]> git.ipfire.org Git - thirdparty/glibc.git/blob - sysdeps/ieee754/flt-32/e_jnf.c
Optimize libm
[thirdparty/glibc.git] / sysdeps / ieee754 / flt-32 / e_jnf.c
1 /* e_jnf.c -- float version of e_jn.c.
2 * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
3 */
4
5 /*
6 * ====================================================
7 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
8 *
9 * Developed at SunPro, a Sun Microsystems, Inc. business.
10 * Permission to use, copy, modify, and distribute this
11 * software is freely granted, provided that this notice
12 * is preserved.
13 * ====================================================
14 */
15
16 #include "math.h"
17 #include "math_private.h"
18
19 static const float
20 two = 2.0000000000e+00, /* 0x40000000 */
21 one = 1.0000000000e+00; /* 0x3F800000 */
22
23 static const float zero = 0.0000000000e+00;
24
25 float
26 __ieee754_jnf(int n, float x)
27 {
28 int32_t i,hx,ix, sgn;
29 float a, b, temp, di;
30 float z, w;
31
32 /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
33 * Thus, J(-n,x) = J(n,-x)
34 */
35 GET_FLOAT_WORD(hx,x);
36 ix = 0x7fffffff&hx;
37 /* if J(n,NaN) is NaN */
38 if(__builtin_expect(ix>0x7f800000, 0)) return x+x;
39 if(n<0){
40 n = -n;
41 x = -x;
42 hx ^= 0x80000000;
43 }
44 if(n==0) return(__ieee754_j0f(x));
45 if(n==1) return(__ieee754_j1f(x));
46 sgn = (n&1)&(hx>>31); /* even n -- 0, odd n -- sign(x) */
47 x = fabsf(x);
48 if(__builtin_expect(ix==0||ix>=0x7f800000, 0)) /* if x is 0 or inf */
49 b = zero;
50 else if((float)n<=x) {
51 /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
52 a = __ieee754_j0f(x);
53 b = __ieee754_j1f(x);
54 for(i=1;i<n;i++){
55 temp = b;
56 b = b*((float)(i+i)/x) - a; /* avoid underflow */
57 a = temp;
58 }
59 } else {
60 if(ix<0x30800000) { /* x < 2**-29 */
61 /* x is tiny, return the first Taylor expansion of J(n,x)
62 * J(n,x) = 1/n!*(x/2)^n - ...
63 */
64 if(n>33) /* underflow */
65 b = zero;
66 else {
67 temp = x*(float)0.5; b = temp;
68 for (a=one,i=2;i<=n;i++) {
69 a *= (float)i; /* a = n! */
70 b *= temp; /* b = (x/2)^n */
71 }
72 b = b/a;
73 }
74 } else {
75 /* use backward recurrence */
76 /* x x^2 x^2
77 * J(n,x)/J(n-1,x) = ---- ------ ------ .....
78 * 2n - 2(n+1) - 2(n+2)
79 *
80 * 1 1 1
81 * (for large x) = ---- ------ ------ .....
82 * 2n 2(n+1) 2(n+2)
83 * -- - ------ - ------ -
84 * x x x
85 *
86 * Let w = 2n/x and h=2/x, then the above quotient
87 * is equal to the continued fraction:
88 * 1
89 * = -----------------------
90 * 1
91 * w - -----------------
92 * 1
93 * w+h - ---------
94 * w+2h - ...
95 *
96 * To determine how many terms needed, let
97 * Q(0) = w, Q(1) = w(w+h) - 1,
98 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
99 * When Q(k) > 1e4 good for single
100 * When Q(k) > 1e9 good for double
101 * When Q(k) > 1e17 good for quadruple
102 */
103 /* determine k */
104 float t,v;
105 float q0,q1,h,tmp; int32_t k,m;
106 w = (n+n)/(float)x; h = (float)2.0/(float)x;
107 q0 = w; z = w+h; q1 = w*z - (float)1.0; k=1;
108 while(q1<(float)1.0e9) {
109 k += 1; z += h;
110 tmp = z*q1 - q0;
111 q0 = q1;
112 q1 = tmp;
113 }
114 m = n+n;
115 for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
116 a = t;
117 b = one;
118 /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
119 * Hence, if n*(log(2n/x)) > ...
120 * single 8.8722839355e+01
121 * double 7.09782712893383973096e+02
122 * long double 1.1356523406294143949491931077970765006170e+04
123 * then recurrent value may overflow and the result is
124 * likely underflow to zero
125 */
126 tmp = n;
127 v = two/x;
128 tmp = tmp*__ieee754_logf(fabsf(v*tmp));
129 if(tmp<(float)8.8721679688e+01) {
130 for(i=n-1,di=(float)(i+i);i>0;i--){
131 temp = b;
132 b *= di;
133 b = b/x - a;
134 a = temp;
135 di -= two;
136 }
137 } else {
138 for(i=n-1,di=(float)(i+i);i>0;i--){
139 temp = b;
140 b *= di;
141 b = b/x - a;
142 a = temp;
143 di -= two;
144 /* scale b to avoid spurious overflow */
145 if(b>(float)1e10) {
146 a /= b;
147 t /= b;
148 b = one;
149 }
150 }
151 }
152 /* j0() and j1() suffer enormous loss of precision at and
153 * near zero; however, we know that their zero points never
154 * coincide, so just choose the one further away from zero.
155 */
156 z = __ieee754_j0f (x);
157 w = __ieee754_j1f (x);
158 if (fabsf (z) >= fabsf (w))
159 b = (t * z / b);
160 else
161 b = (t * w / a);
162 }
163 }
164 if(sgn==1) return -b; else return b;
165 }
166 strong_alias (__ieee754_jnf, __jnf_finite)
167
168 float
169 __ieee754_ynf(int n, float x)
170 {
171 int32_t i,hx,ix;
172 u_int32_t ib;
173 int32_t sign;
174 float a, b, temp;
175
176 GET_FLOAT_WORD(hx,x);
177 ix = 0x7fffffff&hx;
178 /* if Y(n,NaN) is NaN */
179 if(__builtin_expect(ix>0x7f800000, 0)) return x+x;
180 if(__builtin_expect(ix==0, 0))
181 return -HUGE_VALF+x; /* -inf and overflow exception. */
182 if(__builtin_expect(hx<0, 0)) return zero/(zero*x);
183 sign = 1;
184 if(n<0){
185 n = -n;
186 sign = 1 - ((n&1)<<1);
187 }
188 if(n==0) return(__ieee754_y0f(x));
189 if(n==1) return(sign*__ieee754_y1f(x));
190 if(__builtin_expect(ix==0x7f800000, 0)) return zero;
191
192 a = __ieee754_y0f(x);
193 b = __ieee754_y1f(x);
194 /* quit if b is -inf */
195 GET_FLOAT_WORD(ib,b);
196 for(i=1;i<n&&ib!=0xff800000;i++){
197 temp = b;
198 b = ((float)(i+i)/x)*b - a;
199 GET_FLOAT_WORD(ib,b);
200 a = temp;
201 }
202 if(sign>0) return b; else return -b;
203 }
204 strong_alias (__ieee754_ynf, __ynf_finite)