]> git.ipfire.org Git - thirdparty/glibc.git/blob - sysdeps/i386/fpu/e_powl.S
2.5-18.1
[thirdparty/glibc.git] / sysdeps / i386 / fpu / e_powl.S
1 /* ix87 specific implementation of pow function.
2 Copyright (C) 1996, 1997, 1998, 1999, 2001, 2004, 2005, 2007
3 Free Software Foundation, Inc.
4 This file is part of the GNU C Library.
5 Contributed by Ulrich Drepper <drepper@cygnus.com>, 1996.
6
7 The GNU C Library is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Lesser General Public
9 License as published by the Free Software Foundation; either
10 version 2.1 of the License, or (at your option) any later version.
11
12 The GNU C Library is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 Lesser General Public License for more details.
16
17 You should have received a copy of the GNU Lesser General Public
18 License along with the GNU C Library; if not, write to the Free
19 Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
20 02111-1307 USA. */
21
22 #include <machine/asm.h>
23
24 #ifdef __ELF__
25 .section .rodata
26 #else
27 .text
28 #endif
29
30 .align ALIGNARG(4)
31 ASM_TYPE_DIRECTIVE(infinity,@object)
32 inf_zero:
33 infinity:
34 .byte 0, 0, 0, 0, 0, 0, 0xf0, 0x7f
35 ASM_SIZE_DIRECTIVE(infinity)
36 ASM_TYPE_DIRECTIVE(zero,@object)
37 zero: .double 0.0
38 ASM_SIZE_DIRECTIVE(zero)
39 ASM_TYPE_DIRECTIVE(minf_mzero,@object)
40 minf_mzero:
41 minfinity:
42 .byte 0, 0, 0, 0, 0, 0, 0xf0, 0xff
43 mzero:
44 .byte 0, 0, 0, 0, 0, 0, 0, 0x80
45 ASM_SIZE_DIRECTIVE(minf_mzero)
46 ASM_TYPE_DIRECTIVE(one,@object)
47 one: .double 1.0
48 ASM_SIZE_DIRECTIVE(one)
49 ASM_TYPE_DIRECTIVE(limit,@object)
50 limit: .double 0.29
51 ASM_SIZE_DIRECTIVE(limit)
52 ASM_TYPE_DIRECTIVE(p63,@object)
53 p63: .byte 0, 0, 0, 0, 0, 0, 0xe0, 0x43
54 ASM_SIZE_DIRECTIVE(p63)
55
56 #ifdef PIC
57 #define MO(op) op##@GOTOFF(%ecx)
58 #define MOX(op,x,f) op##@GOTOFF(%ecx,x,f)
59 #else
60 #define MO(op) op
61 #define MOX(op,x,f) op(,x,f)
62 #endif
63
64 .text
65 ENTRY(__ieee754_powl)
66 fldt 16(%esp) // y
67 fxam
68
69 #ifdef PIC
70 LOAD_PIC_REG (cx)
71 #endif
72
73 fnstsw
74 movb %ah, %dl
75 andb $0x45, %ah
76 cmpb $0x40, %ah // is y == 0 ?
77 je 11f
78
79 cmpb $0x05, %ah // is y == ±inf ?
80 je 12f
81
82 cmpb $0x01, %ah // is y == NaN ?
