]> git.ipfire.org Git - thirdparty/glibc.git/blob - sysdeps/ia64/fpu/e_sinhl.S
ia64: move from main tree
[thirdparty/glibc.git] / sysdeps / ia64 / fpu / e_sinhl.S
1 .file "sinhl.s"
2
3
4 // Copyright (c) 2000 - 2002, Intel Corporation
5 // All rights reserved.
6 //
7 // Contributed 2000 by the Intel Numerics Group, Intel Corporation
8 //
9 // Redistribution and use in source and binary forms, with or without
10 // modification, are permitted provided that the following conditions are
11 // met:
12 //
13 // * Redistributions of source code must retain the above copyright
14 // notice, this list of conditions and the following disclaimer.
15 //
16 // * Redistributions in binary form must reproduce the above copyright
17 // notice, this list of conditions and the following disclaimer in the
18 // documentation and/or other materials provided with the distribution.
19 //
20 // * The name of Intel Corporation may not be used to endorse or promote
21 // products derived from this software without specific prior written
22 // permission.
23
24 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
27 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
28 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
29 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
30 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
31 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
32 // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
33 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 //
36 // Intel Corporation is the author of this code, and requests that all
37 // problem reports or change requests be submitted to it directly at
38 // http://www.intel.com/software/products/opensource/libraries/num.htm.
39 //
40 // History
41 //==============================================================
42 // 02/02/00 Initial version
43 // 04/04/00 Unwind support added
44 // 08/15/00 Bundle added after call to __libm_error_support to properly
45 // set [the previously overwritten] GR_Parameter_RESULT.
46 // 10/12/00 Update to set denormal operand and underflow flags
47 // 01/22/01 Fixed to set inexact flag for small args. Fixed incorrect
48 // call to __libm_error_support for 710.476 < x < 11357.2166.
49 // 05/02/01 Reworked to improve speed of all paths
50 // 05/20/02 Cleaned up namespace and sf0 syntax
51 // 12/04/02 Improved performance
52 //
53 // API
54 //==============================================================
55 // long double = sinhl(long double)
56 // input floating point f8
57 // output floating point f8
58 //
59 // Registers used
60 //==============================================================
61 // general registers:
62 // r14 -> r40
63 // predicate registers used:
64 // p6 -> p11
65 // floating-point registers used:
66 // f9 -> f15; f32 -> f90;
67 // f8 has input, then output
68 //
69 // Overview of operation
70 //==============================================================
71 // There are seven paths
72 // 1. 0 < |x| < 0.25 SINH_BY_POLY
73 // 2. 0.25 <=|x| < 32 SINH_BY_TBL
74 // 3. 32 <= |x| < 11357.21655 SINH_BY_EXP (merged path with SINH_BY_TBL)
75 // 4. |x| >= 11357.21655 SINH_HUGE
76 // 5. x=0 Done with early exit
77 // 6. x=inf,nan Done with early exit
78 // 7. x=denormal SINH_DENORM
79 //
80 // For double extended we get overflow for x >= 400c b174 ddc0 31ae c0ea
81 // >= 11357.21655
82 //
83 //
84 // 1. SINH_BY_POLY 0 < |x| < 0.25
85 // ===============
86 // Evaluate sinh(x) by a 13th order polynomial
87 // Care is take for the order of multiplication; and P_1 is not exactly 1/3!,
88 // P_2 is not exactly 1/5!, etc.
89 // sinh(x) = sign * (series(e^x) - series(e^-x))/2
90 // = sign * (ax + ax^3/3! + ax^5/5! + ax^7/7! + ax^9/9! + ax^11/11!
91 // + ax^13/13!)
92 // = sign * (ax + ax * ( ax^2 * (1/3! + ax^4 * (1/7! + ax^4*1/11!)) )
93 // + ax * ( ax^4 * (1/5! + ax^4 * (1/9! + ax^4*1/13!)) ))
94 // = sign * (ax + ax*p_odd + (ax*p_even))
95 // = sign * (ax + Y_lo)
96 // sinh(x) = sign * (Y_hi + Y_lo)
97 // Note that ax = |x|
98 //
99 // 2. SINH_BY_TBL 0.25 <= |x| < 32.0
100 // =============
101 // sinh(x) = sinh(B+R)
102 // = sinh(B)cosh(R) + cosh(B)sinh(R)
103 //
104 // ax = |x| = M*log2/64 + R
105 // B = M*log2/64
106 // M = 64*N + j
107 // We will calculate M and get N as (M-j)/64
108 // The division is a shift.
109 // exp(B) = exp(N*log2 + j*log2/64)
110 // = 2^N * 2^(j*log2/64)
111 // sinh(B) = 1/2(e^B -e^-B)
112 // = 1/2(2^N * 2^(j*log2/64) - 2^-N * 2^(-j*log2/64))
113 // sinh(B) = (2^(N-1) * 2^(j*log2/64) - 2^(-N-1) * 2^(-j*log2/64))
114 // cosh(B) = (2^(N-1) * 2^(j*log2/64) + 2^(-N-1) * 2^(-j*log2/64))
115 // 2^(j*log2/64) is stored as Tjhi + Tjlo , j= -32,....,32
116 // Tjhi is double-extended (80-bit) and Tjlo is single(32-bit)
117 //
118 // R = ax - M*log2/64
119 // R = ax - M*log2_by_64_hi - M*log2_by_64_lo
120 // exp(R) = 1 + R +R^2(1/2! + R(1/3! + R(1/4! + ... + R(1/n!)...)
