]> git.ipfire.org Git - thirdparty/openssl.git/blob - test/evp_test.c
GMAC implementation
[thirdparty/openssl.git] / test / evp_test.c
1 /*
2 * Copyright 2015-2018 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the OpenSSL license (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 #include <stdio.h>
11 #include <string.h>
12 #include <stdlib.h>
13 #include <ctype.h>
14 #include <openssl/evp.h>
15 #include <openssl/pem.h>
16 #include <openssl/err.h>
17 #include <openssl/x509v3.h>
18 #include <openssl/pkcs12.h>
19 #include <openssl/kdf.h>
20 #include "internal/numbers.h"
21 #include "testutil.h"
22 #include "evp_test.h"
23
24
25 typedef struct evp_test_method_st EVP_TEST_METHOD;
26
27 /*
28 * Structure holding test information
29 */
30 typedef struct evp_test_st {
31 STANZA s; /* Common test stanza */
32 char *name;
33 int skip; /* Current test should be skipped */
34 const EVP_TEST_METHOD *meth; /* method for this test */
35 const char *err, *aux_err; /* Error string for test */
36 char *expected_err; /* Expected error value of test */
37 char *func; /* Expected error function string */
38 char *reason; /* Expected error reason string */
39 void *data; /* test specific data */
40 } EVP_TEST;
41
42 /*
43 * Test method structure
44 */
45 struct evp_test_method_st {
46 /* Name of test as it appears in file */
47 const char *name;
48 /* Initialise test for "alg" */
49 int (*init) (EVP_TEST * t, const char *alg);
50 /* Clean up method */
51 void (*cleanup) (EVP_TEST * t);
52 /* Test specific name value pair processing */
53 int (*parse) (EVP_TEST * t, const char *name, const char *value);
54 /* Run the test itself */
55 int (*run_test) (EVP_TEST * t);
56 };
57
58
59 /*
60 * Linked list of named keys.
61 */
62 typedef struct key_list_st {
63 char *name;
64 EVP_PKEY *key;
65 struct key_list_st *next;
66 } KEY_LIST;
67
68 /*
69 * List of public and private keys
70 */
71 static KEY_LIST *private_keys;
72 static KEY_LIST *public_keys;
73 static int find_key(EVP_PKEY **ppk, const char *name, KEY_LIST *lst);
74
75 static int parse_bin(const char *value, unsigned char **buf, size_t *buflen);
76
77 /*
78 * Compare two memory regions for equality, returning zero if they differ.
79 * However, if there is expected to be an error and the actual error
80 * matches then the memory is expected to be different so handle this
81 * case without producing unnecessary test framework output.
82 */
83 static int memory_err_compare(EVP_TEST *t, const char *err,
84 const void *expected, size_t expected_len,
85 const void *got, size_t got_len)
86 {
87 int r;
88
89 if (t->expected_err != NULL && strcmp(t->expected_err, err) == 0)
90 r = !TEST_mem_ne(expected, expected_len, got, got_len);
91 else
92 r = TEST_mem_eq(expected, expected_len, got, got_len);
93 if (!r)
94 t->err = err;
95 return r;
96 }
97
98 /*
99 * Structure used to hold a list of blocks of memory to test
100 * calls to "update" like functions.
101 */
102 struct evp_test_buffer_st {
103 unsigned char *buf;
104 size_t buflen;
105 size_t count;
106 int count_set;
107 };
108
109 static void evp_test_buffer_free(EVP_TEST_BUFFER *db)
110 {
111 if (db != NULL) {
112 OPENSSL_free(db->buf);
113 OPENSSL_free(db);
114 }
115 }
116
117 /*
118 * append buffer to a list
119 */
120 static int evp_test_buffer_append(const char *value,
121 STACK_OF(EVP_TEST_BUFFER) **sk)
122 {
123 EVP_TEST_BUFFER *db = NULL;
124
125 if (!TEST_ptr(db = OPENSSL_malloc(sizeof(*db))))
126 goto err;
127
128 if (!parse_bin(value, &db->buf, &db->buflen))
129 goto err;
130 db->count = 1;
131 db->count_set = 0;
132
133 if (*sk == NULL && !TEST_ptr(*sk = sk_EVP_TEST_BUFFER_new_null()))
134 goto err;
135 if (!sk_EVP_TEST_BUFFER_push(*sk, db))
136 goto err;
137
138 return 1;
139
140 err:
141 evp_test_buffer_free(db);
142 return 0;
143 }
144
145 /*
146 * replace last buffer in list with copies of itself
147 */
148 static int evp_test_buffer_ncopy(const char *value,
149 STACK_OF(EVP_TEST_BUFFER) *sk)
150 {
151 EVP_TEST_BUFFER *db;
152 unsigned char *tbuf, *p;
153 size_t tbuflen;
154 int ncopy = atoi(value);
155 int i;
156
157 if (ncopy <= 0)
158 return 0;
159 if (sk == NULL || sk_EVP_TEST_BUFFER_num(sk) == 0)
160 return 0;
161 db = sk_EVP_TEST_BUFFER_value(sk, sk_EVP_TEST_BUFFER_num(sk) - 1);
162
163 tbuflen = db->buflen * ncopy;
164 if (!TEST_ptr(tbuf = OPENSSL_malloc(tbuflen)))
165 return 0;
166 for (i = 0, p = tbuf; i < ncopy; i++, p += db->buflen)
167 memcpy(p, db->buf, db->buflen);
168
169 OPENSSL_free(db->buf);
170 db->buf = tbuf;
171 db->buflen = tbuflen;
172 return 1;
173 }
174
175 /*
176 * set repeat count for last buffer in list
177 */
178 static int evp_test_buffer_set_count(const char *value,
179 STACK_OF(EVP_TEST_BUFFER) *sk)
180 {
181 EVP_TEST_BUFFER *db;
182 int count = atoi(value);
183
184 if (count <= 0)
185 return 0;
186
187 if (sk == NULL || sk_EVP_TEST_BUFFER_num(sk) == 0)
188 return 0;
189
190 db = sk_EVP_TEST_BUFFER_value(sk, sk_EVP_TEST_BUFFER_num(sk) - 1);
191 if (db->count_set != 0)
192 return 0;
193
194 db->count = (size_t)count;
195 db->count_set = 1;
196 return 1;
197 }
198
199 /*
200 * call "fn" with each element of the list in turn
201 */
202 static int evp_test_buffer_do(STACK_OF(EVP_TEST_BUFFER) *sk,
203 int (*fn)(void *ctx,
204 const unsigned char *buf,
205 size_t buflen),
206 void *ctx)
207 {
208 int i;
209
210 for (i = 0; i < sk_EVP_TEST_BUFFER_num(sk); i++) {
211 EVP_TEST_BUFFER *tb = sk_EVP_TEST_BUFFER_value(sk, i);
212 size_t j;
213
214 for (j = 0; j < tb->count; j++) {
215 if (fn(ctx, tb->buf, tb->buflen) <= 0)
216 return 0;
217 }
218 }
219 return 1;
220 }
221
222 /*
223 * Unescape some sequences in string literals (only \n for now).
224 * Return an allocated buffer, set |out_len|. If |input_len|
225 * is zero, get an empty buffer but set length to zero.
226 */
227 static unsigned char* unescape(const char *input, size_t input_len,
228 size_t *out_len)
229 {
230 unsigned char *ret, *p;
231 size_t i;
232
233 if (input_len == 0) {
234 *out_len = 0;
235 return OPENSSL_zalloc(1);
236 }
237
238 /* Escaping is non-expanding; over-allocate original size for simplicity. */
239 if (!TEST_ptr(ret = p = OPENSSL_malloc(input_len)))
240 return NULL;
241
242 for (i = 0; i < input_len; i++) {
243 if (*input == '\\') {
244 if (i == input_len - 1 || *++input != 'n') {
245 TEST_error("Bad escape sequence in file");
246 goto err;
247 }
248 *p++ = '\n';
249 i++;
250 input++;
251 } else {
252 *p++ = *input++;
253 }
254 }
255
256 *out_len = p - ret;
257 return ret;
258
259 err:
260 OPENSSL_free(ret);
261 return NULL;
262 }
263
264 /*
265 * For a hex string "value" convert to a binary allocated buffer.
266 * Return 1 on success or 0 on failure.
267 */
268 static int parse_bin(const char *value, unsigned char **buf, size_t *buflen)
269 {
270 long len;
271
272 /* Check for NULL literal */
273 if (strcmp(value, "NULL") == 0) {
274 *buf = NULL;
275 *buflen = 0;
276 return 1;
277 }
278
279 /* Check for empty value */
280 if (*value == '\0') {
281 /*
282 * Don't return NULL for zero length buffer. This is needed for
283 * some tests with empty keys: HMAC_Init_ex() expects a non-NULL key
284 * buffer even if the key length is 0, in order to detect key reset.
