1 /* Optimized expf(). PowerPC64/POWER8 version.
2 Copyright (C) 2016-2019 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
5 The GNU C Library is free software; you can redistribute it and/or
6 modify it under the terms of the GNU Lesser General Public
7 License as published by the Free Software Foundation; either
8 version 2.1 of the License, or (at your option) any later version.
10 The GNU C Library is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 Lesser General Public License for more details.
15 You should have received a copy of the GNU Lesser General Public
16 License along with the GNU C Library; if not, see
17 <http://www.gnu.org/licenses/>. */
21 /* Short algorithm description:
23 * Let K = 64 (table size).
24 * e^x = 2^(x/log(2)) = 2^n * T[j] * (1 + P(y))
26 * x = m*log(2)/K + y, y in [0.0..log(2)/K]
27 * m = n*K + j, m,n,j - signed integer, j in [0..K-1]
28 * values of 2^(j/K) are tabulated as T[j].
30 * P(y) is a minimax polynomial approximation of expf(y)-1
31 * on small interval [0.0..log(2)/K].
33 * P(y) = P3*y*y*y*y + P2*y*y*y + P1*y*y + P0*y, calculated as
34 * z = y*y; P(y) = (P3*z + P1)*z + (P2*z + P0)*y
40 * expf(x) = 1 for subnormals
41 * for finite argument, only expf(0)=1 is exact
42 * expf(x) overflows if x>88.7228317260742190
43 * expf(x) underflows if x<-103.972076416015620
46 #define C1 0x42ad496b /* Single precision 125*log(2). */
47 #define C2 0x31800000 /* Single precision 2^(-28). */
48 #define SP_INF 0x7f800000 /* Single precision Inf. */
49 #define SP_EXP_BIAS 0x1fc0 /* Single precision exponent bias. */
51 #define DATA_OFFSET r9
53 /* Implements the function
55 float [fp1] expf (float [fp1] x) */
58 ENTRY (__ieee754_expf, 4)
59 addis DATA_OFFSET,r2,.Lanchor@toc@ha
60 addi DATA_OFFSET,DATA_OFFSET,.Lanchor@toc@l
63 mfvsrd r8,v0 /* r8 = x */
64 lfd fp2,(.KLN2-.Lanchor)(DATA_OFFSET)
65 lfd fp3,(.P2-.Lanchor)(DATA_OFFSET)
66 rldicl r3,r8,32,33 /* r3 = |x| */
67 lis r4,C1@ha /* r4 = 125*log(2) */
70 lfd fp5,(.P3-.Lanchor)(DATA_OFFSET)
71 lfd fp4,(.RS-.Lanchor)(DATA_OFFSET)
72 fmadd fp2,fp1,fp2,fp4 /* fp2 = x * K/log(2) + (2^23 + 2^22) */
73 bge L(special_paths) /* |x| >= 125*log(2) ? */
78 blt L(small_args) /* |x| < 2^(-28) ? */
80 /* Main path: here if 2^(-28) <= |x| < 125*log(2) */
85 rldicl r8,r8,32,58 /* r8 = j */
86 lfs fp4,(.SP_RS-.Lanchor)(DATA_OFFSET)
87 fsubs fp2,fp6,fp4 /* fp2 = m = x * K/log(2) */
89 clrrwi r3,r3,6 /* r3 = n */
90 lfd fp6,(.NLN2K-.Lanchor)(DATA_OFFSET)
91 fmadd fp0,fp2,fp6,fp1 /* fp0 = y = x - m*log(2)/K */
92 fmul fp2,fp0,fp0 /* fp2 = z = y^2 */
93 lfd fp4,(.P1-.Lanchor)(DATA_OFFSET)
94 lfd fp6,(.P0-.Lanchor)(DATA_OFFSET)
96 ori r4,r4,SP_EXP_BIAS@l
98 rldic r3,r3,49,1 /* r3 = 2^n */
99 fmadd fp4,fp5,fp2,fp4 /* fp4 = P3 * z + P1 */
100 fmadd fp6,fp3,fp2,fp6 /* fp6 = P2 * z + P0 */
103 fmul fp4,fp4,fp2 /* fp4 = (P3 * z + P1)*z */
104 fmadd fp0,fp0,fp6,fp4 /* fp0 = P(y) */
105 sldi r8,r8,3 /* Access doublewords from T[j]. */
106 addi r6,DATA_OFFSET,(.Ttable-.Lanchor)
108 fmadd fp0,fp0,fp3,fp3 /* fp0 = T[j] * (1 + P(y)) */
109 fmul fp1,fp1,fp0 /* fp1 = 2^n * T[j] * (1 + P(y)) */
114 /* x is either underflow, overflow, infinite or NaN. */
117 rlwinm r8,r8,3,29,29 /* r8 = 0, if x positive.
