]> git.ipfire.org Git - thirdparty/glibc.git/blob - sysdeps/ia64/fpu/e_sinh.S
localedata: dz_BT, bo_CN: convert to UTF-8
[thirdparty/glibc.git] / sysdeps / ia64 / fpu / e_sinh.S
1 .file "sinh.s"
2
3
4 // Copyright (c) 2000 - 2005, Intel Corporation
5 // All rights reserved.
6 //
7 //
8 // Redistribution and use in source and binary forms, with or without
9 // modification, are permitted provided that the following conditions are
10 // met:
11 //
12 // * Redistributions of source code must retain the above copyright
13 // notice, this list of conditions and the following disclaimer.
14 //
15 // * Redistributions in binary form must reproduce the above copyright
16 // notice, this list of conditions and the following disclaimer in the
17 // documentation and/or other materials provided with the distribution.
18 //
19 // * The name of Intel Corporation may not be used to endorse or promote
20 // products derived from this software without specific prior written
21 // permission.
22
23 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
26 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
27 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
28 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
29 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
30 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
31 // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
32 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
33 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34 //
35 // Intel Corporation is the author of this code, and requests that all
36 // problem reports or change requests be submitted to it directly at
37 // http://www.intel.com/software/products/opensource/libraries/num.htm.
38 //
39 // History
40 //==============================================================
41 // 02/02/00 Initial version
42 // 04/04/00 Unwind support added
43 // 08/15/00 Bundle added after call to __libm_error_support to properly
44 // set [the previously overwritten] GR_Parameter_RESULT.
45 // 10/12/00 Update to set denormal operand and underflow flags
46 // 01/22/01 Fixed to set inexact flag for small args.
47 // 05/02/01 Reworked to improve speed of all paths
48 // 05/20/02 Cleaned up namespace and sf0 syntax
49 // 11/20/02 Improved speed with new algorithm
50 // 03/31/05 Reformatted delimiters between data tables
51
52 // API
53 //==============================================================
54 // double sinh(double)
55
56 // Overview of operation
57 //==============================================================
58 // Case 1: 0 < |x| < 2^-60
59 // Result = x, computed by x+sgn(x)*x^2) to handle flags and rounding
60 //
61 // Case 2: 2^-60 < |x| < 0.25
62 // Evaluate sinh(x) by a 13th order polynomial
63 // Care is take for the order of multiplication; and A1 is not exactly 1/3!,
64 // A2 is not exactly 1/5!, etc.
65 // sinh(x) = x + (A1*x^3 + A2*x^5 + A3*x^7 + A4*x^9 + A5*x^11 + A6*x^13)
66 //
67 // Case 3: 0.25 < |x| < 710.47586
68 // Algorithm is based on the identity sinh(x) = ( exp(x) - exp(-x) ) / 2.
69 // The algorithm for exp is described as below. There are a number of
70 // economies from evaluating both exp(x) and exp(-x). Although we
71 // are evaluating both quantities, only where the quantities diverge do we
72 // duplicate the computations. The basic algorithm for exp(x) is described
73 // below.
74 //
75 // Take the input x. w is "how many log2/128 in x?"
