]> git.ipfire.org Git - thirdparty/glibc.git/blob - sysdeps/ia64/fpu/s_expm1.S
ia64: strip trailing whitespace
[thirdparty/glibc.git] / sysdeps / ia64 / fpu / s_expm1.S
1 .file "exp_m1.s"
2
3
4 // Copyright (c) 2000 - 2005, Intel Corporation
5 // All rights reserved.
6 //
7 // Contributed 2000 by the Intel Numerics Group, Intel Corporation
8 //
9 // Redistribution and use in source and binary forms, with or without
10 // modification, are permitted provided that the following conditions are
11 // met:
12 //
13 // * Redistributions of source code must retain the above copyright
14 // notice, this list of conditions and the following disclaimer.
15 //
16 // * Redistributions in binary form must reproduce the above copyright
17 // notice, this list of conditions and the following disclaimer in the
18 // documentation and/or other materials provided with the distribution.
19 //
20 // * The name of Intel Corporation may not be used to endorse or promote
21 // products derived from this software without specific prior written
22 // permission.
23
24 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
27 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
28 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
29 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
30 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
31 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
32 // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
33 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 //
36 // Intel Corporation is the author of this code, and requests that all
37 // problem reports or change requests be submitted to it directly at
38 // http://www.intel.com/software/products/opensource/libraries/num.htm.
39 //
40 // History
41 //==============================================================
42 // 02/02/00 Initial Version
43 // 04/04/00 Unwind support added
44 // 08/15/00 Bundle added after call to __libm_error_support to properly
45 // set [the previously overwritten] GR_Parameter_RESULT.
46 // 07/07/01 Improved speed of all paths
47 // 05/20/02 Cleaned up namespace and sf0 syntax
48 // 11/20/02 Improved speed, algorithm based on exp
49 // 03/31/05 Reformatted delimiters between data tables
50
51 // API
52 //==============================================================
53 // double expm1(double)
54
55 // Overview of operation
56 //==============================================================
57 // 1. Inputs of Nan, Inf, Zero, NatVal handled with special paths
58 //
59 // 2. |x| < 2^-60
60 // Result = x, computed by x + x*x to handle appropriate flags and rounding
61 //
62 // 3. 2^-60 <= |x| < 2^-2
63 // Result determined by 13th order Taylor series polynomial
64 // expm1f(x) = x + Q2*x^2 + ... + Q13*x^13
65 //
66 // 4. x < -48.0
67 // Here we know result is essentially -1 + eps, where eps only affects
68 // rounded result. Set I.
69 //
70 // 5. x >= 709.7827
71 // Result overflows. Set I, O, and call error support
72 //
73 // 6. 2^-2 <= x < 709.7827 or -48.0 <= x < -2^-2
74 // This is the main path. The algorithm is described below:
75
76 // Take the input x. w is "how many log2/128 in x?"
77 // w = x * 128/log2
78 // n = int(w)
79 // x = n log2/128 + r + delta
80
81 // n = 128M + index_1 + 2^4 index_2
82 // x = M log2 + (log2/128) index_1 + (log2/8) index_2 + r + delta
83
84 // exp(x) = 2^M 2^(index_1/128) 2^(index_2/8) exp(r) exp(delta)
85 // Construct 2^M
86 // Get 2^(index_1/128) from table_1;
87 // Get 2^(index_2/8) from table_2;
88 // Calculate exp(r) by series by 5th order polynomial
89 // r = x - n (log2/128)_high
90 // delta = - n (log2/128)_low
91 // Calculate exp(delta) as 1 + delta
92
93
94 // Special values
95 //==============================================================
96 // expm1(+0) = +0.0
97 // expm1(-0) = -0.0
98
99 // expm1(+qnan) = +qnan
100 // expm1(-qnan) = -qnan
101 // expm1(+snan) = +qnan
102 // expm1(-snan) = -qnan
103
104 // expm1(-inf) = -1.0
105 // expm1(+inf) = +inf
106
107 // Overflow and Underflow
108 //=======================
109 // expm1(x) = largest double normal when
110 // x = 709.7827 = 40862e42fefa39ef
111 //
112 // Underflow is handled as described in case 2 above.
