]> git.ipfire.org Git - thirdparty/openssl.git/blob - test/evp_test.c
Don't store an HMAC key for longer than we need
[thirdparty/openssl.git] / test / evp_test.c
1 /*
2 * Copyright 2015-2019 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the OpenSSL license (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 #include <stdio.h>
11 #include <string.h>
12 #include <stdlib.h>
13 #include <ctype.h>
14 #include <openssl/evp.h>
15 #include <openssl/pem.h>
16 #include <openssl/err.h>
17 #include <openssl/x509v3.h>
18 #include <openssl/pkcs12.h>
19 #include <openssl/kdf.h>
20 #include "internal/numbers.h"
21 #include "testutil.h"
22 #include "evp_test.h"
23
24
25 typedef struct evp_test_method_st EVP_TEST_METHOD;
26
27 /*
28 * Structure holding test information
29 */
30 typedef struct evp_test_st {
31 STANZA s; /* Common test stanza */
32 char *name;
33 int skip; /* Current test should be skipped */
34 const EVP_TEST_METHOD *meth; /* method for this test */
35 const char *err, *aux_err; /* Error string for test */
36 char *expected_err; /* Expected error value of test */
37 char *func; /* Expected error function string */
38 char *reason; /* Expected error reason string */
39 void *data; /* test specific data */
40 } EVP_TEST;
41
42 /*
43 * Test method structure
44 */
45 struct evp_test_method_st {
46 /* Name of test as it appears in file */
47 const char *name;
48 /* Initialise test for "alg" */
49 int (*init) (EVP_TEST * t, const char *alg);
50 /* Clean up method */
51 void (*cleanup) (EVP_TEST * t);
52 /* Test specific name value pair processing */
53 int (*parse) (EVP_TEST * t, const char *name, const char *value);
54 /* Run the test itself */
55 int (*run_test) (EVP_TEST * t);
56 };
57
58
59 /*
60 * Linked list of named keys.
61 */
62 typedef struct key_list_st {
63 char *name;
64 EVP_PKEY *key;
65 struct key_list_st *next;
66 } KEY_LIST;
67
68 /*
69 * List of public and private keys
70 */
71 static KEY_LIST *private_keys;
72 static KEY_LIST *public_keys;
73 static int find_key(EVP_PKEY **ppk, const char *name, KEY_LIST *lst);
74
75 static int parse_bin(const char *value, unsigned char **buf, size_t *buflen);
76
77 /*
78 * Compare two memory regions for equality, returning zero if they differ.
79 * However, if there is expected to be an error and the actual error
80 * matches then the memory is expected to be different so handle this
81 * case without producing unnecessary test framework output.
82 */
83 static int memory_err_compare(EVP_TEST *t, const char *err,
84 const void *expected, size_t expected_len,
85 const void *got, size_t got_len)
86 {
87 int r;
88
89 if (t->expected_err != NULL && strcmp(t->expected_err, err) == 0)
90 r = !TEST_mem_ne(expected, expected_len, got, got_len);
91 else
92 r = TEST_mem_eq(expected, expected_len, got, got_len);
93 if (!r)
94 t->err = err;
95 return r;
96 }
97
98 /*
99 * Structure used to hold a list of blocks of memory to test
100 * calls to "update" like functions.
101 */
102 struct evp_test_buffer_st {
103 unsigned char *buf;
104 size_t buflen;
105 size_t count;
106 int count_set;
107 };
108
109 static void evp_test_buffer_free(EVP_TEST_BUFFER *db)
110 {
111 if (db != NULL) {
112 OPENSSL_free(db->buf);
113 OPENSSL_free(db);
114 }
115 }
116
117 /*
118 * append buffer to a list
119 */
120 static int evp_test_buffer_append(const char *value,
121 STACK_OF(EVP_TEST_BUFFER) **sk)
122 {
123 EVP_TEST_BUFFER *db = NULL;
124
125 if (!TEST_ptr(db = OPENSSL_malloc(sizeof(*db))))
126 goto err;
127
128 if (!parse_bin(value, &db->buf, &db->buflen))
129 goto err;
130 db->count = 1;
131 db->count_set = 0;
132
133 if (*sk == NULL && !TEST_ptr(*sk = sk_EVP_TEST_BUFFER_new_null()))
134 goto err;
135 if (!sk_EVP_TEST_BUFFER_push(*sk, db))
136 goto err;
137
138 return 1;
139
140 err:
141 evp_test_buffer_free(db);
142 return 0;
143 }
144
145 /*
146 * replace last buffer in list with copies of itself
147 */
148 static int evp_test_buffer_ncopy(const char *value,
149 STACK_OF(EVP_TEST_BUFFER) *sk)
150 {
151 EVP_TEST_BUFFER *db;
152 unsigned char *tbuf, *p;
153 size_t tbuflen;
154 int ncopy = atoi(value);
155 int i;
156
157 if (ncopy <= 0)
158 return 0;
159 if (sk == NULL || sk_EVP_TEST_BUFFER_num(sk) == 0)
160 return 0;
161 db = sk_EVP_TEST_BUFFER_value(sk, sk_EVP_TEST_BUFFER_num(sk) - 1);
162
163 tbuflen = db->buflen * ncopy;
164 if (!TEST_ptr(tbuf = OPENSSL_malloc(tbuflen)))
165 return 0;
166 for (i = 0, p = tbuf; i < ncopy; i++, p += db->buflen)
167 memcpy(p, db->buf, db->buflen);
168
169 OPENSSL_free(db->buf);
170 db->buf = tbuf;
171 db->buflen = tbuflen;
172 return 1;
173 }
174
175 /*
176 * set repeat count for last buffer in list
177 */
178 static int evp_test_buffer_set_count(const char *value,
179 STACK_OF(EVP_TEST_BUFFER) *sk)
180 {
181 EVP_TEST_BUFFER *db;
182 int count = atoi(value);
183
184 if (count <= 0)
185 return 0;
186
187 if (sk == NULL || sk_EVP_TEST_BUFFER_num(sk) == 0)
188 return 0;
189
190 db = sk_EVP_TEST_BUFFER_value(sk, sk_EVP_TEST_BUFFER_num(sk) - 1);
191 if (db->count_set != 0)
192 return 0;
193
194 db->count = (size_t)count;
195 db->count_set = 1;
196 return 1;
197 }
198
199 /*
200 * call "fn" with each element of the list in turn
201 */
202 static int evp_test_buffer_do(STACK_OF(EVP_TEST_BUFFER) *sk,
203 int (*fn)(void *ctx,
204 const unsigned char *buf,
205 size_t buflen),
206 void *ctx)
207 {
208 int i;
209
210 for (i = 0; i < sk_EVP_TEST_BUFFER_num(sk); i++) {
211 EVP_TEST_BUFFER *tb = sk_EVP_TEST_BUFFER_value(sk, i);
212 size_t j;
213
214 for (j = 0; j < tb->count; j++) {
215 if (fn(ctx, tb->buf, tb->buflen) <= 0)
216 return 0;
217 }
218 }
219 return 1;
220 }
221
222 /*
223 * Unescape some sequences in string literals (only \n for now).
224 * Return an allocated buffer, set |out_len|. If |input_len|
225 * is zero, get an empty buffer but set length to zero.
226 */
227 static unsigned char* unescape(const char *input, size_t input_len,
228 size_t *out_len)
229 {
230 unsigned char *ret, *p;
231 size_t i;
232
233 if (input_len == 0) {
234 *out_len = 0;
235 return OPENSSL_zalloc(1);
236 }
237
238 /* Escaping is non-expanding; over-allocate original size for simplicity. */
239 if (!TEST_ptr(ret = p = OPENSSL_malloc(input_len)))
240 return NULL;
241
242 for (i = 0; i < input_len; i++) {
243 if (*input == '\\') {
244 if (i == input_len - 1 || *++input != 'n') {
245 TEST_error("Bad escape sequence in file");
246 goto err;
247 }
248 *p++ = '\n';
249 i++;
250 input++;
251 } else {
252 *p++ = *input++;
253 }
254 }
255
256 *out_len = p - ret;
257 return ret;
258
259 err:
260 OPENSSL_free(ret);
261 return NULL;
262 }
263
264 /*
265 * For a hex string "value" convert to a binary allocated buffer.
266 * Return 1 on success or 0 on failure.
267 */
268 static int parse_bin(const char *value, unsigned char **buf, size_t *buflen)
269 {
270 long len;
271
272 /* Check for NULL literal */
273 if (strcmp(value, "NULL") == 0) {
274 *buf = NULL;
275 *buflen = 0;
276 return 1;
277 }
278
279 /* Check for empty value */
280 if (*value == '\0') {
281 /*
282 * Don't return NULL for zero length buffer. This is needed for
283 * some tests with empty keys: HMAC_Init_ex() expects a non-NULL key
284 * buffer even if the key length is 0, in order to detect key reset.
285 */
286 *buf = OPENSSL_malloc(1);
287 if (*buf == NULL)
288 return 0;
289 **buf = 0;
290 *buflen = 0;
291 return 1;
292 }
293
294 /* Check for string literal */
295 if (value[0] == '"') {
296 size_t vlen = strlen(++value);
297
298 if (vlen == 0 || value[vlen - 1] != '"')
299 return 0;
300 vlen--;
301 *buf = unescape(value, vlen, buflen);
302 return *buf == NULL ? 0 : 1;
303 }
304
305 /* Otherwise assume as hex literal and convert it to binary buffer */
306 if (!TEST_ptr(*buf = OPENSSL_hexstr2buf(value, &len))) {
307 TEST_info("Can't convert %s", value);
308 TEST_openssl_errors();
309 return -1;
310 }
311 /* Size of input buffer means we'll never overflow */
312 *buflen = len;
313 return 1;
314 }
315
316
317 /**
318 *** MESSAGE DIGEST TESTS
319 **/
320
321 typedef struct digest_data_st {
322 /* Digest this test is for */
323 const EVP_MD *digest;
324 /* Input to digest */
325 STACK_OF(EVP_TEST_BUFFER) *input;
326 /* Expected output */
327 unsigned char *output;
328 size_t output_len;
329 } DIGEST_DATA;
330
331 static int digest_test_init(EVP_TEST *t, const char *alg)
332 {
333 DIGEST_DATA *mdat;
334 const EVP_MD *digest;
335
336 if ((digest = EVP_get_digestbyname(alg)) == NULL) {
337 /* If alg has an OID assume disabled algorithm */
338 if (OBJ_sn2nid(alg) != NID_undef || OBJ_ln2nid(alg) != NID_undef) {
339 t->skip = 1;
340 return 1;
341 }
342 return 0;
343 }
344 if (!TEST_ptr(mdat = OPENSSL_zalloc(sizeof(*mdat))))
345 return 0;
346 t->data = mdat;
347 mdat->digest = digest;
348 return 1;
349 }
350
351 static void digest_test_cleanup(EVP_TEST *t)
352 {
353 DIGEST_DATA *mdat = t->data;
354
355 sk_EVP_TEST_BUFFER_pop_free(mdat->input, evp_test_buffer_free);
356 OPENSSL_free(mdat->output);
357 }
358
359 static int digest_test_parse(EVP_TEST *t,
360 const char *keyword, const char *value)
361 {
362 DIGEST_DATA *mdata = t->data;
363
364 if (strcmp(keyword, "Input") == 0)
365 return evp_test_buffer_append(value, &mdata->input);
366 if (strcmp(keyword, "Output") == 0)
367 return parse_bin(value, &mdata->output, &mdata->output_len);
368 if (strcmp(keyword, "Count") == 0)
369 return evp_test_buffer_set_count(value, mdata->input);
370 if (strcmp(keyword, "Ncopy") == 0)
371 return evp_test_buffer_ncopy(value, mdata->input);
372 return 0;
373 }
374
375 static int digest_update_fn(void *ctx, const unsigned char *buf, size_t buflen)
376 {
377 return EVP_DigestUpdate(ctx, buf, buflen);
378 }
379
380 static int digest_test_run(EVP_TEST *t)
381 {
382 DIGEST_DATA *expected = t->data;
383 EVP_MD_CTX *mctx;
384 unsigned char *got = NULL;
385 unsigned int got_len;
386
387 t->err = "TEST_FAILURE";
388 if (!TEST_ptr(mctx = EVP_MD_CTX_new()))
389 goto err;
390
391 got = OPENSSL_malloc(expected->output_len > EVP_MAX_MD_SIZE ?