285 */
286 *buf = OPENSSL_malloc(1);
287 if (*buf == NULL)
288 return 0;
289 **buf = 0;
290 *buflen = 0;
291 return 1;
292 }
293
294 /* Check for string literal */
295 if (value[0] == '"') {
296 size_t vlen = strlen(++value);
297
298 if (vlen == 0 || value[vlen - 1] != '"')
299 return 0;
300 vlen--;
301 *buf = unescape(value, vlen, buflen);
302 return *buf == NULL ? 0 : 1;
303 }
304
305 /* Otherwise assume as hex literal and convert it to binary buffer */
306 if (!TEST_ptr(*buf = OPENSSL_hexstr2buf(value, &len))) {
307 TEST_info("Can't convert %s", value);
308 TEST_openssl_errors();
309 return -1;
310 }
311 /* Size of input buffer means we'll never overflow */
312 *buflen = len;
313 return 1;
314 }
315
316
317 /**
318 *** MESSAGE DIGEST TESTS
319 **/
320
321 typedef struct digest_data_st {
322 /* Digest this test is for */
323 const EVP_MD *digest;
324 /* Input to digest */
325 STACK_OF(EVP_TEST_BUFFER) *input;
326 /* Expected output */
327 unsigned char *output;
328 size_t output_len;
329 } DIGEST_DATA;
330
331 static int digest_test_init(EVP_TEST *t, const char *alg)
332 {
333 DIGEST_DATA *mdat;
334 const EVP_MD *digest;
335
336 if ((digest = EVP_get_digestbyname(alg)) == NULL) {
337 /* If alg has an OID assume disabled algorithm */
338 if (OBJ_sn2nid(alg) != NID_undef || OBJ_ln2nid(alg) != NID_undef) {
339 t->skip = 1;
340 return 1;
341 }
342 return 0;
343 }
344 if (!TEST_ptr(mdat = OPENSSL_zalloc(sizeof(*mdat))))
345 return 0;
346 t->data = mdat;
347 mdat->digest = digest;
348 return 1;
349 }
350
351 static void digest_test_cleanup(EVP_TEST *t)
352 {
353 DIGEST_DATA *mdat = t->data;
354
355 sk_EVP_TEST_BUFFER_pop_free(mdat->input, evp_test_buffer_free);
356 OPENSSL_free(mdat->output);
357 }
358
359 static int digest_test_parse(EVP_TEST *t,
360 const char *keyword, const char *value)
361 {
362 DIGEST_DATA *mdata = t->data;
363
364 if (strcmp(keyword, "Input") == 0)
365 return evp_test_buffer_append(value, &mdata->input);
366 if (strcmp(keyword, "Output") == 0)
367 return parse_bin(value, &mdata->output, &mdata->output_len);
368 if (strcmp(keyword, "Count") == 0)
369 return evp_test_buffer_set_count(value, mdata->input);
370 if (strcmp(keyword, "Ncopy") == 0)
371 return evp_test_buffer_ncopy(value, mdata->input);
372 return 0;
373 }
374
375 static int digest_update_fn(void *ctx, const unsigned char *buf, size_t buflen)
376 {
377 return EVP_DigestUpdate(ctx, buf, buflen);
378 }
379
380 static int digest_test_run(EVP_TEST *t)
381 {
382 DIGEST_DATA *expected = t->data;
383 EVP_MD_CTX *mctx;
384 unsigned char *got = NULL;
385 unsigned int got_len;
386
387 t->err = "TEST_FAILURE";
388 if (!TEST_ptr(mctx = EVP_MD_CTX_new()))
389 goto err;
390
391 got = OPENSSL_malloc(expected->output_len > EVP_MAX_MD_SIZE ?
392 expected->output_len : EVP_MAX_MD_SIZE);
393 if (!TEST_ptr(got))
394 goto err;
395
396 if (!EVP_DigestInit_ex(mctx, expected->digest, NULL)) {
397 t->err = "DIGESTINIT_ERROR";
398 goto err;
399 }
400 if (!evp_test_buffer_do(expected->input, digest_update_fn, mctx)) {
401 t->err = "DIGESTUPDATE_ERROR";
402 goto err;
403 }
404
405 if (EVP_MD_flags(expected->digest) & EVP_MD_FLAG_XOF) {
406 got_len = expected->output_len;
407 if (!EVP_DigestFinalXOF(mctx, got, got_len)) {
408 t->err = "DIGESTFINALXOF_ERROR";
409 goto err;
410 }
411 } else {
412 if (!EVP_DigestFinal(mctx, got, &got_len)) {
413 t->err = "DIGESTFINAL_ERROR";
414 goto err;
415 }
416 }
417 if (!TEST_int_eq(expected->output_len, got_len)) {
418 t->err = "DIGEST_LENGTH_MISMATCH";
419 goto err;
420 }
421 if (!memory_err_compare(t, "DIGEST_MISMATCH",
422 expected->output, expected->output_len,
423 got, got_len))
424 goto err;
425
426 t->err = NULL;
427
428 err:
429 OPENSSL_free(got);
430 EVP_MD_CTX_free(mctx);
431 return 1;
432 }
433
434 static const EVP_TEST_METHOD digest_test_method = {
435 "Digest",
436 digest_test_init,
437 digest_test_cleanup,
438 digest_test_parse,
439 digest_test_run
440 };
441
442
443 /**
444 *** CIPHER TESTS
445 **/
446
447 typedef struct cipher_data_st {
448 const EVP_CIPHER *cipher;
449 int enc;
450 /* EVP_CIPH_GCM_MODE, EVP_CIPH_CCM_MODE or EVP_CIPH_OCB_MODE if AEAD */
451 int aead;
452 unsigned char *key;
453 size_t key_len;
454 unsigned char *iv;
455 size_t iv_len;
456 unsigned char *plaintext;
457 size_t plaintext_len;
458 unsigned char *ciphertext;
459 size_t ciphertext_len;
460 /* GCM, CCM and OCB only */
461 unsigned char *aad;
462 size_t aad_len;
463 unsigned char *tag;
464 size_t tag_len;
465 } CIPHER_DATA;
466
467 static int cipher_test_init(EVP_TEST *t, const char *alg)
468 {
469 const EVP_CIPHER *cipher;
470 CIPHER_DATA *cdat;
471 int m;
472
473 if ((cipher = EVP_get_cipherbyname(alg)) == NULL) {
474 /* If alg has an OID assume disabled algorithm */
475 if (OBJ_sn2nid(alg) != NID_undef || OBJ_ln2nid(alg) != NID_undef) {
476 t->skip = 1;
477 return 1;
478 }
479 return 0;
480 }
481 cdat = OPENSSL_zalloc(sizeof(*cdat));
482 cdat->cipher = cipher;
483 cdat->enc = -1;
484 m = EVP_CIPHER_mode(cipher);
485 if (m == EVP_CIPH_GCM_MODE
486 || m == EVP_CIPH_OCB_MODE
487 || m == EVP_CIPH_CCM_MODE)
488 cdat->aead = m;
489 else if (EVP_CIPHER_flags(cipher) & EVP_CIPH_FLAG_AEAD_CIPHER)
490 cdat->aead = -1;
491 else
492 cdat->aead = 0;
493
494 t->data = cdat;
495 return 1;
496 }
497
498 static void cipher_test_cleanup(EVP_TEST *t)
499 {
500 CIPHER_DATA *cdat = t->data;
501
502 OPENSSL_free(cdat->key);
503 OPENSSL_free(cdat->iv);
504 OPENSSL_free(cdat->ciphertext);
505 OPENSSL_free(cdat->plaintext);
506 OPENSSL_free(cdat->aad);
507 OPENSSL_free(cdat->tag);
508 }
509
510 static int cipher_test_parse(EVP_TEST *t, const char *keyword,
511 const char *value)
512 {
513 CIPHER_DATA *cdat = t->data;
514
515 if (strcmp(keyword, "Key") == 0)
516 return parse_bin(value, &cdat->key, &cdat->key_len);
517 if (strcmp(keyword, "IV") == 0)
518 return parse_bin(value, &cdat->iv, &cdat->iv_len);
519 if (strcmp(keyword, "Plaintext") == 0)
520 return parse_bin(value, &cdat->plaintext, &cdat->plaintext_len);
521 if (strcmp(keyword, "Ciphertext") == 0)
522 return parse_bin(value, &cdat->ciphertext, &cdat->ciphertext_len);
523 if (cdat->aead) {
524 if (strcmp(keyword, "AAD") == 0)
525 return parse_bin(value, &cdat->aad, &cdat->aad_len);
526 if (strcmp(keyword, "Tag") == 0)
527 return parse_bin(value, &cdat->tag, &cdat->tag_len);
528 }
529
530 if (strcmp(keyword, "Operation") == 0) {
531 if (strcmp(value, "ENCRYPT") == 0)
532 cdat->enc = 1;
533 else if (strcmp(value, "DECRYPT") == 0)
534 cdat->enc = 0;
535 else
536 return 0;
537 return 1;
538 }
539 return 0;
540 }
541
542 static int cipher_test_enc(EVP_TEST *t, int enc,
543 size_t out_misalign, size_t inp_misalign, int frag)
544 {
545 CIPHER_DATA *expected = t->data;
546 unsigned char *in, *expected_out, *tmp = NULL;
547 size_t in_len, out_len, donelen = 0;
548 int ok = 0, tmplen, chunklen, tmpflen;
549 EVP_CIPHER_CTX *ctx = NULL;
550
551 t->err = "TEST_FAILURE";
552 if (!TEST_ptr(ctx = EVP_CIPHER_CTX_new()))
553 goto err;
554 EVP_CIPHER_CTX_set_flags(ctx, EVP_CIPHER_CTX_FLAG_WRAP_ALLOW);
555 if (enc) {
556 in = expected->plaintext;
557 in_len = expected->plaintext_len;
558 expected_out = expected->ciphertext;
559 out_len = expected->ciphertext_len;
560 } else {
561 in = expected->ciphertext;
562 in_len = expected->ciphertext_len;
563 expected_out = expected->plaintext;
564 out_len = expected->plaintext_len;
565 }
566 if (inp_misalign == (size_t)-1) {
567 /*
568 * Exercise in-place encryption
569 */
570 tmp = OPENSSL_malloc(out_misalign + in_len + 2 * EVP_MAX_BLOCK_LENGTH);
571 if (!tmp)
572 goto err;
573 in = memcpy(tmp + out_misalign, in, in_len);
574 } else {
575 inp_misalign += 16 - ((out_misalign + in_len) & 15);
576 /*
577 * 'tmp' will store both output and copy of input. We make the copy
578 * of input to specifically aligned part of 'tmp'. So we just
579 * figured out how much padding would ensure the required alignment,
580 * now we allocate extended buffer and finally copy the input just
581 * past inp_misalign in expression below. Output will be written
582 * past out_misalign...
