]> git.ipfire.org Git - thirdparty/glibc.git/blob - sysdeps/ia64/fpu/e_sinhf.S
Remove "Contributed by" lines
[thirdparty/glibc.git] / sysdeps / ia64 / fpu / e_sinhf.S
1 .file "sinhf.s"
2
3
4 // Copyright (c) 2000 - 2005, Intel Corporation
5 // All rights reserved.
6 //
7 //
8 // Redistribution and use in source and binary forms, with or without
9 // modification, are permitted provided that the following conditions are
10 // met:
11 //
12 // * Redistributions of source code must retain the above copyright
13 // notice, this list of conditions and the following disclaimer.
14 //
15 // * Redistributions in binary form must reproduce the above copyright
16 // notice, this list of conditions and the following disclaimer in the
17 // documentation and/or other materials provided with the distribution.
18 //
19 // * The name of Intel Corporation may not be used to endorse or promote
20 // products derived from this software without specific prior written
21 // permission.
22
23 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
26 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
27 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
28 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
29 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
30 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
31 // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
32 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
33 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34 //
35 // Intel Corporation is the author of this code, and requests that all
36 // problem reports or change requests be submitted to it directly at
37 // http://www.intel.com/software/products/opensource/libraries/num.htm.
38
39 // History
40 //*********************************************************************
41 // 02/02/00 Initial version
42 // 04/04/00 Unwind support added
43 // 08/15/00 Bundle added after call to __libm_error_support to properly
44 // set [the previously overwritten] GR_Parameter_RESULT.
45 // 10/12/00 Update to set denormal operand and underflow flags
46 // 01/22/01 Fixed to set inexact flag for small args.
47 // 05/02/01 Reworked to improve speed of all paths
48 // 05/20/02 Cleaned up namespace and sf0 syntax
49 // 11/20/02 Improved algorithm based on expf
50 // 03/31/05 Reformatted delimiters between data tables
51 //
52 // API
53 //*********************************************************************
54 // float sinhf(float)
55 //
56 // Overview of operation
57 //*********************************************************************
58 // Case 1: 0 < |x| < 2^-60
59 // Result = x, computed by x+sgn(x)*x^2) to handle flags and rounding
60 //
61 // Case 2: 2^-60 < |x| < 0.25
62 // Evaluate sinh(x) by a 9th order polynomial
63 // Care is take for the order of multiplication; and A2 is not exactly 1/5!,
64 // A3 is not exactly 1/7!, etc.
65 // sinh(x) = x + (A1*x^3 + A2*x^5 + A3*x^7 + A4*x^9)
66 //
67 // Case 3: 0.25 < |x| < 89.41598
68 // Algorithm is based on the identity sinh(x) = ( exp(x) - exp(-x) ) / 2.
69 // The algorithm for exp is described as below. There are a number of
70 // economies from evaluating both exp(x) and exp(-x). Although we
71 // are evaluating both quantities, only where the quantities diverge do we
72 // duplicate the computations. The basic algorithm for exp(x) is described
73 // below.
74 //
75 // Take the input x. w is "how many log2/128 in x?"