392 expected->output_len : EVP_MAX_MD_SIZE);
393 if (!TEST_ptr(got))
394 goto err;
395
396 if (!EVP_DigestInit_ex(mctx, expected->digest, NULL)) {
397 t->err = "DIGESTINIT_ERROR";
398 goto err;
399 }
400 if (!evp_test_buffer_do(expected->input, digest_update_fn, mctx)) {
401 t->err = "DIGESTUPDATE_ERROR";
402 goto err;
403 }
404
405 if (EVP_MD_flags(expected->digest) & EVP_MD_FLAG_XOF) {
406 EVP_MD_CTX *mctx_cpy;
407 char dont[] = "touch";
408
409 if (!TEST_ptr(mctx_cpy = EVP_MD_CTX_new())) {
410 goto err;
411 }
412 if (!EVP_MD_CTX_copy(mctx_cpy, mctx)) {
413 EVP_MD_CTX_free(mctx_cpy);
414 goto err;
415 }
416 if (!EVP_DigestFinalXOF(mctx_cpy, (unsigned char *)dont, 0)) {
417 EVP_MD_CTX_free(mctx_cpy);
418 t->err = "DIGESTFINALXOF_ERROR";
419 goto err;
420 }
421 if (!TEST_str_eq(dont, "touch")) {
422 EVP_MD_CTX_free(mctx_cpy);
423 t->err = "DIGESTFINALXOF_ERROR";
424 goto err;
425 }
426 EVP_MD_CTX_free(mctx_cpy);
427
428 got_len = expected->output_len;
429 if (!EVP_DigestFinalXOF(mctx, got, got_len)) {
430 t->err = "DIGESTFINALXOF_ERROR";
431 goto err;
432 }
433 } else {
434 if (!EVP_DigestFinal(mctx, got, &got_len)) {
435 t->err = "DIGESTFINAL_ERROR";
436 goto err;
437 }
438 }
439 if (!TEST_int_eq(expected->output_len, got_len)) {
440 t->err = "DIGEST_LENGTH_MISMATCH";
441 goto err;
442 }
443 if (!memory_err_compare(t, "DIGEST_MISMATCH",
444 expected->output, expected->output_len,
445 got, got_len))
446 goto err;
447
448 t->err = NULL;
449
450 err:
451 OPENSSL_free(got);
452 EVP_MD_CTX_free(mctx);
453 return 1;
454 }
455
456 static const EVP_TEST_METHOD digest_test_method = {
457 "Digest",
458 digest_test_init,
459 digest_test_cleanup,
460 digest_test_parse,
461 digest_test_run
462 };
463
464
465 /**
466 *** CIPHER TESTS
467 **/
468
469 typedef struct cipher_data_st {
470 const EVP_CIPHER *cipher;
471 int enc;
472 /* EVP_CIPH_GCM_MODE, EVP_CIPH_CCM_MODE or EVP_CIPH_OCB_MODE if AEAD */
473 int aead;
474 unsigned char *key;
475 size_t key_len;
476 unsigned char *iv;
477 size_t iv_len;
478 unsigned char *plaintext;
479 size_t plaintext_len;
480 unsigned char *ciphertext;
481 size_t ciphertext_len;
482 /* GCM, CCM and OCB only */
483 unsigned char *aad;
484 size_t aad_len;
485 unsigned char *tag;
486 size_t tag_len;
487 int tag_late;
488 } CIPHER_DATA;
489
490 static int cipher_test_init(EVP_TEST *t, const char *alg)
491 {
492 const EVP_CIPHER *cipher;
493 CIPHER_DATA *cdat;
494 int m;
495
496 if ((cipher = EVP_get_cipherbyname(alg)) == NULL) {
497 /* If alg has an OID assume disabled algorithm */
498 if (OBJ_sn2nid(alg) != NID_undef || OBJ_ln2nid(alg) != NID_undef) {
499 t->skip = 1;
500 return 1;
501 }
502 return 0;
503 }
504 cdat = OPENSSL_zalloc(sizeof(*cdat));
505 cdat->cipher = cipher;
506 cdat->enc = -1;
507 m = EVP_CIPHER_mode(cipher);
508 if (m == EVP_CIPH_GCM_MODE
509 || m == EVP_CIPH_OCB_MODE
510 || m == EVP_CIPH_CCM_MODE)
511 cdat->aead = m;
512 else if (EVP_CIPHER_flags(cipher) & EVP_CIPH_FLAG_AEAD_CIPHER)
513 cdat->aead = -1;
514 else
515 cdat->aead = 0;
516
517 t->data = cdat;
518 return 1;
519 }
520
521 static void cipher_test_cleanup(EVP_TEST *t)
522 {
523 CIPHER_DATA *cdat = t->data;
524
525 OPENSSL_free(cdat->key);
526 OPENSSL_free(cdat->iv);
527 OPENSSL_free(cdat->ciphertext);
528 OPENSSL_free(cdat->plaintext);
529 OPENSSL_free(cdat->aad);
530 OPENSSL_free(cdat->tag);
531 }
532
533 static int cipher_test_parse(EVP_TEST *t, const char *keyword,
534 const char *value)
535 {
536 CIPHER_DATA *cdat = t->data;
537
538 if (strcmp(keyword, "Key") == 0)
539 return parse_bin(value, &cdat->key, &cdat->key_len);
540 if (strcmp(keyword, "IV") == 0)
541 return parse_bin(value, &cdat->iv, &cdat->iv_len);
542 if (strcmp(keyword, "Plaintext") == 0)
543 return parse_bin(value, &cdat->plaintext, &cdat->plaintext_len);
544 if (strcmp(keyword, "Ciphertext") == 0)
545 return parse_bin(value, &cdat->ciphertext, &cdat->ciphertext_len);
546 if (cdat->aead) {
547 if (strcmp(keyword, "AAD") == 0)
548 return parse_bin(value, &cdat->aad, &cdat->aad_len);
549 if (strcmp(keyword, "Tag") == 0)
550 return parse_bin(value, &cdat->tag, &cdat->tag_len);
551 if (strcmp(keyword, "SetTagLate") == 0) {
552 if (strcmp(value, "TRUE") == 0)
553 cdat->tag_late = 1;
554 else if (strcmp(value, "FALSE") == 0)
555 cdat->tag_late = 0;
556 else
557 return -1;
558 return 1;
559 }
560 }
561
562 if (strcmp(keyword, "Operation") == 0) {
563 if (strcmp(value, "ENCRYPT") == 0)
564 cdat->enc = 1;
565 else if (strcmp(value, "DECRYPT") == 0)
566 cdat->enc = 0;
567 else
568 return -1;
569 return 1;
570 }
571 return 0;
572 }
573
574 static int cipher_test_enc(EVP_TEST *t, int enc,
575 size_t out_misalign, size_t inp_misalign, int frag)
576 {
577 CIPHER_DATA *expected = t->data;
578 unsigned char *in, *expected_out, *tmp = NULL;
579 size_t in_len, out_len, donelen = 0;
580 int ok = 0, tmplen, chunklen, tmpflen;
581 EVP_CIPHER_CTX *ctx = NULL;
582
583 t->err = "TEST_FAILURE";
584 if (!TEST_ptr(ctx = EVP_CIPHER_CTX_new()))
585 goto err;
586 EVP_CIPHER_CTX_set_flags(ctx, EVP_CIPHER_CTX_FLAG_WRAP_ALLOW);
587 if (enc) {
588 in = expected->plaintext;
589 in_len = expected->plaintext_len;
590 expected_out = expected->ciphertext;
591 out_len = expected->ciphertext_len;
592 } else {
593 in = expected->ciphertext;
594 in_len = expected->ciphertext_len;
595 expected_out = expected->plaintext;
596 out_len = expected->plaintext_len;
597 }
598 if (inp_misalign == (size_t)-1) {
599 /*
600 * Exercise in-place encryption
601 */
602 tmp = OPENSSL_malloc(out_misalign + in_len + 2 * EVP_MAX_BLOCK_LENGTH);
603 if (!tmp)
604 goto err;
605 in = memcpy(tmp + out_misalign, in, in_len);
606 } else {
607 inp_misalign += 16 - ((out_misalign + in_len) & 15);
608 /*
609 * 'tmp' will store both output and copy of input. We make the copy
610 * of input to specifically aligned part of 'tmp'. So we just
611 * figured out how much padding would ensure the required alignment,
612 * now we allocate extended buffer and finally copy the input just
613 * past inp_misalign in expression below. Output will be written
614 * past out_misalign...
615 */
616 tmp = OPENSSL_malloc(out_misalign + in_len + 2 * EVP_MAX_BLOCK_LENGTH +
617 inp_misalign + in_len);
618 if (!tmp)
619 goto err;
620 in = memcpy(tmp + out_misalign + in_len + 2 * EVP_MAX_BLOCK_LENGTH +
621 inp_misalign, in, in_len);
622 }
623 if (!EVP_CipherInit_ex(ctx, expected->cipher, NULL, NULL, NULL, enc)) {
624 t->err = "CIPHERINIT_ERROR";
625 goto err;
626 }
627 if (expected->iv) {
628 if (expected->aead) {
629 if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN,
630 expected->iv_len, 0)) {
631 t->err = "INVALID_IV_LENGTH";
632 goto err;
633 }
634 } else if (expected->iv_len != (size_t)EVP_CIPHER_CTX_iv_length(ctx)) {
635 t->err = "INVALID_IV_LENGTH";
636 goto err;
637 }
638 }
639 if (expected->aead) {
640 unsigned char *tag;
641 /*
642 * If encrypting or OCB just set tag length initially, otherwise
643 * set tag length and value.