113
114
115 // Registers used
116 //==============================================================
117 // Floating Point registers used:
118 // f8, input
119 // f9 -> f15, f32 -> f75
120
121 // General registers used:
122 // r14 -> r40
123
124 // Predicate registers used:
125 // p6 -> p15
126
127 // Assembly macros
128 //==============================================================
129
130 rRshf = r14
131 rAD_TB1 = r15
132 rAD_T1 = r15
133 rAD_TB2 = r16
134 rAD_T2 = r16
135 rAD_Ln2_lo = r17
136 rAD_P = r17
137
138 rN = r18
139 rIndex_1 = r19
140 rIndex_2_16 = r20
141
142 rM = r21
143 rBiased_M = r21
144 rIndex_1_16 = r22
145 rSignexp_x = r23
146 rExp_x = r24
147 rSig_inv_ln2 = r25
148
149 rAD_Q1 = r26
150 rAD_Q2 = r27
151 rTmp = r27
152 rExp_bias = r28
153 rExp_mask = r29
154 rRshf_2to56 = r30
155
156 rGt_ln = r31
157 rExp_2tom56 = r31
158
159
160 GR_SAVE_B0 = r33
161 GR_SAVE_PFS = r34
162 GR_SAVE_GP = r35
163 GR_SAVE_SP = r36
164
165 GR_Parameter_X = r37
166 GR_Parameter_Y = r38
167 GR_Parameter_RESULT = r39
168 GR_Parameter_TAG = r40
169
170
171 FR_X = f10
172 FR_Y = f1
173 FR_RESULT = f8
174
175 fRSHF_2TO56 = f6
176 fINV_LN2_2TO63 = f7
177 fW_2TO56_RSH = f9
178 f2TOM56 = f11
179 fP5 = f12
180 fP54 = f50
181 fP5432 = f50
182 fP4 = f13
183 fP3 = f14
184 fP32 = f14
185 fP2 = f15
186
187 fLn2_by_128_hi = f33
188 fLn2_by_128_lo = f34
189
190 fRSHF = f35
191 fNfloat = f36
192 fW = f37
193 fR = f38
194 fF = f39
195
196 fRsq = f40
197 fRcube = f41
198
199 f2M = f42
200 fS1 = f43
201 fT1 = f44
202
203 fMIN_DBL_OFLOW_ARG = f45
204 fMAX_DBL_MINUS_1_ARG = f46
205 fMAX_DBL_NORM_ARG = f47
206 fP_lo = f51
207 fP_hi = f52
208 fP = f53
209 fS = f54
210
211 fNormX = f56
212
213 fWre_urm_f8 = f57
214
215 fGt_pln = f58
216 fTmp = f58
217
218 fS2 = f59
219 fT2 = f60
220 fSm1 = f61
221
222 fXsq = f62
223 fX6 = f63
224 fX4 = f63
225 fQ7 = f64
226 fQ76 = f64
227 fQ7654 = f64
228 fQ765432 = f64
229 fQ6 = f65
230 fQ5 = f66
231 fQ54 = f66
232 fQ4 = f67
233 fQ3 = f68
234 fQ32 = f68
235 fQ2 = f69
236 fQD = f70
237 fQDC = f70
238 fQDCBA = f70
239 fQDCBA98 = f70
240 fQDCBA98765432 = f70
241 fQC = f71
242 fQB = f72
243 fQBA = f72
244 fQA = f73
245 fQ9 = f74
246 fQ98 = f74
247 fQ8 = f75
248
249 // Data tables
250 //==============================================================
251
252 RODATA
253 .align 16
254
255 // ************* DO NOT CHANGE ORDER OF THESE TABLES ********************
256
257 // double-extended 1/ln(2)
258 // 3fff b8aa 3b29 5c17 f0bb be87fed0691d3e88
259 // 3fff b8aa 3b29 5c17 f0bc
260 // For speed the significand will be loaded directly with a movl and setf.sig
261 // and the exponent will be bias+63 instead of bias+0. Thus subsequent
262 // computations need to scale appropriately.