76 // w = x * 128/log2
77 // n = int(w)
78 // x = n log2/128 + r + delta
79
80 // n = 128M + index_1 + 2^4 index_2
81 // x = M log2 + (log2/128) index_1 + (log2/8) index_2 + r + delta
82
83 // exp(x) = 2^M 2^(index_1/128) 2^(index_2/8) exp(r) exp(delta)
84 // Construct 2^M
85 // Get 2^(index_1/128) from table_1;
86 // Get 2^(index_2/8) from table_2;
87 // Calculate exp(r) by 5th order polynomial
88 // r = x - n (log2/128)_high
89 // delta = - n (log2/128)_low
90 // Calculate exp(delta) as 1 + delta
91
92
93 // Special values
94 //==============================================================
95 // sinh(+0) = +0
96 // sinh(-0) = -0
97
98 // sinh(+qnan) = +qnan
99 // sinh(-qnan) = -qnan
100 // sinh(+snan) = +qnan
101 // sinh(-snan) = -qnan
102
103 // sinh(-inf) = -inf
104 // sinh(+inf) = +inf
105
106 // Overflow and Underflow
107 //=======================
108 // sinh(x) = largest double normal when
109 // |x| = 710.47586 = 0x408633ce8fb9f87d
110 //
111 // Underflow is handled as described in case 1 above
112
113 // Registers used
114 //==============================================================
115 // Floating Point registers used:
116 // f8, input, output
117 // f6 -> f15, f32 -> f61
118
119 // General registers used:
120 // r14 -> r40
121
122 // Predicate registers used:
123 // p6 -> p15
124
125 // Assembly macros
126 //==============================================================
127
128 rRshf = r14
129 rN_neg = r14
130 rAD_TB1 = r15
131 rAD_TB2 = r16
132 rAD_P = r17
133 rN = r18
134 rIndex_1 = r19
135 rIndex_2_16 = r20
136 rM = r21
137 rBiased_M = r21
138 rSig_inv_ln2 = r22
139 rIndex_1_neg = r22
140 rExp_bias = r23
141 rExp_bias_minus_1 = r23
142 rExp_mask = r24
143 rTmp = r24
144 rGt_ln = r24
145 rIndex_2_16_neg = r24
146 rM_neg = r25
147 rBiased_M_neg = r25
148 rRshf_2to56 = r26
149 rAD_T1_neg = r26
150 rExp_2tom56 = r28
151 rAD_T2_neg = r28
152 rAD_T1 = r29
153 rAD_T2 = r30
154 rSignexp_x = r31
155 rExp_x = r31
156
157 GR_SAVE_B0 = r33
158 GR_SAVE_PFS = r34
159 GR_SAVE_GP = r35
160
161 GR_Parameter_X = r37
162 GR_Parameter_Y = r38
163 GR_Parameter_RESULT = r39
164 GR_Parameter_TAG = r40
165
166
167 FR_X = f10
168 FR_Y = f1
169 FR_RESULT = f8
170
171 fRSHF_2TO56 = f6
172 fINV_LN2_2TO63 = f7
173 fW_2TO56_RSH = f9
174 f2TOM56 = f11
175 fP5 = f12
176 fP4 = f13
177 fP3 = f14
178 fP2 = f15
179
180 fLn2_by_128_hi = f33
181 fLn2_by_128_lo = f34
182
183 fRSHF = f35
184 fNfloat = f36
185 fNormX = f37
186 fR = f38
187 fF = f39
188
189 fRsq = f40
190 f2M = f41
191 fS1 = f42
192 fT1 = f42
193 fS2 = f43
194 fT2 = f43
195 fS = f43
196 fWre_urm_f8 = f44
197 fAbsX = f44
198
199 fMIN_DBL_OFLOW_ARG = f45
200 fMAX_DBL_NORM_ARG = f46
201 fXsq = f47
202 fX4 = f48
203 fGt_pln = f49
204 fTmp = f49
205
206 fP54 = f50
207 fP5432 = f50
208 fP32 = f51
209 fP = f52
210 fP54_neg = f53
211 fP5432_neg = f53
212 fP32_neg = f54
213 fP_neg = f55
214 fF_neg = f56
215
216 f2M_neg = f57
217 fS1_neg = f58
218 fT1_neg = f58
219 fS2_neg = f59
220 fT2_neg = f59
221 fS_neg = f59
222 fExp = f60
223 fExp_neg = f61
224
225 fA6 = f50
226 fA65 = f50
227 fA6543 = f50
228 fA654321 = f50
229 fA5 = f51
230 fA4 = f52
231 fA43 = f52
232 fA3 = f53
233 fA2 = f54
234 fA21 = f54
235 fA1 = f55
236 fX3 = f56
237
238 // Data tables
239 //==============================================================
240
241 RODATA
242 .align 16
243
244 // ************* DO NOT CHANGE ORDER OF THESE TABLES ********************
245
246 // double-extended 1/ln(2)
247 // 3fff b8aa 3b29 5c17 f0bb be87fed0691d3e88
248 // 3fff b8aa 3b29 5c17 f0bc
249 // For speed the significand will be loaded directly with a movl and setf.sig
250 // and the exponent will be bias+63 instead of bias+0. Thus subsequent
251 // computations need to scale appropriately.