644 */
645 if (enc || expected->aead == EVP_CIPH_OCB_MODE || expected->tag_late) {
646 t->err = "TAG_LENGTH_SET_ERROR";
647 tag = NULL;
648 } else {
649 t->err = "TAG_SET_ERROR";
650 tag = expected->tag;
651 }
652 if (tag || expected->aead != EVP_CIPH_GCM_MODE) {
653 if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG,
654 expected->tag_len, tag))
655 goto err;
656 }
657 }
658
659 if (!EVP_CIPHER_CTX_set_key_length(ctx, expected->key_len)) {
660 t->err = "INVALID_KEY_LENGTH";
661 goto err;
662 }
663 if (!EVP_CipherInit_ex(ctx, NULL, NULL, expected->key, expected->iv, -1)) {
664 t->err = "KEY_SET_ERROR";
665 goto err;
666 }
667
668 if (expected->aead == EVP_CIPH_CCM_MODE) {
669 if (!EVP_CipherUpdate(ctx, NULL, &tmplen, NULL, out_len)) {
670 t->err = "CCM_PLAINTEXT_LENGTH_SET_ERROR";
671 goto err;
672 }
673 }
674 if (expected->aad) {
675 t->err = "AAD_SET_ERROR";
676 if (!frag) {
677 if (!EVP_CipherUpdate(ctx, NULL, &chunklen, expected->aad,
678 expected->aad_len))
679 goto err;
680 } else {
681 /*
682 * Supply the AAD in chunks less than the block size where possible
683 */
684 if (expected->aad_len > 0) {
685 if (!EVP_CipherUpdate(ctx, NULL, &chunklen, expected->aad, 1))
686 goto err;
687 donelen++;
688 }
689 if (expected->aad_len > 2) {
690 if (!EVP_CipherUpdate(ctx, NULL, &chunklen,
691 expected->aad + donelen,
692 expected->aad_len - 2))
693 goto err;
694 donelen += expected->aad_len - 2;
695 }
696 if (expected->aad_len > 1
697 && !EVP_CipherUpdate(ctx, NULL, &chunklen,
698 expected->aad + donelen, 1))
699 goto err;
700 }
701 }
702
703 if (!enc && (expected->aead == EVP_CIPH_OCB_MODE || expected->tag_late)) {
704 if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG,
705 expected->tag_len, expected->tag)) {
706 t->err = "TAG_SET_ERROR";
707 goto err;
708 }
709 }
710
711 EVP_CIPHER_CTX_set_padding(ctx, 0);
712 t->err = "CIPHERUPDATE_ERROR";
713 tmplen = 0;
714 if (!frag) {
715 /* We supply the data all in one go */
716 if (!EVP_CipherUpdate(ctx, tmp + out_misalign, &tmplen, in, in_len))
717 goto err;
718 } else {
719 /* Supply the data in chunks less than the block size where possible */
720 if (in_len > 0) {
721 if (!EVP_CipherUpdate(ctx, tmp + out_misalign, &chunklen, in, 1))
722 goto err;
723 tmplen += chunklen;
724 in++;
725 in_len--;
726 }
727 if (in_len > 1) {
728 if (!EVP_CipherUpdate(ctx, tmp + out_misalign + tmplen, &chunklen,
729 in, in_len - 1))
730 goto err;
731 tmplen += chunklen;
732 in += in_len - 1;
733 in_len = 1;
734 }
735 if (in_len > 0 ) {
736 if (!EVP_CipherUpdate(ctx, tmp + out_misalign + tmplen, &chunklen,
737 in, 1))
738 goto err;
739 tmplen += chunklen;
740 }
741 }
742 if (!EVP_CipherFinal_ex(ctx, tmp + out_misalign + tmplen, &tmpflen)) {
743 t->err = "CIPHERFINAL_ERROR";
744 goto err;
745 }
746 if (!memory_err_compare(t, "VALUE_MISMATCH", expected_out, out_len,
747 tmp + out_misalign, tmplen + tmpflen))
748 goto err;
749 if (enc && expected->aead) {
750 unsigned char rtag[16];
751
752 if (!TEST_size_t_le(expected->tag_len, sizeof(rtag))) {
753 t->err = "TAG_LENGTH_INTERNAL_ERROR";
754 goto err;
755 }
756 if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_GET_TAG,
757 expected->tag_len, rtag)) {
758 t->err = "TAG_RETRIEVE_ERROR";
759 goto err;
760 }
761 if (!memory_err_compare(t, "TAG_VALUE_MISMATCH",
762 expected->tag, expected->tag_len,
763 rtag, expected->tag_len))
764 goto err;
765 }
766 t->err = NULL;
767 ok = 1;
768 err:
769 OPENSSL_free(tmp);
770 EVP_CIPHER_CTX_free(ctx);
771 return ok;
772 }
773
774 static int cipher_test_run(EVP_TEST *t)
775 {
776 CIPHER_DATA *cdat = t->data;
777 int rv, frag = 0;
778 size_t out_misalign, inp_misalign;
779
780 if (!cdat->key) {
781 t->err = "NO_KEY";
782 return 0;
783 }
784 if (!cdat->iv && EVP_CIPHER_iv_length(cdat->cipher)) {
785 /* IV is optional and usually omitted in wrap mode */
786 if (EVP_CIPHER_mode(cdat->cipher) != EVP_CIPH_WRAP_MODE) {
787 t->err = "NO_IV";
788 return 0;
789 }
790 }
791 if (cdat->aead && !cdat->tag) {
792 t->err = "NO_TAG";
793 return 0;
794 }
795 for (out_misalign = 0; out_misalign <= 1;) {
796 static char aux_err[64];
797 t->aux_err = aux_err;
798 for (inp_misalign = (size_t)-1; inp_misalign != 2; inp_misalign++) {
799 if (inp_misalign == (size_t)-1) {
800 /* kludge: inp_misalign == -1 means "exercise in-place" */
801 BIO_snprintf(aux_err, sizeof(aux_err),
802 "%s in-place, %sfragmented",
803 out_misalign ? "misaligned" : "aligned",
804 frag ? "" : "not ");
805 } else {
806 BIO_snprintf(aux_err, sizeof(aux_err),
807 "%s output and %s input, %sfragmented",
808 out_misalign ? "misaligned" : "aligned",
809 inp_misalign ? "misaligned" : "aligned",
810 frag ? "" : "not ");
811 }
812 if (cdat->enc) {
813 rv = cipher_test_enc(t, 1, out_misalign, inp_misalign, frag);
814 /* Not fatal errors: return */
815 if (rv != 1) {
816 if (rv < 0)
817 return 0;
818 return 1;
819 }
820 }
821 if (cdat->enc != 1) {
822 rv = cipher_test_enc(t, 0, out_misalign, inp_misalign, frag);
823 /* Not fatal errors: return */
824 if (rv != 1) {
825 if (rv < 0)
826 return 0;
827 return 1;
828 }
829 }
830 }
831
832 if (out_misalign == 1 && frag == 0) {
833 /*
834 * XTS, CCM and Wrap modes have special requirements about input
835 * lengths so we don't fragment for those
836 */
837 if (cdat->aead == EVP_CIPH_CCM_MODE
838 || EVP_CIPHER_mode(cdat->cipher) == EVP_CIPH_XTS_MODE
839 || EVP_CIPHER_mode(cdat->cipher) == EVP_CIPH_WRAP_MODE)
840 break;
841 out_misalign = 0;
842 frag++;
843 } else {
844 out_misalign++;
845 }
846 }
847 t->aux_err = NULL;
848
849 return 1;
850 }
851
852 static const EVP_TEST_METHOD cipher_test_method = {
853 "Cipher",
854 cipher_test_init,
855 cipher_test_cleanup,
856 cipher_test_parse,
857 cipher_test_run
858 };
859
860
861 /**
862 *** MAC TESTS
863 **/
864
865 typedef struct mac_data_st {
866 /* MAC type */
867 int type;
868 /* Algorithm string for this MAC */
869 char *alg;
870 /* MAC key */
871 unsigned char *key;
872 size_t key_len;
873 /* Input to MAC */
874 unsigned char *input;
875 size_t input_len;
876 /* Expected output */
877 unsigned char *output;
878 size_t output_len;
879 /* Collection of controls */
880 STACK_OF(OPENSSL_STRING) *controls;
881 } MAC_DATA;
882
883 static int mac_test_init(EVP_TEST *t, const char *alg)
884 {
885 int type;
886 MAC_DATA *mdat;
887
888 if (strcmp(alg, "HMAC") == 0) {
889 type = EVP_PKEY_HMAC;
890 } else if (strcmp(alg, "CMAC") == 0) {
891 #ifndef OPENSSL_NO_CMAC
892 type = EVP_PKEY_CMAC;
893 #else
894 t->skip = 1;
895 return 1;
896 #endif
897 } else if (strcmp(alg, "Poly1305") == 0) {
898 #ifndef OPENSSL_NO_POLY1305
899 type = EVP_PKEY_POLY1305;
900 #else
901 t->skip = 1;
902 return 1;
903 #endif
904 } else if (strcmp(alg, "SipHash") == 0) {
905 #ifndef OPENSSL_NO_SIPHASH
906 type = EVP_PKEY_SIPHASH;
907 #else
908 t->skip = 1;
909 return 1;
910 #endif
911 } else
912 return 0;
913
914 mdat = OPENSSL_zalloc(sizeof(*mdat));
915 mdat->type = type;
916 mdat->controls = sk_OPENSSL_STRING_new_null();
917 t->data = mdat;
918 return 1;
919 }
920
921 /* Because OPENSSL_free is a macro, it can't be passed as a function pointer */
922 static void openssl_free(char *m)
923 {
924 OPENSSL_free(m);
925 }
926
927 static void mac_test_cleanup(EVP_TEST *t)
928 {
929 MAC_DATA *mdat = t->data;
930
931 sk_OPENSSL_STRING_pop_free(mdat->controls, openssl_free);
932 OPENSSL_free(mdat->alg);
933 OPENSSL_free(mdat->key);
934 OPENSSL_free(mdat->input);
935 OPENSSL_free(mdat->output);
936 }
937
938 static int mac_test_parse(EVP_TEST *t,
939 const char *keyword, const char *value)
940 {
941 MAC_DATA *mdata = t->data;
942
943 if (strcmp(keyword, "Key") == 0)
944 return parse_bin(value, &mdata->key, &mdata->key_len);
945 if (strcmp(keyword, "Algorithm") == 0) {
946 mdata->alg = OPENSSL_strdup(value);
947 if (!mdata->alg)
948 return -1;
949 return 1;
950 }
951 if (strcmp(keyword, "Input") == 0)
952 return parse_bin(value, &mdata->input, &mdata->input_len);
953 if (strcmp(keyword, "Output") == 0)
954 return parse_bin(value, &mdata->output, &mdata->output_len);
955 if (strcmp(keyword, "Ctrl") == 0)
956 return sk_OPENSSL_STRING_push(mdata->controls,
957 OPENSSL_strdup(value)) != 0;
958 return 0;
959 }
960
961 static int mac_test_ctrl_pkey(EVP_TEST *t, EVP_PKEY_CTX *pctx,
962 const char *value)
963 {
964 int rv;
965 char *p, *tmpval;
966
967 if (!TEST_ptr(tmpval = OPENSSL_strdup(value)))
968 return 0;
969 p = strchr(tmpval, ':');
970 if (p != NULL)
971 *p++ = '\0';
972 rv = EVP_PKEY_CTX_ctrl_str(pctx, tmpval, p);
973 if (rv == -2)
974 t->err = "PKEY_CTRL_INVALID";
975 else if (rv <= 0)
976 t->err = "PKEY_CTRL_ERROR";
977 else
978 rv = 1;
979 OPENSSL_free(tmpval);
980 return rv > 0;
981 }
982
983 static int mac_test_run(EVP_TEST *t)
984 {
985 MAC_DATA *expected = t->data;
986 EVP_MD_CTX *mctx = NULL;
987 EVP_PKEY_CTX *pctx = NULL, *genctx = NULL;
988 EVP_PKEY *key = NULL;
989 const EVP_MD *md = NULL;
990 unsigned char *got = NULL;
991 size_t got_len;
992 int i;
993
994 #ifdef OPENSSL_NO_DES
995 if (expected->alg != NULL && strstr(expected->alg, "DES") != NULL) {
996 /* Skip DES */
997 t->err = NULL;
998 goto err;
999 }
1000 #endif
1001
1002 if (expected->type == EVP_PKEY_CMAC)
1003 key = EVP_PKEY_new_CMAC_key(NULL, expected->key, expected->key_len,
1004 EVP_get_cipherbyname(expected->alg));
1005 else
1006 key = EVP_PKEY_new_raw_private_key(expected->type, NULL, expected->key,
1007 expected->key_len);
1008 if (key == NULL) {
1009 t->err = "MAC_KEY_CREATE_ERROR";
1010 goto err;
1011 }
1012
1013 if (expected->type == EVP_PKEY_HMAC) {
1014 if (!TEST_ptr(md = EVP_get_digestbyname(expected->alg))) {
1015 t->err = "MAC_ALGORITHM_SET_ERROR";
1016 goto err;
1017 }
1018 }
1019 if (!TEST_ptr(mctx = EVP_MD_CTX_new())) {
1020 t->err = "INTERNAL_ERROR";
1021 goto err;
1022 }
1023 if (!EVP_DigestSignInit(mctx, &pctx, md, NULL, key)) {
1024 t->err = "DIGESTSIGNINIT_ERROR";
1025 goto err;
1026 }
1027 for (i = 0; i < sk_OPENSSL_STRING_num(expected->controls); i++)
1028 if (!mac_test_ctrl_pkey(t, pctx,
1029 sk_OPENSSL_STRING_value(expected->controls,
1030 i))) {
1031 t->err = "EVPPKEYCTXCTRL_ERROR";
1032 goto err;
1033 }
1034 if (!EVP_DigestSignUpdate(mctx, expected->input, expected->input_len)) {
1035 t->err = "DIGESTSIGNUPDATE_ERROR";
1036 goto err;
1037 }
1038 if (!EVP_DigestSignFinal(mctx, NULL, &got_len)) {
1039 t->err = "DIGESTSIGNFINAL_LENGTH_ERROR";
1040 goto err;
1041 }
1042 if (!TEST_ptr(got = OPENSSL_malloc(got_len))) {
1043 t->err = "TEST_FAILURE";
1044 goto err;
1045 }
1046 if (!EVP_DigestSignFinal(mctx, got, &got_len)
1047 || !memory_err_compare(t, "TEST_MAC_ERR",
1048 expected->output, expected->output_len,
1049 got, got_len)) {
1050 t->err = "TEST_MAC_ERR";
1051 goto err;
1052 }
1053 t->err = NULL;
1054 err:
1055 EVP_MD_CTX_free(mctx);
1056 OPENSSL_free(got);
1057 EVP_PKEY_CTX_free(genctx);
1058 EVP_PKEY_free(key);
1059 return 1;
1060 }
1061
1062 static const EVP_TEST_METHOD mac_test_method = {
1063 "MAC",
1064 mac_test_init,
1065 mac_test_cleanup,
1066 mac_test_parse,
1067 mac_test_run
1068 };
1069
1070
1071 /**
1072 *** PUBLIC KEY TESTS
1073 *** These are all very similar and share much common code.
