]> git.ipfire.org Git - thirdparty/glibc.git/blob - sysdeps/ia64/fpu/e_exp2.S
Remove "Contributed by" lines
[thirdparty/glibc.git] / sysdeps / ia64 / fpu / e_exp2.S
1 .file "exp2.s"
2
3
4 // Copyright (c) 2000 - 2005, Intel Corporation
5 // All rights reserved.
6 //
7 //
8 // Redistribution and use in source and binary forms, with or without
9 // modification, are permitted provided that the following conditions are
10 // met:
11 //
12 // * Redistributions of source code must retain the above copyright
13 // notice, this list of conditions and the following disclaimer.
14 //
15 // * Redistributions in binary form must reproduce the above copyright
16 // notice, this list of conditions and the following disclaimer in the
17 // documentation and/or other materials provided with the distribution.
18 //
19 // * The name of Intel Corporation may not be used to endorse or promote
20 // products derived from this software without specific prior written
21 // permission.
22
23 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
26 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
27 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
28 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
29 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
30 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
31 // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
32 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
33 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34 //
35 // Intel Corporation is the author of this code, and requests that all
36 // problem reports or change requests be submitted to it directly at
37 // http://www.intel.com/software/products/opensource/libraries/num.htm.
38 //
39 // History
40 //==============================================================
41 // 08/25/00 Initial version
42 // 05/20/02 Cleaned up namespace and sf0 syntax
43 // 09/05/02 Improved performance
44 // 01/17/03 Fixed to call error support when x=1024.0
45 // 03/31/05 Reformatted delimiters between data tables
46 //
47 // API
48 //==============================================================
49 // double exp2(double)
50 //
51 // Overview of operation
52 //==============================================================
53 // Background
54 //
55 // Implementation
56 //
57 // Let x= (K + fh + fl + r), where
58 // K is an integer, fh= 0.b1 b2 b3 b4 b5,
59 // fl= 2^{-5}* 0.b6 b7 b8 b8 b10 (fh, fl >= 0),
60 // and |r|<2^{-11}
61 // Th is a table that stores 2^fh (32 entries) rounded to
62 // double extended precision (only mantissa is stored)
63 // Tl is a table that stores 2^fl (32 entries) rounded to
64 // double extended precision (only mantissa is stored)
65 //
66 // 2^x is approximated as
67 // 2^K * Th [ f ] * Tl [ f ] * (1+c1*r+c2*r^2+c3*r^3+c4*r^4)
68
69 // Note: We use the following trick to speed up conversion from FP to integer:
70 //
