]> git.ipfire.org Git - thirdparty/glibc.git/blob - sysdeps/ieee754/dbl-64/dla.h
Prefer https to http for gnu.org and fsf.org URLs
[thirdparty/glibc.git] / sysdeps / ieee754 / dbl-64 / dla.h
1 /*
2 * IBM Accurate Mathematical Library
3 * Written by International Business Machines Corp.
4 * Copyright (C) 2001-2019 Free Software Foundation, Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU Lesser General Public License as published by
8 * the Free Software Foundation; either version 2.1 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public License
17 * along with this program; if not, see <https://www.gnu.org/licenses/>.
18 */
19
20 #include <math.h>
21
22 /***********************************************************************/
23 /*MODULE_NAME: dla.h */
24 /* */
25 /* This file holds C language macros for 'Double Length Floating Point */
26 /* Arithmetic'. The macros are based on the paper: */
27 /* T.J.Dekker, "A floating-point Technique for extending the */
28 /* Available Precision", Number. Math. 18, 224-242 (1971). */
29 /* A Double-Length number is defined by a pair (r,s), of IEEE double */
30 /* precision floating point numbers that satisfy, */
31 /* */
32 /* abs(s) <= abs(r+s)*2**(-53)/(1+2**(-53)). */
33 /* */
34 /* The computer arithmetic assumed is IEEE double precision in */
35 /* round to nearest mode. All variables in the macros must be of type */
36 /* IEEE double. */
37 /***********************************************************************/
38
39 /* CN = 1+2**27 = '41a0000002000000' IEEE double format. Use it to split a
40 double for better accuracy. */
41 #define CN 134217729.0
42
43
44 /* Exact addition of two single-length floating point numbers, Dekker. */
45 /* The macro produces a double-length number (z,zz) that satisfies */
46 /* z+zz = x+y exactly. */
47
48 #define EADD(x,y,z,zz) \
49 z=(x)+(y); zz=(fabs(x)>fabs(y)) ? (((x)-(z))+(y)) : (((y)-(z))+(x));
50
51
52 /* Exact subtraction of two single-length floating point numbers, Dekker. */
53 /* The macro produces a double-length number (z,zz) that satisfies */
54 /* z+zz = x-y exactly. */
55
56 #define ESUB(x,y,z,zz) \
57 z=(x)-(y); zz=(fabs(x)>fabs(y)) ? (((x)-(z))-(y)) : ((x)-((y)+(z)));
58
59
60 #ifdef __FP_FAST_FMA
61 # define DLA_FMS(x, y, z) __builtin_fma (x, y, -(z))
62 #endif
63
64 /* Exact multiplication of two single-length floating point numbers, */
65 /* Veltkamp. The macro produces a double-length number (z,zz) that */
66 /* satisfies z+zz = x*y exactly. p,hx,tx,hy,ty are temporary */
67 /* storage variables of type double. */
68
69 #ifdef DLA_FMS
70 # define EMULV(x, y, z, zz, p, hx, tx, hy, ty) \
71 z = x * y; zz = DLA_FMS (x, y, z);
72 #else
73 # define EMULV(x, y, z, zz, p, hx, tx, hy, ty) \
74 p = CN * (x); hx = ((x) - p) + p; tx = (x) - hx; \
75 p = CN * (y); hy = ((y) - p) + p; ty = (y) - hy; \
76 z = (x) * (y); zz = (((hx * hy - z) + hx * ty) + tx * hy) + tx * ty;
77 #endif
78
79
80 /* Exact multiplication of two single-length floating point numbers, Dekker. */
81 /* The macro produces a nearly double-length number (z,zz) (see Dekker) */
82 /* that satisfies z+zz = x*y exactly. p,hx,tx,hy,ty,q are temporary */
83 /* storage variables of type double. */
84
85 #ifdef DLA_FMS
86 # define MUL12(x,y,z,zz,p,hx,tx,hy,ty,q) \
87 EMULV(x,y,z,zz,p,hx,tx,hy,ty)
88 #else
89 # define MUL12(x,y,z,zz,p,hx,tx,hy,ty,q) \
90 p=CN*(x); hx=((x)-p)+p; tx=(x)-hx; \
91 p=CN*(y); hy=((y)-p)+p; ty=(y)-hy; \
92 p=hx*hy; q=hx*ty+tx*hy; z=p+q; zz=((p-z)+q)+tx*ty;
93 #endif
94
95
96 /* Double-length addition, Dekker. The macro produces a double-length */
97 /* number (z,zz) which satisfies approximately z+zz = x+xx + y+yy. */
98 /* An error bound: (abs(x+xx)+abs(y+yy))*4.94e-32. (x,xx), (y,yy) */
99 /* are assumed to be double-length numbers. r,s are temporary */