583 */
584 tmp = OPENSSL_malloc(out_misalign + in_len + 2 * EVP_MAX_BLOCK_LENGTH +
585 inp_misalign + in_len);
586 if (!tmp)
587 goto err;
588 in = memcpy(tmp + out_misalign + in_len + 2 * EVP_MAX_BLOCK_LENGTH +
589 inp_misalign, in, in_len);
590 }
591 if (!EVP_CipherInit_ex(ctx, expected->cipher, NULL, NULL, NULL, enc)) {
592 t->err = "CIPHERINIT_ERROR";
593 goto err;
594 }
595 if (expected->iv) {
596 if (expected->aead) {
597 if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN,
598 expected->iv_len, 0)) {
599 t->err = "INVALID_IV_LENGTH";
600 goto err;
601 }
602 } else if (expected->iv_len != (size_t)EVP_CIPHER_CTX_iv_length(ctx)) {
603 t->err = "INVALID_IV_LENGTH";
604 goto err;
605 }
606 }
607 if (expected->aead) {
608 unsigned char *tag;
609 /*
610 * If encrypting or OCB just set tag length initially, otherwise
611 * set tag length and value.
612 */
613 if (enc || expected->aead == EVP_CIPH_OCB_MODE) {
614 t->err = "TAG_LENGTH_SET_ERROR";
615 tag = NULL;
616 } else {
617 t->err = "TAG_SET_ERROR";
618 tag = expected->tag;
619 }
620 if (tag || expected->aead != EVP_CIPH_GCM_MODE) {
621 if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG,
622 expected->tag_len, tag))
623 goto err;
624 }
625 }
626
627 if (!EVP_CIPHER_CTX_set_key_length(ctx, expected->key_len)) {
628 t->err = "INVALID_KEY_LENGTH";
629 goto err;
630 }
631 if (!EVP_CipherInit_ex(ctx, NULL, NULL, expected->key, expected->iv, -1)) {
632 t->err = "KEY_SET_ERROR";
633 goto err;
634 }
635
636 if (!enc && expected->aead == EVP_CIPH_OCB_MODE) {
637 if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG,
638 expected->tag_len, expected->tag)) {
639 t->err = "TAG_SET_ERROR";
640 goto err;
641 }
642 }
643
644 if (expected->aead == EVP_CIPH_CCM_MODE) {
645 if (!EVP_CipherUpdate(ctx, NULL, &tmplen, NULL, out_len)) {
646 t->err = "CCM_PLAINTEXT_LENGTH_SET_ERROR";
647 goto err;
648 }
649 }
650 if (expected->aad) {
651 t->err = "AAD_SET_ERROR";
652 if (!frag) {
653 if (!EVP_CipherUpdate(ctx, NULL, &chunklen, expected->aad,
654 expected->aad_len))
655 goto err;
656 } else {
657 /*
658 * Supply the AAD in chunks less than the block size where possible
659 */
660 if (expected->aad_len > 0) {
661 if (!EVP_CipherUpdate(ctx, NULL, &chunklen, expected->aad, 1))
662 goto err;
663 donelen++;
664 }
665 if (expected->aad_len > 2) {
666 if (!EVP_CipherUpdate(ctx, NULL, &chunklen,
667 expected->aad + donelen,
668 expected->aad_len - 2))
669 goto err;
670 donelen += expected->aad_len - 2;
671 }
672 if (expected->aad_len > 1
673 && !EVP_CipherUpdate(ctx, NULL, &chunklen,
674 expected->aad + donelen, 1))
675 goto err;
676 }
677 }
678 EVP_CIPHER_CTX_set_padding(ctx, 0);
679 t->err = "CIPHERUPDATE_ERROR";
680 tmplen = 0;
681 if (!frag) {
682 /* We supply the data all in one go */
683 if (!EVP_CipherUpdate(ctx, tmp + out_misalign, &tmplen, in, in_len))
684 goto err;
685 } else {
686 /* Supply the data in chunks less than the block size where possible */
687 if (in_len > 0) {
688 if (!EVP_CipherUpdate(ctx, tmp + out_misalign, &chunklen, in, 1))
689 goto err;
690 tmplen += chunklen;
691 in++;
692 in_len--;
693 }
694 if (in_len > 1) {
695 if (!EVP_CipherUpdate(ctx, tmp + out_misalign + tmplen, &chunklen,
696 in, in_len - 1))
697 goto err;
698 tmplen += chunklen;
699 in += in_len - 1;
700 in_len = 1;
701 }
702 if (in_len > 0 ) {
703 if (!EVP_CipherUpdate(ctx, tmp + out_misalign + tmplen, &chunklen,
704 in, 1))
705 goto err;
706 tmplen += chunklen;
707 }
708 }
709 if (!EVP_CipherFinal_ex(ctx, tmp + out_misalign + tmplen, &tmpflen)) {
710 t->err = "CIPHERFINAL_ERROR";
711 goto err;
712 }
713 if (!memory_err_compare(t, "VALUE_MISMATCH", expected_out, out_len,
714 tmp + out_misalign, tmplen + tmpflen))
715 goto err;
716 if (enc && expected->aead) {
717 unsigned char rtag[16];
718
719 if (!TEST_size_t_le(expected->tag_len, sizeof(rtag))) {
720 t->err = "TAG_LENGTH_INTERNAL_ERROR";
721 goto err;
722 }
723 if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_GET_TAG,
724 expected->tag_len, rtag)) {
725 t->err = "TAG_RETRIEVE_ERROR";
726 goto err;
727 }
728 if (!memory_err_compare(t, "TAG_VALUE_MISMATCH",
729 expected->tag, expected->tag_len,
730 rtag, expected->tag_len))
731 goto err;
732 }
733 t->err = NULL;
734 ok = 1;
735 err:
736 OPENSSL_free(tmp);
737 EVP_CIPHER_CTX_free(ctx);
738 return ok;
739 }
740
741 static int cipher_test_run(EVP_TEST *t)
742 {
743 CIPHER_DATA *cdat = t->data;
744 int rv, frag = 0;
745 size_t out_misalign, inp_misalign;
746
747 if (!cdat->key) {
748 t->err = "NO_KEY";
749 return 0;
750 }
751 if (!cdat->iv && EVP_CIPHER_iv_length(cdat->cipher)) {
752 /* IV is optional and usually omitted in wrap mode */
753 if (EVP_CIPHER_mode(cdat->cipher) != EVP_CIPH_WRAP_MODE) {
754 t->err = "NO_IV";
755 return 0;
756 }
757 }
758 if (cdat->aead && !cdat->tag) {
759 t->err = "NO_TAG";
760 return 0;
761 }
762 for (out_misalign = 0; out_misalign <= 1;) {
763 static char aux_err[64];
764 t->aux_err = aux_err;
765 for (inp_misalign = (size_t)-1; inp_misalign != 2; inp_misalign++) {
766 if (inp_misalign == (size_t)-1) {
767 /* kludge: inp_misalign == -1 means "exercise in-place" */
768 BIO_snprintf(aux_err, sizeof(aux_err),
769 "%s in-place, %sfragmented",
770 out_misalign ? "misaligned" : "aligned",
771 frag ? "" : "not ");
772 } else {
773 BIO_snprintf(aux_err, sizeof(aux_err),
774 "%s output and %s input, %sfragmented",
775 out_misalign ? "misaligned" : "aligned",
776 inp_misalign ? "misaligned" : "aligned",
777 frag ? "" : "not ");
778 }
779 if (cdat->enc) {
780 rv = cipher_test_enc(t, 1, out_misalign, inp_misalign, frag);
781 /* Not fatal errors: return */
782 if (rv != 1) {
783 if (rv < 0)
784 return 0;
785 return 1;
786 }
787 }
788 if (cdat->enc != 1) {
789 rv = cipher_test_enc(t, 0, out_misalign, inp_misalign, frag);
790 /* Not fatal errors: return */
791 if (rv != 1) {
792 if (rv < 0)
793 return 0;
794 return 1;
795 }
796 }
797 }
798
799 if (out_misalign == 1 && frag == 0) {
800 /*
801 * XTS, CCM and Wrap modes have special requirements about input
802 * lengths so we don't fragment for those
803 */
804 if (cdat->aead == EVP_CIPH_CCM_MODE
805 || EVP_CIPHER_mode(cdat->cipher) == EVP_CIPH_XTS_MODE
806 || EVP_CIPHER_mode(cdat->cipher) == EVP_CIPH_WRAP_MODE)
807 break;
808 out_misalign = 0;
809 frag++;
810 } else {
811 out_misalign++;
812 }
813 }
814 t->aux_err = NULL;
815
816 return 1;
817 }
818
819 static const EVP_TEST_METHOD cipher_test_method = {
820 "Cipher",
821 cipher_test_init,
822 cipher_test_cleanup,
823 cipher_test_parse,
824 cipher_test_run
825 };
826
827
828 /**
829 *** MAC TESTS
830 **/
831
832 typedef struct mac_data_st {
833 /* MAC type in one form or another */
834 const EVP_MAC *mac; /* for mac_test_run_mac */
835 int type; /* for mac_test_run_pkey */
836 /* Algorithm string for this MAC */
837 char *alg;
838 /* MAC key */
839 unsigned char *key;
840 size_t key_len;
841 /* MAC IV (GMAC) */
842 unsigned char *iv;
843 size_t iv_len;
844 /* Input to MAC */
845 unsigned char *input;
846 size_t input_len;
847 /* Expected output */
848 unsigned char *output;
849 size_t output_len;
850 /* Collection of controls */
851 STACK_OF(OPENSSL_STRING) *controls;
852 } MAC_DATA;
853
854 static int mac_test_init(EVP_TEST *t, const char *alg)
855 {
856 const EVP_MAC *mac = NULL;
857 int type = NID_undef;
858 MAC_DATA *mdat;
859
860 if ((mac = EVP_get_macbyname(alg)) == NULL) {
861 /*
862 * Since we didn't find an EVP_MAC, we check for known EVP_PKEY methods
863 * For debugging purposes, we allow 'NNNN by EVP_PKEY' to force running
864 * the EVP_PKEY method.