263 // The constant 128/ln(2) is needed for the computation of w. This is also
264 // obtained by scaling the computations.
265 //
266 // Two shifting constants are loaded directly with movl and setf.d.
267 // 1. fRSHF_2TO56 = 1.1000..00 * 2^(63-7)
268 // This constant is added to x*1/ln2 to shift the integer part of
269 // x*128/ln2 into the rightmost bits of the significand.
270 // The result of this fma is fW_2TO56_RSH.
271 // 2. fRSHF = 1.1000..00 * 2^(63)
272 // This constant is subtracted from fW_2TO56_RSH * 2^(-56) to give
273 // the integer part of w, n, as a floating-point number.
274 // The result of this fms is fNfloat.
275
276
277 LOCAL_OBJECT_START(exp_Table_1)
278 data8 0x40862e42fefa39f0 // smallest dbl overflow arg
279 data8 0xc048000000000000 // approx largest arg for minus one result
280 data8 0x40862e42fefa39ef // largest dbl arg to give normal dbl result
281 data8 0x0 // pad
282 data8 0xb17217f7d1cf79ab , 0x00003ff7 // ln2/128 hi
283 data8 0xc9e3b39803f2f6af , 0x00003fb7 // ln2/128 lo
284 //
285 // Table 1 is 2^(index_1/128) where
286 // index_1 goes from 0 to 15
287 //
288 data8 0x8000000000000000 , 0x00003FFF
289 data8 0x80B1ED4FD999AB6C , 0x00003FFF
290 data8 0x8164D1F3BC030773 , 0x00003FFF
291 data8 0x8218AF4373FC25EC , 0x00003FFF
292 data8 0x82CD8698AC2BA1D7 , 0x00003FFF
293 data8 0x8383594EEFB6EE37 , 0x00003FFF
294 data8 0x843A28C3ACDE4046 , 0x00003FFF
295 data8 0x84F1F656379C1A29 , 0x00003FFF
296 data8 0x85AAC367CC487B15 , 0x00003FFF
297 data8 0x8664915B923FBA04 , 0x00003FFF
298 data8 0x871F61969E8D1010 , 0x00003FFF
299 data8 0x87DB357FF698D792 , 0x00003FFF
300 data8 0x88980E8092DA8527 , 0x00003FFF
301 data8 0x8955EE03618E5FDD , 0x00003FFF
302 data8 0x8A14D575496EFD9A , 0x00003FFF
303 data8 0x8AD4C6452C728924 , 0x00003FFF
304 LOCAL_OBJECT_END(exp_Table_1)
305
306 // Table 2 is 2^(index_1/8) where
307 // index_2 goes from 0 to 7
308 LOCAL_OBJECT_START(exp_Table_2)
309 data8 0x8000000000000000 , 0x00003FFF
310 data8 0x8B95C1E3EA8BD6E7 , 0x00003FFF
311 data8 0x9837F0518DB8A96F , 0x00003FFF
312 data8 0xA5FED6A9B15138EA , 0x00003FFF
313 data8 0xB504F333F9DE6484 , 0x00003FFF
314 data8 0xC5672A115506DADD , 0x00003FFF
315 data8 0xD744FCCAD69D6AF4 , 0x00003FFF
316 data8 0xEAC0C6E7DD24392F , 0x00003FFF
317 LOCAL_OBJECT_END(exp_Table_2)
318
319
320 LOCAL_OBJECT_START(exp_p_table)
321 data8 0x3f8111116da21757 //P5
322 data8 0x3fa55555d787761c //P4
323 data8 0x3fc5555555555414 //P3
324 data8 0x3fdffffffffffd6a //P2
325 LOCAL_OBJECT_END(exp_p_table)
326
327 LOCAL_OBJECT_START(exp_Q1_table)
328 data8 0x3de6124613a86d09 // QD = 1/13!