100 /* storage variables of type double. */
101
102 #define ADD2(x, xx, y, yy, z, zz, r, s) \
103 r = (x) + (y); s = (fabs (x) > fabs (y)) ? \
104 (((((x) - r) + (y)) + (yy)) + (xx)) : \
105 (((((y) - r) + (x)) + (xx)) + (yy)); \
106 z = r + s; zz = (r - z) + s;
107
108
109 /* Double-length subtraction, Dekker. The macro produces a double-length */
110 /* number (z,zz) which satisfies approximately z+zz = x+xx - (y+yy). */
111 /* An error bound: (abs(x+xx)+abs(y+yy))*4.94e-32. (x,xx), (y,yy) */
112 /* are assumed to be double-length numbers. r,s are temporary */
113 /* storage variables of type double. */
114
115 #define SUB2(x, xx, y, yy, z, zz, r, s) \
116 r = (x) - (y); s = (fabs (x) > fabs (y)) ? \
117 (((((x) - r) - (y)) - (yy)) + (xx)) : \
118 ((((x) - ((y) + r)) + (xx)) - (yy)); \
119 z = r + s; zz = (r - z) + s;
120
121
122 /* Double-length multiplication, Dekker. The macro produces a double-length */
123 /* number (z,zz) which satisfies approximately z+zz = (x+xx)*(y+yy). */
124 /* An error bound: abs((x+xx)*(y+yy))*1.24e-31. (x,xx), (y,yy) */
125 /* are assumed to be double-length numbers. p,hx,tx,hy,ty,q,c,cc are */
126 /* temporary storage variables of type double. */
127
128 #define MUL2(x, xx, y, yy, z, zz, p, hx, tx, hy, ty, q, c, cc) \
129 MUL12 (x, y, c, cc, p, hx, tx, hy, ty, q) \
130 cc = ((x) * (yy) + (xx) * (y)) + cc; z = c + cc; zz = (c - z) + cc;
131
132
133 /* Double-length division, Dekker. The macro produces a double-length */
134 /* number (z,zz) which satisfies approximately z+zz = (x+xx)/(y+yy). */
135 /* An error bound: abs((x+xx)/(y+yy))*1.50e-31. (x,xx), (y,yy) */
136 /* are assumed to be double-length numbers. p,hx,tx,hy,ty,q,c,cc,u,uu */
137 /* are temporary storage variables of type double. */
138
139 #define DIV2(x,xx,y,yy,z,zz,p,hx,tx,hy,ty,q,c,cc,u,uu) \
140 c=(x)/(y); MUL12(c,y,u,uu,p,hx,tx,hy,ty,q) \
141 cc=(((((x)-u)-uu)+(xx))-c*(yy))/(y); z=c+cc; zz=(c-z)+cc;
142
143
144 /* Double-length addition, slower but more accurate than ADD2. */
145 /* The macro produces a double-length */
146 /* number (z,zz) which satisfies approximately z+zz = (x+xx)+(y+yy). */
147 /* An error bound: abs(x+xx + y+yy)*1.50e-31. (x,xx), (y,yy) */
148 /* are assumed to be double-length numbers. r,rr,s,ss,u,uu,w */
149 /* are temporary storage variables of type double. */
150
151 #define ADD2A(x, xx, y, yy, z, zz, r, rr, s, ss, u, uu, w) \
152 r = (x) + (y); \
153 if (fabs (x) > fabs (y)) { rr = ((x) - r) + (y); s = (rr + (yy)) + (xx); } \
154 else { rr = ((y) - r) + (x); s = (rr + (xx)) + (yy); } \
155 if (rr != 0.0) { \
156 z = r + s; zz = (r - z) + s; } \
157 else { \
158 ss = (fabs (xx) > fabs (yy)) ? (((xx) - s) + (yy)) : (((yy) - s) + (xx));\
159 u = r + s; \
160 uu = (fabs (r) > fabs (s)) ? ((r - u) + s) : ((s - u) + r); \
161 w = uu + ss; z = u + w; \
162 zz = (fabs (u) > fabs (w)) ? ((u - z) + w) : ((w - z) + u); }
163
164
165 /* Double-length subtraction, slower but more accurate than SUB2. */
166 /* The macro produces a double-length */
167 /* number (z,zz) which satisfies approximately z+zz = (x+xx)-(y+yy). */
168 /* An error bound: abs(x+xx - (y+yy))*1.50e-31. (x,xx), (y,yy) */
169 /* are assumed to be double-length numbers. r,rr,s,ss,u,uu,w */
170 /* are temporary storage variables of type double. */
171
172 #define SUB2A(x, xx, y, yy, z, zz, r, rr, s, ss, u, uu, w) \
173 r = (x) - (y); \
174 if (fabs (x) > fabs (y)) { rr = ((x) - r) - (y); s = (rr - (yy)) + (xx); } \
175 else { rr = (x) - ((y) + r); s = (rr + (xx)) - (yy); } \
176 if (rr != 0.0) { \
177 z = r + s; zz = (r - z) + s; } \
178 else { \
179 ss = (fabs (xx) > fabs (yy)) ? (((xx) - s) - (yy)) : ((xx) - ((yy) + s)); \
180 u = r + s; \
181 uu = (fabs (r) > fabs (s)) ? ((r - u) + s) : ((s - u) + r); \
182 w = uu + ss; z = u + w; \
183 zz = (fabs (u) > fabs (w)) ? ((u - z) + w) : ((w - z) + u); }