865 */
866 size_t sz = strlen(alg);
867 static const char epilogue[] = " by EVP_PKEY";
868
869 if (sz >= sizeof(epilogue)
870 && strcmp(alg + sz - (sizeof(epilogue) - 1), epilogue) == 0)
871 sz -= sizeof(epilogue) - 1;
872
873 if (strncmp(alg, "HMAC", sz) == 0) {
874 type = EVP_PKEY_HMAC;
875 } else if (strncmp(alg, "CMAC", sz) == 0) {
876 #ifndef OPENSSL_NO_CMAC
877 type = EVP_PKEY_CMAC;
878 #else
879 t->skip = 1;
880 return 1;
881 #endif
882 } else if (strncmp(alg, "Poly1305", sz) == 0) {
883 #ifndef OPENSSL_NO_POLY1305
884 type = EVP_PKEY_POLY1305;
885 #else
886 t->skip = 1;
887 return 1;
888 #endif
889 } else if (strncmp(alg, "SipHash", sz) == 0) {
890 #ifndef OPENSSL_NO_SIPHASH
891 type = EVP_PKEY_SIPHASH;
892 #else
893 t->skip = 1;
894 return 1;
895 #endif
896 } else {
897 /*
898 * Not a known EVP_PKEY method either. If it's a known OID, then
899 * assume it's been disabled.
900 */
901 if (OBJ_sn2nid(alg) != NID_undef || OBJ_ln2nid(alg) != NID_undef) {
902 t->skip = 1;
903 return 1;
904 }
905
906 return 0;
907 }
908 }
909
910 mdat = OPENSSL_zalloc(sizeof(*mdat));
911 mdat->type = type;
912 mdat->mac = mac;
913 mdat->controls = sk_OPENSSL_STRING_new_null();
914 t->data = mdat;
915 return 1;
916 }
917
918 /* Because OPENSSL_free is a macro, it can't be passed as a function pointer */
919 static void openssl_free(char *m)
920 {
921 OPENSSL_free(m);
922 }
923
924 static void mac_test_cleanup(EVP_TEST *t)
925 {
926 MAC_DATA *mdat = t->data;
927
928 sk_OPENSSL_STRING_pop_free(mdat->controls, openssl_free);
929 OPENSSL_free(mdat->alg);
930 OPENSSL_free(mdat->key);
931 OPENSSL_free(mdat->iv);
932 OPENSSL_free(mdat->input);
933 OPENSSL_free(mdat->output);
934 }
935
936 static int mac_test_parse(EVP_TEST *t,
937 const char *keyword, const char *value)
938 {
939 MAC_DATA *mdata = t->data;
940
941 if (strcmp(keyword, "Key") == 0)
942 return parse_bin(value, &mdata->key, &mdata->key_len);
943 if (strcmp(keyword, "IV") == 0)
944 return parse_bin(value, &mdata->iv, &mdata->iv_len);
945 if (strcmp(keyword, "Algorithm") == 0) {
946 mdata->alg = OPENSSL_strdup(value);
947 if (!mdata->alg)
948 return 0;
949 return 1;
950 }
951 if (strcmp(keyword, "Input") == 0)
952 return parse_bin(value, &mdata->input, &mdata->input_len);
953 if (strcmp(keyword, "Output") == 0)
954 return parse_bin(value, &mdata->output, &mdata->output_len);
955 if (strcmp(keyword, "Ctrl") == 0)
956 return sk_OPENSSL_STRING_push(mdata->controls,
957 OPENSSL_strdup(value)) != 0;
958 return 0;
959 }
960
961 static int mac_test_ctrl_pkey(EVP_TEST *t, EVP_PKEY_CTX *pctx,
962 const char *value)
963 {
964 int rv;
965 char *p, *tmpval;
966
967 if (!TEST_ptr(tmpval = OPENSSL_strdup(value)))
968 return 0;
969 p = strchr(tmpval, ':');
970 if (p != NULL)
971 *p++ = '\0';
972 rv = EVP_PKEY_CTX_ctrl_str(pctx, tmpval, p);
973 if (rv == -2)
974 t->err = "PKEY_CTRL_INVALID";
975 else if (rv <= 0)
976 t->err = "PKEY_CTRL_ERROR";
977 else
978 rv = 1;
979 OPENSSL_free(tmpval);
980 return rv > 0;
981 }
982
983 static int mac_test_run_pkey(EVP_TEST *t)
984 {
985 MAC_DATA *expected = t->data;
986 EVP_MD_CTX *mctx = NULL;
987 EVP_PKEY_CTX *pctx = NULL, *genctx = NULL;
988 EVP_PKEY *key = NULL;
989 const EVP_MD *md = NULL;
990 unsigned char *got = NULL;
991 size_t got_len;
992 int i;
993
994 if (expected->alg == NULL)
995 TEST_info("Trying the EVP_PKEY %s test", OBJ_nid2sn(expected->type));
996 else
997 TEST_info("Trying the EVP_PKEY %s test with %s",
998 OBJ_nid2sn(expected->type), expected->alg);
999
1000 #ifdef OPENSSL_NO_DES
1001 if (expected->alg != NULL && strstr(expected->alg, "DES") != NULL) {
1002 /* Skip DES */
1003 t->err = NULL;
1004 goto err;
1005 }
1006 #endif
1007
1008 if (expected->type == EVP_PKEY_CMAC)
1009 key = EVP_PKEY_new_CMAC_key(NULL, expected->key, expected->key_len,
1010 EVP_get_cipherbyname(expected->alg));
1011 else
1012 key = EVP_PKEY_new_raw_private_key(expected->type, NULL, expected->key,
1013 expected->key_len);
1014 if (key == NULL) {
1015 t->err = "MAC_KEY_CREATE_ERROR";
1016 goto err;
1017 }
1018
1019 if (expected->type == EVP_PKEY_HMAC) {
1020 if (!TEST_ptr(md = EVP_get_digestbyname(expected->alg))) {
1021 t->err = "MAC_ALGORITHM_SET_ERROR";
1022 goto err;
1023 }
1024 }
1025 if (!TEST_ptr(mctx = EVP_MD_CTX_new())) {
1026 t->err = "INTERNAL_ERROR";
1027 goto err;
1028 }
1029 if (!EVP_DigestSignInit(mctx, &pctx, md, NULL, key)) {
1030 t->err = "DIGESTSIGNINIT_ERROR";
1031 goto err;
1032 }
1033 for (i = 0; i < sk_OPENSSL_STRING_num(expected->controls); i++)
1034 if (!mac_test_ctrl_pkey(t, pctx,
1035 sk_OPENSSL_STRING_value(expected->controls,
1036 i))) {
1037 t->err = "EVPPKEYCTXCTRL_ERROR";
1038 goto err;
1039 }
1040 if (!EVP_DigestSignUpdate(mctx, expected->input, expected->input_len)) {
1041 t->err = "DIGESTSIGNUPDATE_ERROR";
1042 goto err;
1043 }
1044 if (!EVP_DigestSignFinal(mctx, NULL, &got_len)) {
1045 t->err = "DIGESTSIGNFINAL_LENGTH_ERROR";
1046 goto err;
1047 }
1048 if (!TEST_ptr(got = OPENSSL_malloc(got_len))) {
1049 t->err = "TEST_FAILURE";
1050 goto err;
1051 }
1052 if (!EVP_DigestSignFinal(mctx, got, &got_len)
1053 || !memory_err_compare(t, "TEST_MAC_ERR",
1054 expected->output, expected->output_len,
1055 got, got_len)) {
1056 t->err = "TEST_MAC_ERR";
1057 goto err;
1058 }
1059 t->err = NULL;
1060 err:
1061 EVP_MD_CTX_free(mctx);
1062 OPENSSL_free(got);
1063 EVP_PKEY_CTX_free(genctx);
1064 EVP_PKEY_free(key);
1065 return 1;
1066 }
1067
1068 static int mac_test_run_mac(EVP_TEST *t)
1069 {
1070 MAC_DATA *expected = t->data;
1071 EVP_MAC_CTX *ctx = NULL;
1072 const void *algo = NULL;
1073 int algo_ctrl = 0;
1074 unsigned char *got = NULL;
1075 size_t got_len;
1076 int rv, i;
1077
1078 if (expected->alg == NULL)
1079 TEST_info("Trying the EVP_MAC %s test", EVP_MAC_name(expected->mac));
1080 else
1081 TEST_info("Trying the EVP_MAC %s test with %s",
1082 EVP_MAC_name(expected->mac), expected->alg);
1083
1084 #ifdef OPENSSL_NO_DES
1085 if (expected->alg != NULL && strstr(expected->alg, "DES") != NULL) {
1086 /* Skip DES */
1087 t->err = NULL;
1088 goto err;
1089 }
1090 #endif
1091
1092 if ((ctx = EVP_MAC_CTX_new(expected->mac)) == NULL) {
1093 t->err = "MAC_CREATE_ERROR";
1094 goto err;
1095 }
1096
1097 if (expected->alg != NULL
1098 && ((algo_ctrl = EVP_MAC_CTRL_SET_CIPHER,
1099 algo = EVP_get_cipherbyname(expected->alg)) == NULL
1100 && (algo_ctrl = EVP_MAC_CTRL_SET_MD,
1101 algo = EVP_get_digestbyname(expected->alg)) == NULL)) {
1102 t->err = "MAC_BAD_ALGORITHM";
1103 goto err;
1104 }
1105
1106
1107 if (algo_ctrl != 0) {
1108 rv = EVP_MAC_ctrl(ctx, algo_ctrl, algo);
1109 if (rv == -2) {
1110 t->err = "MAC_CTRL_INVALID";
1111 goto err;
1112 } else if (rv <= 0) {
1113 t->err = "MAC_CTRL_ERROR";
1114 goto err;
1115 }
1116 }
1117
1118 rv = EVP_MAC_ctrl(ctx, EVP_MAC_CTRL_SET_KEY,
1119 expected->key, expected->key_len);
1120 if (rv == -2) {
1121 t->err = "MAC_CTRL_INVALID";
1122 goto err;
1123 } else if (rv <= 0) {
1124 t->err = "MAC_CTRL_ERROR";
1125 goto err;
1126 }
1127
1128 if (expected->iv != NULL) {
1129 rv = EVP_MAC_ctrl(ctx, EVP_MAC_CTRL_SET_IV,
1130 expected->iv, expected->iv_len);
1131 if (rv == -2) {
1132 t->err = "MAC_CTRL_INVALID";
1133 goto err;
1134 } else if (rv <= 0) {
1135 t->err = "MAC_CTRL_ERROR";
1136 goto err;
1137 }
1138 }
1139
1140 if (!EVP_MAC_init(ctx)) {
1141 t->err = "MAC_INIT_ERROR";
1142 goto err;
1143 }
1144 for (i = 0; i < sk_OPENSSL_STRING_num(expected->controls); i++) {
1145 char *p, *tmpval;
1146 char *value = sk_OPENSSL_STRING_value(expected->controls, i);
1147
1148 if (!TEST_ptr(tmpval = OPENSSL_strdup(value))) {
1149 t->err = "MAC_CTRL_ERROR";
1150 goto err;
1151 }