329 data8 0x3e21eed8eff8d898 // QC = 1/12!
330 data8 0x3ec71de3a556c734 // Q9 = 1/9!
331 data8 0x3efa01a01a01a01a // Q8 = 1/8!
332 data8 0x8888888888888889,0x3ff8 // Q5 = 1/5!
333 data8 0xaaaaaaaaaaaaaaab,0x3ffc // Q3 = 1/3!
334 data8 0x0,0x0 // Pad to avoid bank conflicts
335 LOCAL_OBJECT_END(exp_Q1_table)
336
337 LOCAL_OBJECT_START(exp_Q2_table)
338 data8 0x3e5ae64567f544e4 // QB = 1/11!
339 data8 0x3e927e4fb7789f5c // QA = 1/10!
340 data8 0x3f2a01a01a01a01a // Q7 = 1/7!
341 data8 0x3f56c16c16c16c17 // Q6 = 1/6!
342 data8 0xaaaaaaaaaaaaaaab,0x3ffa // Q4 = 1/4!
343 data8 0x8000000000000000,0x3ffe // Q2 = 1/2!
344 LOCAL_OBJECT_END(exp_Q2_table)
345
346
347 .section .text
348 GLOBAL_IEEE754_ENTRY(expm1)
349
350 { .mlx
351 getf.exp rSignexp_x = f8 // Must recompute if x unorm
352 movl rSig_inv_ln2 = 0xb8aa3b295c17f0bc // signif of 1/ln2
353 }
354 { .mlx
355 addl rAD_TB1 = @ltoff(exp_Table_1), gp
356 movl rRshf_2to56 = 0x4768000000000000 // 1.10000 2^(63+56)
357 }
358 ;;
359
360 // We do this fnorm right at the beginning to normalize
361 // any input unnormals so that SWA is not taken.
362 { .mfi
363 ld8 rAD_TB1 = [rAD_TB1]
364 fclass.m p6,p0 = f8,0x0b // Test for x=unorm
365 mov rExp_mask = 0x1ffff
366 }
367 { .mfi
368 mov rExp_bias = 0xffff
369 fnorm.s1 fNormX = f8
370 mov rExp_2tom56 = 0xffff-56
371 }
372 ;;
373
374 // Form two constants we need
375 // 1/ln2 * 2^63 to compute w = x * 1/ln2 * 128
376 // 1.1000..000 * 2^(63+63-7) to right shift int(w) into the significand
377
378 { .mfi
379 setf.sig fINV_LN2_2TO63 = rSig_inv_ln2 // form 1/ln2 * 2^63
380 fclass.m p8,p0 = f8,0x07 // Test for x=0
381 nop.i 0
382 }
383 { .mlx
384 setf.d fRSHF_2TO56 = rRshf_2to56 // Form 1.100 * 2^(63+56)
385 movl rRshf = 0x43e8000000000000 // 1.10000 2^63 for rshift
386 }
387 ;;
388
389 { .mfi
390 setf.exp f2TOM56 = rExp_2tom56 // form 2^-56 for scaling Nfloat
391 fclass.m p9,p0 = f8,0x22 // Test for x=-inf
392 add rAD_TB2 = 0x140, rAD_TB1 // Point to Table 2
393 }
394 { .mib
395 add rAD_Q1 = 0x1e0, rAD_TB1 // Point to Q table for small path
396 add rAD_Ln2_lo = 0x30, rAD_TB1 // Point to ln2_by_128_lo
397 (p6) br.cond.spnt EXPM1_UNORM // Branch if x unorm
398 }
399 ;;
400
401 EXPM1_COMMON:
402 { .mfi
403 ldfpd fMIN_DBL_OFLOW_ARG, fMAX_DBL_MINUS_1_ARG = [rAD_TB1],16
404 fclass.m p10,p0 = f8,0x1e1 // Test for x=+inf, NaN, NaT
405 add rAD_Q2 = 0x50, rAD_Q1 // Point to Q table for small path
406 }
407 { .mfb
408 nop.m 0
409 nop.f 0
410 (p8) br.ret.spnt b0 // Exit for x=0, return x
411 }
412 ;;
413
414 { .mfi
415 ldfd fMAX_DBL_NORM_ARG = [rAD_TB1],16
416 nop.f 0
417 and rExp_x = rExp_mask, rSignexp_x // Biased exponent of x
418 }
419 { .mfb