1074 **/
1075
1076 typedef struct pkey_data_st {
1077 /* Context for this operation */
1078 EVP_PKEY_CTX *ctx;
1079 /* Key operation to perform */
1080 int (*keyop) (EVP_PKEY_CTX *ctx,
1081 unsigned char *sig, size_t *siglen,
1082 const unsigned char *tbs, size_t tbslen);
1083 /* Input to MAC */
1084 unsigned char *input;
1085 size_t input_len;
1086 /* Expected output */
1087 unsigned char *output;
1088 size_t output_len;
1089 } PKEY_DATA;
1090
1091 /*
1092 * Perform public key operation setup: lookup key, allocated ctx and call
1093 * the appropriate initialisation function
1094 */
1095 static int pkey_test_init(EVP_TEST *t, const char *name,
1096 int use_public,
1097 int (*keyopinit) (EVP_PKEY_CTX *ctx),
1098 int (*keyop)(EVP_PKEY_CTX *ctx,
1099 unsigned char *sig, size_t *siglen,
1100 const unsigned char *tbs,
1101 size_t tbslen))
1102 {
1103 PKEY_DATA *kdata;
1104 EVP_PKEY *pkey = NULL;
1105 int rv = 0;
1106
1107 if (use_public)
1108 rv = find_key(&pkey, name, public_keys);
1109 if (rv == 0)
1110 rv = find_key(&pkey, name, private_keys);
1111 if (rv == 0 || pkey == NULL) {
1112 t->skip = 1;
1113 return 1;
1114 }
1115
1116 if (!TEST_ptr(kdata = OPENSSL_zalloc(sizeof(*kdata)))) {
1117 EVP_PKEY_free(pkey);
1118 return 0;
1119 }
1120 kdata->keyop = keyop;
1121 if (!TEST_ptr(kdata->ctx = EVP_PKEY_CTX_new(pkey, NULL))) {
1122 EVP_PKEY_free(pkey);
1123 OPENSSL_free(kdata);
1124 return 0;
1125 }
1126 if (keyopinit(kdata->ctx) <= 0)
1127 t->err = "KEYOP_INIT_ERROR";
1128 t->data = kdata;
1129 return 1;
1130 }
1131
1132 static void pkey_test_cleanup(EVP_TEST *t)
1133 {
1134 PKEY_DATA *kdata = t->data;
1135
1136 OPENSSL_free(kdata->input);
1137 OPENSSL_free(kdata->output);
1138 EVP_PKEY_CTX_free(kdata->ctx);
1139 }
1140
1141 static int pkey_test_ctrl(EVP_TEST *t, EVP_PKEY_CTX *pctx,
1142 const char *value)
1143 {
1144 int rv;
1145 char *p, *tmpval;
1146
1147 if (!TEST_ptr(tmpval = OPENSSL_strdup(value)))
1148 return 0;
1149 p = strchr(tmpval, ':');
1150 if (p != NULL)
1151 *p++ = '\0';
1152 rv = EVP_PKEY_CTX_ctrl_str(pctx, tmpval, p);
1153 if (rv == -2) {
1154 t->err = "PKEY_CTRL_INVALID";
1155 rv = 1;
1156 } else if (p != NULL && rv <= 0) {
1157 /* If p has an OID and lookup fails assume disabled algorithm */
1158 int nid = OBJ_sn2nid(p);
1159
1160 if (nid == NID_undef)
1161 nid = OBJ_ln2nid(p);
1162 if (nid != NID_undef
1163 && EVP_get_digestbynid(nid) == NULL
1164 && EVP_get_cipherbynid(nid) == NULL) {
1165 t->skip = 1;
1166 rv = 1;
1167 } else {
1168 t->err = "PKEY_CTRL_ERROR";
1169 rv = 1;
1170 }
1171 }
1172 OPENSSL_free(tmpval);
1173 return rv > 0;
1174 }
1175
1176 static int pkey_test_parse(EVP_TEST *t,
1177 const char *keyword, const char *value)
1178 {
1179 PKEY_DATA *kdata = t->data;
1180 if (strcmp(keyword, "Input") == 0)
1181 return parse_bin(value, &kdata->input, &kdata->input_len);
1182 if (strcmp(keyword, "Output") == 0)
1183 return parse_bin(value, &kdata->output, &kdata->output_len);
1184 if (strcmp(keyword, "Ctrl") == 0)
1185 return pkey_test_ctrl(t, kdata->ctx, value);
1186 return 0;
1187 }
1188
1189 static int pkey_test_run(EVP_TEST *t)
1190 {
1191 PKEY_DATA *expected = t->data;
1192 unsigned char *got = NULL;
1193 size_t got_len;
1194
1195 if (expected->keyop(expected->ctx, NULL, &got_len,
1196 expected->input, expected->input_len) <= 0
1197 || !TEST_ptr(got = OPENSSL_malloc(got_len))) {
1198 t->err = "KEYOP_LENGTH_ERROR";
1199 goto err;
1200 }
1201 if (expected->keyop(expected->ctx, got, &got_len,
1202 expected->input, expected->input_len) <= 0) {
1203 t->err = "KEYOP_ERROR";
1204 goto err;
1205 }
1206 if (!memory_err_compare(t, "KEYOP_MISMATCH",
1207 expected->output, expected->output_len,
1208 got, got_len))
1209 goto err;
1210
1211 t->err = NULL;
1212 err:
1213 OPENSSL_free(got);
1214 return 1;
1215 }
1216
1217 static int sign_test_init(EVP_TEST *t, const char *name)
1218 {
1219 return pkey_test_init(t, name, 0, EVP_PKEY_sign_init, EVP_PKEY_sign);
1220 }
1221
1222 static const EVP_TEST_METHOD psign_test_method = {
1223 "Sign",
1224 sign_test_init,
1225 pkey_test_cleanup,
1226 pkey_test_parse,
1227 pkey_test_run
1228 };
1229
1230 static int verify_recover_test_init(EVP_TEST *t, const char *name)
1231 {
1232 return pkey_test_init(t, name, 1, EVP_PKEY_verify_recover_init,
1233 EVP_PKEY_verify_recover);
1234 }
1235
1236 static const EVP_TEST_METHOD pverify_recover_test_method = {
1237 "VerifyRecover",
1238 verify_recover_test_init,
1239 pkey_test_cleanup,
1240 pkey_test_parse,
1241 pkey_test_run
1242 };
1243
1244 static int decrypt_test_init(EVP_TEST *t, const char *name)
1245 {
1246 return pkey_test_init(t, name, 0, EVP_PKEY_decrypt_init,
1247 EVP_PKEY_decrypt);
1248 }
1249
1250 static const EVP_TEST_METHOD pdecrypt_test_method = {
1251 "Decrypt",
1252 decrypt_test_init,
1253 pkey_test_cleanup,
1254 pkey_test_parse,
1255 pkey_test_run
1256 };
1257
1258 static int verify_test_init(EVP_TEST *t, const char *name)
1259 {
1260 return pkey_test_init(t, name, 1, EVP_PKEY_verify_init, 0);
1261 }
1262
1263 static int verify_test_run(EVP_TEST *t)
1264 {
1265 PKEY_DATA *kdata = t->data;
1266
1267 if (EVP_PKEY_verify(kdata->ctx, kdata->output, kdata->output_len,
1268 kdata->input, kdata->input_len) <= 0)
1269 t->err = "VERIFY_ERROR";
1270 return 1;
1271 }
1272
1273 static const EVP_TEST_METHOD pverify_test_method = {
1274 "Verify",
1275 verify_test_init,
1276 pkey_test_cleanup,
1277 pkey_test_parse,
1278 verify_test_run
1279 };
1280
1281
1282 static int pderive_test_init(EVP_TEST *t, const char *name)
1283 {
1284 return pkey_test_init(t, name, 0, EVP_PKEY_derive_init, 0);
1285 }
1286
1287 static int pderive_test_parse(EVP_TEST *t,
1288 const char *keyword, const char *value)
1289 {
1290 PKEY_DATA *kdata = t->data;
1291
1292 if (strcmp(keyword, "PeerKey") == 0) {
1293 EVP_PKEY *peer;
1294 if (find_key(&peer, value, public_keys) == 0)
1295 return -1;
1296 if (EVP_PKEY_derive_set_peer(kdata->ctx, peer) <= 0)
1297 return -1;
1298 return 1;
1299 }
1300 if (strcmp(keyword, "SharedSecret") == 0)
1301 return parse_bin(value, &kdata->output, &kdata->output_len);
1302 if (strcmp(keyword, "Ctrl") == 0)
1303 return pkey_test_ctrl(t, kdata->ctx, value);
1304 return 0;
1305 }
1306
1307 static int pderive_test_run(EVP_TEST *t)
1308 {
1309 PKEY_DATA *expected = t->data;
1310 unsigned char *got = NULL;
1311 size_t got_len;
1312
1313 if (EVP_PKEY_derive(expected->ctx, NULL, &got_len) <= 0) {
1314 t->err = "DERIVE_ERROR";
1315 goto err;
1316 }
1317 if (!TEST_ptr(got = OPENSSL_malloc(got_len))) {
1318 t->err = "DERIVE_ERROR";
1319 goto err;
1320 }
1321 if (EVP_PKEY_derive(expected->ctx, got, &got_len) <= 0) {
1322 t->err = "DERIVE_ERROR";
1323 goto err;
1324 }
1325 if (!memory_err_compare(t, "SHARED_SECRET_MISMATCH",
1326 expected->output, expected->output_len,
1327 got, got_len))
1328 goto err;
1329
1330 t->err = NULL;
1331 err:
1332 OPENSSL_free(got);
1333 return 1;
1334 }
1335
1336 static const EVP_TEST_METHOD pderive_test_method = {
1337 "Derive",
1338 pderive_test_init,
1339 pkey_test_cleanup,
1340 pderive_test_parse,
1341 pderive_test_run
1342 };
1343
1344
1345 /**
1346 *** PBE TESTS
1347 **/
1348
1349 typedef enum pbe_type_enum {
1350 PBE_TYPE_INVALID = 0,
1351 PBE_TYPE_SCRYPT, PBE_TYPE_PBKDF2, PBE_TYPE_PKCS12
1352 } PBE_TYPE;
1353
1354 typedef struct pbe_data_st {
1355 PBE_TYPE pbe_type;
1356 /* scrypt parameters */
1357 uint64_t N, r, p, maxmem;
1358 /* PKCS#12 parameters */
1359 int id, iter;
1360 const EVP_MD *md;
1361 /* password */
1362 unsigned char *pass;
1363 size_t pass_len;
1364 /* salt */
1365 unsigned char *salt;
1366 size_t salt_len;
1367 /* Expected output */
1368 unsigned char *key;
1369 size_t key_len;
1370 } PBE_DATA;
1371
1372 #ifndef OPENSSL_NO_SCRYPT
1373 /*
1374 * Parse unsigned decimal 64 bit integer value
1375 */
1376 static int parse_uint64(const char *value, uint64_t *pr)
1377 {
1378 const char *p = value;
1379
1380 if (!TEST_true(*p)) {
1381 TEST_info("Invalid empty integer value");
1382 return -1;
1383 }
1384 for (*pr = 0; *p; ) {
1385 if (*pr > UINT64_MAX / 10) {
1386 TEST_error("Integer overflow in string %s", value);
1387 return -1;
1388 }
1389 *pr *= 10;
1390 if (!TEST_true(isdigit((unsigned char)*p))) {
1391 TEST_error("Invalid character in string %s", value);
1392 return -1;
1393 }
1394 *pr += *p - '0';
1395 p++;
1396 }
1397 return 1;
1398 }
1399
1400 static int scrypt_test_parse(EVP_TEST *t,