252 // The constant 128/ln(2) is needed for the computation of w. This is also
253 // obtained by scaling the computations.
254 //
255 // Two shifting constants are loaded directly with movl and setf.d.
256 // 1. fRSHF_2TO56 = 1.1000..00 * 2^(63-7)
257 // This constant is added to x*1/ln2 to shift the integer part of
258 // x*128/ln2 into the rightmost bits of the significand.
259 // The result of this fma is fW_2TO56_RSH.
260 // 2. fRSHF = 1.1000..00 * 2^(63)
261 // This constant is subtracted from fW_2TO56_RSH * 2^(-56) to give
262 // the integer part of w, n, as a floating-point number.
263 // The result of this fms is fNfloat.
264
265
266 LOCAL_OBJECT_START(exp_table_1)
267 data8 0x408633ce8fb9f87e // smallest dbl overflow arg
268 data8 0x408633ce8fb9f87d // largest dbl arg to give normal dbl result
269 data8 0xb17217f7d1cf79ab , 0x00003ff7 // ln2/128 hi
270 data8 0xc9e3b39803f2f6af , 0x00003fb7 // ln2/128 lo
271 //
272 // Table 1 is 2^(index_1/128) where
273 // index_1 goes from 0 to 15
274 //
275 data8 0x8000000000000000 , 0x00003FFF
276 data8 0x80B1ED4FD999AB6C , 0x00003FFF
277 data8 0x8164D1F3BC030773 , 0x00003FFF
278 data8 0x8218AF4373FC25EC , 0x00003FFF
279 data8 0x82CD8698AC2BA1D7 , 0x00003FFF
280 data8 0x8383594EEFB6EE37 , 0x00003FFF
281 data8 0x843A28C3ACDE4046 , 0x00003FFF
282 data8 0x84F1F656379C1A29 , 0x00003FFF
283 data8 0x85AAC367CC487B15 , 0x00003FFF
284 data8 0x8664915B923FBA04 , 0x00003FFF
285 data8 0x871F61969E8D1010 , 0x00003FFF
286 data8 0x87DB357FF698D792 , 0x00003FFF
287 data8 0x88980E8092DA8527 , 0x00003FFF
288 data8 0x8955EE03618E5FDD , 0x00003FFF
289 data8 0x8A14D575496EFD9A , 0x00003FFF
290 data8 0x8AD4C6452C728924 , 0x00003FFF
291 LOCAL_OBJECT_END(exp_table_1)
292
293 // Table 2 is 2^(index_1/8) where
294 // index_2 goes from 0 to 7
295 LOCAL_OBJECT_START(exp_table_2)
296 data8 0x8000000000000000 , 0x00003FFF
297 data8 0x8B95C1E3EA8BD6E7 , 0x00003FFF
298 data8 0x9837F0518DB8A96F , 0x00003FFF
299 data8 0xA5FED6A9B15138EA , 0x00003FFF
300 data8 0xB504F333F9DE6484 , 0x00003FFF
301 data8 0xC5672A115506DADD , 0x00003FFF
302 data8 0xD744FCCAD69D6AF4 , 0x00003FFF
303 data8 0xEAC0C6E7DD24392F , 0x00003FFF
304 LOCAL_OBJECT_END(exp_table_2)
305
306
307 LOCAL_OBJECT_START(exp_p_table)
308 data8 0x3f8111116da21757 //P5
309 data8 0x3fa55555d787761c //P4
310 data8 0x3fc5555555555414 //P3
311 data8 0x3fdffffffffffd6a //P2
312 LOCAL_OBJECT_END(exp_p_table)
313
314 LOCAL_OBJECT_START(sinh_p_table)
315 data8 0xB08AF9AE78C1239F, 0x00003FDE // A6
316 data8 0xB8EF1D28926D8891, 0x00003FEC // A4
317 data8 0x8888888888888412, 0x00003FF8 // A2
318 data8 0xD732377688025BE9, 0x00003FE5 // A5