1152 p = strchr(tmpval, ':');
1153 if (p != NULL)
1154 *p++ = '\0';
1155 rv = EVP_MAC_ctrl_str(ctx, tmpval, p);
1156 OPENSSL_free(tmpval);
1157 if (rv == -2) {
1158 t->err = "MAC_CTRL_INVALID";
1159 goto err;
1160 } else if (rv <= 0) {
1161 t->err = "MAC_CTRL_ERROR";
1162 goto err;
1163 }
1164 }
1165 if (!EVP_MAC_update(ctx, expected->input, expected->input_len)) {
1166 t->err = "MAC_UPDATE_ERROR";
1167 goto err;
1168 }
1169 if (!EVP_MAC_final(ctx, NULL, &got_len)) {
1170 t->err = "MAC_FINAL_LENGTH_ERROR";
1171 goto err;
1172 }
1173 if (!TEST_ptr(got = OPENSSL_malloc(got_len))) {
1174 t->err = "TEST_FAILURE";
1175 goto err;
1176 }
1177 if (!EVP_MAC_final(ctx, got, &got_len)
1178 || !memory_err_compare(t, "TEST_MAC_ERR",
1179 expected->output, expected->output_len,
1180 got, got_len)) {
1181 t->err = "TEST_MAC_ERR";
1182 goto err;
1183 }
1184 t->err = NULL;
1185 err:
1186 EVP_MAC_CTX_free(ctx);
1187 OPENSSL_free(got);
1188 return 1;
1189 }
1190
1191 static int mac_test_run(EVP_TEST *t)
1192 {
1193 MAC_DATA *expected = t->data;
1194
1195 if (expected->mac != NULL)
1196 return mac_test_run_mac(t);
1197 return mac_test_run_pkey(t);
1198 }
1199
1200 static const EVP_TEST_METHOD mac_test_method = {
1201 "MAC",
1202 mac_test_init,
1203 mac_test_cleanup,
1204 mac_test_parse,
1205 mac_test_run
1206 };
1207
1208
1209 /**
1210 *** PUBLIC KEY TESTS
1211 *** These are all very similar and share much common code.
1212 **/
1213
1214 typedef struct pkey_data_st {
1215 /* Context for this operation */
1216 EVP_PKEY_CTX *ctx;
1217 /* Key operation to perform */
1218 int (*keyop) (EVP_PKEY_CTX *ctx,
1219 unsigned char *sig, size_t *siglen,
1220 const unsigned char *tbs, size_t tbslen);
1221 /* Input to MAC */
1222 unsigned char *input;
1223 size_t input_len;
1224 /* Expected output */
1225 unsigned char *output;
1226 size_t output_len;
1227 } PKEY_DATA;
1228
1229 /*
1230 * Perform public key operation setup: lookup key, allocated ctx and call
1231 * the appropriate initialisation function
1232 */
1233 static int pkey_test_init(EVP_TEST *t, const char *name,
1234 int use_public,
1235 int (*keyopinit) (EVP_PKEY_CTX *ctx),
1236 int (*keyop)(EVP_PKEY_CTX *ctx,
1237 unsigned char *sig, size_t *siglen,
1238 const unsigned char *tbs,
1239 size_t tbslen))
1240 {
1241 PKEY_DATA *kdata;
1242 EVP_PKEY *pkey = NULL;
1243 int rv = 0;
1244
1245 if (use_public)
1246 rv = find_key(&pkey, name, public_keys);
1247 if (rv == 0)
1248 rv = find_key(&pkey, name, private_keys);
1249 if (rv == 0 || pkey == NULL) {
1250 t->skip = 1;
1251 return 1;
1252 }
1253
1254 if (!TEST_ptr(kdata = OPENSSL_zalloc(sizeof(*kdata)))) {
1255 EVP_PKEY_free(pkey);
1256 return 0;
1257 }
1258 kdata->keyop = keyop;
1259 if (!TEST_ptr(kdata->ctx = EVP_PKEY_CTX_new(pkey, NULL))) {
1260 EVP_PKEY_free(pkey);
1261 OPENSSL_free(kdata);
1262 return 0;
1263 }
1264 if (keyopinit(kdata->ctx) <= 0)
1265 t->err = "KEYOP_INIT_ERROR";
1266 t->data = kdata;
1267 return 1;
1268 }
1269
1270 static void pkey_test_cleanup(EVP_TEST *t)
1271 {
1272 PKEY_DATA *kdata = t->data;
1273
1274 OPENSSL_free(kdata->input);
1275 OPENSSL_free(kdata->output);
1276 EVP_PKEY_CTX_free(kdata->ctx);
1277 }
1278
1279 static int pkey_test_ctrl(EVP_TEST *t, EVP_PKEY_CTX *pctx,
1280 const char *value)
1281 {
1282 int rv;
1283 char *p, *tmpval;
1284
1285 if (!TEST_ptr(tmpval = OPENSSL_strdup(value)))
1286 return 0;
1287 p = strchr(tmpval, ':');
1288 if (p != NULL)
1289 *p++ = '\0';
1290 rv = EVP_PKEY_CTX_ctrl_str(pctx, tmpval, p);
1291 if (rv == -2) {
1292 t->err = "PKEY_CTRL_INVALID";
1293 rv = 1;
1294 } else if (p != NULL && rv <= 0) {
1295 /* If p has an OID and lookup fails assume disabled algorithm */
1296 int nid = OBJ_sn2nid(p);
1297
1298 if (nid == NID_undef)
1299 nid = OBJ_ln2nid(p);
1300 if (nid != NID_undef
1301 && EVP_get_digestbynid(nid) == NULL
1302 && EVP_get_cipherbynid(nid) == NULL) {
1303 t->skip = 1;
1304 rv = 1;
1305 } else {
1306 t->err = "PKEY_CTRL_ERROR";
1307 rv = 1;
1308 }
1309 }
1310 OPENSSL_free(tmpval);
1311 return rv > 0;
1312 }
1313
1314 static int pkey_test_parse(EVP_TEST *t,
1315 const char *keyword, const char *value)
1316 {
1317 PKEY_DATA *kdata = t->data;
1318 if (strcmp(keyword, "Input") == 0)
1319 return parse_bin(value, &kdata->input, &kdata->input_len);
1320 if (strcmp(keyword, "Output") == 0)
1321 return parse_bin(value, &kdata->output, &kdata->output_len);
1322 if (strcmp(keyword, "Ctrl") == 0)
1323 return pkey_test_ctrl(t, kdata->ctx, value);
1324 return 0;
1325 }
1326
1327 static int pkey_test_run(EVP_TEST *t)
1328 {
1329 PKEY_DATA *expected = t->data;
1330 unsigned char *got = NULL;
1331 size_t got_len;
1332
1333 if (expected->keyop(expected->ctx, NULL, &got_len,
1334 expected->input, expected->input_len) <= 0
1335 || !TEST_ptr(got = OPENSSL_malloc(got_len))) {
1336 t->err = "KEYOP_LENGTH_ERROR";
1337 goto err;
1338 }
1339 if (expected->keyop(expected->ctx, got, &got_len,
1340 expected->input, expected->input_len) <= 0) {
1341 t->err = "KEYOP_ERROR";
1342 goto err;
1343 }
1344 if (!memory_err_compare(t, "KEYOP_MISMATCH",
1345 expected->output, expected->output_len,
1346 got, got_len))
1347 goto err;
1348
1349 t->err = NULL;
1350 err:
1351 OPENSSL_free(got);
1352 return 1;
1353 }
1354
1355 static int sign_test_init(EVP_TEST *t, const char *name)
1356 {
1357 return pkey_test_init(t, name, 0, EVP_PKEY_sign_init, EVP_PKEY_sign);
1358 }
1359
1360 static const EVP_TEST_METHOD psign_test_method = {
1361 "Sign",
1362 sign_test_init,
1363 pkey_test_cleanup,
1364 pkey_test_parse,
1365 pkey_test_run
1366 };
1367
1368 static int verify_recover_test_init(EVP_TEST *t, const char *name)
1369 {
1370 return pkey_test_init(t, name, 1, EVP_PKEY_verify_recover_init,
1371 EVP_PKEY_verify_recover);
1372 }
1373
1374 static const EVP_TEST_METHOD pverify_recover_test_method = {
1375 "VerifyRecover",
1376 verify_recover_test_init,
1377 pkey_test_cleanup,
1378 pkey_test_parse,
1379 pkey_test_run
1380 };
1381
1382 static int decrypt_test_init(EVP_TEST *t, const char *name)
1383 {
1384 return pkey_test_init(t, name, 0, EVP_PKEY_decrypt_init,
1385 EVP_PKEY_decrypt);
1386 }
1387
1388 static const EVP_TEST_METHOD pdecrypt_test_method = {
1389 "Decrypt",
1390 decrypt_test_init,
1391 pkey_test_cleanup,
1392 pkey_test_parse,
1393 pkey_test_run
1394 };
1395
1396 static int verify_test_init(EVP_TEST *t, const char *name)
1397 {
1398 return pkey_test_init(t, name, 1, EVP_PKEY_verify_init, 0);
1399 }
1400
1401 static int verify_test_run(EVP_TEST *t)
1402 {
1403 PKEY_DATA *kdata = t->data;
1404
1405 if (EVP_PKEY_verify(kdata->ctx, kdata->output, kdata->output_len,
1406 kdata->input, kdata->input_len) <= 0)
1407 t->err = "VERIFY_ERROR";
1408 return 1;
1409 }
1410
1411 static const EVP_TEST_METHOD pverify_test_method = {
1412 "Verify",
1413 verify_test_init,
1414 pkey_test_cleanup,
1415 pkey_test_parse,
1416 verify_test_run
1417 };
1418
1419
1420 static int pderive_test_init(EVP_TEST *t, const char *name)
1421 {
1422 return pkey_test_init(t, name, 0, EVP_PKEY_derive_init, 0);
1423 }
1424
1425 static int pderive_test_parse(EVP_TEST *t,
1426 const char *keyword, const char *value)
1427 {
1428 PKEY_DATA *kdata = t->data;
1429
1430 if (strcmp(keyword, "PeerKey") == 0) {
1431 EVP_PKEY *peer;
1432 if (find_key(&peer, value, public_keys) == 0)
1433 return 0;
1434 if (EVP_PKEY_derive_set_peer(kdata->ctx, peer) <= 0)
1435 return 0;
1436 return 1;
1437 }
1438 if (strcmp(keyword, "SharedSecret") == 0)
1439 return parse_bin(value, &kdata->output, &kdata->output_len);
1440 if (strcmp(keyword, "Ctrl") == 0)
1441 return pkey_test_ctrl(t, kdata->ctx, value);
1442 return 0;
1443 }
1444
1445 static int pderive_test_run(EVP_TEST *t)