71 // Let x = K + r, where K is an integer, and |r| <= 0.5
72 // Let N be the number of significand bits for the FP format used
73 // ( N=64 for double-extended, N=53 for double)
74 //
75 // Then let y = 1.5 * 2^(N-1) + x for RN mode
76 // K = y - 1.5 * 2^(N-1)
77 // r = x - K
78 //
79 // If we want to obtain the integer part and the first m fractional bits of x,
80 // we can use the same trick, but with a constant of 1.5 * 2^(N-1-m):
81 //
82 // Let x = K + f + r
83 // f = 0.b_1 b_2 ... b_m
84 // |r| <= 2^(-m-1)
85 //
86 // Then let y = 1.5 * 2^(N-1-m) + x for RN mode
87 // (K+f) = y - 1.5 * 2^(N-1-m)
88 // r = x - K
89
90
91 // Special values
92 //==============================================================
93 // exp2(0)= 1
94 // exp2(+inf)= inf
95 // exp2(-inf)= 0
96 //
97
98 // Registers used
99 //==============================================================
100 // r2-r3, r14-r40
101 // f6-f15, f32-f45
102 // p6-p8, p12
103 //
104
105
106 GR_TBL_START = r2
107 GR_LOG_TBL = r3
108
109 GR_OF_LIMIT = r14
110 GR_UF_LIMIT = r15
111 GR_EXP_CORR = r16
112 GR_F_low = r17
113 GR_F_high = r18
114 GR_K = r19
115 GR_Flow_ADDR = r20
116
117 GR_BIAS = r21
118 GR_Fh = r22
119 GR_Fh_ADDR = r23
120 GR_EXPMAX = r24
121 GR_EMIN = r25
122
123 GR_ROUNDVAL = r26
124 GR_MASK = r27
125 GR_KF0 = r28
126 GR_MASK_low = r29
127 GR_COEFF_START = r30
128
129 GR_SAVE_B0 = r33
130 GR_SAVE_PFS = r34
131 GR_SAVE_GP = r35
132 GR_SAVE_SP = r36
133
134 GR_Parameter_X = r37
135 GR_Parameter_Y = r38
136 GR_Parameter_RESULT = r39
137 GR_Parameter_TAG = r40
138
139
140 FR_X = f10
141 FR_Y = f1
142 FR_RESULT = f8
143
144
145 FR_COEFF1 = f6
146 FR_COEFF2 = f7
147 FR_R = f9
148
149 FR_KF0 = f12
150 FR_COEFF3 = f13
151 FR_COEFF4 = f14
152 FR_UF_LIMIT = f15
153
154 FR_OF_LIMIT = f32
155 FR_EXPMIN = f33
156 FR_ROUNDVAL = f34
157 FR_KF = f35
158
159 FR_2_TO_K = f36
160 FR_T_low = f37
161 FR_T_high = f38
162 FR_P34 = f39
163 FR_R2 = f40
164
165 FR_P12 = f41
166 FR_T_low_K = f42
167 FR_P14 = f43
168 FR_T = f44
169 FR_P = f45
170
171
172 // Data tables
173 //==============================================================
174
175 RODATA
176
177 .align 16
178
179 LOCAL_OBJECT_START(poly_coeffs)
180
181 data8 0x3fac6b08d704a0c0, 0x3f83b2ab6fba4e77 // C_3 and C_4
182 data8 0xb17217f7d1cf79ab, 0x00003ffe // C_1
183 data8 0xf5fdeffc162c7541, 0x00003ffc // C_2
184 LOCAL_OBJECT_END(poly_coeffs)
185
186
187 LOCAL_OBJECT_START(T_table)
188
189 // 2^{0.00000 b6 b7 b8 b9 b10}
190 data8 0x8000000000000000, 0x8016302f17467628
191 data8 0x802c6436d0e04f50, 0x80429c17d77c18ed
192 data8 0x8058d7d2d5e5f6b0, 0x806f17687707a7af
193 data8 0x80855ad965e88b83, 0x809ba2264dada76a
194 data8 0x80b1ed4fd999ab6c, 0x80c83c56b50cf77f
195 data8 0x80de8f3b8b85a0af, 0x80f4e5ff089f763e
196 data8 0x810b40a1d81406d4, 0x81219f24a5baa59d
197 data8 0x813801881d886f7b, 0x814e67cceb90502c
198 data8 0x8164d1f3bc030773, 0x817b3ffd3b2f2e47
199 data8 0x8191b1ea15813bfd, 0x81a827baf7838b78