121 // = 1 + p_odd + p_even
122 // where the p_even uses the A coefficients and the p_even uses
123 // the B coefficients
124 //
125 // So sinh(R) = 1 + p_odd + p_even -(1 -p_odd -p_even)/2 = p_odd
126 // cosh(R) = 1 + p_even
127 // sinh(B) = S_hi + S_lo
128 // cosh(B) = C_hi
129 // sinh(x) = sinh(B)cosh(R) + cosh(B)sinh(R)
130 //
131 // 3. SINH_BY_EXP 32.0 <= |x| < 11357.21655 ( 400c b174 ddc0 31ae c0ea )
132 // ==============
133 // Can approximate result by exp(x)/2 in this region.
134 // Y_hi = Tjhi
135 // Y_lo = Tjhi * (p_odd + p_even) + Tjlo
136 // sinh(x) = Y_hi + Y_lo
137 //
138 // 4. SINH_HUGE |x| >= 11357.21655 ( 400c b174 ddc0 31ae c0ea )
139 // ============
140 // Set error tag and call error support
141 //
142 //
143 // Assembly macros
144 //==============================================================
145 r_ad5 = r14
146 r_rshf_2to57 = r15
147 r_exp_denorm = r15
148 r_ad_mJ_lo = r15
149 r_ad_J_lo = r16
150 r_2Nm1 = r17
151 r_2mNm1 = r18
152 r_exp_x = r18
153 r_ad_J_hi = r19
154 r_ad2o = r19
155 r_ad_mJ_hi = r20
156 r_mj = r21
157 r_ad2e = r22
158 r_ad3 = r23
159 r_ad1 = r24
160 r_Mmj = r24
161 r_rshf = r25
162 r_M = r25
163 r_N = r25
164 r_jshf = r26
165 r_exp_2tom57 = r26
166 r_j = r26
167 r_exp_mask = r27
168 r_signexp_x = r28
169 r_signexp_sgnx_0_5 = r28
170 r_exp_0_25 = r29
171 r_sig_inv_ln2 = r30
172 r_exp_32 = r30
173 r_exp_huge = r30
174 r_ad4 = r31
175
176 GR_SAVE_PFS = r34
177 GR_SAVE_B0 = r35
178 GR_SAVE_GP = r36
179
180 GR_Parameter_X = r37
181 GR_Parameter_Y = r38
182 GR_Parameter_RESULT = r39
183 GR_Parameter_TAG = r40
184
185
186 f_ABS_X = f9
187 f_X2 = f10
188 f_X4 = f11
189 f_tmp = f14
190 f_RSHF = f15
191
192 f_Inv_log2by64 = f32
193 f_log2by64_lo = f33
194 f_log2by64_hi = f34
195 f_A1 = f35
196
197 f_A2 = f36
198 f_A3 = f37
199 f_Rcub = f38
200 f_M_temp = f39
201 f_R_temp = f40
202
203 f_Rsq = f41
204 f_R = f42
205 f_M = f43
206 f_B1 = f44
207 f_B2 = f45
208
209 f_B3 = f46
210 f_peven_temp1 = f47
211 f_peven_temp2 = f48
212 f_peven = f49
213 f_podd_temp1 = f50
214
215 f_podd_temp2 = f51
216 f_podd = f52
217 f_poly65 = f53
218 f_poly6543 = f53
219 f_poly6to1 = f53
220 f_poly43 = f54
221 f_poly21 = f55
222
223 f_X3 = f56
224 f_INV_LN2_2TO63 = f57
225 f_RSHF_2TO57 = f58
226 f_2TOM57 = f59
227 f_smlst_oflow_input = f60
228
229 f_pre_result = f61
230 f_huge = f62
231 f_spos = f63
232 f_sneg = f64
233 f_Tjhi = f65
234
235 f_Tjlo = f66
236 f_Tmjhi = f67
237 f_Tmjlo = f68
238 f_S_hi = f69
239 f_SC_hi_temp = f70
240
241 f_S_lo_temp1 = f71
242 f_S_lo_temp2 = f72
243 f_S_lo_temp3 = f73
244 f_S_lo_temp4 = f73
245 f_S_lo = f74
246 f_C_hi = f75
247
248 f_Y_hi = f77
249 f_Y_lo_temp = f78
250 f_Y_lo = f79
251 f_NORM_X = f80
252
253 f_P1 = f81
254 f_P2 = f82
255 f_P3 = f83
256 f_P4 = f84
257 f_P5 = f85
258
259 f_P6 = f86
260 f_Tjhi_spos = f87
261 f_Tjlo_spos = f88
262 f_huge = f89
263 f_signed_hi_lo = f90
264
265
266 // Data tables
267 //==============================================================
268
269 // DO NOT CHANGE ORDER OF THESE TABLES
270 RODATA
271
272 .align 16
273 LOCAL_OBJECT_START(sinh_arg_reduction)
274 // data8 0xB8AA3B295C17F0BC, 0x00004005 // 64/log2 -- signif loaded with setf
275 data8 0xB17217F7D1000000, 0x00003FF8 // log2/64 high part