420 setf.d fRSHF = rRshf // Form right shift const 1.100 * 2^63
421 (p9) fms.d.s0 f8 = f0,f0,f1 // quick exit for x=-inf
422 (p9) br.ret.spnt b0
423 }
424 ;;
425
426 { .mfi
427 ldfpd fQD, fQC = [rAD_Q1], 16 // Load coeff for small path
428 nop.f 0
429 sub rExp_x = rExp_x, rExp_bias // True exponent of x
430 }
431 { .mfb
432 ldfpd fQB, fQA = [rAD_Q2], 16 // Load coeff for small path
433 (p10) fma.d.s0 f8 = f8, f1, f0 // For x=+inf, NaN, NaT
434 (p10) br.ret.spnt b0 // Exit for x=+inf, NaN, NaT
435 }
436 ;;
437
438 { .mfi
439 ldfpd fQ9, fQ8 = [rAD_Q1], 16 // Load coeff for small path
440 fma.s1 fXsq = fNormX, fNormX, f0 // x*x for small path
441 cmp.gt p7, p8 = -2, rExp_x // Test |x| < 2^(-2)
442 }
443 { .mfi
444 ldfpd fQ7, fQ6 = [rAD_Q2], 16 // Load coeff for small path
445 nop.f 0
446 nop.i 0
447 }
448 ;;
449
450 { .mfi
451 ldfe fQ5 = [rAD_Q1], 16 // Load coeff for small path
452 nop.f 0
453 nop.i 0
454 }
455 { .mib
456 ldfe fQ4 = [rAD_Q2], 16 // Load coeff for small path
457 (p7) cmp.gt.unc p6, p7 = -60, rExp_x // Test |x| < 2^(-60)
458 (p7) br.cond.spnt EXPM1_SMALL // Branch if 2^-60 <= |x| < 2^-2
459 }
460 ;;
461
462 // W = X * Inv_log2_by_128
463 // By adding 1.10...0*2^63 we shift and get round_int(W) in significand.
464 // We actually add 1.10...0*2^56 to X * Inv_log2 to do the same thing.
465
466 { .mfi
467 ldfe fLn2_by_128_hi = [rAD_TB1],32
468 fma.s1 fW_2TO56_RSH = fNormX, fINV_LN2_2TO63, fRSHF_2TO56
469 nop.i 0
470 }
471 { .mfb
472 ldfe fLn2_by_128_lo = [rAD_Ln2_lo]
473 (p6) fma.d.s0 f8 = f8, f8, f8 // If x < 2^-60, result=x+x*x
474 (p6) br.ret.spnt b0 // Exit if x < 2^-60
475 }
476 ;;
477
478 // Divide arguments into the following categories:
479 // Certain minus one p11 - -inf < x <= MAX_DBL_MINUS_1_ARG
480 // Possible Overflow p14 - MAX_DBL_NORM_ARG < x < MIN_DBL_OFLOW_ARG
481 // Certain Overflow p15 - MIN_DBL_OFLOW_ARG <= x < +inf
482 //
483 // If the input is really a double arg, then there will never be "Possible
484 // Overflow" arguments.
485 //
486
487 // After that last load, rAD_TB1 points to the beginning of table 1
488
489 { .mfi
490 nop.m 0
491 fcmp.ge.s1 p15,p14 = fNormX,fMIN_DBL_OFLOW_ARG
492 nop.i 0
493 }
494 ;;
495
496 { .mfi
497 add rAD_P = 0x80, rAD_TB2
498 fcmp.le.s1 p11,p0 = fNormX,fMAX_DBL_MINUS_1_ARG
499 nop.i 0
500 }
501 ;;
502
503 { .mfb
504 ldfpd fP5, fP4 = [rAD_P] ,16
505 (p14) fcmp.gt.unc.s1 p14,p0 = fNormX,fMAX_DBL_NORM_ARG
506 (p15) br.cond.spnt EXPM1_CERTAIN_OVERFLOW
507 }
508 ;;
509
510 // Nfloat = round_int(W)
511 // The signficand of fW_2TO56_RSH contains the rounded integer part of W,
512 // as a twos complement number in the lower bits (that is, it may be negative).