319 data8 0xD00D00D00D4D39F2, 0x00003FF2 // A3
320 data8 0xAAAAAAAAAAAAAAAB, 0x00003FFC // A1
321 LOCAL_OBJECT_END(sinh_p_table)
322
323
324 .section .text
325 GLOBAL_IEEE754_ENTRY(sinh)
326
327 { .mlx
328 getf.exp rSignexp_x = f8 // Must recompute if x unorm
329 movl rSig_inv_ln2 = 0xb8aa3b295c17f0bc // significand of 1/ln2
330 }
331 { .mlx
332 addl rAD_TB1 = @ltoff(exp_table_1), gp
333 movl rRshf_2to56 = 0x4768000000000000 // 1.10000 2^(63+56)
334 }
335 ;;
336
337 { .mfi
338 ld8 rAD_TB1 = [rAD_TB1]
339 fclass.m p6,p0 = f8,0x0b // Test for x=unorm
340 mov rExp_mask = 0x1ffff
341 }
342 { .mfi
343 mov rExp_bias = 0xffff
344 fnorm.s1 fNormX = f8
345 mov rExp_2tom56 = 0xffff-56
346 }
347 ;;
348
349 // Form two constants we need
350 // 1/ln2 * 2^63 to compute w = x * 1/ln2 * 128
351 // 1.1000..000 * 2^(63+63-7) to right shift int(w) into the significand
352
353 { .mfi
354 setf.sig fINV_LN2_2TO63 = rSig_inv_ln2 // form 1/ln2 * 2^63
355 fclass.m p8,p0 = f8,0x07 // Test for x=0
356 nop.i 999
357 }
358 { .mlx
359 setf.d fRSHF_2TO56 = rRshf_2to56 // Form const 1.100 * 2^(63+56)
360 movl rRshf = 0x43e8000000000000 // 1.10000 2^63 for right shift
361 }
362 ;;
363
364 { .mfi
365 ldfpd fMIN_DBL_OFLOW_ARG, fMAX_DBL_NORM_ARG = [rAD_TB1],16
366 fclass.m p10,p0 = f8,0x1e3 // Test for x=inf, nan, NaT
367 nop.i 0
368 }
369 { .mfb
370 setf.exp f2TOM56 = rExp_2tom56 // form 2^-56 for scaling Nfloat
371 nop.f 0
372 (p6) br.cond.spnt SINH_UNORM // Branch if x=unorm
373 }
374 ;;
375
376 SINH_COMMON:
377 { .mfi
378 ldfe fLn2_by_128_hi = [rAD_TB1],16
379 nop.f 0
380 nop.i 0
381 }
382 { .mfb
383 setf.d fRSHF = rRshf // Form right shift const 1.100 * 2^63
384 nop.f 0
385 (p8) br.ret.spnt b0 // Exit for x=0, result=x
386 }
387 ;;
388
389 { .mfi
390 ldfe fLn2_by_128_lo = [rAD_TB1],16
391 nop.f 0
392 nop.i 0
393 }
394 { .mfb
395 and rExp_x = rExp_mask, rSignexp_x // Biased exponent of x
396 (p10) fma.d.s0 f8 = f8,f1,f0 // Result if x=inf, nan, NaT
397 (p10) br.ret.spnt b0 // quick exit for x=inf, nan, NaT
398 }
399 ;;
400
401 // After that last load rAD_TB1 points to the beginning of table 1
402 { .mfi
403 nop.m 0
404 fcmp.eq.s0 p6,p0 = f8, f0 // Dummy to set D
405 sub rExp_x = rExp_x, rExp_bias // True exponent of x
406 }
407 ;;
408
409 { .mfi
410 nop.m 0
411 fmerge.s fAbsX = f0, fNormX // Form |x|
412 nop.i 0
413 }
414 { .mfb
415 cmp.gt p7, p0 = -2, rExp_x // Test |x| < 2^(-2)
416 fma.s1 fXsq = fNormX, fNormX, f0 // x*x for small path
417 (p7) br.cond.spnt SINH_SMALL // Branch if 0 < |x| < 2^-2
418 }
419 ;;
420
421 // W = X * Inv_log2_by_128
422 // By adding 1.10...0*2^63 we shift and get round_int(W) in significand.