1446 {
1447 PKEY_DATA *expected = t->data;
1448 unsigned char *got = NULL;
1449 size_t got_len;
1450
1451 if (EVP_PKEY_derive(expected->ctx, NULL, &got_len) <= 0) {
1452 t->err = "DERIVE_ERROR";
1453 goto err;
1454 }
1455 if (!TEST_ptr(got = OPENSSL_malloc(got_len))) {
1456 t->err = "DERIVE_ERROR";
1457 goto err;
1458 }
1459 if (EVP_PKEY_derive(expected->ctx, got, &got_len) <= 0) {
1460 t->err = "DERIVE_ERROR";
1461 goto err;
1462 }
1463 if (!memory_err_compare(t, "SHARED_SECRET_MISMATCH",
1464 expected->output, expected->output_len,
1465 got, got_len))
1466 goto err;
1467
1468 t->err = NULL;
1469 err:
1470 OPENSSL_free(got);
1471 return 1;
1472 }
1473
1474 static const EVP_TEST_METHOD pderive_test_method = {
1475 "Derive",
1476 pderive_test_init,
1477 pkey_test_cleanup,
1478 pderive_test_parse,
1479 pderive_test_run
1480 };
1481
1482
1483 /**
1484 *** PBE TESTS
1485 **/
1486
1487 typedef enum pbe_type_enum {
1488 PBE_TYPE_INVALID = 0,
1489 PBE_TYPE_SCRYPT, PBE_TYPE_PBKDF2, PBE_TYPE_PKCS12
1490 } PBE_TYPE;
1491
1492 typedef struct pbe_data_st {
1493 PBE_TYPE pbe_type;
1494 /* scrypt parameters */
1495 uint64_t N, r, p, maxmem;
1496 /* PKCS#12 parameters */
1497 int id, iter;
1498 const EVP_MD *md;
1499 /* password */
1500 unsigned char *pass;
1501 size_t pass_len;
1502 /* salt */
1503 unsigned char *salt;
1504 size_t salt_len;
1505 /* Expected output */
1506 unsigned char *key;
1507 size_t key_len;
1508 } PBE_DATA;
1509
1510 #ifndef OPENSSL_NO_SCRYPT
1511 /*
1512 * Parse unsigned decimal 64 bit integer value
1513 */
1514 static int parse_uint64(const char *value, uint64_t *pr)
1515 {
1516 const char *p = value;
1517
1518 if (!TEST_true(*p)) {
1519 TEST_info("Invalid empty integer value");
1520 return -1;
1521 }
1522 for (*pr = 0; *p; ) {
1523 if (*pr > UINT64_MAX / 10) {
1524 TEST_error("Integer overflow in string %s", value);
1525 return -1;
1526 }
1527 *pr *= 10;
1528 if (!TEST_true(isdigit((unsigned char)*p))) {
1529 TEST_error("Invalid character in string %s", value);
1530 return -1;
1531 }
1532 *pr += *p - '0';
1533 p++;
1534 }
1535 return 1;
1536 }
1537
1538 static int scrypt_test_parse(EVP_TEST *t,
1539 const char *keyword, const char *value)
1540 {
1541 PBE_DATA *pdata = t->data;
1542
1543 if (strcmp(keyword, "N") == 0)
1544 return parse_uint64(value, &pdata->N);
1545 if (strcmp(keyword, "p") == 0)
1546 return parse_uint64(value, &pdata->p);
1547 if (strcmp(keyword, "r") == 0)
1548 return parse_uint64(value, &pdata->r);
1549 if (strcmp(keyword, "maxmem") == 0)
1550 return parse_uint64(value, &pdata->maxmem);
1551 return 0;
1552 }
1553 #endif
1554
1555 static int pbkdf2_test_parse(EVP_TEST *t,
1556 const char *keyword, const char *value)
1557 {
1558 PBE_DATA *pdata = t->data;
1559
1560 if (strcmp(keyword, "iter") == 0) {
1561 pdata->iter = atoi(value);
1562 if (pdata->iter <= 0)
1563 return -1;
1564 return 1;
1565 }
1566 if (strcmp(keyword, "MD") == 0) {
1567 pdata->md = EVP_get_digestbyname(value);
1568 if (pdata->md == NULL)
1569 return -1;
1570 return 1;
1571 }
1572 return 0;
1573 }
1574
1575 static int pkcs12_test_parse(EVP_TEST *t,
1576 const char *keyword, const char *value)
1577 {
1578 PBE_DATA *pdata = t->data;
1579
1580 if (strcmp(keyword, "id") == 0) {
1581 pdata->id = atoi(value);
1582 if (pdata->id <= 0)
1583 return -1;
1584 return 1;
1585 }
1586 return pbkdf2_test_parse(t, keyword, value);
1587 }
1588
1589 static int pbe_test_init(EVP_TEST *t, const char *alg)
1590 {
1591 PBE_DATA *pdat;
1592 PBE_TYPE pbe_type = PBE_TYPE_INVALID;
1593
1594 if (strcmp(alg, "scrypt") == 0) {
1595 #ifndef OPENSSL_NO_SCRYPT
1596 pbe_type = PBE_TYPE_SCRYPT;
1597 #else
1598 t->skip = 1;
1599 return 1;
1600 #endif
1601 } else if (strcmp(alg, "pbkdf2") == 0) {
1602 pbe_type = PBE_TYPE_PBKDF2;
1603 } else if (strcmp(alg, "pkcs12") == 0) {
1604 pbe_type = PBE_TYPE_PKCS12;
1605 } else {
1606 TEST_error("Unknown pbe algorithm %s", alg);
1607 }
1608 pdat = OPENSSL_zalloc(sizeof(*pdat));
1609 pdat->pbe_type = pbe_type;
1610 t->data = pdat;
1611 return 1;
1612 }
1613
1614 static void pbe_test_cleanup(EVP_TEST *t)
1615 {
1616 PBE_DATA *pdat = t->data;
1617
1618 OPENSSL_free(pdat->pass);
1619 OPENSSL_free(pdat->salt);
1620 OPENSSL_free(pdat->key);
1621 }
1622
1623 static int pbe_test_parse(EVP_TEST *t,
1624 const char *keyword, const char *value)
1625 {
1626 PBE_DATA *pdata = t->data;
1627
1628 if (strcmp(keyword, "Password") == 0)
1629 return parse_bin(value, &pdata->pass, &pdata->pass_len);
1630 if (strcmp(keyword, "Salt") == 0)
1631 return parse_bin(value, &pdata->salt, &pdata->salt_len);
1632 if (strcmp(keyword, "Key") == 0)
1633 return parse_bin(value, &pdata->key, &pdata->key_len);
1634 if (pdata->pbe_type == PBE_TYPE_PBKDF2)
1635 return pbkdf2_test_parse(t, keyword, value);
1636 else if (pdata->pbe_type == PBE_TYPE_PKCS12)
1637 return pkcs12_test_parse(t, keyword, value);
1638 #ifndef OPENSSL_NO_SCRYPT
1639 else if (pdata->pbe_type == PBE_TYPE_SCRYPT)
1640 return scrypt_test_parse(t, keyword, value);
1641 #endif
1642 return 0;
1643 }
1644
1645 static int pbe_test_run(EVP_TEST *t)
1646 {
1647 PBE_DATA *expected = t->data;
1648 unsigned char *key;
1649
1650 if (!TEST_ptr(key = OPENSSL_malloc(expected->key_len))) {
1651 t->err = "INTERNAL_ERROR";
1652 goto err;
1653 }
1654 if (expected->pbe_type == PBE_TYPE_PBKDF2) {
1655 if (PKCS5_PBKDF2_HMAC((char *)expected->pass, expected->pass_len,
1656 expected->salt, expected->salt_len,
1657 expected->iter, expected->md,
1658 expected->key_len, key) == 0) {
1659 t->err = "PBKDF2_ERROR";
1660 goto err;
1661 }
1662 #ifndef OPENSSL_NO_SCRYPT
1663 } else if (expected->pbe_type == PBE_TYPE_SCRYPT) {
1664 if (EVP_PBE_scrypt((const char *)expected->pass, expected->pass_len,
1665 expected->salt, expected->salt_len, expected->N,
1666 expected->r, expected->p, expected->maxmem,
1667 key, expected->key_len) == 0) {
1668 t->err = "SCRYPT_ERROR";
1669 goto err;
1670 }
1671 #endif
1672 } else if (expected->pbe_type == PBE_TYPE_PKCS12) {
1673 if (PKCS12_key_gen_uni(expected->pass, expected->pass_len,
1674 expected->salt, expected->salt_len,
1675 expected->id, expected->iter, expected->key_len,
1676 key, expected->md) == 0) {
1677 t->err = "PKCS12_ERROR";
1678 goto err;
1679 }
1680 }
1681 if (!memory_err_compare(t, "KEY_MISMATCH", expected->key, expected->key_len,
1682 key, expected->key_len))
1683 goto err;
1684
1685 t->err = NULL;
1686 err:
1687 OPENSSL_free(key);
1688 return 1;
1689 }
1690
1691 static const EVP_TEST_METHOD pbe_test_method = {
1692 "PBE",
1693 pbe_test_init,
1694 pbe_test_cleanup,
1695 pbe_test_parse,
1696 pbe_test_run
1697 };
1698
1699
1700 /**
1701 *** BASE64 TESTS
1702 **/
1703
1704 typedef enum {
1705 BASE64_CANONICAL_ENCODING = 0,
1706 BASE64_VALID_ENCODING = 1,
1707 BASE64_INVALID_ENCODING = 2
1708 } base64_encoding_type;
1709
1710 typedef struct encode_data_st {
1711 /* Input to encoding */
1712 unsigned char *input;
1713 size_t input_len;
1714 /* Expected output */
1715 unsigned char *output;
1716 size_t output_len;
1717 base64_encoding_type encoding;
1718 } ENCODE_DATA;
1719
1720 static int encode_test_init(EVP_TEST *t, const char *encoding)
1721 {
1722 ENCODE_DATA *edata;
1723
1724 if (!TEST_ptr(edata = OPENSSL_zalloc(sizeof(*edata))))
1725 return 0;
1726 if (strcmp(encoding, "canonical") == 0) {
1727 edata->encoding = BASE64_CANONICAL_ENCODING;
1728 } else if (strcmp(encoding, "valid") == 0) {
1729 edata->encoding = BASE64_VALID_ENCODING;
1730 } else if (strcmp(encoding, "invalid") == 0) {
1731 edata->encoding = BASE64_INVALID_ENCODING;
1732 if (!TEST_ptr(t->expected_err = OPENSSL_strdup("DECODE_ERROR")))
1733 return 0;
