
334 jz 24f // jump if not odd
335 cmpl $0xff000000, %edx
336 jae 24f // does not fit in mantissa bits
337 // It's an odd integer.
338 fldl MO(mzero)
339 ret
340
341 cfi_adjust_cfa_offset (4)
342 22: fstp %st(0)
343 23: addl $4, %esp // Don't use pop.
344 cfi_adjust_cfa_offset (-4)
345 24: fldl MO(zero)
346 ret
347
348 END(__ieee754_powf)