423 // We actually add 1.10...0*2^56 to X * Inv_log2 to do the same thing.
424
425 { .mfi
426 add rAD_P = 0x180, rAD_TB1
427 fma.s1 fW_2TO56_RSH = fNormX, fINV_LN2_2TO63, fRSHF_2TO56
428 add rAD_TB2 = 0x100, rAD_TB1
429 }
430 ;;
431
432 // Divide arguments into the following categories:
433 // Certain Safe - 0.25 <= |x| <= MAX_DBL_NORM_ARG
434 // Possible Overflow p14 - MAX_DBL_NORM_ARG < |x| < MIN_DBL_OFLOW_ARG
435 // Certain Overflow p15 - MIN_DBL_OFLOW_ARG <= |x| < +inf
436 //
437 // If the input is really a double arg, then there will never be
438 // "Possible Overflow" arguments.
439 //
440
441 { .mfi
442 ldfpd fP5, fP4 = [rAD_P] ,16
443 fcmp.ge.s1 p15,p14 = fAbsX,fMIN_DBL_OFLOW_ARG
444 nop.i 0
445 }
446 ;;
447
448 // Nfloat = round_int(W)
449 // The signficand of fW_2TO56_RSH contains the rounded integer part of W,
450 // as a twos complement number in the lower bits (that is, it may be negative).
451 // That twos complement number (called N) is put into rN.
452
453 // Since fW_2TO56_RSH is scaled by 2^56, it must be multiplied by 2^-56
454 // before the shift constant 1.10000 * 2^63 is subtracted to yield fNfloat.
455 // Thus, fNfloat contains the floating point version of N
456
457 { .mfi
458 ldfpd fP3, fP2 = [rAD_P]
459 (p14) fcmp.gt.unc.s1 p14,p0 = fAbsX,fMAX_DBL_NORM_ARG
460 nop.i 0
461 }
462 { .mfb
463 nop.m 0
464 fms.s1 fNfloat = fW_2TO56_RSH, f2TOM56, fRSHF
465 (p15) br.cond.spnt SINH_CERTAIN_OVERFLOW
466 }
467 ;;
468
469 { .mfi
470 getf.sig rN = fW_2TO56_RSH
471 nop.f 0
472 mov rExp_bias_minus_1 = 0xfffe
473 }
474 ;;
475
476 // rIndex_1 has index_1
477 // rIndex_2_16 has index_2 * 16
478 // rBiased_M has M
479
480 // rM has true M
481 // r = x - Nfloat * ln2_by_128_hi
482 // f = 1 - Nfloat * ln2_by_128_lo
483 { .mfi
484 and rIndex_1 = 0x0f, rN
485 fnma.s1 fR = fNfloat, fLn2_by_128_hi, fNormX
486 shr rM = rN, 0x7
487 }
488 { .mfi
489 and rIndex_2_16 = 0x70, rN
490 fnma.s1 fF = fNfloat, fLn2_by_128_lo, f1
491 sub rN_neg = r0, rN
492 }
493 ;;
494
495 { .mmi
496 and rIndex_1_neg = 0x0f, rN_neg
497 add rBiased_M = rExp_bias_minus_1, rM
498 shr rM_neg = rN_neg, 0x7
499 }
500 { .mmi
501 and rIndex_2_16_neg = 0x70, rN_neg
502 add rAD_T2 = rAD_TB2, rIndex_2_16