276 data8 0xCF79ABC9E3B39804, 0x00003FD0 // log2/64 low part
277 data8 0xb174ddc031aec0ea, 0x0000400c // Smallest x to overflow (11357.21655)
278 LOCAL_OBJECT_END(sinh_arg_reduction)
279
280 LOCAL_OBJECT_START(sinh_p_table)
281 data8 0xB08AF9AE78C1239F, 0x00003FDE // P6
282 data8 0xB8EF1D28926D8891, 0x00003FEC // P4
283 data8 0x8888888888888412, 0x00003FF8 // P2
284 data8 0xD732377688025BE9, 0x00003FE5 // P5
285 data8 0xD00D00D00D4D39F2, 0x00003FF2 // P3
286 data8 0xAAAAAAAAAAAAAAAB, 0x00003FFC // P1
287 LOCAL_OBJECT_END(sinh_p_table)
288
289 LOCAL_OBJECT_START(sinh_ab_table)
290 data8 0xAAAAAAAAAAAAAAAC, 0x00003FFC // A1
291 data8 0x88888888884ECDD5, 0x00003FF8 // A2
292 data8 0xD00D0C6DCC26A86B, 0x00003FF2 // A3
293 data8 0x8000000000000002, 0x00003FFE // B1
294 data8 0xAAAAAAAAAA402C77, 0x00003FFA // B2
295 data8 0xB60B6CC96BDB144D, 0x00003FF5 // B3
296 LOCAL_OBJECT_END(sinh_ab_table)
297
298 LOCAL_OBJECT_START(sinh_j_hi_table)
299 data8 0xB504F333F9DE6484, 0x00003FFE
300 data8 0xB6FD91E328D17791, 0x00003FFE
301 data8 0xB8FBAF4762FB9EE9, 0x00003FFE
302 data8 0xBAFF5AB2133E45FB, 0x00003FFE
303 data8 0xBD08A39F580C36BF, 0x00003FFE
304 data8 0xBF1799B67A731083, 0x00003FFE
305 data8 0xC12C4CCA66709456, 0x00003FFE
306 data8 0xC346CCDA24976407, 0x00003FFE
307 data8 0xC5672A115506DADD, 0x00003FFE
308 data8 0xC78D74C8ABB9B15D, 0x00003FFE
309 data8 0xC9B9BD866E2F27A3, 0x00003FFE
310 data8 0xCBEC14FEF2727C5D, 0x00003FFE
311 data8 0xCE248C151F8480E4, 0x00003FFE
312 data8 0xD06333DAEF2B2595, 0x00003FFE
313 data8 0xD2A81D91F12AE45A, 0x00003FFE
314 data8 0xD4F35AABCFEDFA1F, 0x00003FFE
315 data8 0xD744FCCAD69D6AF4, 0x00003FFE
316 data8 0xD99D15C278AFD7B6, 0x00003FFE
317 data8 0xDBFBB797DAF23755, 0x00003FFE
318 data8 0xDE60F4825E0E9124, 0x00003FFE
319 data8 0xE0CCDEEC2A94E111, 0x00003FFE
320 data8 0xE33F8972BE8A5A51, 0x00003FFE
321 data8 0xE5B906E77C8348A8, 0x00003FFE
322 data8 0xE8396A503C4BDC68, 0x00003FFE
323 data8 0xEAC0C6E7DD24392F, 0x00003FFE
324 data8 0xED4F301ED9942B84, 0x00003FFE
325 data8 0xEFE4B99BDCDAF5CB, 0x00003FFE
326 data8 0xF281773C59FFB13A, 0x00003FFE
327 data8 0xF5257D152486CC2C, 0x00003FFE
328 data8 0xF7D0DF730AD13BB9, 0x00003FFE
329 data8 0xFA83B2DB722A033A, 0x00003FFE
330 data8 0xFD3E0C0CF486C175, 0x00003FFE
331 data8 0x8000000000000000, 0x00003FFF // Center of table
332 data8 0x8164D1F3BC030773, 0x00003FFF
333 data8 0x82CD8698AC2BA1D7, 0x00003FFF
334 data8 0x843A28C3ACDE4046, 0x00003FFF
335 data8 0x85AAC367CC487B15, 0x00003FFF
336 data8 0x871F61969E8D1010, 0x00003FFF
337 data8 0x88980E8092DA8527, 0x00003FFF
338 data8 0x8A14D575496EFD9A, 0x00003FFF
339 data8 0x8B95C1E3EA8BD6E7, 0x00003FFF
340 data8 0x8D1ADF5B7E5BA9E6, 0x00003FFF
341 data8 0x8EA4398B45CD53C0, 0x00003FFF
342 data8 0x9031DC431466B1DC, 0x00003FFF
343 data8 0x91C3D373AB11C336, 0x00003FFF
344 data8 0x935A2B2F13E6E92C, 0x00003FFF
345 data8 0x94F4EFA8FEF70961, 0x00003FFF
346 data8 0x96942D3720185A00, 0x00003FFF
347 data8 0x9837F0518DB8A96F, 0x00003FFF
348 data8 0x99E0459320B7FA65, 0x00003FFF
349 data8 0x9B8D39B9D54E5539, 0x00003FFF
350 data8 0x9D3ED9A72CFFB751, 0x00003FFF
351 data8 0x9EF5326091A111AE, 0x00003FFF
352 data8 0xA0B0510FB9714FC2, 0x00003FFF
353 data8 0xA27043030C496819, 0x00003FFF