1401 const char *keyword, const char *value)
1402 {
1403 PBE_DATA *pdata = t->data;
1404
1405 if (strcmp(keyword, "N") == 0)
1406 return parse_uint64(value, &pdata->N);
1407 if (strcmp(keyword, "p") == 0)
1408 return parse_uint64(value, &pdata->p);
1409 if (strcmp(keyword, "r") == 0)
1410 return parse_uint64(value, &pdata->r);
1411 if (strcmp(keyword, "maxmem") == 0)
1412 return parse_uint64(value, &pdata->maxmem);
1413 return 0;
1414 }
1415 #endif
1416
1417 static int pbkdf2_test_parse(EVP_TEST *t,
1418 const char *keyword, const char *value)
1419 {
1420 PBE_DATA *pdata = t->data;
1421
1422 if (strcmp(keyword, "iter") == 0) {
1423 pdata->iter = atoi(value);
1424 if (pdata->iter <= 0)
1425 return -1;
1426 return 1;
1427 }
1428 if (strcmp(keyword, "MD") == 0) {
1429 pdata->md = EVP_get_digestbyname(value);
1430 if (pdata->md == NULL)
1431 return -1;
1432 return 1;
1433 }
1434 return 0;
1435 }
1436
1437 static int pkcs12_test_parse(EVP_TEST *t,
1438 const char *keyword, const char *value)
1439 {
1440 PBE_DATA *pdata = t->data;
1441
1442 if (strcmp(keyword, "id") == 0) {
1443 pdata->id = atoi(value);
1444 if (pdata->id <= 0)
1445 return -1;
1446 return 1;
1447 }
1448 return pbkdf2_test_parse(t, keyword, value);
1449 }
1450
1451 static int pbe_test_init(EVP_TEST *t, const char *alg)
1452 {
1453 PBE_DATA *pdat;
1454 PBE_TYPE pbe_type = PBE_TYPE_INVALID;
1455
1456 if (strcmp(alg, "scrypt") == 0) {
1457 #ifndef OPENSSL_NO_SCRYPT
1458 pbe_type = PBE_TYPE_SCRYPT;
1459 #else
1460 t->skip = 1;
1461 return 1;
1462 #endif
1463 } else if (strcmp(alg, "pbkdf2") == 0) {
1464 pbe_type = PBE_TYPE_PBKDF2;
1465 } else if (strcmp(alg, "pkcs12") == 0) {
1466 pbe_type = PBE_TYPE_PKCS12;
1467 } else {
1468 TEST_error("Unknown pbe algorithm %s", alg);
1469 }
1470 pdat = OPENSSL_zalloc(sizeof(*pdat));
1471 pdat->pbe_type = pbe_type;
1472 t->data = pdat;
1473 return 1;
1474 }
1475
1476 static void pbe_test_cleanup(EVP_TEST *t)
1477 {
1478 PBE_DATA *pdat = t->data;
1479
1480 OPENSSL_free(pdat->pass);
1481 OPENSSL_free(pdat->salt);
1482 OPENSSL_free(pdat->key);
1483 }
1484
1485 static int pbe_test_parse(EVP_TEST *t,
1486 const char *keyword, const char *value)
1487 {
1488 PBE_DATA *pdata = t->data;
1489
1490 if (strcmp(keyword, "Password") == 0)
1491 return parse_bin(value, &pdata->pass, &pdata->pass_len);
1492 if (strcmp(keyword, "Salt") == 0)
1493 return parse_bin(value, &pdata->salt, &pdata->salt_len);
1494 if (strcmp(keyword, "Key") == 0)
1495 return parse_bin(value, &pdata->key, &pdata->key_len);
1496 if (pdata->pbe_type == PBE_TYPE_PBKDF2)
1497 return pbkdf2_test_parse(t, keyword, value);
1498 else if (pdata->pbe_type == PBE_TYPE_PKCS12)
1499 return pkcs12_test_parse(t, keyword, value);
1500 #ifndef OPENSSL_NO_SCRYPT
1501 else if (pdata->pbe_type == PBE_TYPE_SCRYPT)
1502 return scrypt_test_parse(t, keyword, value);
1503 #endif
1504 return 0;
1505 }
1506
1507 static int pbe_test_run(EVP_TEST *t)
1508 {
1509 PBE_DATA *expected = t->data;
1510 unsigned char *key;
1511
1512 if (!TEST_ptr(key = OPENSSL_malloc(expected->key_len))) {
1513 t->err = "INTERNAL_ERROR";
1514 goto err;
1515 }
1516 if (expected->pbe_type == PBE_TYPE_PBKDF2) {
1517 if (PKCS5_PBKDF2_HMAC((char *)expected->pass, expected->pass_len,
1518 expected->salt, expected->salt_len,
1519 expected->iter, expected->md,
1520 expected->key_len, key) == 0) {
1521 t->err = "PBKDF2_ERROR";
1522 goto err;
1523 }
1524 #ifndef OPENSSL_NO_SCRYPT
1525 } else if (expected->pbe_type == PBE_TYPE_SCRYPT) {
1526 if (EVP_PBE_scrypt((const char *)expected->pass, expected->pass_len,
1527 expected->salt, expected->salt_len, expected->N,
1528 expected->r, expected->p, expected->maxmem,
1529 key, expected->key_len) == 0) {
1530 t->err = "SCRYPT_ERROR";
1531 goto err;
1532 }
1533 #endif
1534 } else if (expected->pbe_type == PBE_TYPE_PKCS12) {
1535 if (PKCS12_key_gen_uni(expected->pass, expected->pass_len,
1536 expected->salt, expected->salt_len,
1537 expected->id, expected->iter, expected->key_len,
1538 key, expected->md) == 0) {
1539 t->err = "PKCS12_ERROR";
1540 goto err;
1541 }
1542 }
1543 if (!memory_err_compare(t, "KEY_MISMATCH", expected->key, expected->key_len,
1544 key, expected->key_len))
1545 goto err;
1546
1547 t->err = NULL;
1548 err:
1549 OPENSSL_free(key);
1550 return 1;
1551 }
1552
1553 static const EVP_TEST_METHOD pbe_test_method = {
1554 "PBE",
1555 pbe_test_init,
1556 pbe_test_cleanup,
1557 pbe_test_parse,
1558 pbe_test_run
1559 };
1560
1561
1562 /**
1563 *** BASE64 TESTS
1564 **/
1565
1566 typedef enum {
1567 BASE64_CANONICAL_ENCODING = 0,
1568 BASE64_VALID_ENCODING = 1,
1569 BASE64_INVALID_ENCODING = 2
1570 } base64_encoding_type;
1571
1572 typedef struct encode_data_st {
1573 /* Input to encoding */
1574 unsigned char *input;
1575 size_t input_len;
1576 /* Expected output */
1577 unsigned char *output;
1578 size_t output_len;
1579 base64_encoding_type encoding;
1580 } ENCODE_DATA;
1581
1582 static int encode_test_init(EVP_TEST *t, const char *encoding)
1583 {
1584 ENCODE_DATA *edata;
1585
1586 if (!TEST_ptr(edata = OPENSSL_zalloc(sizeof(*edata))))
1587 return 0;
1588 if (strcmp(encoding, "canonical") == 0) {
1589 edata->encoding = BASE64_CANONICAL_ENCODING;
1590 } else if (strcmp(encoding, "valid") == 0) {
1591 edata->encoding = BASE64_VALID_ENCODING;
1592 } else if (strcmp(encoding, "invalid") == 0) {
1593 edata->encoding = BASE64_INVALID_ENCODING;
1594 if (!TEST_ptr(t->expected_err = OPENSSL_strdup("DECODE_ERROR")))
1595 goto err;
1596 } else {
1597 TEST_error("Bad encoding: %s."
1598 " Should be one of {canonical, valid, invalid}",
1599 encoding);
1600 goto err;
1601 }
1602 t->data = edata;
1603 return 1;
1604 err:
1605 OPENSSL_free(edata);
1606 return 0;
1607 }
1608
1609 static void encode_test_cleanup(EVP_TEST *t)
1610 {
1611 ENCODE_DATA *edata = t->data;
1612
1613 OPENSSL_free(edata->input);
1614 OPENSSL_free(edata->output);
1615 memset(edata, 0, sizeof(*edata));
1616 }
1617
1618 static int encode_test_parse(EVP_TEST *t,
1619 const char *keyword, const char *value)
1620 {
1621 ENCODE_DATA *edata = t->data;
1622
1623 if (strcmp(keyword, "Input") == 0)
1624 return parse_bin(value, &edata->input, &edata->input_len);
1625 if (strcmp(keyword, "Output") == 0)
1626 return parse_bin(value, &edata->output, &edata->output_len);
1627 return 0;
1628 }
1629
1630 static int encode_test_run(EVP_TEST *t)
1631 {
1632 ENCODE_DATA *expected = t->data;
1633 unsigned char *encode_out = NULL, *decode_out = NULL;
1634 int output_len, chunk_len;
1635 EVP_ENCODE_CTX *decode_ctx = NULL, *encode_ctx = NULL;
1636
1637 if (!TEST_ptr(decode_ctx = EVP_ENCODE_CTX_new())) {
1638 t->err = "INTERNAL_ERROR";
1639 goto err;
1640 }
1641
1642 if (expected->encoding == BASE64_CANONICAL_ENCODING) {
1643
1644 if (!TEST_ptr(encode_ctx = EVP_ENCODE_CTX_new())
1645 || !TEST_ptr(encode_out =
1646 OPENSSL_malloc(EVP_ENCODE_LENGTH(expected->input_len))))
1647 goto err;
1648
1649 EVP_EncodeInit(encode_ctx);
1650 if (!TEST_true(EVP_EncodeUpdate(encode_ctx, encode_out, &chunk_len,
1651 expected->input, expected->input_len)))
1652 goto err;
1653
1654 output_len = chunk_len;
1655
1656 EVP_EncodeFinal(encode_ctx, encode_out + chunk_len, &chunk_len);
1657 output_len += chunk_len;
1658
1659 if (!memory_err_compare(t, "BAD_ENCODING",
1660 expected->output, expected->output_len,
1661 encode_out, output_len))
1662 goto err;
1663 }
1664
1665 if (!TEST_ptr(decode_out =
1666 OPENSSL_malloc(EVP_DECODE_LENGTH(expected->output_len))))
1667 goto err;
1668
1669 EVP_DecodeInit(decode_ctx);
1670 if (EVP_DecodeUpdate(decode_ctx, decode_out, &chunk_len, expected->output,
1671 expected->output_len) < 0) {
1672 t->err = "DECODE_ERROR";
1673 goto err;
1674 }
1675 output_len = chunk_len;
1676
1677 if (EVP_DecodeFinal(decode_ctx, decode_out + chunk_len, &chunk_len) != 1) {
1678 t->err = "DECODE_ERROR";
1679 goto err;
1680 }
1681 output_len += chunk_len;
1682
1683 if (expected->encoding != BASE64_INVALID_ENCODING
1684 && !memory_err_compare(t, "BAD_DECODING",
1685 expected->input, expected->input_len,
1686 decode_out, output_len)) {
1687 t->err = "BAD_DECODING";
1688 goto err;
1689 }
1690
1691 t->err = NULL;
1692 err:
1693 OPENSSL_free(encode_out);
1694 OPENSSL_free(decode_out);
1695 EVP_ENCODE_CTX_free(decode_ctx);
1696 EVP_ENCODE_CTX_free(encode_ctx);
1697 return 1;
1698 }
1699
1700 static const EVP_TEST_METHOD encode_test_method = {