200 data8 0x81bea1708dde6055, 0x81d51f0b8557ec1c
201 data8 0x81eba08c8ad4536f, 0x820225f44b55b33b
202 data8 0x8218af4373fc25eb, 0x822f3c7ab205c89a
203 data8 0x8245cd9ab2cec048, 0x825c62a423d13f0c
204 data8 0x8272fb97b2a5894c, 0x828998760d01faf3
205 data8 0x82a0393fe0bb0ca8, 0x82b6ddf5dbc35906
206 //
207 // 2^{0.b1 b2 b3 b4 b5}
208 data8 0x8000000000000000, 0x82cd8698ac2ba1d7
209 data8 0x85aac367cc487b14, 0x88980e8092da8527
210 data8 0x8b95c1e3ea8bd6e6, 0x8ea4398b45cd53c0
211 data8 0x91c3d373ab11c336, 0x94f4efa8fef70961
212 data8 0x9837f0518db8a96f, 0x9b8d39b9d54e5538
213 data8 0x9ef5326091a111ad, 0xa27043030c496818
214 data8 0xa5fed6a9b15138ea, 0xa9a15ab4ea7c0ef8
215 data8 0xad583eea42a14ac6, 0xb123f581d2ac258f
216 data8 0xb504f333f9de6484, 0xb8fbaf4762fb9ee9
217 data8 0xbd08a39f580c36be, 0xc12c4cca66709456
218 data8 0xc5672a115506dadd, 0xc9b9bd866e2f27a2
219 data8 0xce248c151f8480e3, 0xd2a81d91f12ae45a
220 data8 0xd744fccad69d6af4, 0xdbfbb797daf23755
221 data8 0xe0ccdeec2a94e111, 0xe5b906e77c8348a8
222 data8 0xeac0c6e7dd24392e, 0xefe4b99bdcdaf5cb
223 data8 0xf5257d152486cc2c, 0xfa83b2db722a033a
224 LOCAL_OBJECT_END(T_table)
225
226
227
228 .section .text
229 WEAK_LIBM_ENTRY(exp2)
230
231
232 {.mfi
233 alloc r32= ar.pfs, 1, 4, 4, 0
234 // will continue only for non-zero normal/denormal numbers
235 fclass.nm p12, p0= f8, 0x1b
236 // GR_TBL_START= pointer to C_1...C_4 followed by T_table
237 addl GR_TBL_START= @ltoff(poly_coeffs), gp
238 }
239 {.mlx
240 mov GR_OF_LIMIT= 0xffff + 10 // Exponent of overflow limit
241 movl GR_ROUNDVAL= 0x5a400000 // 1.5*2^(63-10) (SP)
242 }
243 ;;
244
245 // Form special constant 1.5*2^(63-10) to give integer part and first 10
246 // fractional bits of x
247 {.mfi
248 setf.s FR_ROUNDVAL= GR_ROUNDVAL // Form special constant
249 fcmp.lt.s1 p6, p8= f8, f0 // X<0 ?
250 nop.i 0
251 }
252 {.mfb
253 ld8 GR_COEFF_START= [ GR_TBL_START ] // Load pointer to coeff table
254 nop.f 0
255 (p12) br.cond.spnt SPECIAL_exp2 // Branch if nan, inf, zero
256 }
257 ;;
258
259 {.mlx
260 setf.exp FR_OF_LIMIT= GR_OF_LIMIT // Set overflow limit
261 movl GR_UF_LIMIT= 0xc4866000 // (-2^10-51) = -1075
262 }
263 ;;
264
265 {.mfi
266 ldfpd FR_COEFF3, FR_COEFF4= [ GR_COEFF_START ], 16 // load C_3, C_4
267 fma.s0 f8= f8, f1, f0 // normalize x
268 nop.i 0
269 }
270 ;;
271
272 {.mmi
273 setf.s FR_UF_LIMIT= GR_UF_LIMIT // Set underflow limit
274 ldfe FR_COEFF1= [ GR_COEFF_START ], 16 // load C_1
275 mov GR_EXP_CORR= 0xffff-126
276 }
277 ;;
278
279 {.mfi
280 ldfe FR_COEFF2= [ GR_COEFF_START ], 16 // load C_2
281 fma.s1 FR_KF0= f8, f1, FR_ROUNDVAL // y= x + 1.5*2^(63-10)
282 nop.i 0
283 }
284 ;;
285
286 {.mfi
287 mov GR_MASK= 1023
288 fms.s1 FR_KF= FR_KF0, f1, FR_ROUNDVAL // (K+f)
289 mov GR_MASK_low= 31
290 }
291 ;;
292
293 {.mfi
294 getf.sig GR_KF0= FR_KF0 // (K+f)*2^10= round_to_int(y)
295 fcmp.ge.s1 p12, p7= f8, FR_OF_LIMIT // x >= overflow threshold ?