513 // That twos complement number (called N) is put into rN.
514
515 // Since fW_2TO56_RSH is scaled by 2^56, it must be multiplied by 2^-56
516 // before the shift constant 1.10000 * 2^63 is subtracted to yield fNfloat.
517 // Thus, fNfloat contains the floating point version of N
518
519 { .mfb
520 ldfpd fP3, fP2 = [rAD_P]
521 fms.s1 fNfloat = fW_2TO56_RSH, f2TOM56, fRSHF
522 (p11) br.cond.spnt EXPM1_CERTAIN_MINUS_ONE
523 }
524 ;;
525
526 { .mfi
527 getf.sig rN = fW_2TO56_RSH
528 nop.f 0
529 nop.i 0
530 }
531 ;;
532
533 // rIndex_1 has index_1
534 // rIndex_2_16 has index_2 * 16
535 // rBiased_M has M
536 // rIndex_1_16 has index_1 * 16
537
538 // r = x - Nfloat * ln2_by_128_hi
539 // f = 1 - Nfloat * ln2_by_128_lo
540 { .mfi
541 and rIndex_1 = 0x0f, rN
542 fnma.s1 fR = fNfloat, fLn2_by_128_hi, fNormX
543 shr rM = rN, 0x7
544 }
545 { .mfi
546 and rIndex_2_16 = 0x70, rN
547 fnma.s1 fF = fNfloat, fLn2_by_128_lo, f1
548 nop.i 0
549 }
550 ;;
551
552 // rAD_T1 has address of T1
553 // rAD_T2 has address if T2
554
555 { .mmi
556 add rBiased_M = rExp_bias, rM
557 add rAD_T2 = rAD_TB2, rIndex_2_16
558 shladd rAD_T1 = rIndex_1, 4, rAD_TB1
559 }
560 ;;
561
562 // Create Scale = 2^M
563 // Load T1 and T2
564 { .mmi
565 setf.exp f2M = rBiased_M
566 ldfe fT2 = [rAD_T2]
567 nop.i 0
568 }
569 ;;
570
571 { .mfi
572 ldfe fT1 = [rAD_T1]
573 fmpy.s0 fTmp = fLn2_by_128_lo, fLn2_by_128_lo // Force inexact
574 nop.i 0
575 }
576 ;;
577
578 { .mfi
579 nop.m 0
580 fma.s1 fP54 = fR, fP5, fP4
581 nop.i 0
582 }
583 { .mfi
584 nop.m 0
585 fma.s1 fP32 = fR, fP3, fP2
586 nop.i 0
587 }
588 ;;
589
590 { .mfi
591 nop.m 0
592 fma.s1 fRsq = fR, fR, f0
593 nop.i 0
594 }
595 ;;
596
597 { .mfi
598 nop.m 0
599 fma.s1 fP5432 = fRsq, fP54, fP32
600 nop.i 0
601 }
602 ;;
603
604 { .mfi
605 nop.m 0
606 fma.s1 fS2 = fF,fT2,f0
607 nop.i 0
608 }
609 { .mfi
610 nop.m 0
611 fma.s1 fS1 = f2M,fT1,f0
612 nop.i 0
613 }
614 ;;
615
616 { .mfi
617 nop.m 0