76 // w = x * 64/log2
77 // NJ = int(w)
78 // x = NJ*log2/64 + R
79
80 // NJ = 64*n + j
81 // x = n*log2 + (log2/64)*j + R
82 //
83 // So, exp(x) = 2^n * 2^(j/64)* exp(R)
84 //
85 // T = 2^n * 2^(j/64)
86 // Construct 2^n
87 // Get 2^(j/64) table
88 // actually all the entries of 2^(j/64) table are stored in DP and
89 // with exponent bits set to 0 -> multiplication on 2^n can be
90 // performed by doing logical "or" operation with bits presenting 2^n
91
92 // exp(R) = 1 + (exp(R) - 1)
93 // P = exp(R) - 1 approximated by Taylor series of 3rd degree
94 // P = A3*R^3 + A2*R^2 + R, A3 = 1/6, A2 = 1/2
95 //
96
97 // The final result is reconstructed as follows
98 // exp(x) = T + T*P
99
100 // Special values
101 //*********************************************************************
102 // sinhf(+0) = +0
103 // sinhf(-0) = -0
104
105 // sinhf(+qnan) = +qnan
106 // sinhf(-qnan) = -qnan
107 // sinhf(+snan) = +qnan
108 // sinhf(-snan) = -qnan
109
110 // sinhf(-inf) = -inf
111 // sinhf(+inf) = +inf
112
113 // Overflow and Underflow
114 //*********************************************************************
115 // sinhf(x) = largest single normal when
116 // x = 89.41598 = 0x42b2d4fc
117 //
118 // Underflow is handled as described in case 1 above
119
120 // Registers used
121 //*********************************************************************
122 // Floating Point registers used:
123 // f8 input, output
124 // f6,f7, f9 -> f15, f32 -> f45
125
126 // General registers used:
127 // r2, r3, r16 -> r38
128
129 // Predicate registers used:
130 // p6 -> p15
131
132 // Assembly macros
133 //*********************************************************************
134 // integer registers used
135 // scratch
136 rNJ = r2
137 rNJ_neg = r3
138
139 rJ_neg = r16
140 rN_neg = r17
141 rSignexp_x = r18
142 rExp_x = r18
143 rExp_mask = r19
144 rExp_bias = r20
145 rAd1 = r21
146 rAd2 = r22
147 rJ = r23
148 rN = r24
149 rTblAddr = r25
150 rA3 = r26
151 rExpHalf = r27
152 rLn2Div64 = r28
153 rGt_ln = r29
154 r17ones_m1 = r29
155 rRightShifter = r30
156 rJ_mask = r30
157 r64DivLn2 = r31
158 rN_mask = r31
159 // stacked
160 GR_SAVE_PFS = r32
161 GR_SAVE_B0 = r33
162 GR_SAVE_GP = r34
163 GR_Parameter_X = r35
164 GR_Parameter_Y = r36
165 GR_Parameter_RESULT = r37
166 GR_Parameter_TAG = r38
167
168 // floating point registers used
169 FR_X = f10
170 FR_Y = f1
171 FR_RESULT = f8
172 // scratch
173 fRightShifter = f6
174 f64DivLn2 = f7
175 fNormX = f9
176 fNint = f10
177 fN = f11
178 fR = f12
179 fLn2Div64 = f13
180 fA2 = f14
181 fA3 = f15
182 // stacked
183 fP = f32
184 fT = f33
185 fMIN_SGL_OFLOW_ARG = f34
186 fMAX_SGL_NORM_ARG = f35
187 fRSqr = f36
188 fA1 = f37
189 fA21 = f37
190 fA4 = f38
191 fA43 = f38
192 fA4321 = f38
193 fX4 = f39
194 fTmp = f39
195 fGt_pln = f39
196 fWre_urm_f8 = f40
197 fXsq = f40
198 fP_neg = f41
199 fX3 = f41
200 fT_neg = f42
201 fExp = f43