296 add GR_LOG_TBL= 256, GR_COEFF_START // Pointer to high T_table
297 }
298 ;;
299
300 {.mmi
301 and GR_F_low= GR_KF0, GR_MASK_low // f_low
302 and GR_F_high= GR_MASK, GR_KF0 // f_high*32
303 shr GR_K= GR_KF0, 10 // K
304 }
305 ;;
306
307 {.mmi
308 shladd GR_Flow_ADDR= GR_F_low, 3, GR_COEFF_START // address of 2^{f_low}
309 add GR_BIAS= GR_K, GR_EXP_CORR // K= bias-2*63
310 shr GR_Fh= GR_F_high, 5 // f_high
311 }
312 ;;
313
314 {.mfi
315 setf.exp FR_2_TO_K= GR_BIAS // 2^{K-126}
316 fnma.s1 FR_R= FR_KF, f1, f8 // r= x - (K+f)
317 shladd GR_Fh_ADDR= GR_Fh, 3, GR_LOG_TBL // address of 2^{f_high}
318 }
319 {.mlx
320 ldf8 FR_T_low= [ GR_Flow_ADDR ] // load T_low= 2^{f_low}
321 movl GR_EMIN= 0xc47f8000 // EMIN= -1022
322 }
323 ;;
324
325 {.mfi
326 ldf8 FR_T_high= [ GR_Fh_ADDR ] // load T_high= 2^{f_high}
327 (p7) fcmp.lt.s1 p12, p7= f8, FR_UF_LIMIT // x<underflow threshold ?
328 nop.i 0
329 }
330 ;;
331
332 {.mfi
333 setf.s FR_EXPMIN= GR_EMIN // FR_EXPMIN= EMIN
334 fma.s1 FR_P34= FR_COEFF4, FR_R, FR_COEFF3 // P34= C_3+C_4*r
335 nop.i 0
336 }
337 {.mfb
338 nop.m 0
339 fma.s1 FR_R2= FR_R, FR_R, f0 // r*r
340 (p12) br.cond.spnt OUT_RANGE_exp2
341 }
342 ;;
343
344 {.mfi
345 nop.m 0
346 fma.s1 FR_P12= FR_COEFF2, FR_R, FR_COEFF1 // P12= C_1+C_2*r
347 nop.i 0
348 }
349 ;;
350
351 {.mfi
352 nop.m 0
353 fma.s1 FR_T_low_K= FR_T_low, FR_2_TO_K, f0 // T= 2^{K-126}*T_low
354 nop.i 0
355 }
356 ;;
357
358 {.mfi
359 nop.m 0
360 fma.s1 FR_P14= FR_R2, FR_P34, FR_P12 // P14= P12+r2*P34
361 nop.i 0
362 }
363 ;;
364
365 {.mfi
366 nop.m 0
367 fma.s1 FR_T= FR_T_low_K, FR_T_high, f0 // T= T*T_high
368 nop.i 0
369 }
370 ;;
371
372 {.mfi
373 nop.m 0
374 fcmp.lt.s0 p6, p8= f8, FR_EXPMIN // underflow (x<EMIN) ?
375 nop.i 0
376 }
377 ;;
378
379 {.mfi
380 nop.m 0
381 fma.s1 FR_P= FR_P14, FR_R, f0 // P= P14*r
382 nop.i 0
383 }
384 ;;
385
386 {.mfb
387 nop.m 0
388 fma.d.s0 f8= FR_P, FR_T, FR_T // result= T+T*P
389 (p8) br.ret.sptk b0 // return
390 }
391 ;;
392
393 {.mfb
394 (p6) mov GR_Parameter_TAG= 162
395 nop.f 0
396 (p6) br.cond.sptk __libm_error_region
397 }
398 ;;
399
400
401 SPECIAL_exp2:
402 {.mfi
403 nop.m 0
404 fclass.m p6, p0= f8, 0x22 // x= -Infinity ?
405 nop.i 0
406 }
407 ;;
408
409 {.mfi
410 nop.m 0
411 fclass.m p7, p0= f8, 0x21 // x= +Infinity ?
412 nop.i 0
413 }
414 ;;
415
416 {.mfi
417 nop.m 0
418 fclass.m p8, p0= f8, 0x7 // x= +/-Zero ?