618 fma.s1 fP = fRsq, fP5432, fR
619 nop.i 0
620 }
621 ;;
622
623 { .mfi
624 nop.m 0
625 fms.s1 fSm1 = fS1,fS2,f1 // S - 1.0
626 nop.i 0
627 }
628 { .mfb
629 nop.m 0
630 fma.s1 fS = fS1,fS2,f0
631 (p14) br.cond.spnt EXPM1_POSSIBLE_OVERFLOW
632 }
633 ;;
634
635 { .mfb
636 nop.m 0
637 fma.d.s0 f8 = fS, fP, fSm1
638 br.ret.sptk b0 // Normal path exit
639 }
640 ;;
641
642 // Here if 2^-60 <= |x| <2^-2
643 // Compute 13th order polynomial
644 EXPM1_SMALL:
645 { .mmf
646 ldfe fQ3 = [rAD_Q1], 16
647 ldfe fQ2 = [rAD_Q2], 16
648 fma.s1 fX4 = fXsq, fXsq, f0
649 }
650 ;;
651
652 { .mfi
653 nop.m 0
654 fma.s1 fQDC = fQD, fNormX, fQC
655 nop.i 0
656 }
657 { .mfi
658 nop.m 0
659 fma.s1 fQBA = fQB, fNormX, fQA
660 nop.i 0
661 }
662 ;;
663
664 { .mfi
665 nop.m 0
666 fma.s1 fQ98 = fQ9, fNormX, fQ8
667 nop.i 0
668 }
669 { .mfi
670 nop.m 0
671 fma.s1 fQ76= fQ7, fNormX, fQ6
672 nop.i 0
673 }
674 ;;
675
676 { .mfi
677 nop.m 0
678 fma.s1 fQ54 = fQ5, fNormX, fQ4
679 nop.i 0
680 }
681 ;;
682
683 { .mfi
684 nop.m 0
685 fma.s1 fX6 = fX4, fXsq, f0
686 nop.i 0
687 }
688 { .mfi
689 nop.m 0
690 fma.s1 fQ32= fQ3, fNormX, fQ2
691 nop.i 0
692 }
693 ;;
694
695 { .mfi
696 nop.m 0
697 fma.s1 fQDCBA = fQDC, fXsq, fQBA
698 nop.i 0
699 }
700 { .mfi
701 nop.m 0
702 fma.s1 fQ7654 = fQ76, fXsq, fQ54
703 nop.i 0
704 }
705 ;;
706
707 { .mfi
708 nop.m 0
709 fma.s1 fQDCBA98 = fQDCBA, fXsq, fQ98
710 nop.i 0
711 }
712 { .mfi
713 nop.m 0
714 fma.s1 fQ765432 = fQ7654, fXsq, fQ32
715 nop.i 0
716 }
717 ;;
718
719 { .mfi
720 nop.m 0
721 fma.s1 fQDCBA98765432 = fQDCBA98, fX6, fQ765432
722 nop.i 0
723 }
724 ;;
725
726 { .mfb
727 nop.m 0
728 fma.d.s0 f8 = fQDCBA98765432, fXsq, fNormX
729 br.ret.sptk b0 // Exit small branch
730 }
731 ;;
732
733
734 EXPM1_POSSIBLE_OVERFLOW:
735
736 // Here if fMAX_DBL_NORM_ARG < x < fMIN_DBL_OFLOW_ARG
737 // This cannot happen if input is a double, only if input higher precision.
738 // Overflow is a possibility, not a certainty.