503 shladd rAD_T1 = rIndex_1, 4, rAD_TB1
504 }
505 ;;
506
507 // rAD_T1 has address of T1
508 // rAD_T2 has address if T2
509
510 { .mmi
511 setf.exp f2M = rBiased_M
512 ldfe fT2 = [rAD_T2]
513 nop.i 0
514 }
515 { .mmi
516 add rBiased_M_neg = rExp_bias_minus_1, rM_neg
517 add rAD_T2_neg = rAD_TB2, rIndex_2_16_neg
518 shladd rAD_T1_neg = rIndex_1_neg, 4, rAD_TB1
519 }
520 ;;
521
522 // Create Scale = 2^M
523 // Load T1 and T2
524 { .mmi
525 ldfe fT1 = [rAD_T1]
526 nop.m 0
527 nop.i 0
528 }
529 { .mmf
530 setf.exp f2M_neg = rBiased_M_neg
531 ldfe fT2_neg = [rAD_T2_neg]
532 fma.s1 fF_neg = fNfloat, fLn2_by_128_lo, f1
533 }
534 ;;
535
536 { .mfi
537 nop.m 0
538 fma.s1 fRsq = fR, fR, f0
539 nop.i 0
540 }
541 { .mfi
542 ldfe fT1_neg = [rAD_T1_neg]
543 fma.s1 fP54 = fR, fP5, fP4
544 nop.i 0
545 }
546 ;;
547
548 { .mfi
549 nop.m 0
550 fma.s1 fP32 = fR, fP3, fP2
551 nop.i 0
552 }
553 { .mfi
554 nop.m 0
555 fnma.s1 fP54_neg = fR, fP5, fP4
556 nop.i 0
557 }
558 ;;
559
560 { .mfi
561 nop.m 0
562 fnma.s1 fP32_neg = fR, fP3, fP2
563 nop.i 0
564 }
565 ;;
566
567 { .mfi
568 nop.m 0
569 fma.s1 fP5432 = fRsq, fP54, fP32
570 nop.i 0
571 }
572 { .mfi
573 nop.m 0
574 fma.s1 fS2 = fF,fT2,f0
575 nop.i 0
576 }
577 ;;
578
579 { .mfi
580 nop.m 0
581 fma.s1 fS1 = f2M,fT1,f0
582 nop.i 0
583 }
584 { .mfi
585 nop.m 0
586 fma.s1 fP5432_neg = fRsq, fP54_neg, fP32_neg
587 nop.i 0
588 }
589 ;;
590
591 { .mfi
592 nop.m 0
593 fma.s1 fS1_neg = f2M_neg,fT1_neg,f0
594 nop.i 0
595 }
596 { .mfi
597 nop.m 0
598 fma.s1 fS2_neg = fF_neg,fT2_neg,f0
599 nop.i 0
600 }
601 ;;
602
603 { .mfi
604 nop.m 0
605 fma.s1 fP = fRsq, fP5432, fR
606 nop.i 0
607 }
608 { .mfi
609 nop.m 0
610 fma.s1 fS = fS1,fS2,f0
611 nop.i 0
612 }
613 ;;
614
615 { .mfi
616 nop.m 0
617 fms.s1 fP_neg = fRsq, fP5432_neg, fR
618 nop.i 0
619 }
620 { .mfi
621 nop.m 0
622 fma.s1 fS_neg = fS1_neg,fS2_neg,f0
623 nop.i 0
624 }
625 ;;
626
627 { .mfb
628 nop.m 0
629 fmpy.s0 fTmp = fLn2_by_128_lo, fLn2_by_128_lo // Force inexact
630 (p14) br.cond.spnt SINH_POSSIBLE_OVERFLOW
631 }
632 ;;
633
634 { .mfi
635 nop.m 0
636 fma.s1 fExp = fS, fP, fS
637 nop.i 0
638 }
639 { .mfi
640 nop.m 0
641 fma.s1 fExp_neg = fS_neg, fP_neg, fS_neg
642 nop.i 0
643 }
644 ;;