202 fExp_neg = f44
203 fAbsX = f45
204
205
206 RODATA
207 .align 16
208
209 LOCAL_OBJECT_START(_sinhf_table)
210 data4 0x42b2d4fd // Smallest single arg to overflow single result
211 data4 0x42b2d4fc // Largest single arg to give normal single result
212 data4 0x00000000 // pad
213 data4 0x00000000 // pad
214 //
215 // 2^(j/64) table, j goes from 0 to 63
216 data8 0x0000000000000000 // 2^(0/64)
217 data8 0x00002C9A3E778061 // 2^(1/64)
218 data8 0x000059B0D3158574 // 2^(2/64)
219 data8 0x0000874518759BC8 // 2^(3/64)
220 data8 0x0000B5586CF9890F // 2^(4/64)
221 data8 0x0000E3EC32D3D1A2 // 2^(5/64)
222 data8 0x00011301D0125B51 // 2^(6/64)
223 data8 0x0001429AAEA92DE0 // 2^(7/64)
224 data8 0x000172B83C7D517B // 2^(8/64)
225 data8 0x0001A35BEB6FCB75 // 2^(9/64)
226 data8 0x0001D4873168B9AA // 2^(10/64)
227 data8 0x0002063B88628CD6 // 2^(11/64)
228 data8 0x0002387A6E756238 // 2^(12/64)
229 data8 0x00026B4565E27CDD // 2^(13/64)
230 data8 0x00029E9DF51FDEE1 // 2^(14/64)
231 data8 0x0002D285A6E4030B // 2^(15/64)
232 data8 0x000306FE0A31B715 // 2^(16/64)
233 data8 0x00033C08B26416FF // 2^(17/64)
234 data8 0x000371A7373AA9CB // 2^(18/64)
235 data8 0x0003A7DB34E59FF7 // 2^(19/64)
236 data8 0x0003DEA64C123422 // 2^(20/64)
237 data8 0x0004160A21F72E2A // 2^(21/64)
238 data8 0x00044E086061892D // 2^(22/64)
239 data8 0x000486A2B5C13CD0 // 2^(23/64)
240 data8 0x0004BFDAD5362A27 // 2^(24/64)
241 data8 0x0004F9B2769D2CA7 // 2^(25/64)
242 data8 0x0005342B569D4F82 // 2^(26/64)
243 data8 0x00056F4736B527DA // 2^(27/64)
244 data8 0x0005AB07DD485429 // 2^(28/64)
245 data8 0x0005E76F15AD2148 // 2^(29/64)
246 data8 0x0006247EB03A5585 // 2^(30/64)
247 data8 0x0006623882552225 // 2^(31/64)
248 data8 0x0006A09E667F3BCD // 2^(32/64)
249 data8 0x0006DFB23C651A2F // 2^(33/64)
250 data8 0x00071F75E8EC5F74 // 2^(34/64)
251 data8 0x00075FEB564267C9 // 2^(35/64)
252 data8 0x0007A11473EB0187 // 2^(36/64)
253 data8 0x0007E2F336CF4E62 // 2^(37/64)
254 data8 0x00082589994CCE13 // 2^(38/64)
255 data8 0x000868D99B4492ED // 2^(39/64)
256 data8 0x0008ACE5422AA0DB // 2^(40/64)
257 data8 0x0008F1AE99157736 // 2^(41/64)
258 data8 0x00093737B0CDC5E5 // 2^(42/64)
259 data8 0x00097D829FDE4E50 // 2^(43/64)
260 data8 0x0009C49182A3F090 // 2^(44/64)
261 data8 0x000A0C667B5DE565 // 2^(45/64)
262 data8 0x000A5503B23E255D // 2^(46/64)
263 data8 0x000A9E6B5579FDBF // 2^(47/64)
264 data8 0x000AE89F995AD3AD // 2^(48/64)
265 data8 0x000B33A2B84F15FB // 2^(49/64)
266 data8 0x000B7F76F2FB5E47 // 2^(50/64)
267 data8 0x000BCC1E904BC1D2 // 2^(51/64)
268 data8 0x000C199BDD85529C // 2^(52/64)
269 data8 0x000C67F12E57D14B // 2^(53/64)
270 data8 0x000CB720DCEF9069 // 2^(54/64)
271 data8 0x000D072D4A07897C // 2^(55/64)
272 data8 0x000D5818DCFBA487 // 2^(56/64)
273 data8 0x000DA9E603DB3285 // 2^(57/64)
274 data8 0x000DFC97337B9B5F // 2^(58/64)
275 data8 0x000E502EE78B3FF6 // 2^(59/64)
276 data8 0x000EA4AFA2A490DA // 2^(60/64)