354 data8 0xA43515AE09E6809E, 0x00003FFF
355 data8 0xA5FED6A9B15138EA, 0x00003FFF
356 data8 0xA7CD93B4E965356A, 0x00003FFF
357 data8 0xA9A15AB4EA7C0EF8, 0x00003FFF
358 data8 0xAB7A39B5A93ED337, 0x00003FFF
359 data8 0xAD583EEA42A14AC6, 0x00003FFF
360 data8 0xAF3B78AD690A4375, 0x00003FFF
361 data8 0xB123F581D2AC2590, 0x00003FFF
362 data8 0xB311C412A9112489, 0x00003FFF
363 data8 0xB504F333F9DE6484, 0x00003FFF
364 LOCAL_OBJECT_END(sinh_j_hi_table)
365
366 LOCAL_OBJECT_START(sinh_j_lo_table)
367 data4 0x1EB2FB13
368 data4 0x1CE2CBE2
369 data4 0x1DDC3CBC
370 data4 0x1EE9AA34
371 data4 0x9EAEFDC1
372 data4 0x9DBF517B
373 data4 0x1EF88AFB
374 data4 0x1E03B216
375 data4 0x1E78AB43
376 data4 0x9E7B1747
377 data4 0x9EFE3C0E
378 data4 0x9D36F837
379 data4 0x9DEE53E4
380 data4 0x9E24AE8E
381 data4 0x1D912473
382 data4 0x1EB243BE
383 data4 0x1E669A2F
384 data4 0x9BBC610A
385 data4 0x1E761035
386 data4 0x9E0BE175
387 data4 0x1CCB12A1
388 data4 0x1D1BFE90
389 data4 0x1DF2F47A
390 data4 0x1EF22F22
391 data4 0x9E3F4A29
392 data4 0x1EC01A5B
393 data4 0x1E8CAC3A
394 data4 0x9DBB3FAB
395 data4 0x1EF73A19
396 data4 0x9BB795B5
397 data4 0x1EF84B76
398 data4 0x9EF5818B
399 data4 0x00000000 // Center of table
400 data4 0x1F77CACA
401 data4 0x1EF8A91D
402 data4 0x1E57C976
403 data4 0x9EE8DA92
404 data4 0x1EE85C9F
405 data4 0x1F3BF1AF
406 data4 0x1D80CA1E
407 data4 0x9D0373AF
408 data4 0x9F167097
409 data4 0x1EB70051
410 data4 0x1F6EB029
411 data4 0x1DFD6D8E
412 data4 0x9EB319B0
413 data4 0x1EBA2BEB
414 data4 0x1F11D537
415 data4 0x1F0D5A46
416 data4 0x9E5E7BCA
417 data4 0x9F3AAFD1
418 data4 0x9E86DACC
419 data4 0x9F3EDDC2
420 data4 0x1E496E3D
421 data4 0x9F490BF6
422 data4 0x1DD1DB48
423 data4 0x1E65EBFB
424 data4 0x9F427496
425 data4 0x1F283C4A
426 data4 0x1F4B0047
427 data4 0x1F130152
428 data4 0x9E8367C0
429 data4 0x9F705F90
430 data4 0x1EFB3C53
431 data4 0x1F32FB13
432 LOCAL_OBJECT_END(sinh_j_lo_table)
433
434
435 .section .text
436 GLOBAL_IEEE754_ENTRY(sinhl)
437
438 { .mlx
439 getf.exp r_signexp_x = f8 // Get signexp of x, must redo if unorm
440 movl r_sig_inv_ln2 = 0xb8aa3b295c17f0bc // significand of 1/ln2
441 }
442 { .mlx
443 addl r_ad1 = @ltoff(sinh_arg_reduction), gp
444 movl r_rshf_2to57 = 0x4778000000000000 // 1.10000 2^(63+57)
445 }
446 ;;
447
448 { .mfi
449 ld8 r_ad1 = [r_ad1]
450 fmerge.s f_ABS_X = f0,f8
451 mov r_exp_0_25 = 0x0fffd // Form exponent for 0.25
452 }
453 { .mfi
454 nop.m 0
455 fnorm.s1 f_NORM_X = f8
456 mov r_exp_2tom57 = 0xffff-57
457 }
458 ;;
459
460 { .mfi
461 setf.d f_RSHF_2TO57 = r_rshf_2to57 // Form const 1.100 * 2^120
462 fclass.m p10,p0 = f8, 0x0b // Test for denorm
463 mov r_exp_mask = 0x1ffff
464 }
465 { .mlx
466 setf.sig f_INV_LN2_2TO63 = r_sig_inv_ln2 // Form 1/ln2 * 2^63
467 movl r_rshf = 0x43e8000000000000 // 1.1000 2^63 for right shift
468 }
469 ;;
470
471 { .mfi
472 nop.m 0
473 fclass.m p7,p0 = f8, 0x07 // Test if x=0
474 nop.i 0
475 }
476 { .mfi
477 setf.exp f_2TOM57 = r_exp_2tom57 // Form 2^-57 for scaling
478 nop.f 0
479 add r_ad3 = 0x90, r_ad1 // Point to ab_table
480 }
481 ;;
482
483 { .mfi
484 setf.d f_RSHF = r_rshf // Form right shift const 1.100 * 2^63
485 fclass.m p6,p0 = f8, 0xe3 // Test if x nan, inf
486 add r_ad4 = 0x2f0, r_ad1 // Point to j_hi_table midpoint
