]> git.ipfire.org Git - thirdparty/glibc.git/blob - sysdeps/powerpc/fpu/e_sqrt.c
Update copyright dates with scripts/update-copyrights.
[thirdparty/glibc.git] / sysdeps / powerpc / fpu / e_sqrt.c
1 /* Double-precision floating point square root.
2 Copyright (C) 1997-2020 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4
5 The GNU C Library is free software; you can redistribute it and/or
6 modify it under the terms of the GNU Lesser General Public
7 License as published by the Free Software Foundation; either
8 version 2.1 of the License, or (at your option) any later version.
9
10 The GNU C Library is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 Lesser General Public License for more details.
14
15 You should have received a copy of the GNU Lesser General Public
16 License along with the GNU C Library; if not, see
17 <https://www.gnu.org/licenses/>. */
18
19 #include <math.h>
20 #include <math_private.h>
21 #include <fenv.h>
22 #include <fenv_libc.h>
23 #include <inttypes.h>
24 #include <stdint.h>
25 #include <sysdep.h>
26 #include <ldsodefs.h>
27
28 #ifndef _ARCH_PPCSQ
29 static const double almost_half = 0.5000000000000001; /* 0.5 + 2^-53 */
30 static const ieee_float_shape_type a_nan = {.word = 0x7fc00000 };
31 static const ieee_float_shape_type a_inf = {.word = 0x7f800000 };
32 static const float two108 = 3.245185536584267269e+32;
33 static const float twom54 = 5.551115123125782702e-17;
34 extern const float __t_sqrt[1024];
35
36 /* The method is based on a description in
37 Computation of elementary functions on the IBM RISC System/6000 processor,
38 P. W. Markstein, IBM J. Res. Develop, 34(1) 1990.
39 Basically, it consists of two interleaved Newton-Raphson approximations,
40 one to find the actual square root, and one to find its reciprocal
41 without the expense of a division operation. The tricky bit here
42 is the use of the POWER/PowerPC multiply-add operation to get the
43 required accuracy with high speed.
44
45 The argument reduction works by a combination of table lookup to
46 obtain the initial guesses, and some careful modification of the
47 generated guesses (which mostly runs on the integer unit, while the
48 Newton-Raphson is running on the FPU). */
49
50 double
51 __slow_ieee754_sqrt (double x)
52 {
53 const float inf = a_inf.value;
54
55 if (x > 0)
56 {
57 /* schedule the EXTRACT_WORDS to get separation between the store
58 and the load. */
59 ieee_double_shape_type ew_u;
60 ieee_double_shape_type iw_u;
61 ew_u.value = (x);
62 if (x != inf)
63 {
64 /* Variables named starting with 's' exist in the
65 argument-reduced space, so that 2 > sx >= 0.5,
66 1.41... > sg >= 0.70.., 0.70.. >= sy > 0.35... .
67 Variables named ending with 'i' are integer versions of
68 floating-point values. */
69 double sx; /* The value of which we're trying to find the
70 square root. */
71 double sg, g; /* Guess of the square root of x. */
72 double sd, d; /* Difference between the square of the guess and x. */
73 double sy; /* Estimate of 1/2g (overestimated by 1ulp). */
74 double sy2; /* 2*sy */
75 double e; /* Difference between y*g and 1/2 (se = e * fsy). */
76 double shx; /* == sx * fsg */
77 double fsg; /* sg*fsg == g. */
78 fenv_t fe; /* Saved floating-point environment (stores rounding
79 mode and whether the inexact exception is
80 enabled). */
81 uint32_t xi0, xi1, sxi, fsgi;
82 const float *t_sqrt;
83
84 fe = fegetenv_register ();
85 /* complete the EXTRACT_WORDS (xi0,xi1,x) operation. */
86 xi0 = ew_u.parts.msw;
87 xi1 = ew_u.parts.lsw;
88 relax_fenv_state ();
89 sxi = (xi0 & 0x3fffffff) | 0x3fe00000;
90 /* schedule the INSERT_WORDS (sx, sxi, xi1) to get separation
91 between the store and the load. */
92 iw_u.parts.msw = sxi;
93 iw_u.parts.lsw = xi1;
94 t_sqrt = __t_sqrt + (xi0 >> (52 - 32 - 8 - 1) & 0x3fe);
95 sg = t_sqrt[0];
96 sy = t_sqrt[1];
97 /* complete the INSERT_WORDS (sx, sxi, xi1) operation. */
98 sx = iw_u.value;
99
100 /* Here we have three Newton-Raphson iterations each of a
101 division and a square root and the remainder of the
102 argument reduction, all interleaved. */
103 sd = -__builtin_fma (sg, sg, -sx);
104 fsgi = (xi0 + 0x40000000) >> 1 & 0x7ff00000;
105 sy2 = sy + sy;
106 sg = __builtin_fma (sy, sd, sg); /* 16-bit approximation to
107 sqrt(sx). */
108
109 /* schedule the INSERT_WORDS (fsg, fsgi, 0) to get separation
110 between the store and the load. */
111 INSERT_WORDS (fsg, fsgi, 0);
112 iw_u.parts.msw = fsgi;
113 iw_u.parts.lsw = (0);
114 e = -__builtin_fma (sy, sg, -almost_half);
115 sd = -__builtin_fma (sg, sg, -sx);
116 if ((xi0 & 0x7ff00000) == 0)
117 goto denorm;
118 sy = __builtin_fma (e, sy2, sy);
119 sg = __builtin_fma (sy, sd, sg); /* 32-bit approximation to
120 sqrt(sx). */
121 sy2 = sy + sy;
122 /* complete the INSERT_WORDS (fsg, fsgi, 0) operation. */
123 fsg = iw_u.value;
124 e = -__builtin_fma (sy, sg, -almost_half);
125 sd = -__builtin_fma (sg, sg, -sx);
126 sy = __builtin_fma (e, sy2, sy);
127 shx = sx * fsg;
128 sg = __builtin_fma (sy, sd, sg); /* 64-bit approximation to
129 sqrt(sx), but perhaps
130 rounded incorrectly. */
131 sy2 = sy + sy;
132 g = sg * fsg;
133 e = -__builtin_fma (sy, sg, -almost_half);
134 d = -__builtin_fma (g, sg, -shx);
135 sy = __builtin_fma (e, sy2, sy);
136 fesetenv_register (fe);
137 return __builtin_fma (sy, d, g);
138 denorm:
139 /* For denormalised numbers, we normalise, calculate the
140 square root, and return an adjusted result. */
141 fesetenv_register (fe);
142 return __slow_ieee754_sqrt (x * two108) * twom54;
143 }
144 }
145 else if (x < 0)
146 {
147 /* For some reason, some PowerPC32 processors don't implement
148 FE_INVALID_SQRT. */
149 #ifdef FE_INVALID_SQRT
150 __feraiseexcept (FE_INVALID_SQRT);
151
152 fenv_union_t u = { .fenv = fegetenv_register () };
153 if ((u.l & FE_INVALID) == 0)
154 #endif
155 __feraiseexcept (FE_INVALID);
156 x = a_nan.value;
157 }
158 return f_wash (x);
159 }
160 #endif /* _ARCH_PPCSQ */
161
162 #undef __ieee754_sqrt
163 double
164 __ieee754_sqrt (double x)
165 {
166 double z;
167
168 #ifdef _ARCH_PPCSQ
169 asm ("fsqrt %0,%1\n" :"=f" (z):"f" (x));
170 #else
171 z = __slow_ieee754_sqrt (x);
172 #endif
173
174 return z;
175 }
176 strong_alias (__ieee754_sqrt, __sqrt_finite)