1734 } else {
1735 TEST_error("Bad encoding: %s."
1736 " Should be one of {canonical, valid, invalid}",
1737 encoding);
1738 return 0;
1739 }
1740 t->data = edata;
1741 return 1;
1742 }
1743
1744 static void encode_test_cleanup(EVP_TEST *t)
1745 {
1746 ENCODE_DATA *edata = t->data;
1747
1748 OPENSSL_free(edata->input);
1749 OPENSSL_free(edata->output);
1750 memset(edata, 0, sizeof(*edata));
1751 }
1752
1753 static int encode_test_parse(EVP_TEST *t,
1754 const char *keyword, const char *value)
1755 {
1756 ENCODE_DATA *edata = t->data;
1757
1758 if (strcmp(keyword, "Input") == 0)
1759 return parse_bin(value, &edata->input, &edata->input_len);
1760 if (strcmp(keyword, "Output") == 0)
1761 return parse_bin(value, &edata->output, &edata->output_len);
1762 return 0;
1763 }
1764
1765 static int encode_test_run(EVP_TEST *t)
1766 {
1767 ENCODE_DATA *expected = t->data;
1768 unsigned char *encode_out = NULL, *decode_out = NULL;
1769 int output_len, chunk_len;
1770 EVP_ENCODE_CTX *decode_ctx;
1771
1772 if (!TEST_ptr(decode_ctx = EVP_ENCODE_CTX_new())) {
1773 t->err = "INTERNAL_ERROR";
1774 goto err;
1775 }
1776
1777 if (expected->encoding == BASE64_CANONICAL_ENCODING) {
1778 EVP_ENCODE_CTX *encode_ctx;
1779
1780 if (!TEST_ptr(encode_ctx = EVP_ENCODE_CTX_new())
1781 || !TEST_ptr(encode_out =
1782 OPENSSL_malloc(EVP_ENCODE_LENGTH(expected->input_len))))
1783 goto err;
1784
1785 EVP_EncodeInit(encode_ctx);
1786 EVP_EncodeUpdate(encode_ctx, encode_out, &chunk_len,
1787 expected->input, expected->input_len);
1788 output_len = chunk_len;
1789
1790 EVP_EncodeFinal(encode_ctx, encode_out + chunk_len, &chunk_len);
1791 output_len += chunk_len;
1792
1793 EVP_ENCODE_CTX_free(encode_ctx);
1794
1795 if (!memory_err_compare(t, "BAD_ENCODING",
1796 expected->output, expected->output_len,
1797 encode_out, output_len))
1798 goto err;
1799 }
1800
1801 if (!TEST_ptr(decode_out =
1802 OPENSSL_malloc(EVP_DECODE_LENGTH(expected->output_len))))
1803 goto err;
1804
1805 EVP_DecodeInit(decode_ctx);
1806 if (EVP_DecodeUpdate(decode_ctx, decode_out, &chunk_len, expected->output,
1807 expected->output_len) < 0) {
1808 t->err = "DECODE_ERROR";
1809 goto err;
1810 }
1811 output_len = chunk_len;
1812
1813 if (EVP_DecodeFinal(decode_ctx, decode_out + chunk_len, &chunk_len) != 1) {
1814 t->err = "DECODE_ERROR";
1815 goto err;
1816 }
1817 output_len += chunk_len;
1818
1819 if (expected->encoding != BASE64_INVALID_ENCODING
1820 && !memory_err_compare(t, "BAD_DECODING",
1821 expected->input, expected->input_len,
1822 decode_out, output_len)) {
1823 t->err = "BAD_DECODING";
1824 goto err;
1825 }
1826
1827 t->err = NULL;
1828 err:
1829 OPENSSL_free(encode_out);
1830 OPENSSL_free(decode_out);
1831 EVP_ENCODE_CTX_free(decode_ctx);
1832 return 1;
1833 }
1834
1835 static const EVP_TEST_METHOD encode_test_method = {
1836 "Encoding",
1837 encode_test_init,
1838 encode_test_cleanup,
1839 encode_test_parse,
1840 encode_test_run,
1841 };
1842
1843 /**
1844 *** KDF TESTS
1845 **/
1846
1847 typedef struct kdf_data_st {
1848 /* Context for this operation */
1849 EVP_PKEY_CTX *ctx;
1850 /* Expected output */
1851 unsigned char *output;
1852 size_t output_len;
1853 } KDF_DATA;
1854
1855 /*
1856 * Perform public key operation setup: lookup key, allocated ctx and call
1857 * the appropriate initialisation function
1858 */
1859 static int kdf_test_init(EVP_TEST *t, const char *name)
1860 {
1861 KDF_DATA *kdata;
1862 int kdf_nid = OBJ_sn2nid(name);
1863
1864 #ifdef OPENSSL_NO_SCRYPT
1865 if (strcmp(name, "scrypt") == 0) {
1866 t->skip = 1;
1867 return 1;
1868 }
1869 #endif
1870
1871 if (kdf_nid == NID_undef)
1872 kdf_nid = OBJ_ln2nid(name);
1873
1874 if (!TEST_ptr(kdata = OPENSSL_zalloc(sizeof(*kdata))))
1875 return 0;
1876 kdata->ctx = EVP_PKEY_CTX_new_id(kdf_nid, NULL);
1877 if (kdata->ctx == NULL) {
1878 OPENSSL_free(kdata);
1879 return 0;
1880 }
1881 if (EVP_PKEY_derive_init(kdata->ctx) <= 0) {
1882 EVP_PKEY_CTX_free(kdata->ctx);
1883 OPENSSL_free(kdata);
1884 return 0;
1885 }
1886 t->data = kdata;
1887 return 1;
1888 }
1889
1890 static void kdf_test_cleanup(EVP_TEST *t)
1891 {
1892 KDF_DATA *kdata = t->data;
1893 OPENSSL_free(kdata->output);
1894 EVP_PKEY_CTX_free(kdata->ctx);
1895 }
1896
1897 static int kdf_test_parse(EVP_TEST *t,
1898 const char *keyword, const char *value)
1899 {
1900 KDF_DATA *kdata = t->data;
1901
1902 if (strcmp(keyword, "Output") == 0)
1903 return parse_bin(value, &kdata->output, &kdata->output_len);
1904 if (strncmp(keyword, "Ctrl", 4) == 0)
1905 return pkey_test_ctrl(t, kdata->ctx, value);
1906 return 0;
1907 }
1908
1909 static int kdf_test_run(EVP_TEST *t)
1910 {
1911 KDF_DATA *expected = t->data;
1912 unsigned char *got = NULL;
1913 size_t got_len = expected->output_len;
1914
1915 if (!TEST_ptr(got = OPENSSL_malloc(got_len))) {
1916 t->err = "INTERNAL_ERROR";
1917 goto err;
1918 }
1919 if (EVP_PKEY_derive(expected->ctx, got, &got_len) <= 0) {
1920 t->err = "KDF_DERIVE_ERROR";
1921 goto err;
1922 }
1923 if (!memory_err_compare(t, "KDF_MISMATCH",
1924 expected->output, expected->output_len,
1925 got, got_len))
1926 goto err;
1927
1928 t->err = NULL;
1929
1930 err:
1931 OPENSSL_free(got);
1932 return 1;
1933 }
1934
1935 static const EVP_TEST_METHOD kdf_test_method = {
1936 "KDF",
1937 kdf_test_init,
1938 kdf_test_cleanup,
1939 kdf_test_parse,
1940 kdf_test_run
1941 };
1942
1943
1944 /**
1945 *** KEYPAIR TESTS
1946 **/
1947
1948 typedef struct keypair_test_data_st {
1949 EVP_PKEY *privk;
1950 EVP_PKEY *pubk;
1951 } KEYPAIR_TEST_DATA;
1952
1953 static int keypair_test_init(EVP_TEST *t, const char *pair)
1954 {
1955 KEYPAIR_TEST_DATA *data;
1956 int rv = 0;
1957 EVP_PKEY *pk = NULL, *pubk = NULL;
1958 char *pub, *priv = NULL;
1959
1960 /* Split private and public names. */
1961 if (!TEST_ptr(priv = OPENSSL_strdup(pair))
1962 || !TEST_ptr(pub = strchr(priv, ':'))) {
1963 t->err = "PARSING_ERROR";
1964 goto end;
1965 }
1966 *pub++ = '\0';
1967
1968 if (!TEST_true(find_key(&pk, priv, private_keys))) {
1969 TEST_info("Can't find private key: %s", priv);
1970 t->err = "MISSING_PRIVATE_KEY";
1971 goto end;
1972 }
1973 if (!TEST_true(find_key(&pubk, pub, public_keys))) {
1974 TEST_info("Can't find public key: %s", pub);
1975 t->err = "MISSING_PUBLIC_KEY";
1976 goto end;
1977 }
1978
1979 if (pk == NULL && pubk == NULL) {
1980 /* Both keys are listed but unsupported: skip this test */
1981 t->skip = 1;
1982 rv = 1;
1983 goto end;
1984 }
1985
1986 if (!TEST_ptr(data = OPENSSL_malloc(sizeof(*data))))
1987 goto end;
1988 data->privk = pk;
1989 data->pubk = pubk;
1990 t->data = data;
1991 rv = 1;
1992 t->err = NULL;
1993
1994 end:
1995 OPENSSL_free(priv);
1996 return rv;
1997 }
1998
1999 static void keypair_test_cleanup(EVP_TEST *t)
2000 {
2001 OPENSSL_free(t->data);
2002 t->data = NULL;
2003 }
2004
2005 /*
2006 * For tests that do not accept any custom keywords.