739
740 // Recompute result using status field 2 with user's rounding mode,
741 // and wre set. If result is larger than largest double, then we have
742 // overflow
743
744 { .mfi
745 mov rGt_ln = 0x103ff // Exponent for largest dbl + 1 ulp
746 fsetc.s2 0x7F,0x42 // Get user's round mode, set wre
747 nop.i 0
748 }
749 ;;
750
751 { .mfi
752 setf.exp fGt_pln = rGt_ln // Create largest double + 1 ulp
753 fma.d.s2 fWre_urm_f8 = fS, fP, fSm1 // Result with wre set
754 nop.i 0
755 }
756 ;;
757
758 { .mfi
759 nop.m 0
760 fsetc.s2 0x7F,0x40 // Turn off wre in sf2
761 nop.i 0
762 }
763 ;;
764
765 { .mfi
766 nop.m 0
767 fcmp.ge.s1 p6, p0 = fWre_urm_f8, fGt_pln // Test for overflow
768 nop.i 0
769 }
770 ;;
771
772 { .mfb
773 nop.m 0
774 nop.f 0
775 (p6) br.cond.spnt EXPM1_CERTAIN_OVERFLOW // Branch if overflow
776 }
777 ;;
778
779 { .mfb
780 nop.m 0
781 fma.d.s0 f8 = fS, fP, fSm1
782 br.ret.sptk b0 // Exit if really no overflow
783 }
784 ;;
785
786 EXPM1_CERTAIN_OVERFLOW:
787 { .mmi
788 sub rTmp = rExp_mask, r0, 1
789 ;;
790 setf.exp fTmp = rTmp
791 nop.i 0
792 }
793 ;;
794
795 { .mfi
796 alloc r32=ar.pfs,1,4,4,0
797 fmerge.s FR_X = f8,f8
798 nop.i 0
799 }
800 { .mfb
801 mov GR_Parameter_TAG = 41
802 fma.d.s0 FR_RESULT = fTmp, fTmp, f0 // Set I,O and +INF result
803 br.cond.sptk __libm_error_region
804 }
805 ;;
806
807 // Here if x unorm
808 EXPM1_UNORM:
809 { .mfb
810 getf.exp rSignexp_x = fNormX // Must recompute if x unorm
811 fcmp.eq.s0 p6, p0 = f8, f0 // Set D flag
812 br.cond.sptk EXPM1_COMMON
813 }
814 ;;
815
816 // here if result will be -1 and inexact, x <= -48.0
817 EXPM1_CERTAIN_MINUS_ONE:
818 { .mmi
819 mov rTmp = 1
820 ;;
821 setf.exp fTmp = rTmp
822 nop.i 0
823 }
824 ;;
825
826 { .mfb
827 nop.m 0
828 fms.d.s0 FR_RESULT = fTmp, fTmp, f1 // Set I, rounded -1+eps result
829 br.ret.sptk b0
830 }
831 ;;
832
833 GLOBAL_IEEE754_END(expm1)
834
835
836 LOCAL_LIBM_ENTRY(__libm_error_region)
837 .prologue
838 { .mfi
839 add GR_Parameter_Y=-32,sp // Parameter 2 value
840 nop.f 0
841 .save ar.pfs,GR_SAVE_PFS
842 mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
843 }
844 { .mfi
845 .fframe 64
846 add sp=-64,sp // Create new stack
847 nop.f 0
848 mov GR_SAVE_GP=gp // Save gp
849 };;
850 { .mmi
851 stfd [GR_Parameter_Y] = FR_Y,16 // STORE Parameter 2 on stack
852 add GR_Parameter_X = 16,sp // Parameter 1 address
853 .save b0, GR_SAVE_B0
854 mov GR_SAVE_B0=b0 // Save b0
855 };;
856 .body
857 { .mib
858 stfd [GR_Parameter_X] = FR_X // STORE Parameter 1 on stack
859 add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
860 nop.b 0
861 }
862 { .mib
863 stfd [GR_Parameter_Y] = FR_RESULT // STORE Parameter 3 on stack
864 add GR_Parameter_Y = -16,GR_Parameter_Y
865 br.call.sptk b0=__libm_error_support# // Call error handling function
866 };;
867 { .mmi
868 add GR_Parameter_RESULT = 48,sp
869 nop.m 0
870 nop.i 0
871 };;
872 { .mmi
873 ldfd f8 = [GR_Parameter_RESULT] // Get return result off stack
874 .restore sp
875 add sp = 64,sp // Restore stack pointer
876 mov b0 = GR_SAVE_B0 // Restore return address
877 };;
878 { .mib
879 mov gp = GR_SAVE_GP // Restore gp
880 mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
881 br.ret.sptk b0 // Return
882 };;
883
884 LOCAL_LIBM_END(__libm_error_region)
885 .type __libm_error_support#,@function
886 .global __libm_error_support#