118 r8 = 4, otherwise. */
119 addi r6,DATA_OFFSET,(.SPRANGE-.Lanchor)
120 lwzx r4,r6,r8 /* r4 = .SPRANGE[signbit(x)] */
122 /* |x| <= .SPRANGE[signbit(x)] */
123 ble L(near_under_or_overflow)
128 bge L(arg_inf_or_nan) /* |x| > Infinite ? */
130 addi r6,DATA_OFFSET,(.SPLARGE_SMALL-.Lanchor)
138 /* expf(x) = 1.0, where |x| < |2^(-28)| */
139 lfs fp2,(.SPone-.Lanchor)(DATA_OFFSET)
150 addi r6,DATA_OFFSET,(.INF_ZERO-.Lanchor)
157 /* expf(NaN) = NaN */
163 L(near_under_or_overflow):
167 mr r3,r8 /* r3 = m */
168 rldicl r8,r8,32,58 /* r8 = j */
169 lfs fp4,(.SP_RS-.Lanchor)(DATA_OFFSET)
170 fsubs fp2,fp6,fp4 /* fp2 = m = x * K/log(2) */
172 clrrwi r3,r3,6 /* r3 = n */
173 lfd fp6,(.NLN2K-.Lanchor)(DATA_OFFSET)
174 fmadd fp0,fp2,fp6,fp1 /* fp0 = y = x - m*log(2)/K */
175 fmul fp2,fp0,fp0 /* fp2 = z = y^2 */
176 lfd fp4,(.P1-.Lanchor)(DATA_OFFSET)
177 lfd fp6,(.P0-.Lanchor)(DATA_OFFSET)
178 ld r4,(.DP_EXP_BIAS-.Lanchor)(DATA_OFFSET)
180 rldic r3,r3,46,1 /* r3 = 2 */
181 fmadd fp4,fp5,fp2,fp4 /* fp4 = P3 * z + P1 */
182 fmadd fp6,fp3,fp2,fp6 /* fp6 = P2 * z + P0 */
184 fmul fp4,fp4,fp2 /* fp4 = (P3*z + P1)*z */
185 fmadd fp0,fp0,fp6,fp4 /* fp0 = P(y) */
186 sldi r8,r8,3 /* Access doublewords from T[j]. */
187 addi r6,DATA_OFFSET,(.Ttable-.Lanchor)
189 fmadd fp0,fp0,fp3,fp3 /* fp0 = T[j] * (1 + T[j]) */
190 fmul fp1,fp1,fp0 /* fp1 = 2^n * T[j] * (1 + T[j]) */
195 .section .rodata, "a",@progbits
198 /* Table T[j] = 2^(j/K). Double precision. */
200 .8byte 0x3ff0000000000000
201 .8byte 0x3ff02c9a3e778061
202 .8byte 0x3ff059b0d3158574
203 .8byte 0x3ff0874518759bc8
204 .8byte 0x3ff0b5586cf9890f
205 .8byte 0x3ff0e3ec32d3d1a2
206 .8byte 0x3ff11301d0125b51
207 .8byte 0x3ff1429aaea92de0
208 .8byte 0x3ff172b83c7d517b
209 .8byte 0x3ff1a35beb6fcb75
210 .8byte 0x3ff1d4873168b9aa
211 .8byte 0x3ff2063b88628cd6
212 .8byte 0x3ff2387a6e756238
213 .8byte 0x3ff26b4565e27cdd
214 .8byte 0x3ff29e9df51fdee1
215 .8byte 0x3ff2d285a6e4030b
216 .8byte 0x3ff306fe0a31b715
217 .8byte 0x3ff33c08b26416ff
218 .8byte 0x3ff371a7373aa9cb
219 .8byte 0x3ff3a7db34e59ff7
220 .8byte 0x3ff3dea64c123422
221 .8byte 0x3ff4160a21f72e2a
222 .8byte 0x3ff44e086061892d
223 .8byte 0x3ff486a2b5c13cd0