277 data8 0x000EFA1BEE615A27 // 2^(61/64)
278 data8 0x000F50765B6E4540 // 2^(62/64)
279 data8 0x000FA7C1819E90D8 // 2^(63/64)
280 LOCAL_OBJECT_END(_sinhf_table)
281
282 LOCAL_OBJECT_START(sinh_p_table)
283 data8 0x3ec749d84bc96d7d // A4
284 data8 0x3f2a0168d09557cf // A3
285 data8 0x3f811111326ed15a // A2
286 data8 0x3fc55555552ed1e2 // A1
287 LOCAL_OBJECT_END(sinh_p_table)
288
289
290 .section .text
291 GLOBAL_IEEE754_ENTRY(sinhf)
292
293 { .mlx
294 getf.exp rSignexp_x = f8 // Must recompute if x unorm
295 movl r64DivLn2 = 0x40571547652B82FE // 64/ln(2)
296 }
297 { .mlx
298 addl rTblAddr = @ltoff(_sinhf_table),gp
299 movl rRightShifter = 0x43E8000000000000 // DP Right Shifter
300 }
301 ;;
302
303 { .mfi
304 // point to the beginning of the table
305 ld8 rTblAddr = [rTblAddr]
306 fclass.m p6, p0 = f8, 0x0b // Test for x=unorm
307 addl rA3 = 0x3E2AA, r0 // high bits of 1.0/6.0 rounded to SP
308 }
309 { .mfi
310 nop.m 0
311 fnorm.s1 fNormX = f8 // normalized x
312 addl rExpHalf = 0xFFFE, r0 // exponent of 1/2
313 }
314 ;;
315
316 { .mfi
317 setf.d f64DivLn2 = r64DivLn2 // load 64/ln(2) to FP reg
318 fclass.m p15, p0 = f8, 0x1e3 // test for NaT,NaN,Inf
319 nop.i 0
320 }
321 { .mlx
322 // load Right Shifter to FP reg
323 setf.d fRightShifter = rRightShifter
324 movl rLn2Div64 = 0x3F862E42FEFA39EF // DP ln(2)/64 in GR
325 }
326 ;;
327
328 { .mfi
329 mov rExp_mask = 0x1ffff
330 fcmp.eq.s1 p13, p0 = f0, f8 // test for x = 0.0
331 shl rA3 = rA3, 12 // 0x3E2AA000, approx to 1.0/6.0 in SP
332 }
333 { .mfb
334 nop.m 0
335 nop.f 0
336 (p6) br.cond.spnt SINH_UNORM // Branch if x=unorm
337 }
338 ;;
339
340 SINH_COMMON:
341 { .mfi
342 setf.exp fA2 = rExpHalf // load A2 to FP reg
343 nop.f 0
344 mov rExp_bias = 0xffff
345 }
346 { .mfb
347 setf.d fLn2Div64 = rLn2Div64 // load ln(2)/64 to FP reg
348 (p15) fma.s.s0 f8 = f8, f1, f0 // result if x = NaT,NaN,Inf
349 (p15) br.ret.spnt b0 // exit here if x = NaT,NaN,Inf
350 }
351 ;;
352
353 { .mfi
354 // min overflow and max normal threshold
355 ldfps fMIN_SGL_OFLOW_ARG, fMAX_SGL_NORM_ARG = [rTblAddr], 8
356 nop.f 0
357 and rExp_x = rExp_mask, rSignexp_x // Biased exponent of x
358 }
359 { .mfb
360 setf.s fA3 = rA3 // load A3 to FP reg
361 nop.f 0
362 (p13) br.ret.spnt b0 // exit here if x=0.0, return x
363 }
364 ;;
365
366 { .mfi
367 sub rExp_x = rExp_x, rExp_bias // True exponent of x
368 fmerge.s fAbsX = f0, fNormX // Form |x|
369 nop.i 0
370 }
371 ;;
372
373 { .mfi
374 nop.m 0
375 // x*(64/ln(2)) + Right Shifter
376 fma.s1 fNint = fNormX, f64DivLn2, fRightShifter
377 add rTblAddr = 8, rTblAddr
378 }
379 { .mfb
380 cmp.gt p7, p0 = -2, rExp_x // Test |x| < 2^(-2)
381 fma.s1 fXsq = fNormX, fNormX, f0 // x*x for small path
382 (p7) br.cond.spnt SINH_SMALL // Branch if 0 < |x| < 2^-2
383 }
384 ;;
385
386 { .mfi
387 nop.m 0
388 // check for overflow
389 fcmp.ge.s1 p12, p13 = fAbsX, fMIN_SGL_OFLOW_ARG