487 }
488 { .mib
489 add r_ad2e = 0x20, r_ad1 // Point to p_table
490 nop.i 0
491 (p10) br.cond.spnt SINH_DENORM // Branch if x denorm
492 }
493 ;;
494
495 // Common path -- return here from SINH_DENORM if x is unnorm
496 SINH_COMMON:
497 { .mfi
498 ldfe f_smlst_oflow_input = [r_ad2e],16
499 nop.f 0
500 add r_ad5 = 0x580, r_ad1 // Point to j_lo_table midpoint
501 }
502 { .mib
503 ldfe f_log2by64_hi = [r_ad1],16
504 and r_exp_x = r_exp_mask, r_signexp_x
505 (p7) br.ret.spnt b0 // Exit if x=0
506 }
507 ;;
508
509 // Get the A coefficients for SINH_BY_TBL
510 { .mfi
511 ldfe f_A1 = [r_ad3],16
512 fcmp.lt.s1 p8,p9 = f8,f0 // Test for x<0
513 cmp.lt p7,p0 = r_exp_x, r_exp_0_25 // Test x < 0.25
514 }
515 { .mfb
516 add r_ad2o = 0x30, r_ad2e // Point to p_table odd coeffs
517 (p6) fma.s0 f8 = f8,f1,f0 // Result for x nan, inf
518 (p6) br.ret.spnt b0 // Exit for x nan, inf
519 }
520 ;;
521
522 // Calculate X2 = ax*ax for SINH_BY_POLY
523 { .mfi
524 ldfe f_log2by64_lo = [r_ad1],16
525 nop.f 0
526 nop.i 0
527 }
528 { .mfb
529 ldfe f_A2 = [r_ad3],16
530 fma.s1 f_X2 = f_NORM_X, f_NORM_X, f0
531 (p7) br.cond.spnt SINH_BY_POLY
532 }
533 ;;
534
535 // Here if |x| >= 0.25
536 SINH_BY_TBL:
537 // ******************************************************
538 // STEP 1 (TBL and EXP) - Argument reduction
539 // ******************************************************
540 // Get the following constants.
541 // Inv_log2by64
542 // log2by64_hi
543 // log2by64_lo
544
545
546 // We want 2^(N-1) and 2^(-N-1). So bias N-1 and -N-1 and
547 // put them in an exponent.
548 // f_spos = 2^(N-1) and f_sneg = 2^(-N-1)
549 // 0xffff + (N-1) = 0xffff +N -1
550 // 0xffff - (N +1) = 0xffff -N -1
551
552
553 // Calculate M and keep it as integer and floating point.
554 // M = round-to-integer(x*Inv_log2by64)
555 // f_M = M = truncate(ax/(log2/64))
556 // Put the integer representation of M in r_M
557 // and the floating point representation of M in f_M
558
559 // Get the remaining A,B coefficients
560 { .mmi
561 ldfe f_A3 = [r_ad3],16
562 nop.m 0
563 nop.i 0
564 }
565 ;;
566
567 .pred.rel "mutex",p8,p9
568 // Use constant (1.100*2^(63-6)) to get rounded M into rightmost significand
569 // |x| * 64 * 1/ln2 * 2^(63-6) + 1.1000 * 2^(63+(63-6))
570 { .mfi
571 (p8) mov r_signexp_sgnx_0_5 = 0x2fffe // signexp of -0.5
572 fma.s1 f_M_temp = f_ABS_X, f_INV_LN2_2TO63, f_RSHF_2TO57
573 (p9) mov r_signexp_sgnx_0_5 = 0x0fffe // signexp of +0.5
574 }
575 ;;
576
577 // Test for |x| >= overflow limit
578 { .mfi
579 ldfe f_B1 = [r_ad3],16
580 fcmp.ge.s1 p6,p0 = f_ABS_X, f_smlst_oflow_input
581 nop.i 0
582 }
583 ;;
584
585 { .mfi
586 ldfe f_B2 = [r_ad3],16
587 nop.f 0
588 mov r_exp_32 = 0x10004
589 }
590 ;;
591
592 // Subtract RSHF constant to get rounded M as a floating point value
593 // M_temp * 2^(63-6) - 2^63
594 { .mfb
595 ldfe f_B3 = [r_ad3],16
596 fms.s1 f_M = f_M_temp, f_2TOM57, f_RSHF
597 (p6) br.cond.spnt SINH_HUGE // Branch if result will overflow
598 }
599 ;;
600
601 { .mfi
602 getf.sig r_M = f_M_temp
603 nop.f 0
604 cmp.ge p7,p6 = r_exp_x, r_exp_32 // Test if x >= 32
605 }
606 ;;
607
608 // Calculate j. j is the signed extension of the six lsb of M. It
609 // has a range of -32 thru 31.