224 .8byte 0x3ff4bfdad5362a27
225 .8byte 0x3ff4f9b2769d2ca7
226 .8byte 0x3ff5342b569d4f82
227 .8byte 0x3ff56f4736b527da
228 .8byte 0x3ff5ab07dd485429
229 .8byte 0x3ff5e76f15ad2148
230 .8byte 0x3ff6247eb03a5585
231 .8byte 0x3ff6623882552225
232 .8byte 0x3ff6a09e667f3bcd
233 .8byte 0x3ff6dfb23c651a2f
234 .8byte 0x3ff71f75e8ec5f74
235 .8byte 0x3ff75feb564267c9
236 .8byte 0x3ff7a11473eb0187
237 .8byte 0x3ff7e2f336cf4e62
238 .8byte 0x3ff82589994cce13
239 .8byte 0x3ff868d99b4492ed
240 .8byte 0x3ff8ace5422aa0db
241 .8byte 0x3ff8f1ae99157736
242 .8byte 0x3ff93737b0cdc5e5
243 .8byte 0x3ff97d829fde4e50
244 .8byte 0x3ff9c49182a3f090
245 .8byte 0x3ffa0c667b5de565
246 .8byte 0x3ffa5503b23e255d
247 .8byte 0x3ffa9e6b5579fdbf
248 .8byte 0x3ffae89f995ad3ad
249 .8byte 0x3ffb33a2b84f15fb
250 .8byte 0x3ffb7f76f2fb5e47
251 .8byte 0x3ffbcc1e904bc1d2
252 .8byte 0x3ffc199bdd85529c
253 .8byte 0x3ffc67f12e57d14b
254 .8byte 0x3ffcb720dcef9069
255 .8byte 0x3ffd072d4a07897c
256 .8byte 0x3ffd5818dcfba487
257 .8byte 0x3ffda9e603db3285
258 .8byte 0x3ffdfc97337b9b5f
259 .8byte 0x3ffe502ee78b3ff6
260 .8byte 0x3ffea4afa2a490da
261 .8byte 0x3ffefa1bee615a27
262 .8byte 0x3fff50765b6e4540
263 .8byte 0x3fffa7c1819e90d8
266 .8byte 0x40571547652b82fe /* Double precision K/log(2). */
268 /* Double precision polynomial coefficients. */
270 .8byte 0x3fefffffffffe7c6
272 .8byte 0x3fe00000008d6118
274 .8byte 0x3fc55550da752d4f
276 .8byte 0x3fa56420eb78fa85
279 .8byte 0x4168000000000000 /* Double precision 2^23 + 2^22. */
281 .8byte 0xbf862e42fefa39ef /* Double precision -log(2)/K. */
283 .8byte 0x000000000000ffc0 /* Double precision exponent bias. */
287 .4byte 0x3f800000 /* Single precision 1.0. */
289 .4byte 0x4b400000 /* Single precision 2^23 + 2^22. */
291 .SPRANGE: /* Single precision overflow/underflow bounds. */
292 .4byte 0x42b17217 /* if x>this bound, then result overflows. */
293 .4byte 0x42cff1b4 /* if x<this bound, then result underflows. */
296 .4byte 0x71800000 /* 2^100. */
297 .4byte 0x0d800000 /* 2^-100. */
300 .4byte 0x7f800000 /* Single precision Inf. */
301 .4byte 0 /* Single precision zero. */
303 strong_alias (__ieee754_expf, __expf_finite)