645
646 { .mfb
647 nop.m 0
648 fms.d.s0 f8 = fExp, f1, fExp_neg
649 br.ret.sptk b0 // Normal path exit
650 }
651 ;;
652
653 // Here if 0 < |x| < 0.25
654 SINH_SMALL:
655 { .mfi
656 add rAD_T1 = 0x1a0, rAD_TB1
657 fcmp.lt.s1 p7, p8 = fNormX, f0 // Test sign of x
658 cmp.gt p6, p0 = -60, rExp_x // Test |x| < 2^(-60)
659 }
660 { .mfi
661 add rAD_T2 = 0x1d0, rAD_TB1
662 nop.f 0
663 nop.i 0
664 }
665 ;;
666
667 { .mmb
668 ldfe fA6 = [rAD_T1],16
669 ldfe fA5 = [rAD_T2],16
670 (p6) br.cond.spnt SINH_VERY_SMALL // Branch if |x| < 2^(-60)
671 }
672 ;;
673
674 { .mmi
675 ldfe fA4 = [rAD_T1],16
676 ldfe fA3 = [rAD_T2],16
677 nop.i 0
678 }
679 ;;
680
681 { .mmi
682 ldfe fA2 = [rAD_T1]
683 ldfe fA1 = [rAD_T2]
684 nop.i 0
685 }
686 ;;
687
688 { .mfi
689 nop.m 0
690 fma.s1 fX3 = fNormX, fXsq, f0
691 nop.i 0
692 }
693 { .mfi
694 nop.m 0
695 fma.s1 fX4 = fXsq, fXsq, f0
696 nop.i 0
697 }
698 ;;
699
700 { .mfi
701 nop.m 0
702 fma.s1 fA65 = fXsq, fA6, fA5
703 nop.i 0
704 }
705 { .mfi
706 nop.m 0
707 fma.s1 fA43 = fXsq, fA4, fA3
708 nop.i 0
709 }
710 ;;
711
712 { .mfi
713 nop.m 0
714 fma.s1 fA21 = fXsq, fA2, fA1
715 nop.i 0
716 }
717 ;;
718
719 { .mfi
720 nop.m 0
721 fma.s1 fA6543 = fX4, fA65, fA43
722 nop.i 0
723 }
724 ;;
725
726 { .mfi
727 nop.m 0
728 fma.s1 fA654321 = fX4, fA6543, fA21
729 nop.i 0
730 }
731 ;;
732
733 // Dummy multiply to generate inexact
734 { .mfi
735 nop.m 0
736 fmpy.s0 fTmp = fA6, fA6
737 nop.i 0
738 }
739 { .mfb
740 nop.m 0
741 fma.d.s0 f8 = fA654321, fX3, fNormX
742 br.ret.sptk b0 // Exit if 2^-60 < |x| < 0.25
743 }
744 ;;
745
746 SINH_VERY_SMALL:
747 // Here if 0 < |x| < 2^-60
748 // Compute result by x + sgn(x)*x^2 to get properly rounded result
749 .pred.rel "mutex",p7,p8
750 { .mfi
751 nop.m 0
752 (p7) fnma.d.s0 f8 = fNormX, fNormX, fNormX // If x<0 result ~ x-x^2
753 nop.i 0
754 }
755 { .mfb
756 nop.m 0
757 (p8) fma.d.s0 f8 = fNormX, fNormX, fNormX // If x>0 result ~ x+x^2
758 br.ret.sptk b0 // Exit if |x| < 2^-60
759 }
760 ;;
761
762
763 SINH_POSSIBLE_OVERFLOW:
764
765 // Here if fMAX_DBL_NORM_ARG < |x| < fMIN_DBL_OFLOW_ARG
766 // This cannot happen if input is a double, only if input higher precision.
767 // Overflow is a possibility, not a certainty.