610
611 // Calculate R
612 // ax - M*log2by64_hi
613 // R = (ax - M*log2by64_hi) - M*log2by64_lo
614
615 { .mfi
616 nop.m 0
617 fnma.s1 f_R_temp = f_M, f_log2by64_hi, f_ABS_X
618 and r_j = 0x3f, r_M
619 }
620 ;;
621
622 { .mii
623 nop.m 0
624 shl r_jshf = r_j, 0x2 // Shift j so can sign extend it
625 ;;
626 sxt1 r_jshf = r_jshf
627 }
628 ;;
629
630 { .mii
631 nop.m 0
632 shr r_j = r_jshf, 0x2 // Now j has range -32 to 31
633 nop.i 0
634 }
635 ;;
636
637 { .mmi
638 shladd r_ad_J_hi = r_j, 4, r_ad4 // pointer to Tjhi
639 sub r_Mmj = r_M, r_j // M-j
640 sub r_mj = r0, r_j // Form -j
641 }
642 ;;
643
644 // The TBL and EXP branches are merged and predicated
645 // If TBL, p6 true, 0.25 <= |x| < 32
646 // If EXP, p7 true, 32 <= |x| < overflow_limit
647 //
648 // N = (M-j)/64
649 { .mfi
650 ldfe f_Tjhi = [r_ad_J_hi]
651 fnma.s1 f_R = f_M, f_log2by64_lo, f_R_temp
652 shr r_N = r_Mmj, 0x6 // N = (M-j)/64
653 }
654 { .mfi
655 shladd r_ad_mJ_hi = r_mj, 4, r_ad4 // pointer to Tmjhi
656 nop.f 0
657 shladd r_ad_mJ_lo = r_mj, 2, r_ad5 // pointer to Tmjlo
658 }
659 ;;
660
661 { .mfi
662 sub r_2mNm1 = r_signexp_sgnx_0_5, r_N // signexp sgnx*2^(-N-1)
663 nop.f 0
664 shladd r_ad_J_lo = r_j, 2, r_ad5 // pointer to Tjlo
665 }
666 { .mfi
667 ldfe f_Tmjhi = [r_ad_mJ_hi]
668 nop.f 0
669 add r_2Nm1 = r_signexp_sgnx_0_5, r_N // signexp sgnx*2^(N-1)
670 }
671 ;;
672
673 { .mmf
674 ldfs f_Tmjlo = [r_ad_mJ_lo]
675 setf.exp f_sneg = r_2mNm1 // Form sgnx * 2^(-N-1)
676 nop.f 0
677 }
678 ;;
679
680 { .mmf
681 ldfs f_Tjlo = [r_ad_J_lo]
682 setf.exp f_spos = r_2Nm1 // Form sgnx * 2^(N-1)
683 nop.f 0
684 }
685 ;;
686
687 // ******************************************************
688 // STEP 2 (TBL and EXP)
689 // ******************************************************
690 // Calculate Rsquared and Rcubed in preparation for p_even and p_odd
691
692 { .mmf
693 nop.m 0
694 nop.m 0
695 fma.s1 f_Rsq = f_R, f_R, f0
696 }
697 ;;
698
699
700 // Calculate p_even
701 // B_2 + Rsq *B_3
702 // B_1 + Rsq * (B_2 + Rsq *B_3)
703 // p_even = Rsq * (B_1 + Rsq * (B_2 + Rsq *B_3))
704 { .mfi
705 nop.m 0
706 fma.s1 f_peven_temp1 = f_Rsq, f_B3, f_B2
707 nop.i 0
708 }
709 // Calculate p_odd
710 // A_2 + Rsq *A_3
711 // A_1 + Rsq * (A_2 + Rsq *A_3)
712 // podd = R + Rcub * (A_1 + Rsq * (A_2 + Rsq *A_3))
713 { .mfi
714 nop.m 0
715 fma.s1 f_podd_temp1 = f_Rsq, f_A3, f_A2
716 nop.i 0
717 }
718 ;;
719
720 { .mfi
721 nop.m 0
722 fma.s1 f_Rcub = f_Rsq, f_R, f0
723 nop.i 0
724 }
725 ;;
726
727 //
728 // If TBL,
729 // Calculate S_hi and S_lo, and C_hi
730 // SC_hi_temp = sneg * Tmjhi
731 // S_hi = spos * Tjhi - SC_hi_temp
732 // S_hi = spos * Tjhi - (sneg * Tmjhi)
733 // C_hi = spos * Tjhi + SC_hi_temp
734 // C_hi = spos * Tjhi + (sneg * Tmjhi)
735
736 { .mfi
737 nop.m 0
738 (p6) fma.s1 f_SC_hi_temp = f_sneg, f_Tmjhi, f0
739 nop.i 0
740 }
741 ;;
742
743 // If TBL,
744 // S_lo_temp3 = sneg * Tmjlo
745 // S_lo_temp4 = spos * Tjlo - S_lo_temp3
746 // S_lo_temp4 = spos * Tjlo -(sneg * Tmjlo)
747 { .mfi
748 nop.m 0
749 (p6) fma.s1 f_S_lo_temp3 = f_sneg, f_Tmjlo, f0
750 nop.i 0
751 }
752 ;;
753
754 { .mfi
755 nop.m 0
756 fma.s1 f_peven_temp2 = f_Rsq, f_peven_temp1, f_B1
757 nop.i 0
758 }
759 { .mfi
760 nop.m 0
761 fma.s1 f_podd_temp2 = f_Rsq, f_podd_temp1, f_A1
762 nop.i 0
763 }
764 ;;
765
766 // If EXP,
767 // Compute sgnx * 2^(N-1) * Tjhi and sgnx * 2^(N-1) * Tjlo
768 { .mfi
769 nop.m 0
770 (p7) fma.s1 f_Tjhi_spos = f_Tjhi, f_spos, f0
771 nop.i 0
772 }
773 { .mfi
774 nop.m 0
775 (p7) fma.s1 f_Tjlo_spos = f_Tjlo, f_spos, f0
776 nop.i 0
777 }
778 ;;
779
780 { .mfi
781 nop.m 0
782 (p6) fms.s1 f_S_hi = f_spos, f_Tjhi, f_SC_hi_temp
783 nop.i 0
784 }
785 ;;
786
787 { .mfi
788 nop.m 0
789 (p6) fma.s1 f_C_hi = f_spos, f_Tjhi, f_SC_hi_temp