83 je 30f
84
85 fldt 4(%esp) // x : y
86
87 subl $8,%esp
88 cfi_adjust_cfa_offset (8)
89
90 fxam
91 fnstsw
92 movb %ah, %dh
93 andb $0x45, %ah
94 cmpb $0x40, %ah
95 je 20f // x is ±0
96
97 cmpb $0x05, %ah
98 je 15f // x is ±inf
99
100 fxch // y : x
101
102 /* fistpll raises invalid exception for |y| >= 1L<<63. */
103 fld %st // y : y : x
104 fabs // |y| : y : x
105 fcompl MO(p63) // y : x
106 fnstsw
107 sahf
108 jnc 2f
109
110 /* First see whether `y' is a natural number. In this case we
111 can use a more precise algorithm. */
112 fld %st // y : y : x
113 fistpll (%esp) // y : x
114 fildll (%esp) // int(y) : y : x
115 fucomp %st(1) // y : x
116 fnstsw
117 sahf
118 jne 2f
119
120 /* OK, we have an integer value for y. */
121 popl %eax
122 cfi_adjust_cfa_offset (-4)
123 popl %edx
124 cfi_adjust_cfa_offset (-4)
125 orl $0, %edx
126 fstp %st(0) // x
127 jns 4f // y >= 0, jump
128 fdivrl MO(one) // 1/x (now referred to as x)
129 negl %eax
130 adcl $0, %edx
131 negl %edx
132 4: fldl MO(one) // 1 : x
133 fxch
134
135 6: shrdl $1, %edx, %eax
136 jnc 5f
137 fxch
138 fmul %st(1) // x : ST*x
139 fxch
140 5: fmul %st(0), %st // x*x : ST*x
141 shrl $1, %edx
142 movl %eax, %ecx
143 orl %edx, %ecx
144 jnz 6b
145 fstp %st(0) // ST*x
146 ret
147
148 /* y is ±NAN */
149 30: fldt 4(%esp) // x : y
150 fldl MO(one) // 1.0 : x : y
151 fucomp %st(1) // x : y
152 fnstsw
153 sahf
154 je 31f
155 fxch // y : x
156 31: fstp %st(1)
157 ret
158
159 cfi_adjust_cfa_offset (8)
160 .align ALIGNARG(4)
161 2: /* y is a real number. */
162 fxch // x : y
163 fldl MO(one) // 1.0 : x : y
164 fldl MO(limit) // 0.29 : 1.0 : x : y
165 fld %st(2) // x : 0.29 : 1.0 : x : y
166 fsub %st(2) // x-1 : 0.29 : 1.0 : x : y
167 fabs // |x-1| : 0.29 : 1.0 : x : y
168 fucompp // 1.0 : x : y
169 fnstsw
170 fxch // x : 1.0 : y
171 sahf
172 ja 7f
173 fsub %st(1) // x-1 : 1.0 : y
174 fyl2xp1 // log2(x) : y
175 jmp 8f
176
177 7: fyl2x // log2(x) : y
178 8: fmul %st(1) // y*log2(x) : y
179 fxam
180 fnstsw
181 andb $0x45, %ah
182 cmpb $0x05, %ah // is y*log2(x) == ±inf ?
183 je 28f
184 fst %st(1) // y*log2(x) : y*log2(x)
185 frndint // int(y*log2(x)) : y*log2(x)
186 fsubr %st, %st(1) // int(y*log2(x)) : fract(y*log2(x))
187 fxch // fract(y*log2(x)) : int(y*log2(x))
188 f2xm1 // 2^fract(y*log2(x))-1 : int(y*log2(x))
189 faddl MO(one) // 2^fract(y*log2(x)) : int(y*log2(x))
190 fscale // 2^fract(y*log2(x))*2^int(y*log2(x)) : int(y*log2(x))
191 addl $8, %esp
192 cfi_adjust_cfa_offset (-8)
193 fstp %st(1) // 2^fract(y*log2(x))*2^int(y*log2(x))
194 ret
195
196 cfi_adjust_cfa_offset (8)
197 28: fstp %st(1) // y*log2(x)
198 fldl MO(one) // 1 : y*log2(x)
199 fscale // 2^(y*log2(x)) : y*log2(x)
200 addl $8, %esp
201 cfi_adjust_cfa_offset (-8)
202 fstp %st(1) // 2^(y*log2(x))
203 ret
204
205 // pow(x,±0) = 1
206 .align ALIGNARG(4)
207 11: fstp %st(0) // pop y
208 fldl MO(one)
209 ret
210
211 // y == ±inf
212 .align ALIGNARG(4)
213 12: fstp %st(0) // pop y
214 fldl MO(one) // 1
215 fldt 4(%esp) // x : 1
216 fabs // abs(x) : 1
217 fucompp // < 1, == 1, or > 1
218 fnstsw
219 andb $0x45, %ah
220 cmpb $0x45, %ah
221 je 13f // jump if x is NaN
222
223 cmpb $0x40, %ah
224 je 14f // jump if |x| == 1
225
226 shlb $1, %ah
227 xorb %ah, %dl
228 andl $2, %edx
229 fldl MOX(inf_zero, %edx, 4)
230 ret
231
232 .align ALIGNARG(4)
233 14: fldl MO(one)
234 ret
235
236 .align ALIGNARG(4)
237 13: fldt 4(%esp) // load x == NaN
238 ret
239
240 cfi_adjust_cfa_offset (8)
241 .align ALIGNARG(4)
242 // x is ±inf
243 15: fstp %st(0) // y
244 testb $2, %dh
245 jz 16f // jump if x == +inf
246
247 // We must find out whether y is an odd integer.
