]> git.ipfire.org Git - thirdparty/glibc.git/blob - sysdeps/ieee754/ldbl-128ibm/e_expl.c
ldbl-128ibm: Copy implementations from ldbl-128 instead of including them
[thirdparty/glibc.git] / sysdeps / ieee754 / ldbl-128ibm / e_expl.c
1 /* Quad-precision floating point e^x.
2 Copyright (C) 1999-2017 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4 Contributed by Jakub Jelinek <jj@ultra.linux.cz>
5 Partly based on double-precision code
6 by Geoffrey Keating <geoffk@ozemail.com.au>
7
8 The GNU C Library is free software; you can redistribute it and/or
9 modify it under the terms of the GNU Lesser General Public
10 License as published by the Free Software Foundation; either
11 version 2.1 of the License, or (at your option) any later version.
12
13 The GNU C Library is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 Lesser General Public License for more details.
17
18 You should have received a copy of the GNU Lesser General Public
19 License along with the GNU C Library; if not, see
20 <http://www.gnu.org/licenses/>. */
21
22 /* The basic design here is from
23 Abraham Ziv, "Fast Evaluation of Elementary Mathematical Functions with
24 Correctly Rounded Last Bit", ACM Trans. Math. Soft., 17 (3), September 1991,
25 pp. 410-423.
26
27 We work with number pairs where the first number is the high part and
28 the second one is the low part. Arithmetic with the high part numbers must
29 be exact, without any roundoff errors.
30
31 The input value, X, is written as
32 X = n * ln(2)_0 + arg1[t1]_0 + arg2[t2]_0 + x
33 - n * ln(2)_1 + arg1[t1]_1 + arg2[t2]_1 + xl
34
35 where:
36 - n is an integer, 16384 >= n >= -16495;
37 - ln(2)_0 is the first 93 bits of ln(2), and |ln(2)_0-ln(2)-ln(2)_1| < 2^-205
38 - t1 is an integer, 89 >= t1 >= -89
39 - t2 is an integer, 65 >= t2 >= -65
40 - |arg1[t1]-t1/256.0| < 2^-53
41 - |arg2[t2]-t2/32768.0| < 2^-53
42 - x + xl is whatever is left, |x + xl| < 2^-16 + 2^-53
43
44 Then e^x is approximated as
45
46 e^x = 2^n_1 ( 2^n_0 e^(arg1[t1]_0 + arg1[t1]_1) e^(arg2[t2]_0 + arg2[t2]_1)
47 + 2^n_0 e^(arg1[t1]_0 + arg1[t1]_1) e^(arg2[t2]_0 + arg2[t2]_1)
48 * p (x + xl + n * ln(2)_1))
49 where:
50 - p(x) is a polynomial approximating e(x)-1
51 - e^(arg1[t1]_0 + arg1[t1]_1) is obtained from a table
52 - e^(arg2[t2]_0 + arg2[t2]_1) likewise
53 - n_1 + n_0 = n, so that |n_0| < -LDBL_MIN_EXP-1.
54
55 If it happens that n_1 == 0 (this is the usual case), that multiplication
56 is omitted.
57 */
58
59 #ifndef _GNU_SOURCE
60 #define _GNU_SOURCE
61 #endif
62 #include <float.h>
63 #include <ieee754.h>
64 #include <math.h>
65 #include <fenv.h>
66 #include <inttypes.h>
67 #include <math_private.h>
68
69 #define _Float128 long double
70 #define L(x) x ## L
71
72 #include "t_expl.h"
73
74 static const long double C[] = {
75 /* Smallest integer x for which e^x overflows. */
76 #define himark C[0]
77 709.78271289338399678773454114191496482L,
78
79 /* Largest integer x for which e^x underflows. */
80 #define lomark C[1]
81 -744.44007192138126231410729844608163411L,
82
83 /* 3x2^96 */
84 #define THREEp96 C[2]
85 59421121885698253195157962752.0L,
86
87 /* 3x2^103 */
88 #define THREEp103 C[3]
89 30423614405477505635920876929024.0L,
90
91 /* 3x2^111 */
92 #define THREEp111 C[4]
93 7788445287802241442795744493830144.0L,
94
95 /* 1/ln(2) */
96 #define M_1_LN2 C[5]
97 1.44269504088896340735992468100189204L,
98
99 /* first 93 bits of ln(2) */
100 #define M_LN2_0 C[6]
101 0.693147180559945309417232121457981864L,
102
103 /* ln2_0 - ln(2) */
104 #define M_LN2_1 C[7]
105 -1.94704509238074995158795957333327386E-31L,
106
107 /* very small number */
108 #define TINY C[8]
109 1.0e-308L,
110
111 /* 2^16383 */
112 #define TWO1023 C[9]
113 8.988465674311579538646525953945123668E+307L,
114
115 /* 256 */
116 #define TWO8 C[10]
117 256.0L,
118
119 /* 32768 */
120 #define TWO15 C[11]
121 32768.0L,
122
123 /* Chebyshev polynom coefficients for (exp(x)-1)/x */
124 #define P1 C[12]