790 nop.i 0
791 }
792 { .mfi
793 nop.m 0
794 (p6) fms.s1 f_S_lo_temp4 = f_spos, f_Tjlo, f_S_lo_temp3
795 nop.i 0
796 }
797 ;;
798
799 { .mfi
800 nop.m 0
801 fma.s1 f_peven = f_Rsq, f_peven_temp2, f0
802 nop.i 0
803 }
804 { .mfi
805 nop.m 0
806 fma.s1 f_podd = f_podd_temp2, f_Rcub, f_R
807 nop.i 0
808 }
809 ;;
810
811 // If TBL,
812 // S_lo_temp1 = spos * Tjhi - S_hi
813 // S_lo_temp2 = -sneg * Tmjlo + S_lo_temp1
814 // S_lo_temp2 = -sneg * Tmjlo + (spos * Tjhi - S_hi)
815
816 { .mfi
817 nop.m 0
818 (p6) fms.s1 f_S_lo_temp1 = f_spos, f_Tjhi, f_S_hi
819 nop.i 0
820 }
821 ;;
822
823 { .mfi
824 nop.m 0
825 (p6) fnma.s1 f_S_lo_temp2 = f_sneg, f_Tmjhi, f_S_lo_temp1
826 nop.i 0
827 }
828 ;;
829
830 // If EXP,
831 // Y_hi = sgnx * 2^(N-1) * Tjhi
832 // Y_lo = sgnx * 2^(N-1) * Tjhi * (p_odd + p_even) + sgnx * 2^(N-1) * Tjlo
833 { .mfi
834 nop.m 0
835 (p7) fma.s1 f_Y_lo_temp = f_peven, f1, f_podd
836 nop.i 0
837 }
838 ;;
839
840 // If TBL,
841 // S_lo = S_lo_temp4 + S_lo_temp2
842 { .mfi
843 nop.m 0
844 (p6) fma.s1 f_S_lo = f_S_lo_temp4, f1, f_S_lo_temp2
845 nop.i 0
846 }
847 ;;
848
849 // If TBL,
850 // Y_hi = S_hi
851 // Y_lo = C_hi*p_odd + (S_hi*p_even + S_lo)
852 { .mfi
853 nop.m 0
854 (p6) fma.s1 f_Y_lo_temp = f_S_hi, f_peven, f_S_lo
855 nop.i 0
856 }
857 ;;
858
859 { .mfi
860 nop.m 0
861 (p7) fma.s1 f_Y_lo = f_Tjhi_spos, f_Y_lo_temp, f_Tjlo_spos
862 nop.i 0
863 }
864 ;;
865
866 // Dummy multiply to generate inexact
867 { .mfi
868 nop.m 0
869 fmpy.s0 f_tmp = f_B2, f_B2
870 nop.i 0
871 }
872 { .mfi
873 nop.m 0
874 (p6) fma.s1 f_Y_lo = f_C_hi, f_podd, f_Y_lo_temp
875 nop.i 0
876 }
877 ;;
878
879 // f8 = answer = Y_hi + Y_lo
880 { .mfi
881 nop.m 0
882 (p7) fma.s0 f8 = f_Y_lo, f1, f_Tjhi_spos
883 nop.i 0
884 }
885 ;;
886
887 // f8 = answer = Y_hi + Y_lo
888 { .mfb
889 nop.m 0
890 (p6) fma.s0 f8 = f_Y_lo, f1, f_S_hi
891 br.ret.sptk b0 // Exit for SINH_BY_TBL and SINH_BY_EXP
892 }
893 ;;
894
895
896 // Here if 0 < |x| < 0.25
897 SINH_BY_POLY:
898 { .mmf
899 ldfe f_P6 = [r_ad2e],16
900 ldfe f_P5 = [r_ad2o],16
901 nop.f 0
902 }
903 ;;
904
905 { .mmi
906 ldfe f_P4 = [r_ad2e],16
907 ldfe f_P3 = [r_ad2o],16
908 nop.i 0
909 }
910 ;;
911
912 { .mmi
913 ldfe f_P2 = [r_ad2e],16
914 ldfe f_P1 = [r_ad2o],16
915 nop.i 0
916 }
917 ;;
918
919 { .mfi
920 nop.m 0
921 fma.s1 f_X3 = f_NORM_X, f_X2, f0
922 nop.i 0
923 }
924 { .mfi
925 nop.m 0
926 fma.s1 f_X4 = f_X2, f_X2, f0
927 nop.i 0
928 }
929 ;;
930
931 { .mfi
932 nop.m 0
933 fma.s1 f_poly65 = f_X2, f_P6, f_P5
934 nop.i 0
935 }
936 { .mfi
937 nop.m 0
938 fma.s1 f_poly43 = f_X2, f_P4, f_P3
939 nop.i 0
940 }
941 ;;
942
943 { .mfi
944 nop.m 0
945 fma.s1 f_poly21 = f_X2, f_P2, f_P1
946 nop.i 0
947 }
948 ;;
949
950 { .mfi
951 nop.m 0
952 fma.s1 f_poly6543 = f_X4, f_poly65, f_poly43
953 nop.i 0
954 }
955 ;;
956
957 { .mfi
958 nop.m 0
959 fma.s1 f_poly6to1 = f_X4, f_poly6543, f_poly21
960 nop.i 0
961 }
962 ;;
963
964 // Dummy multiply to generate inexact
965 { .mfi
966 nop.m 0
967 fmpy.s0 f_tmp = f_P6, f_P6
968 nop.i 0
969 }
970 { .mfb
971 nop.m 0
972 fma.s0 f8 = f_poly6to1, f_X3, f_NORM_X
973 br.ret.sptk b0 // Exit SINH_BY_POLY
974 }
975 ;;
976
977
978 // Here if x denorm or unorm
979 SINH_DENORM:
980 // Determine if x really a denorm and not a unorm
981 { .mmf
982 getf.exp r_signexp_x = f_NORM_X
983 mov r_exp_denorm = 0x0c001 // Real denorms have exp < this
984 fmerge.s f_ABS_X = f0, f_NORM_X
985 }
986 ;;
987
988 { .mfi
989 nop.m 0
990 fcmp.eq.s0 p10,p0 = f8, f0 // Set denorm flag
991 nop.i 0
992 }
993 ;;
994
995 // Set p8 if really a denorm
996 { .mmi
997 and r_exp_x = r_exp_mask, r_signexp_x
998 ;;
999 cmp.lt p8,p9 = r_exp_x, r_exp_denorm
1000 nop.i 0
1001 }
1002 ;;
1003
1004 // Identify denormal operands.