419 nop.i 0
420 }
421 {.mfb
422 nop.m 0
423 (p6) mov f8= f0 // exp2(-Infinity)= 0
424 (p6) br.ret.spnt b0
425 }
426 ;;
427
428 {.mfb
429 nop.m 0
430 nop.f 0
431 (p7) br.ret.spnt b0 // exp2(+Infinity)= +Infinity
432 }
433 ;;
434
435 {.mfb
436 nop.m 0
437 (p8) mov f8= f1 // exp2(+/-0)= 1
438 (p8) br.ret.spnt b0
439 }
440 ;;
441
442 {.mfb
443 nop.m 0
444 fma.d.s0 f8= f8, f1, f0 // Remaining cases: NaNs
445 br.ret.sptk b0
446 }
447 ;;
448
449
450 OUT_RANGE_exp2:
451
452 // overflow: p8= 1
453
454 {.mii
455 (p8) mov GR_EXPMAX= 0x1fffe
456 nop.i 0
457 nop.i 0
458 }
459 ;;
460
461 {.mmb
462 (p8) mov GR_Parameter_TAG= 161
463 (p8) setf.exp FR_R= GR_EXPMAX
464 nop.b 999
465 }
466 ;;
467
468 {.mfi
469 nop.m 999
470 (p8) fma.d.s0 f8= FR_R, FR_R, f0 // Create overflow
471 nop.i 999
472 }
473 // underflow: p6= 1
474 {.mii
475 (p6) mov GR_Parameter_TAG= 162
476 (p6) mov GR_EXPMAX= 1
477 nop.i 0
478 }
479 ;;
480
481 {.mmb
482 nop.m 0
483 (p6) setf.exp FR_R= GR_EXPMAX
484 nop.b 999
485 }
486 ;;
487
488 {.mfb
489 nop.m 999
490 (p6) fma.d.s0 f8= FR_R, FR_R, f0 // Create underflow
491 nop.b 0
492 }
493 ;;
494
495 WEAK_LIBM_END(exp2)
496 libm_alias_double_other (__exp2, exp2)
497 #ifdef SHARED
498 .symver exp2,exp2@@GLIBC_2.29
499 .weak __exp2_compat
500 .set __exp2_compat,__exp2
501 .symver __exp2_compat,exp2@GLIBC_2.2
502 #endif
503
504
505 LOCAL_LIBM_ENTRY(__libm_error_region)
506
507 .prologue
508 {.mfi
509 add GR_Parameter_Y= -32, sp // Parameter 2 value
510 nop.f 0
511 .save ar.pfs, GR_SAVE_PFS
512 mov GR_SAVE_PFS= ar.pfs // Save ar.pfs
513 }
514
515 {.mfi
516 .fframe 64
517 add sp= -64, sp // Create new stack
518 nop.f 0
519 mov GR_SAVE_GP= gp // Save gp
520 }
521 ;;
522
523 {.mmi
524 stfd [ GR_Parameter_Y ]= FR_Y, 16 // STORE Parameter 2 on stack
525 add GR_Parameter_X= 16, sp // Parameter 1 address
526 .save b0, GR_SAVE_B0
527 mov GR_SAVE_B0= b0 // Save b0
528 }
529 ;;
530
531 .body
532 {.mib
533 stfd [ GR_Parameter_X ]= FR_X // STORE Parameter 1 on stack
534 add GR_Parameter_RESULT= 0, GR_Parameter_Y // Parameter 3 address
535 nop.b 0
536 }
537 {.mib
538 stfd [ GR_Parameter_Y ]= FR_RESULT // STORE Parameter 3 on stack
539 add GR_Parameter_Y= -16, GR_Parameter_Y
540 br.call.sptk b0= __libm_error_support# // Call error handling function
541 }
542 ;;
543
544 {.mmi
545 add GR_Parameter_RESULT= 48, sp
546 nop.m 0
547 nop.i 0
548 }
549 ;;
550
551 {.mmi
552 ldfd f8= [ GR_Parameter_RESULT ] // Get return result off stack
553 .restore sp
554 add sp= 64, sp // Restore stack pointer
555 mov b0= GR_SAVE_B0 // Restore return address
556 }
557 ;;
558
559 {.mib
560 mov gp= GR_SAVE_GP // Restore gp
561 mov ar.pfs= GR_SAVE_PFS // Restore ar.pfs
562 br.ret.sptk b0 // Return
563 }
564 ;;
565
566
567 LOCAL_LIBM_END(__libm_error_region)
568
569 .type __libm_error_support#, @function
570 .global __libm_error_support#