248 fld %st // y : y
249 fistpll (%esp) // y
250 fildll (%esp) // int(y) : y
251 fucompp // <empty>
252 fnstsw
253 sahf
254 jne 17f
255
256 // OK, the value is an integer, but is it odd?
257 popl %eax
258 cfi_adjust_cfa_offset (-4)
259 popl %edx
260 cfi_adjust_cfa_offset (-4)
261 andb $1, %al
262 jz 18f // jump if not odd
263 // It's an odd integer.
264 shrl $31, %edx
265 fldl MOX(minf_mzero, %edx, 8)
266 ret
267
268 cfi_adjust_cfa_offset (8)
269 .align ALIGNARG(4)
270 16: fcompl MO(zero)
271 addl $8, %esp
272 cfi_adjust_cfa_offset (-8)
273 fnstsw
274 shrl $5, %eax
275 andl $8, %eax
276 fldl MOX(inf_zero, %eax, 1)
277 ret
278
279 cfi_adjust_cfa_offset (8)
280 .align ALIGNARG(4)
281 17: shll $30, %edx // sign bit for y in right position
282 addl $8, %esp
283 cfi_adjust_cfa_offset (-8)
284 18: shrl $31, %edx
285 fldl MOX(inf_zero, %edx, 8)
286 ret
287
288 cfi_adjust_cfa_offset (8)
289 .align ALIGNARG(4)
290 // x is ±0
291 20: fstp %st(0) // y
292 testb $2, %dl
293 jz 21f // y > 0
294
295 // x is ±0 and y is < 0. We must find out whether y is an odd integer.
296 testb $2, %dh
297 jz 25f
298
299 fld %st // y : y
300 fistpll (%esp) // y
301 fildll (%esp) // int(y) : y
302 fucompp // <empty>
303 fnstsw
304 sahf
305 jne 26f
306
307 // OK, the value is an integer, but is it odd?
308 popl %eax
309 cfi_adjust_cfa_offset (-4)
310 popl %edx
311 cfi_adjust_cfa_offset (-4)
312 andb $1, %al
313 jz 27f // jump if not odd
314 // It's an odd integer.
315 // Raise divide-by-zero exception and get minus infinity value.
316 fldl MO(one)
317 fdivl MO(zero)
318 fchs
319 ret
320
321 cfi_adjust_cfa_offset (8)
322 25: fstp %st(0)
323 26: addl $8, %esp
324 cfi_adjust_cfa_offset (-8)
325 27: // Raise divide-by-zero exception and get infinity value.
326 fldl MO(one)
327 fdivl MO(zero)
328 ret
329
330 cfi_adjust_cfa_offset (8)
331 .align ALIGNARG(4)
332 // x is ±0 and y is > 0. We must find out whether y is an odd integer.
333 21: testb $2, %dh
334 jz 22f
335
336 fld %st // y : y
337 fistpll (%esp) // y
338 fildll (%esp) // int(y) : y
339 fucompp // <empty>
340 fnstsw
341 sahf
342 jne 23f
343
344 // OK, the value is an integer, but is it odd?
345 popl %eax
346 cfi_adjust_cfa_offset (-4)
347 popl %edx
348 cfi_adjust_cfa_offset (-4)
349 andb $1, %al
350 jz 24f // jump if not odd
351 // It's an odd integer.
352 fldl MO(mzero)
353 ret
354
355 cfi_adjust_cfa_offset (8)
356 22: fstp %st(0)
357 23: addl $8, %esp // Don't use 2 x pop
358 cfi_adjust_cfa_offset (-8)
359 24: fldl MO(zero)
360 ret
361
362 END(__ieee754_powl)