390 mov rJ_mask = 0x3f // 6-bit mask for J
391 }
392 ;;
393
394 { .mfb
395 nop.m 0
396 fms.s1 fN = fNint, f1, fRightShifter // n in FP register
397 // branch out if overflow
398 (p12) br.cond.spnt SINH_CERTAIN_OVERFLOW
399 }
400 ;;
401
402 { .mfi
403 getf.sig rNJ = fNint // bits of n, j
404 // check for possible overflow
405 fcmp.gt.s1 p13, p0 = fAbsX, fMAX_SGL_NORM_ARG
406 nop.i 0
407 }
408 ;;
409
410 { .mfi
411 addl rN = 0xFFBF - 63, rNJ // biased and shifted n-1,j
412 fnma.s1 fR = fLn2Div64, fN, fNormX // R = x - N*ln(2)/64
413 and rJ = rJ_mask, rNJ // bits of j
414 }
415 { .mfi
416 sub rNJ_neg = r0, rNJ // bits of n, j for -x
417 nop.f 0
418 andcm rN_mask = -1, rJ_mask // 0xff...fc0 to mask N
419 }
420 ;;
421
422 { .mfi
423 shladd rJ = rJ, 3, rTblAddr // address in the 2^(j/64) table
424 nop.f 0
425 and rN = rN_mask, rN // biased, shifted n-1
426 }
427 { .mfi
428 addl rN_neg = 0xFFBF - 63, rNJ_neg // -x biased, shifted n-1,j
429 nop.f 0
430 and rJ_neg = rJ_mask, rNJ_neg // bits of j for -x
431 }
432 ;;
433
434 { .mfi
435 ld8 rJ = [rJ] // Table value
436 nop.f 0
437 shl rN = rN, 46 // 2^(n-1) bits in DP format
438 }
439 { .mfi
440 shladd rJ_neg = rJ_neg, 3, rTblAddr // addr in 2^(j/64) table -x
441 nop.f 0
442 and rN_neg = rN_mask, rN_neg // biased, shifted n-1 for -x
443 }
444 ;;
445
446 { .mfi
447 ld8 rJ_neg = [rJ_neg] // Table value for -x
448 nop.f 0
449 shl rN_neg = rN_neg, 46 // 2^(n-1) bits in DP format for -x
450 }
451 ;;
452
453 { .mfi
454 or rN = rN, rJ // bits of 2^n * 2^(j/64) in DP format
455 nop.f 0
456 nop.i 0
457 }
458 ;;
459
460 { .mmf
461 setf.d fT = rN // 2^(n-1) * 2^(j/64)
462 or rN_neg = rN_neg, rJ_neg // -x bits of 2^n * 2^(j/64) in DP
463 fma.s1 fRSqr = fR, fR, f0 // R^2
464 }
465 ;;
466
467 { .mfi
468 setf.d fT_neg = rN_neg // 2^(n-1) * 2^(j/64) for -x
469 fma.s1 fP = fA3, fR, fA2 // A3*R + A2
470 nop.i 0
471 }
472 { .mfi
473 nop.m 0
474 fnma.s1 fP_neg = fA3, fR, fA2 // A3*R + A2 for -x
475 nop.i 0
476 }
477 ;;
478
479 { .mfi
480 nop.m 0
481 fma.s1 fP = fP, fRSqr, fR // P = (A3*R + A2)*R^2 + R
482 nop.i 0
483 }
484 { .mfi
485 nop.m 0
486 fms.s1 fP_neg = fP_neg, fRSqr, fR // P = (A3*R + A2)*R^2 + R, -x
487 nop.i 0
488 }
489 ;;
490
491 { .mfi
492 nop.m 0
493 fmpy.s0 fTmp = fLn2Div64, fLn2Div64 // Force inexact
494 nop.i 0
495 }
496 ;;
497
498 { .mfi
499 nop.m 0
500 fma.s1 fExp = fP, fT, fT // exp(x)/2
501 nop.i 0
502 }
503 { .mfb
504 nop.m 0
505 fma.s1 fExp_neg = fP_neg, fT_neg, fT_neg // exp(-x)/2
506 // branch out if possible overflow result
507 (p13) br.cond.spnt SINH_POSSIBLE_OVERFLOW
508 }
509 ;;
510
511 { .mfb
512 nop.m 0
513 // final result in the absence of overflow
514 fms.s.s0 f8 = fExp, f1, fExp_neg // result = (exp(x)-exp(-x))/2
515 // exit here in the absence of overflow
516 br.ret.sptk b0 // Exit main path, 0.25 <= |x| < 89.41598
517 }
518 ;;
519
520 // Here if 0 < |x| < 0.25. Evaluate 9th order polynomial.