1701 "Encoding",
1702 encode_test_init,
1703 encode_test_cleanup,
1704 encode_test_parse,
1705 encode_test_run,
1706 };
1707
1708 /**
1709 *** KDF TESTS
1710 **/
1711
1712 typedef struct kdf_data_st {
1713 /* Context for this operation */
1714 EVP_PKEY_CTX *ctx;
1715 /* Expected output */
1716 unsigned char *output;
1717 size_t output_len;
1718 } KDF_DATA;
1719
1720 /*
1721 * Perform public key operation setup: lookup key, allocated ctx and call
1722 * the appropriate initialisation function
1723 */
1724 static int kdf_test_init(EVP_TEST *t, const char *name)
1725 {
1726 KDF_DATA *kdata;
1727 int kdf_nid = OBJ_sn2nid(name);
1728
1729 #ifdef OPENSSL_NO_SCRYPT
1730 if (strcmp(name, "scrypt") == 0) {
1731 t->skip = 1;
1732 return 1;
1733 }
1734 #endif
1735
1736 if (kdf_nid == NID_undef)
1737 kdf_nid = OBJ_ln2nid(name);
1738
1739 if (!TEST_ptr(kdata = OPENSSL_zalloc(sizeof(*kdata))))
1740 return 0;
1741 kdata->ctx = EVP_PKEY_CTX_new_id(kdf_nid, NULL);
1742 if (kdata->ctx == NULL) {
1743 OPENSSL_free(kdata);
1744 return 0;
1745 }
1746 if (EVP_PKEY_derive_init(kdata->ctx) <= 0) {
1747 EVP_PKEY_CTX_free(kdata->ctx);
1748 OPENSSL_free(kdata);
1749 return 0;
1750 }
1751 t->data = kdata;
1752 return 1;
1753 }
1754
1755 static void kdf_test_cleanup(EVP_TEST *t)
1756 {
1757 KDF_DATA *kdata = t->data;
1758 OPENSSL_free(kdata->output);
1759 EVP_PKEY_CTX_free(kdata->ctx);
1760 }
1761
1762 static int kdf_test_parse(EVP_TEST *t,
1763 const char *keyword, const char *value)
1764 {
1765 KDF_DATA *kdata = t->data;
1766
1767 if (strcmp(keyword, "Output") == 0)
1768 return parse_bin(value, &kdata->output, &kdata->output_len);
1769 if (strncmp(keyword, "Ctrl", 4) == 0)
1770 return pkey_test_ctrl(t, kdata->ctx, value);
1771 return 0;
1772 }
1773
1774 static int kdf_test_run(EVP_TEST *t)
1775 {
1776 KDF_DATA *expected = t->data;
1777 unsigned char *got = NULL;
1778 size_t got_len = expected->output_len;
1779
1780 if (!TEST_ptr(got = OPENSSL_malloc(got_len))) {
1781 t->err = "INTERNAL_ERROR";
1782 goto err;
1783 }
1784 if (EVP_PKEY_derive(expected->ctx, got, &got_len) <= 0) {
1785 t->err = "KDF_DERIVE_ERROR";
1786 goto err;
1787 }
1788 if (!memory_err_compare(t, "KDF_MISMATCH",
1789 expected->output, expected->output_len,
1790 got, got_len))
1791 goto err;
1792
1793 t->err = NULL;
1794
1795 err:
1796 OPENSSL_free(got);
1797 return 1;
1798 }
1799
1800 static const EVP_TEST_METHOD kdf_test_method = {
1801 "KDF",
1802 kdf_test_init,
1803 kdf_test_cleanup,
1804 kdf_test_parse,
1805 kdf_test_run
1806 };
1807
1808
1809 /**
1810 *** KEYPAIR TESTS
1811 **/
1812
1813 typedef struct keypair_test_data_st {
1814 EVP_PKEY *privk;
1815 EVP_PKEY *pubk;
1816 } KEYPAIR_TEST_DATA;
1817
1818 static int keypair_test_init(EVP_TEST *t, const char *pair)
1819 {
1820 KEYPAIR_TEST_DATA *data;
1821 int rv = 0;
1822 EVP_PKEY *pk = NULL, *pubk = NULL;
1823 char *pub, *priv = NULL;
1824
1825 /* Split private and public names. */
1826 if (!TEST_ptr(priv = OPENSSL_strdup(pair))
1827 || !TEST_ptr(pub = strchr(priv, ':'))) {
1828 t->err = "PARSING_ERROR";
1829 goto end;
1830 }
1831 *pub++ = '\0';
1832
1833 if (!TEST_true(find_key(&pk, priv, private_keys))) {
1834 TEST_info("Can't find private key: %s", priv);
1835 t->err = "MISSING_PRIVATE_KEY";
1836 goto end;
1837 }
1838 if (!TEST_true(find_key(&pubk, pub, public_keys))) {
1839 TEST_info("Can't find public key: %s", pub);
1840 t->err = "MISSING_PUBLIC_KEY";
1841 goto end;
1842 }
1843
1844 if (pk == NULL && pubk == NULL) {
1845 /* Both keys are listed but unsupported: skip this test */
1846 t->skip = 1;
1847 rv = 1;
1848 goto end;
1849 }
1850
1851 if (!TEST_ptr(data = OPENSSL_malloc(sizeof(*data))))
1852 goto end;
1853 data->privk = pk;
1854 data->pubk = pubk;
1855 t->data = data;
1856 rv = 1;
1857 t->err = NULL;
1858
1859 end:
1860 OPENSSL_free(priv);
1861 return rv;
1862 }
1863
1864 static void keypair_test_cleanup(EVP_TEST *t)
1865 {
1866 OPENSSL_free(t->data);
1867 t->data = NULL;
1868 }
1869
1870 /*
1871 * For tests that do not accept any custom keywords.
1872 */
1873 static int void_test_parse(EVP_TEST *t, const char *keyword, const char *value)
1874 {
1875 return 0;
1876 }
1877
1878 static int keypair_test_run(EVP_TEST *t)
1879 {
1880 int rv = 0;
1881 const KEYPAIR_TEST_DATA *pair = t->data;
1882
1883 if (pair->privk == NULL || pair->pubk == NULL) {
1884 /*
1885 * this can only happen if only one of the keys is not set
1886 * which means that one of them was unsupported while the
1887 * other isn't: hence a key type mismatch.
1888 */
1889 t->err = "KEYPAIR_TYPE_MISMATCH";
1890 rv = 1;
1891 goto end;
1892 }
1893
1894 if ((rv = EVP_PKEY_cmp(pair->privk, pair->pubk)) != 1 ) {
1895 if ( 0 == rv ) {
1896 t->err = "KEYPAIR_MISMATCH";
1897 } else if ( -1 == rv ) {
1898 t->err = "KEYPAIR_TYPE_MISMATCH";
1899 } else if ( -2 == rv ) {
1900 t->err = "UNSUPPORTED_KEY_COMPARISON";
1901 } else {
1902 TEST_error("Unexpected error in key comparison");
1903 rv = 0;
1904 goto end;
1905 }
1906 rv = 1;
1907 goto end;
1908 }
1909
1910 rv = 1;
1911 t->err = NULL;
1912
1913 end:
1914 return rv;
1915 }
1916
1917 static const EVP_TEST_METHOD keypair_test_method = {
1918 "PrivPubKeyPair",
1919 keypair_test_init,
1920 keypair_test_cleanup,
1921 void_test_parse,
1922 keypair_test_run
1923 };
1924
1925 /**
1926 *** KEYGEN TEST
1927 **/
1928
1929 typedef struct keygen_test_data_st {
1930 EVP_PKEY_CTX *genctx; /* Keygen context to use */
1931 char *keyname; /* Key name to store key or NULL */
1932 } KEYGEN_TEST_DATA;
1933
1934 static int keygen_test_init(EVP_TEST *t, const char *alg)
1935 {
1936 KEYGEN_TEST_DATA *data;
1937 EVP_PKEY_CTX *genctx;
1938 int nid = OBJ_sn2nid(alg);
1939
1940 if (nid == NID_undef) {
1941 nid = OBJ_ln2nid(alg);
1942 if (nid == NID_undef)
1943 return 0;
1944 }
1945
1946 if (!TEST_ptr(genctx = EVP_PKEY_CTX_new_id(nid, NULL))) {
1947 /* assume algorithm disabled */
1948 t->skip = 1;
1949 return 1;
1950 }
1951
1952 if (EVP_PKEY_keygen_init(genctx) <= 0) {
1953 t->err = "KEYGEN_INIT_ERROR";
1954 goto err;
1955 }
1956
1957 if (!TEST_ptr(data = OPENSSL_malloc(sizeof(*data))))
1958 goto err;
1959 data->genctx = genctx;
1960 data->keyname = NULL;
1961 t->data = data;
1962 t->err = NULL;
1963 return 1;
1964
1965 err:
1966 EVP_PKEY_CTX_free(genctx);
1967 return 0;
1968 }
1969
1970 static void keygen_test_cleanup(EVP_TEST *t)
1971 {
1972 KEYGEN_TEST_DATA *keygen = t->data;
1973
1974 EVP_PKEY_CTX_free(keygen->genctx);
1975 OPENSSL_free(keygen->keyname);
1976 OPENSSL_free(t->data);
1977 t->data = NULL;
1978 }
1979
1980 static int keygen_test_parse(EVP_TEST *t,
1981 const char *keyword, const char *value)
1982 {
1983 KEYGEN_TEST_DATA *keygen = t->data;
1984
1985 if (strcmp(keyword, "KeyName") == 0)
1986 return TEST_ptr(keygen->keyname = OPENSSL_strdup(value));
1987 if (strcmp(keyword, "Ctrl") == 0)
1988 return pkey_test_ctrl(t, keygen->genctx, value);
1989 return 0;
1990 }
1991
1992 static int keygen_test_run(EVP_TEST *t)
1993 {
1994 KEYGEN_TEST_DATA *keygen = t->data;
1995 EVP_PKEY *pkey = NULL;
1996
1997 t->err = NULL;
1998 if (EVP_PKEY_keygen(keygen->genctx, &pkey) <= 0) {
1999 t->err = "KEYGEN_GENERATE_ERROR";
2000 goto err;
2001 }
2002
2003 if (keygen->keyname != NULL) {
2004 KEY_LIST *key;
2005
2006 if (find_key(NULL, keygen->keyname, private_keys)) {
2007 TEST_info("Duplicate key %s", keygen->keyname);
2008 goto err;
2009 }
2010
2011 if (!TEST_ptr(key = OPENSSL_malloc(sizeof(*key))))
2012 goto err;
2013 key->name = keygen->keyname;
2014 keygen->keyname = NULL;
2015 key->key = pkey;
2016 key->next = private_keys;
2017 private_keys = key;
2018 } else {
2019 EVP_PKEY_free(pkey);
2020 }
2021
2022 return 1;
2023
2024 err:
2025 EVP_PKEY_free(pkey);
2026 return 0;
2027 }
2028
2029 static const EVP_TEST_METHOD keygen_test_method = {
2030 "KeyGen",
2031 keygen_test_init,
2032 keygen_test_cleanup,
2033 keygen_test_parse,
2034 keygen_test_run,
2035 };
2036
2037 /**
2038 *** DIGEST SIGN+VERIFY TESTS
2039 **/
2040
2041 typedef struct {
2042 int is_verify; /* Set to 1 if verifying */
2043 int is_oneshot; /* Set to 1 for one shot operation */
2044 const EVP_MD *md; /* Digest to use */
2045 EVP_MD_CTX *ctx; /* Digest context */
2046 EVP_PKEY_CTX *pctx;
2047 STACK_OF(EVP_TEST_BUFFER) *input; /* Input data: streaming */
2048 unsigned char *osin; /* Input data if one shot */
2049 size_t osin_len; /* Input length data if one shot */