1005 { .mfb
1006 nop.m 0
1007 (p8) fcmp.ge.unc.s1 p6,p7 = f8, f0 // Test sign of denorm
1008 (p9) br.cond.sptk SINH_COMMON // Return to main path if x unorm
1009 }
1010 ;;
1011
1012 { .mfi
1013 nop.m 0
1014 (p6) fma.s0 f8 = f8,f8,f8 // If x +denorm, result=x+x^2
1015 nop.i 0
1016 }
1017 { .mfb
1018 nop.m 0
1019 (p7) fnma.s0 f8 = f8,f8,f8 // If x -denorm, result=x-x^2
1020 br.ret.sptk b0 // Exit if x denorm
1021 }
1022 ;;
1023
1024
1025 // Here if |x| >= overflow limit
1026 SINH_HUGE:
1027 // for SINH_HUGE, put 24000 in exponent; take sign from input
1028 { .mmi
1029 mov r_exp_huge = 0x15dbf
1030 ;;
1031 setf.exp f_huge = r_exp_huge
1032 nop.i 0
1033 }
1034 ;;
1035
1036 .pred.rel "mutex",p8,p9
1037 { .mfi
1038 alloc r32 = ar.pfs,0,5,4,0
1039 (p8) fnma.s1 f_signed_hi_lo = f_huge, f1, f1
1040 nop.i 0
1041 }
1042 { .mfi
1043 nop.m 0
1044 (p9) fma.s1 f_signed_hi_lo = f_huge, f1, f1
1045 nop.i 0
1046 }
1047 ;;
1048
1049 { .mfi
1050 nop.m 0
1051 fma.s0 f_pre_result = f_signed_hi_lo, f_huge, f0
1052 mov GR_Parameter_TAG = 126
1053 }
1054 ;;
1055
1056 GLOBAL_IEEE754_END(sinhl)
1057
1058
1059 LOCAL_LIBM_ENTRY(__libm_error_region)
1060 .prologue
1061
1062 { .mfi
1063 add GR_Parameter_Y=-32,sp // Parameter 2 value
1064 nop.f 0
1065 .save ar.pfs,GR_SAVE_PFS
1066 mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
1067 }
1068 { .mfi
1069 .fframe 64
1070 add sp=-64,sp // Create new stack
1071 nop.f 0
1072 mov GR_SAVE_GP=gp // Save gp
1073 };;
1074
1075 { .mmi
1076 stfe [GR_Parameter_Y] = f0,16 // STORE Parameter 2 on stack
1077 add GR_Parameter_X = 16,sp // Parameter 1 address
1078 .save b0, GR_SAVE_B0
1079 mov GR_SAVE_B0=b0 // Save b0
1080 };;
1081
1082 .body
1083 { .mib
1084 stfe [GR_Parameter_X] = f8 // STORE Parameter 1 on stack
1085 add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
1086 nop.b 0
1087 }
1088 { .mib
1089 stfe [GR_Parameter_Y] = f_pre_result // STORE Parameter 3 on stack
1090 add GR_Parameter_Y = -16,GR_Parameter_Y
1091 br.call.sptk b0=__libm_error_support# // Call error handling function
1092 };;
1093
1094 { .mmi
1095 add GR_Parameter_RESULT = 48,sp
1096 nop.m 0
1097 nop.i 0
1098 };;
1099
1100 { .mmi
1101 ldfe f8 = [GR_Parameter_RESULT] // Get return result off stack
1102 .restore sp
1103 add sp = 64,sp // Restore stack pointer
1104 mov b0 = GR_SAVE_B0 // Restore return address
1105 };;
1106
1107 { .mib
1108 mov gp = GR_SAVE_GP // Restore gp
1109 mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
1110 br.ret.sptk b0 // Return
1111 };;
1112
1113 LOCAL_LIBM_END(__libm_error_region)
1114
1115
1116 .type __libm_error_support#,@function
1117 .global __libm_error_support#