521 SINH_SMALL:
522 { .mfi
523 add rAd1 = 0x200, rTblAddr
524 fcmp.lt.s1 p7, p8 = fNormX, f0 // Test sign of x
525 cmp.gt p6, p0 = -60, rExp_x // Test |x| < 2^(-60)
526 }
527 { .mfi
528 add rAd2 = 0x210, rTblAddr
529 nop.f 0
530 nop.i 0
531 }
532 ;;
533
534 { .mmb
535 ldfpd fA4, fA3 = [rAd1]
536 ldfpd fA2, fA1 = [rAd2]
537 (p6) br.cond.spnt SINH_VERY_SMALL // Branch if |x| < 2^(-60)
538 }
539 ;;
540
541 { .mfi
542 nop.m 0
543 fma.s1 fX3 = fXsq, fNormX, f0
544 nop.i 0
545 }
546 { .mfi
547 nop.m 0
548 fma.s1 fX4 = fXsq, fXsq, f0
549 nop.i 0
550 }
551 ;;
552
553 { .mfi
554 nop.m 0
555 fma.s1 fA43 = fXsq, fA4, fA3
556 nop.i 0
557 }
558 { .mfi
559 nop.m 0
560 fma.s1 fA21 = fXsq, fA2, fA1
561 nop.i 0
562 }
563 ;;
564
565 { .mfi
566 nop.m 0
567 fma.s1 fA4321 = fX4, fA43, fA21
568 nop.i 0
569 }
570 ;;
571
572 // Dummy multiply to generate inexact
573 { .mfi
574 nop.m 0
575 fmpy.s0 fTmp = fA4, fA4
576 nop.i 0
577 }
578 { .mfb
579 nop.m 0
580 fma.s.s0 f8 = fA4321, fX3, fNormX
581 br.ret.sptk b0 // Exit if 2^-60 < |x| < 0.25
582 }
583 ;;
584
585 SINH_VERY_SMALL:
586 // Here if 0 < |x| < 2^-60
587 // Compute result by x + sgn(x)*x^2 to get properly rounded result
588 .pred.rel "mutex",p7,p8
589 { .mfi
590 nop.m 0
591 (p7) fnma.s.s0 f8 = fNormX, fNormX, fNormX // If x<0 result ~ x-x^2
592 nop.i 0
593 }
594 { .mfb
595 nop.m 0
596 (p8) fma.s.s0 f8 = fNormX, fNormX, fNormX // If x>0 result ~ x+x^2
597 br.ret.sptk b0 // Exit if |x| < 2^-60
598 }
599 ;;
600
601 SINH_POSSIBLE_OVERFLOW:
602
603 // Here if fMAX_SGL_NORM_ARG < x < fMIN_SGL_OFLOW_ARG
604 // This cannot happen if input is a single, only if input higher precision.
605 // Overflow is a possibility, not a certainty.