2050 unsigned char *output; /* Expected output */
2051 size_t output_len; /* Expected output length */
2052 } DIGESTSIGN_DATA;
2053
2054 static int digestsigver_test_init(EVP_TEST *t, const char *alg, int is_verify,
2055 int is_oneshot)
2056 {
2057 const EVP_MD *md = NULL;
2058 DIGESTSIGN_DATA *mdat;
2059
2060 if (strcmp(alg, "NULL") != 0) {
2061 if ((md = EVP_get_digestbyname(alg)) == NULL) {
2062 /* If alg has an OID assume disabled algorithm */
2063 if (OBJ_sn2nid(alg) != NID_undef || OBJ_ln2nid(alg) != NID_undef) {
2064 t->skip = 1;
2065 return 1;
2066 }
2067 return 0;
2068 }
2069 }
2070 if (!TEST_ptr(mdat = OPENSSL_zalloc(sizeof(*mdat))))
2071 return 0;
2072 mdat->md = md;
2073 if (!TEST_ptr(mdat->ctx = EVP_MD_CTX_new())) {
2074 OPENSSL_free(mdat);
2075 return 0;
2076 }
2077 mdat->is_verify = is_verify;
2078 mdat->is_oneshot = is_oneshot;
2079 t->data = mdat;
2080 return 1;
2081 }
2082
2083 static int digestsign_test_init(EVP_TEST *t, const char *alg)
2084 {
2085 return digestsigver_test_init(t, alg, 0, 0);
2086 }
2087
2088 static void digestsigver_test_cleanup(EVP_TEST *t)
2089 {
2090 DIGESTSIGN_DATA *mdata = t->data;
2091
2092 EVP_MD_CTX_free(mdata->ctx);
2093 sk_EVP_TEST_BUFFER_pop_free(mdata->input, evp_test_buffer_free);
2094 OPENSSL_free(mdata->osin);
2095 OPENSSL_free(mdata->output);
2096 OPENSSL_free(mdata);
2097 t->data = NULL;
2098 }
2099
2100 static int digestsigver_test_parse(EVP_TEST *t,
2101 const char *keyword, const char *value)
2102 {
2103 DIGESTSIGN_DATA *mdata = t->data;
2104
2105 if (strcmp(keyword, "Key") == 0) {
2106 EVP_PKEY *pkey = NULL;
2107 int rv = 0;
2108
2109 if (mdata->is_verify)
2110 rv = find_key(&pkey, value, public_keys);
2111 if (rv == 0)
2112 rv = find_key(&pkey, value, private_keys);
2113 if (rv == 0 || pkey == NULL) {
2114 t->skip = 1;
2115 return 1;
2116 }
2117 if (mdata->is_verify) {
2118 if (!EVP_DigestVerifyInit(mdata->ctx, &mdata->pctx, mdata->md,
2119 NULL, pkey))
2120 t->err = "DIGESTVERIFYINIT_ERROR";
2121 return 1;
2122 }
2123 if (!EVP_DigestSignInit(mdata->ctx, &mdata->pctx, mdata->md, NULL,
2124 pkey))
2125 t->err = "DIGESTSIGNINIT_ERROR";
2126 return 1;
2127 }
2128
2129 if (strcmp(keyword, "Input") == 0) {
2130 if (mdata->is_oneshot)
2131 return parse_bin(value, &mdata->osin, &mdata->osin_len);
2132 return evp_test_buffer_append(value, &mdata->input);
2133 }
2134 if (strcmp(keyword, "Output") == 0)
2135 return parse_bin(value, &mdata->output, &mdata->output_len);
2136
2137 if (!mdata->is_oneshot) {
2138 if (strcmp(keyword, "Count") == 0)
2139 return evp_test_buffer_set_count(value, mdata->input);
2140 if (strcmp(keyword, "Ncopy") == 0)
2141 return evp_test_buffer_ncopy(value, mdata->input);
2142 }
2143 if (strcmp(keyword, "Ctrl") == 0) {
2144 if (mdata->pctx == NULL)
2145 return -1;
2146 return pkey_test_ctrl(t, mdata->pctx, value);
2147 }
2148 return 0;
2149 }
2150
2151 static int digestsign_update_fn(void *ctx, const unsigned char *buf,
2152 size_t buflen)
2153 {
2154 return EVP_DigestSignUpdate(ctx, buf, buflen);
2155 }
2156
2157 static int digestsign_test_run(EVP_TEST *t)
2158 {
2159 DIGESTSIGN_DATA *expected = t->data;
2160 unsigned char *got = NULL;
2161 size_t got_len;
2162
2163 if (!evp_test_buffer_do(expected->input, digestsign_update_fn,
2164 expected->ctx)) {
2165 t->err = "DIGESTUPDATE_ERROR";
2166 goto err;
2167 }
2168
2169 if (!EVP_DigestSignFinal(expected->ctx, NULL, &got_len)) {
2170 t->err = "DIGESTSIGNFINAL_LENGTH_ERROR";
2171 goto err;
2172 }
2173 if (!TEST_ptr(got = OPENSSL_malloc(got_len))) {
2174 t->err = "MALLOC_FAILURE";
2175 goto err;
2176 }
2177 if (!EVP_DigestSignFinal(expected->ctx, got, &got_len)) {
2178 t->err = "DIGESTSIGNFINAL_ERROR";
2179 goto err;
2180 }
2181 if (!memory_err_compare(t, "SIGNATURE_MISMATCH",
2182 expected->output, expected->output_len,
2183 got, got_len))
2184 goto err;
2185
2186 t->err = NULL;
2187 err:
2188 OPENSSL_free(got);
2189 return 1;
2190 }
2191
2192 static const EVP_TEST_METHOD digestsign_test_method = {
2193 "DigestSign",
2194 digestsign_test_init,
2195 digestsigver_test_cleanup,
2196 digestsigver_test_parse,
2197 digestsign_test_run
2198 };
2199
2200 static int digestverify_test_init(EVP_TEST *t, const char *alg)
2201 {
2202 return digestsigver_test_init(t, alg, 1, 0);
2203 }
2204
2205 static int digestverify_update_fn(void *ctx, const unsigned char *buf,
2206 size_t buflen)
2207 {
2208 return EVP_DigestVerifyUpdate(ctx, buf, buflen);
2209 }
2210
2211 static int digestverify_test_run(EVP_TEST *t)
2212 {
2213 DIGESTSIGN_DATA *mdata = t->data;
2214
2215 if (!evp_test_buffer_do(mdata->input, digestverify_update_fn, mdata->ctx)) {
2216 t->err = "DIGESTUPDATE_ERROR";
2217 return 1;
2218 }
2219
2220 if (EVP_DigestVerifyFinal(mdata->ctx, mdata->output,
2221 mdata->output_len) <= 0)
2222 t->err = "VERIFY_ERROR";
2223 return 1;
2224 }
2225
2226 static const EVP_TEST_METHOD digestverify_test_method = {
2227 "DigestVerify",
2228 digestverify_test_init,
2229 digestsigver_test_cleanup,
2230 digestsigver_test_parse,
2231 digestverify_test_run
2232 };
2233
2234 static int oneshot_digestsign_test_init(EVP_TEST *t, const char *alg)
2235 {
2236 return digestsigver_test_init(t, alg, 0, 1);
2237 }
2238
2239 static int oneshot_digestsign_test_run(EVP_TEST *t)
2240 {
2241 DIGESTSIGN_DATA *expected = t->data;
2242 unsigned char *got = NULL;
2243 size_t got_len;
2244
2245 if (!EVP_DigestSign(expected->ctx, NULL, &got_len,
2246 expected->osin, expected->osin_len)) {
2247 t->err = "DIGESTSIGN_LENGTH_ERROR";
2248 goto err;
2249 }
2250 if (!TEST_ptr(got = OPENSSL_malloc(got_len))) {
2251 t->err = "MALLOC_FAILURE";
2252 goto err;
2253 }
2254 if (!EVP_DigestSign(expected->ctx, got, &got_len,
2255 expected->osin, expected->osin_len)) {
2256 t->err = "DIGESTSIGN_ERROR";
2257 goto err;
2258 }
2259 if (!memory_err_compare(t, "SIGNATURE_MISMATCH",
2260 expected->output, expected->output_len,
2261 got, got_len))
2262 goto err;
2263
2264 t->err = NULL;
2265 err:
2266 OPENSSL_free(got);
2267 return 1;
2268 }
2269
2270 static const EVP_TEST_METHOD oneshot_digestsign_test_method = {
2271 "OneShotDigestSign",
2272 oneshot_digestsign_test_init,
2273 digestsigver_test_cleanup,
2274 digestsigver_test_parse,
2275 oneshot_digestsign_test_run
2276 };
2277
2278 static int oneshot_digestverify_test_init(EVP_TEST *t, const char *alg)
2279 {
2280 return digestsigver_test_init(t, alg, 1, 1);
2281 }
2282
2283 static int oneshot_digestverify_test_run(EVP_TEST *t)
2284 {
2285 DIGESTSIGN_DATA *mdata = t->data;
2286
2287 if (EVP_DigestVerify(mdata->ctx, mdata->output, mdata->output_len,
2288 mdata->osin, mdata->osin_len) <= 0)
2289 t->err = "VERIFY_ERROR";
2290 return 1;
2291 }
2292
2293 static const EVP_TEST_METHOD oneshot_digestverify_test_method = {
2294 "OneShotDigestVerify",
2295 oneshot_digestverify_test_init,
2296 digestsigver_test_cleanup,
2297 digestsigver_test_parse,
2298 oneshot_digestverify_test_run
2299 };
2300
2301
2302 /**
2303 *** PARSING AND DISPATCH
2304 **/
2305
2306 static const EVP_TEST_METHOD *evp_test_list[] = {
2307 &cipher_test_method,
2308 &digest_test_method,
2309 &digestsign_test_method,
2310 &digestverify_test_method,
2311 &encode_test_method,
2312 &kdf_test_method,
2313 &keypair_test_method,
2314 &keygen_test_method,
2315 &mac_test_method,
2316 &oneshot_digestsign_test_method,
2317 &oneshot_digestverify_test_method,
2318 &pbe_test_method,
2319 &pdecrypt_test_method,
2320 &pderive_test_method,
2321 &psign_test_method,
2322 &pverify_recover_test_method,
2323 &pverify_test_method,
2324 NULL
2325 };
2326
2327 static const EVP_TEST_METHOD *find_test(const char *name)
2328 {
2329 const EVP_TEST_METHOD **tt;
2330
2331 for (tt = evp_test_list; *tt; tt++) {
2332 if (strcmp(name, (*tt)->name) == 0)
2333 return *tt;
2334 }
2335 return NULL;
2336 }
2337
2338 static void clear_test(EVP_TEST *t)
2339 {
2340 test_clearstanza(&t->s);
2341 ERR_clear_error();
2342 if (t->data != NULL) {
2343 if (t->meth != NULL)
2344 t->meth->cleanup(t);
2345 OPENSSL_free(t->data);
2346 t->data = NULL;
2347 }
2348 OPENSSL_free(t->expected_err);
2349 t->expected_err = NULL;
2350 OPENSSL_free(t->func);
2351 t->func = NULL;
2352 OPENSSL_free(t->reason);
2353 t->reason = NULL;
2354
2355 /* Text literal. */
2356 t->err = NULL;
2357 t->skip = 0;
2358 t->meth = NULL;
2359 }
2360
2361 /*
2362 * Check for errors in the test structure; return 1 if okay, else 0.