125 #define P2 C[13]
126 #define P3 C[14]
127 #define P4 C[15]
128 #define P5 C[16]
129 #define P6 C[17]
130 0.5L,
131 1.66666666666666666666666666666666683E-01L,
132 4.16666666666666666666654902320001674E-02L,
133 8.33333333333333333333314659767198461E-03L,
134 1.38888888889899438565058018857254025E-03L,
135 1.98412698413981650382436541785404286E-04L,
136 };
137
138 long double
139 __ieee754_expl (long double x)
140 {
141 long double result, x22;
142 union ibm_extended_long_double ex2_u, scale_u;
143 int unsafe;
144
145 /* Check for usual case. */
146 if (isless (x, himark) && isgreater (x, lomark))
147 {
148 int tval1, tval2, n_i, exponent2;
149 long double n, xl;
150
151 SET_RESTORE_ROUND (FE_TONEAREST);
152
153 n = __roundl (x*M_1_LN2);
154 x = x-n*M_LN2_0;
155 xl = n*M_LN2_1;
156
157 tval1 = __roundl (x*TWO8);
158 x -= __expl_table[T_EXPL_ARG1+2*tval1];
159 xl -= __expl_table[T_EXPL_ARG1+2*tval1+1];
160
161 tval2 = __roundl (x*TWO15);
162 x -= __expl_table[T_EXPL_ARG2+2*tval2];
163 xl -= __expl_table[T_EXPL_ARG2+2*tval2+1];
164
165 x = x + xl;
166
167 /* Compute ex2 = 2^n_0 e^(argtable[tval1]) e^(argtable[tval2]). */
168 ex2_u.ld = (__expl_table[T_EXPL_RES1 + tval1]
169 * __expl_table[T_EXPL_RES2 + tval2]);
170 n_i = (int)n;
171 /* 'unsafe' is 1 iff n_1 != 0. */
172 unsafe = fabsl(n_i) >= -LDBL_MIN_EXP - 1;
173 ex2_u.d[0].ieee.exponent += n_i >> unsafe;
174 /* Fortunately, there are no subnormal lowpart doubles in
175 __expl_table, only normal values and zeros.
176 But after scaling it can be subnormal. */
177 exponent2 = ex2_u.d[1].ieee.exponent + (n_i >> unsafe);
178 if (ex2_u.d[1].ieee.exponent == 0)
179 /* assert ((ex2_u.d[1].ieee.mantissa0|ex2_u.d[1].ieee.mantissa1) == 0) */;
180 else if (exponent2 > 0)
181 ex2_u.d[1].ieee.exponent = exponent2;
182 else if (exponent2 <= -54)
183 {
184 ex2_u.d[1].ieee.exponent = 0;
185 ex2_u.d[1].ieee.mantissa0 = 0;
186 ex2_u.d[1].ieee.mantissa1 = 0;
187 }
188 else
189 {
190 static const double
191 two54 = 1.80143985094819840000e+16, /* 4350000000000000 */
192 twom54 = 5.55111512312578270212e-17; /* 3C90000000000000 */
193 ex2_u.d[1].d *= two54;
194 ex2_u.d[1].ieee.exponent += n_i >> unsafe;
195 ex2_u.d[1].d *= twom54;
196 }
197
198 /* Compute scale = 2^n_1. */
199 scale_u.ld = 1.0L;
200 scale_u.d[0].ieee.exponent += n_i - (n_i >> unsafe);
201
202 /* Approximate e^x2 - 1, using a seventh-degree polynomial,
203 with maximum error in [-2^-16-2^-53,2^-16+2^-53]
204 less than 4.8e-39. */
205 x22 = x + x*x*(P1+x*(P2+x*(P3+x*(P4+x*(P5+x*P6)))));
206
207 /* Now we can test whether the result is ultimate or if we are unsure.
208 In the later case we should probably call a mpn based routine to give
209 the ultimate result.
210 Empirically, this routine is already ultimate in about 99.9986% of
211 cases, the test below for the round to nearest case will be false
212 in ~ 99.9963% of cases.
213 Without proc2 routine maximum error which has been seen is
214 0.5000262 ulp.
215
216 union ieee854_long_double ex3_u;
217
218 #ifdef FE_TONEAREST
219 fesetround (FE_TONEAREST);
220 #endif
221 ex3_u.d = (result - ex2_u.d) - x22 * ex2_u.d;
222 ex2_u.d = result;
223 ex3_u.ieee.exponent += LDBL_MANT_DIG + 15 + IEEE854_LONG_DOUBLE_BIAS
224 - ex2_u.ieee.exponent;
225 n_i = abs (ex3_u.d);
226 n_i = (n_i + 1) / 2;
227 fesetenv (&oldenv);
228 #ifdef FE_TONEAREST
229 if (fegetround () == FE_TONEAREST)
230 n_i -= 0x4000;
231 #endif
232 if (!n_i) {
233 return __ieee754_expl_proc2 (origx);
234 }
235 */
236 }
237 /* Exceptional cases: */
238 else if (isless (x, himark))
239 {
240 if (isinf (x))
241 /* e^-inf == 0, with no error. */
242 return 0;
243 else
244 /* Underflow */
245 return TINY * TINY;
246 }
247 else
248 /* Return x, if x is a NaN or Inf; or overflow, otherwise. */
249 return TWO1023*x;
250
251 result = x22 * ex2_u.ld + ex2_u.ld;
252 if (!unsafe)
253 return result;
254 return result * scale_u.ld;
255 }
256 strong_alias (__ieee754_expl, __expl_finite)