606
607 // Recompute result using status field 2 with user's rounding mode,
608 // and wre set. If result is larger than largest single, then we have
609 // overflow
610
611 { .mfi
612 mov rGt_ln = 0x1007f // Exponent for largest single + 1 ulp
613 fsetc.s2 0x7F,0x42 // Get user's round mode, set wre
614 nop.i 0
615 }
616 ;;
617
618 { .mfi
619 setf.exp fGt_pln = rGt_ln // Create largest single + 1 ulp
620 fma.s.s2 fWre_urm_f8 = fP, fT, fT // Result with wre set
621 nop.i 0
622 }
623 ;;
624
625 { .mfi
626 nop.m 0
627 fsetc.s2 0x7F,0x40 // Turn off wre in sf2
628 nop.i 0
629 }
630 ;;
631
632 { .mfi
633 nop.m 0
634 fcmp.ge.s1 p6, p0 = fWre_urm_f8, fGt_pln // Test for overflow
635 nop.i 0
636 }
637 ;;
638
639 { .mfb
640 nop.m 0
641 nop.f 0
642 (p6) br.cond.spnt SINH_CERTAIN_OVERFLOW // Branch if overflow
643 }
644 ;;
645
646 { .mfb
647 nop.m 0
648 fma.s.s0 f8 = fP, fT, fT
649 br.ret.sptk b0 // Exit if really no overflow
650 }
651 ;;
652
653 // here if overflow
654 SINH_CERTAIN_OVERFLOW:
655 { .mfi
656 addl r17ones_m1 = 0x1FFFE, r0
657 fcmp.lt.s1 p6, p7 = fNormX, f0 // Test for x < 0
658 nop.i 0
659 }
660 ;;
661
662 { .mmf
663 alloc r32 = ar.pfs, 0, 3, 4, 0 // get some registers
664 setf.exp fTmp = r17ones_m1
665 fmerge.s FR_X = f8,f8
666 }
667 ;;
668
669 { .mfi
670 mov GR_Parameter_TAG = 128
671 (p6) fnma.s.s0 FR_RESULT = fTmp, fTmp, f0 // Set I,O and -INF result
672 nop.i 0
673 }
674 { .mfb
675 nop.m 0
676 (p7) fma.s.s0 FR_RESULT = fTmp, fTmp, f0 // Set I,O and +INF result
677 br.cond.sptk __libm_error_region
678 }
679 ;;
680
681 // Here if x unorm
682 SINH_UNORM:
683 { .mfb
684 getf.exp rSignexp_x = fNormX // Must recompute if x unorm
685 fcmp.eq.s0 p6, p0 = f8, f0 // Set D flag
686 br.cond.sptk SINH_COMMON // Return to main path
687 }
688 ;;
689
690 GLOBAL_IEEE754_END(sinhf)
691 libm_alias_float_other (__sinh, sinh)
692
693
694 LOCAL_LIBM_ENTRY(__libm_error_region)
695 .prologue
696 { .mfi
697 add GR_Parameter_Y=-32,sp // Parameter 2 value
698 nop.f 0
699 .save ar.pfs,GR_SAVE_PFS
700 mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
701 }
702 { .mfi
703 .fframe 64
704 add sp=-64,sp // Create new stack
705 nop.f 0
706 mov GR_SAVE_GP=gp // Save gp
707 };;
708 { .mmi
709 stfs [GR_Parameter_Y] = FR_Y,16 // Store Parameter 2 on stack
710 add GR_Parameter_X = 16,sp // Parameter 1 address
711 .save b0, GR_SAVE_B0
712 mov GR_SAVE_B0=b0 // Save b0
713 };;
714 .body
715 { .mfi
716 stfs [GR_Parameter_X] = FR_X // Store Parameter 1 on stack
717 nop.f 0
718 add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
719 }
720 { .mib
721 stfs [GR_Parameter_Y] = FR_RESULT // Store Parameter 3 on stack
722 add GR_Parameter_Y = -16,GR_Parameter_Y
723 br.call.sptk b0=__libm_error_support# // Call error handling function
724 };;
725
726 { .mmi
727 add GR_Parameter_RESULT = 48,sp
728 nop.m 0
729 nop.i 0
730 };;
731
732 { .mmi
733 ldfs f8 = [GR_Parameter_RESULT] // Get return result off stack
734 .restore sp
735 add sp = 64,sp // Restore stack pointer
736 mov b0 = GR_SAVE_B0 // Restore return address
737 };;
738 { .mib
739 mov gp = GR_SAVE_GP // Restore gp
740 mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
741 br.ret.sptk b0 // Return
742 };;
743
744 LOCAL_LIBM_END(__libm_error_region)
745
746
747 .type __libm_error_support#,@function
748 .global __libm_error_support#