]> git.ipfire.org Git - thirdparty/glibc.git/blob - sysdeps/ieee754/ldbl-128/k_tanl.c
ldbl-128: Use L(x) macro for long double constants
[thirdparty/glibc.git] / sysdeps / ieee754 / ldbl-128 / k_tanl.c
1 /*
2 * ====================================================
3 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
4 *
5 * Developed at SunPro, a Sun Microsystems, Inc. business.
6 * Permission to use, copy, modify, and distribute this
7 * software is freely granted, provided that this notice
8 * is preserved.
9 * ====================================================
10 */
11
12 /*
13 Long double expansions are
14 Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
15 and are incorporated herein by permission of the author. The author
16 reserves the right to distribute this material elsewhere under different
17 copying permissions. These modifications are distributed here under
18 the following terms:
19
20 This library is free software; you can redistribute it and/or
21 modify it under the terms of the GNU Lesser General Public
22 License as published by the Free Software Foundation; either
23 version 2.1 of the License, or (at your option) any later version.
24
25 This library is distributed in the hope that it will be useful,
26 but WITHOUT ANY WARRANTY; without even the implied warranty of
27 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
28 Lesser General Public License for more details.
29
30 You should have received a copy of the GNU Lesser General Public
31 License along with this library; if not, see
32 <http://www.gnu.org/licenses/>. */
33
34 /* __kernel_tanl( x, y, k )
35 * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
36 * Input x is assumed to be bounded by ~pi/4 in magnitude.
37 * Input y is the tail of x.
38 * Input k indicates whether tan (if k=1) or
39 * -1/tan (if k= -1) is returned.
40 *
41 * Algorithm
42 * 1. Since tan(-x) = -tan(x), we need only to consider positive x.
43 * 2. if x < 2^-57, return x with inexact if x!=0.
44 * 3. tan(x) is approximated by a rational form x + x^3 / 3 + x^5 R(x^2)
45 * on [0,0.67433].
46 *
47 * Note: tan(x+y) = tan(x) + tan'(x)*y
48 * ~ tan(x) + (1+x*x)*y
49 * Therefore, for better accuracy in computing tan(x+y), let
50 * r = x^3 * R(x^2)
51 * then
52 * tan(x+y) = x + (x^3 / 3 + (x^2 *(r+y)+y))
53 *
54 * 4. For x in [0.67433,pi/4], let y = pi/4 - x, then
55 * tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
56 * = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
57 */
58
59 #include <float.h>
60 #include <libc-internal.h>
61 #include <math.h>
62 #include <math_private.h>
63 static const _Float128
64 one = 1,
65 pio4hi = L(7.8539816339744830961566084581987569936977E-1),
66 pio4lo = L(2.1679525325309452561992610065108379921906E-35),
67
68 /* tan x = x + x^3 / 3 + x^5 T(x^2)/U(x^2)
69 0 <= x <= 0.6743316650390625
70 Peak relative error 8.0e-36 */
71 TH = L(3.333333333333333333333333333333333333333E-1),
72 T0 = L(-1.813014711743583437742363284336855889393E7),
73 T1 = L(1.320767960008972224312740075083259247618E6),
74 T2 = L(-2.626775478255838182468651821863299023956E4),
75 T3 = L(1.764573356488504935415411383687150199315E2),
76 T4 = L(-3.333267763822178690794678978979803526092E-1),
77
78 U0 = L(-1.359761033807687578306772463253710042010E8),
79 U1 = L(6.494370630656893175666729313065113194784E7),
80 U2 = L(-4.180787672237927475505536849168729386782E6),
81 U3 = L(8.031643765106170040139966622980914621521E4),
82 U4 = L(-5.323131271912475695157127875560667378597E2);
83 /* 1.000000000000000000000000000000000000000E0 */
84
85
86 _Float128
87 __kernel_tanl (_Float128 x, _Float128 y, int iy)
88 {
89 _Float128 z, r, v, w, s;
90 int32_t ix, sign;
91 ieee854_long_double_shape_type u, u1;
92
93 u.value = x;
94 ix = u.parts32.w0 & 0x7fffffff;
95 if (ix < 0x3fc60000) /* x < 2**-57 */
96 {
97 if ((int) x == 0)
98 { /* generate inexact */
99 if ((ix | u.parts32.w1 | u.parts32.w2 | u.parts32.w3
100 | (iy + 1)) == 0)
101 return one / fabsl (x);
102 else if (iy == 1)
103 {
104 math_check_force_underflow (x);
105 return x;
106 }
107 else
108 return -one / x;
109 }
110 }
111 if (ix >= 0x3ffe5942) /* |x| >= 0.6743316650390625 */
112 {
113 if ((u.parts32.w0 & 0x80000000) != 0)
114 {
115 x = -x;
116 y = -y;
117 sign = -1;
118 }
119 else
120 sign = 1;
121 z = pio4hi - x;
122 w = pio4lo - y;
123 x = z + w;
124 y = 0.0;
125 }
126 z = x * x;
127 r = T0 + z * (T1 + z * (T2 + z * (T3 + z * T4)));
128 v = U0 + z * (U1 + z * (U2 + z * (U3 + z * (U4 + z))));
129 r = r / v;
130
131 s = z * x;
132 r = y + z * (s * r + y);
133 r += TH * s;
134 w = x + r;
135 if (ix >= 0x3ffe5942)
136 {
137 v = (_Float128) iy;
138 w = (v - 2.0 * (x - (w * w / (w + v) - r)));
139 /* SIGN is set for arguments that reach this code, but not
140 otherwise, resulting in warnings that it may be used
141 uninitialized although in the cases where it is used it has
142 always been set. */
143 DIAG_PUSH_NEEDS_COMMENT;
144 DIAG_IGNORE_NEEDS_COMMENT (5, "-Wmaybe-uninitialized");
145 if (sign < 0)
146 w = -w;
147 DIAG_POP_NEEDS_COMMENT;
148 return w;
149 }
150 if (iy == 1)
151 return w;
152 else
153 { /* if allow error up to 2 ulp,
154 simply return -1.0/(x+r) here */
155 /* compute -1.0/(x+r) accurately */
156 u1.value = w;
157 u1.parts32.w2 = 0;
158 u1.parts32.w3 = 0;
159 v = r - (u1.value - x); /* u1+v = r+x */
160 z = -1.0 / w;
161 u.value = z;
162 u.parts32.w2 = 0;
163 u.parts32.w3 = 0;
164 s = 1.0 + u.value * u1.value;
165 return u.value + z * (s + u.value * v);
166 }
167 }