2363 */
2364 static int check_test_error(EVP_TEST *t)
2365 {
2366 unsigned long err;
2367 const char *func;
2368 const char *reason;
2369
2370 if (t->err == NULL && t->expected_err == NULL)
2371 return 1;
2372 if (t->err != NULL && t->expected_err == NULL) {
2373 if (t->aux_err != NULL) {
2374 TEST_info("%s:%d: Source of above error (%s); unexpected error %s",
2375 t->s.test_file, t->s.start, t->aux_err, t->err);
2376 } else {
2377 TEST_info("%s:%d: Source of above error; unexpected error %s",
2378 t->s.test_file, t->s.start, t->err);
2379 }
2380 return 0;
2381 }
2382 if (t->err == NULL && t->expected_err != NULL) {
2383 TEST_info("%s:%d: Succeeded but was expecting %s",
2384 t->s.test_file, t->s.start, t->expected_err);
2385 return 0;
2386 }
2387
2388 if (strcmp(t->err, t->expected_err) != 0) {
2389 TEST_info("%s:%d: Expected %s got %s",
2390 t->s.test_file, t->s.start, t->expected_err, t->err);
2391 return 0;
2392 }
2393
2394 if (t->func == NULL && t->reason == NULL)
2395 return 1;
2396
2397 if (t->func == NULL || t->reason == NULL) {
2398 TEST_info("%s:%d: Test is missing function or reason code",
2399 t->s.test_file, t->s.start);
2400 return 0;
2401 }
2402
2403 err = ERR_peek_error();
2404 if (err == 0) {
2405 TEST_info("%s:%d: Expected error \"%s:%s\" not set",
2406 t->s.test_file, t->s.start, t->func, t->reason);
2407 return 0;
2408 }
2409
2410 func = ERR_func_error_string(err);
2411 reason = ERR_reason_error_string(err);
2412 if (func == NULL && reason == NULL) {
2413 TEST_info("%s:%d: Expected error \"%s:%s\", no strings available."
2414 " Assuming ok.",
2415 t->s.test_file, t->s.start, t->func, t->reason);
2416 return 1;
2417 }
2418
2419 if (strcmp(func, t->func) == 0 && strcmp(reason, t->reason) == 0)
2420 return 1;
2421
2422 TEST_info("%s:%d: Expected error \"%s:%s\", got \"%s:%s\"",
2423 t->s.test_file, t->s.start, t->func, t->reason, func, reason);
2424
2425 return 0;
2426 }
2427
2428 /*
2429 * Run a parsed test. Log a message and return 0 on error.
2430 */
2431 static int run_test(EVP_TEST *t)
2432 {
2433 if (t->meth == NULL)
2434 return 1;
2435 t->s.numtests++;
2436 if (t->skip) {
2437 t->s.numskip++;
2438 } else {
2439 /* run the test */
2440 if (t->err == NULL && t->meth->run_test(t) != 1) {
2441 TEST_info("%s:%d %s error",
2442 t->s.test_file, t->s.start, t->meth->name);
2443 return 0;
2444 }
2445 if (!check_test_error(t)) {
2446 TEST_openssl_errors();
2447 t->s.errors++;
2448 }
2449 }
2450
2451 /* clean it up */
2452 return 1;
2453 }
2454
2455 static int find_key(EVP_PKEY **ppk, const char *name, KEY_LIST *lst)
2456 {
2457 for (; lst != NULL; lst = lst->next) {
2458 if (strcmp(lst->name, name) == 0) {
2459 if (ppk != NULL)
2460 *ppk = lst->key;
2461 return 1;
2462 }
2463 }
2464 return 0;
2465 }
2466
2467 static void free_key_list(KEY_LIST *lst)
2468 {
2469 while (lst != NULL) {
2470 KEY_LIST *next = lst->next;
2471
2472 EVP_PKEY_free(lst->key);
2473 OPENSSL_free(lst->name);
2474 OPENSSL_free(lst);
2475 lst = next;
2476 }
2477 }
2478
2479 /*
2480 * Is the key type an unsupported algorithm?
2481 */
2482 static int key_unsupported(void)
2483 {
2484 long err = ERR_peek_error();
2485
2486 if (ERR_GET_LIB(err) == ERR_LIB_EVP
2487 && ERR_GET_REASON(err) == EVP_R_UNSUPPORTED_ALGORITHM) {
2488 ERR_clear_error();
2489 return 1;
2490 }
2491 #ifndef OPENSSL_NO_EC
2492 /*
2493 * If EC support is enabled we should catch also EC_R_UNKNOWN_GROUP as an
2494 * hint to an unsupported algorithm/curve (e.g. if binary EC support is
2495 * disabled).
2496 */
2497 if (ERR_GET_LIB(err) == ERR_LIB_EC
2498 && ERR_GET_REASON(err) == EC_R_UNKNOWN_GROUP) {
2499 ERR_clear_error();
2500 return 1;
2501 }
2502 #endif /* OPENSSL_NO_EC */
2503 return 0;
2504 }
2505
2506 /*
2507 * NULL out the value from |pp| but return it. This "steals" a pointer.
2508 */
2509 static char *take_value(PAIR *pp)
2510 {
2511 char *p = pp->value;
2512
2513 pp->value = NULL;
2514 return p;
2515 }
2516
2517 /*
2518 * Read and parse one test. Return 0 if failure, 1 if okay.
2519 */
2520 static int parse(EVP_TEST *t)
2521 {
2522 KEY_LIST *key, **klist;
2523 EVP_PKEY *pkey;
2524 PAIR *pp;
2525 int i;
2526
2527 top:
2528 do {
2529 if (BIO_eof(t->s.fp))
2530 return EOF;
2531 clear_test(t);
2532 if (!test_readstanza(&t->s))
2533 return 0;
2534 } while (t->s.numpairs == 0);
2535 pp = &t->s.pairs[0];
2536
2537 /* Are we adding a key? */
2538 klist = NULL;
2539 pkey = NULL;
2540 if (strcmp(pp->key, "PrivateKey") == 0) {
2541 pkey = PEM_read_bio_PrivateKey(t->s.key, NULL, 0, NULL);
2542 if (pkey == NULL && !key_unsupported()) {
2543 EVP_PKEY_free(pkey);
2544 TEST_info("Can't read private key %s", pp->value);
2545 TEST_openssl_errors();
2546 return 0;
2547 }
2548 klist = &private_keys;
2549 } else if (strcmp(pp->key, "PublicKey") == 0) {
2550 pkey = PEM_read_bio_PUBKEY(t->s.key, NULL, 0, NULL);
2551 if (pkey == NULL && !key_unsupported()) {
2552 EVP_PKEY_free(pkey);
2553 TEST_info("Can't read public key %s", pp->value);
2554 TEST_openssl_errors();
2555 return 0;
2556 }
2557 klist = &public_keys;
2558 } else if (strcmp(pp->key, "PrivateKeyRaw") == 0
2559 || strcmp(pp->key, "PublicKeyRaw") == 0 ) {
2560 char *strnid = NULL, *keydata = NULL;
2561 unsigned char *keybin;
2562 size_t keylen;
2563 int nid;
2564
2565 if (strcmp(pp->key, "PrivateKeyRaw") == 0)
2566 klist = &private_keys;
2567 else
2568 klist = &public_keys;
2569
2570 strnid = strchr(pp->value, ':');
2571 if (strnid != NULL) {
2572 *strnid++ = '\0';
2573 keydata = strchr(strnid, ':');
2574 if (keydata != NULL)
2575 *keydata++ = '\0';
2576 }
2577 if (keydata == NULL) {
2578 TEST_info("Failed to parse %s value", pp->key);
2579 return 0;
2580 }
2581
2582 nid = OBJ_txt2nid(strnid);
2583 if (nid == NID_undef) {
2584 TEST_info("Uncrecognised algorithm NID");
2585 return 0;
2586 }
2587 if (!parse_bin(keydata, &keybin, &keylen)) {
2588 TEST_info("Failed to create binary key");
2589 return 0;
2590 }
2591 if (klist == &private_keys)
2592 pkey = EVP_PKEY_new_raw_private_key(nid, NULL, keybin, keylen);
2593 else
2594 pkey = EVP_PKEY_new_raw_public_key(nid, NULL, keybin, keylen);
2595 if (pkey == NULL && !key_unsupported()) {
2596 TEST_info("Can't read %s data", pp->key);
2597 OPENSSL_free(keybin);
2598 TEST_openssl_errors();
2599 return 0;
2600 }
2601 OPENSSL_free(keybin);
2602 }
2603
2604 /* If we have a key add to list */
2605 if (klist != NULL) {
2606 if (find_key(NULL, pp->value, *klist)) {
2607 TEST_info("Duplicate key %s", pp->value);
2608 return 0;
2609 }
2610 if (!TEST_ptr(key = OPENSSL_malloc(sizeof(*key))))
2611 return 0;
2612 key->name = take_value(pp);
2613
2614 /* Hack to detect SM2 keys */
2615 if(pkey != NULL && strstr(key->name, "SM2") != NULL) {
2616 #ifdef OPENSSL_NO_SM2
2617 EVP_PKEY_free(pkey);
2618 pkey = NULL;
2619 #else
2620 EVP_PKEY_set_alias_type(pkey, EVP_PKEY_SM2);
2621 #endif
2622 }
2623
2624 key->key = pkey;
2625 key->next = *klist;
2626 *klist = key;
2627
2628 /* Go back and start a new stanza. */
2629 if (t->s.numpairs != 1)
2630 TEST_info("Line %d: missing blank line\n", t->s.curr);
2631 goto top;
2632 }
2633
2634 /* Find the test, based on first keyword. */
2635 if (!TEST_ptr(t->meth = find_test(pp->key)))
2636 return 0;
2637 if (!t->meth->init(t, pp->value)) {
2638 TEST_error("unknown %s: %s\n", pp->key, pp->value);
2639 return 0;
2640 }
2641 if (t->skip == 1) {
2642 /* TEST_info("skipping %s %s", pp->key, pp->value); */
2643 return 0;
2644 }
2645
2646 for (pp++, i = 1; i < t->s.numpairs; pp++, i++) {
2647 if (strcmp(pp->key, "Result") == 0) {
2648 if (t->expected_err != NULL) {
2649 TEST_info("Line %d: multiple result lines", t->s.curr);
2650 return 0;
2651 }
2652 t->expected_err = take_value(pp);
2653 } else if (strcmp(pp->key, "Function") == 0) {
2654 if (t->func != NULL) {
2655 TEST_info("Line %d: multiple function lines\n", t->s.curr);
2656 return 0;
2657 }
2658 t->func = take_value(pp);
2659 } else if (strcmp(pp->key, "Reason") == 0) {
2660 if (t->reason != NULL) {
2661 TEST_info("Line %d: multiple reason lines", t->s.curr);
2662 return 0;
2663 }
2664 t->reason = take_value(pp);
2665 } else {
2666 /* Must be test specific line: try to parse it */
2667 int rv = t->meth->parse(t, pp->key, pp->value);
2668
2669 if (rv == 0) {
2670 TEST_info("Line %d: unknown keyword %s", t->s.curr, pp->key);
2671 return 0;
2672 }
2673 if (rv < 0) {
2674 TEST_info("Line %d: error processing keyword %s = %s\n",
2675 t->s.curr, pp->key, pp->value);
2676 return 0;
2677 }
2678 }
2679 }
2680
2681 return 1;
2682 }
2683
2684 static int run_file_tests(int i)
2685 {
2686 EVP_TEST *t;
2687 const char *testfile = test_get_argument(i);
2688 int c;
2689
2690 if (!TEST_ptr(t = OPENSSL_zalloc(sizeof(*t))))
2691 return 0;
2692 if (!test_start_file(&t->s, testfile)) {
2693 OPENSSL_free(t);
2694 return 0;
2695 }
2696
2697 while (!BIO_eof(t->s.fp)) {
2698 c = parse(t);
2699 if (t->skip)
2700 continue;
2701 if (c == 0 || !run_test(t)) {
2702 t->s.errors++;
2703 break;
2704 }
2705 }
2706 test_end_file(&t->s);
2707 clear_test(t);
2708
2709 free_key_list(public_keys);
2710 free_key_list(private_keys);
2711 BIO_free(t->s.key);
2712 c = t->s.errors;
2713 OPENSSL_free(t);
2714 return c == 0;
2715 }
2716
2717 int setup_tests(void)
2718 {
2719 size_t n = test_get_argument_count();
2720
2721 if (n == 0) {
2722 TEST_error("Usage: %s file...", test_get_program_name());
2723 return 0;
2724 }
2725
2726 ADD_ALL_TESTS(run_file_tests, n);
2727 return 1;
2728 }