768
769 // Recompute result using status field 2 with user's rounding mode,
770 // and wre set. If result is larger than largest double, then we have
771 // overflow
772
773 { .mfi
774 mov rGt_ln = 0x103ff // Exponent for largest dbl + 1 ulp
775 fsetc.s2 0x7F,0x42 // Get user's round mode, set wre
776 nop.i 0
777 }
778 ;;
779
780 { .mfi
781 setf.exp fGt_pln = rGt_ln // Create largest double + 1 ulp
782 fma.d.s2 fWre_urm_f8 = fS, fP, fS // Result with wre set
783 nop.i 0
784 }
785 ;;
786
787 { .mfi
788 nop.m 0
789 fsetc.s2 0x7F,0x40 // Turn off wre in sf2
790 nop.i 0
791 }
792 ;;
793
794 { .mfi
795 nop.m 0
796 fcmp.ge.s1 p6, p0 = fWre_urm_f8, fGt_pln // Test for overflow
797 nop.i 0
798 }
799 ;;
800
801 { .mfb
802 nop.m 0
803 nop.f 0
804 (p6) br.cond.spnt SINH_CERTAIN_OVERFLOW // Branch if overflow
805 }
806 ;;
807
808 { .mfb
809 nop.m 0
810 fma.d.s0 f8 = fS, fP, fS
811 br.ret.sptk b0 // Exit if really no overflow
812 }
813 ;;
814
815 SINH_CERTAIN_OVERFLOW:
816 { .mfi
817 sub rTmp = rExp_mask, r0, 1
818 fcmp.lt.s1 p6, p7 = fNormX, f0 // Test for x < 0
819 nop.i 0
820 }
821 ;;
822
823 { .mmf
824 alloc r32=ar.pfs,1,4,4,0
825 setf.exp fTmp = rTmp
826 fmerge.s FR_X = f8,f8
827 }
828 ;;
829
830 { .mfi
831 mov GR_Parameter_TAG = 127
832 (p6) fnma.d.s0 FR_RESULT = fTmp, fTmp, f0 // Set I,O and -INF result
833 nop.i 0
834 }
835 { .mfb
836 nop.m 0
837 (p7) fma.d.s0 FR_RESULT = fTmp, fTmp, f0 // Set I,O and +INF result
838 br.cond.sptk __libm_error_region
839 }
840 ;;
841
842 // Here if x unorm
843 SINH_UNORM:
844 { .mfb
845 getf.exp rSignexp_x = fNormX // Must recompute if x unorm
846 fcmp.eq.s0 p6, p0 = f8, f0 // Set D flag
847 br.cond.sptk SINH_COMMON
848 }
849 ;;
850
851 GLOBAL_IEEE754_END(sinh)
852 libm_alias_double_other (__sinh, sinh)
853
854
855 LOCAL_LIBM_ENTRY(__libm_error_region)
856 .prologue
857 { .mfi
858 add GR_Parameter_Y=-32,sp // Parameter 2 value
859 nop.f 0
860 .save ar.pfs,GR_SAVE_PFS
861 mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
862 }
863 { .mfi
864 .fframe 64
865 add sp=-64,sp // Create new stack
866 nop.f 0
867 mov GR_SAVE_GP=gp // Save gp
868 };;
869 { .mmi
870 stfd [GR_Parameter_Y] = FR_Y,16 // STORE Parameter 2 on stack
871 add GR_Parameter_X = 16,sp // Parameter 1 address
872 .save b0, GR_SAVE_B0
873 mov GR_SAVE_B0=b0 // Save b0
874 };;
875 .body
876 { .mib
877 stfd [GR_Parameter_X] = FR_X // STORE Parameter 1 on stack
878 add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
879 nop.b 0
880 }
881 { .mib
882 stfd [GR_Parameter_Y] = FR_RESULT // STORE Parameter 3 on stack
883 add GR_Parameter_Y = -16,GR_Parameter_Y
884 br.call.sptk b0=__libm_error_support# // Call error handling function
885 };;
886 { .mmi
887 add GR_Parameter_RESULT = 48,sp
888 nop.m 0
889 nop.i 0
890 };;
891 { .mmi
892 ldfd f8 = [GR_Parameter_RESULT] // Get return result off stack
893 .restore sp
894 add sp = 64,sp // Restore stack pointer
895 mov b0 = GR_SAVE_B0 // Restore return address
896 };;
897 { .mib
898 mov gp = GR_SAVE_GP // Restore gp
899 mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
900 br.ret.sptk b0 // Return
901 };;
902
903 LOCAL_LIBM_END(__libm_error_region)
904 .type __libm_error_support#,@function
905 .global __libm_error_support#