2007 */
2008 static int void_test_parse(EVP_TEST *t, const char *keyword, const char *value)
2009 {
2010 return 0;
2011 }
2012
2013 static int keypair_test_run(EVP_TEST *t)
2014 {
2015 int rv = 0;
2016 const KEYPAIR_TEST_DATA *pair = t->data;
2017
2018 if (pair->privk == NULL || pair->pubk == NULL) {
2019 /*
2020 * this can only happen if only one of the keys is not set
2021 * which means that one of them was unsupported while the
2022 * other isn't: hence a key type mismatch.
2023 */
2024 t->err = "KEYPAIR_TYPE_MISMATCH";
2025 rv = 1;
2026 goto end;
2027 }
2028
2029 if ((rv = EVP_PKEY_cmp(pair->privk, pair->pubk)) != 1 ) {
2030 if ( 0 == rv ) {
2031 t->err = "KEYPAIR_MISMATCH";
2032 } else if ( -1 == rv ) {
2033 t->err = "KEYPAIR_TYPE_MISMATCH";
2034 } else if ( -2 == rv ) {
2035 t->err = "UNSUPPORTED_KEY_COMPARISON";
2036 } else {
2037 TEST_error("Unexpected error in key comparison");
2038 rv = 0;
2039 goto end;
2040 }
2041 rv = 1;
2042 goto end;
2043 }
2044
2045 rv = 1;
2046 t->err = NULL;
2047
2048 end:
2049 return rv;
2050 }
2051
2052 static const EVP_TEST_METHOD keypair_test_method = {
2053 "PrivPubKeyPair",
2054 keypair_test_init,
2055 keypair_test_cleanup,
2056 void_test_parse,
2057 keypair_test_run
2058 };
2059
2060 /**
2061 *** KEYGEN TEST
2062 **/
2063
2064 typedef struct keygen_test_data_st {
2065 EVP_PKEY_CTX *genctx; /* Keygen context to use */
2066 char *keyname; /* Key name to store key or NULL */
2067 } KEYGEN_TEST_DATA;
2068
2069 static int keygen_test_init(EVP_TEST *t, const char *alg)
2070 {
2071 KEYGEN_TEST_DATA *data;
2072 EVP_PKEY_CTX *genctx;
2073 int nid = OBJ_sn2nid(alg);
2074
2075 if (nid == NID_undef) {
2076 nid = OBJ_ln2nid(alg);
2077 if (nid == NID_undef)
2078 return 0;
2079 }
2080
2081 if (!TEST_ptr(genctx = EVP_PKEY_CTX_new_id(nid, NULL))) {
2082 /* assume algorithm disabled */
2083 t->skip = 1;
2084 return 1;
2085 }
2086
2087 if (EVP_PKEY_keygen_init(genctx) <= 0) {
2088 t->err = "KEYGEN_INIT_ERROR";
2089 goto err;
2090 }
2091
2092 if (!TEST_ptr(data = OPENSSL_malloc(sizeof(*data))))
2093 goto err;
2094 data->genctx = genctx;
2095 data->keyname = NULL;
2096 t->data = data;
2097 t->err = NULL;
2098 return 1;
2099
2100 err:
2101 EVP_PKEY_CTX_free(genctx);
2102 return 0;
2103 }
2104
2105 static void keygen_test_cleanup(EVP_TEST *t)
2106 {
2107 KEYGEN_TEST_DATA *keygen = t->data;
2108
2109 EVP_PKEY_CTX_free(keygen->genctx);
2110 OPENSSL_free(keygen->keyname);
2111 OPENSSL_free(t->data);
2112 t->data = NULL;
2113 }
2114
2115 static int keygen_test_parse(EVP_TEST *t,
2116 const char *keyword, const char *value)
2117 {
2118 KEYGEN_TEST_DATA *keygen = t->data;
2119
2120 if (strcmp(keyword, "KeyName") == 0)
2121 return TEST_ptr(keygen->keyname = OPENSSL_strdup(value));
2122 if (strcmp(keyword, "Ctrl") == 0)
2123 return pkey_test_ctrl(t, keygen->genctx, value);
2124 return 0;
2125 }
2126
2127 static int keygen_test_run(EVP_TEST *t)
2128 {
2129 KEYGEN_TEST_DATA *keygen = t->data;
2130 EVP_PKEY *pkey = NULL;
2131
2132 t->err = NULL;
2133 if (EVP_PKEY_keygen(keygen->genctx, &pkey) <= 0) {
2134 t->err = "KEYGEN_GENERATE_ERROR";
2135 goto err;
2136 }
2137
2138 if (keygen->keyname != NULL) {
2139 KEY_LIST *key;
2140
2141 if (find_key(NULL, keygen->keyname, private_keys)) {
2142 TEST_info("Duplicate key %s", keygen->keyname);
2143 goto err;
2144 }
2145
2146 if (!TEST_ptr(key = OPENSSL_malloc(sizeof(*key))))
2147 goto err;
2148 key->name = keygen->keyname;
2149 keygen->keyname = NULL;
2150 key->key = pkey;
2151 key->next = private_keys;
2152 private_keys = key;
2153 } else {
2154 EVP_PKEY_free(pkey);
2155 }
2156
2157 return 1;
2158
2159 err:
2160 EVP_PKEY_free(pkey);
2161 return 0;
2162 }
2163
2164 static const EVP_TEST_METHOD keygen_test_method = {
2165 "KeyGen",
2166 keygen_test_init,
2167 keygen_test_cleanup,
2168 keygen_test_parse,
2169 keygen_test_run,
2170 };
2171
2172 /**
2173 *** DIGEST SIGN+VERIFY TESTS
2174 **/
2175
2176 typedef struct {
2177 int is_verify; /* Set to 1 if verifying */
2178 int is_oneshot; /* Set to 1 for one shot operation */
2179 const EVP_MD *md; /* Digest to use */
2180 EVP_MD_CTX *ctx; /* Digest context */
2181 EVP_PKEY_CTX *pctx;
2182 STACK_OF(EVP_TEST_BUFFER) *input; /* Input data: streaming */
2183 unsigned char *osin; /* Input data if one shot */
2184 size_t osin_len; /* Input length data if one shot */
2185 unsigned char *output; /* Expected output */
2186 size_t output_len; /* Expected output length */
2187 } DIGESTSIGN_DATA;
2188
2189 static int digestsigver_test_init(EVP_TEST *t, const char *alg, int is_verify,
2190 int is_oneshot)
2191 {
2192 const EVP_MD *md = NULL;
2193 DIGESTSIGN_DATA *mdat;
2194
2195 if (strcmp(alg, "NULL") != 0) {
2196 if ((md = EVP_get_digestbyname(alg)) == NULL) {
2197 /* If alg has an OID assume disabled algorithm */
2198 if (OBJ_sn2nid(alg) != NID_undef || OBJ_ln2nid(alg) != NID_undef) {
2199 t->skip = 1;
2200 return 1;
2201 }
2202 return 0;
2203 }
2204 }
2205 if (!TEST_ptr(mdat = OPENSSL_zalloc(sizeof(*mdat))))
2206 return 0;
2207 mdat->md = md;
2208 if (!TEST_ptr(mdat->ctx = EVP_MD_CTX_new())) {
2209 OPENSSL_free(mdat);
2210 return 0;
2211 }
2212 mdat->is_verify = is_verify;
2213 mdat->is_oneshot = is_oneshot;
2214 t->data = mdat;
2215 return 1;
2216 }
2217
2218 static int digestsign_test_init(EVP_TEST *t, const char *alg)
2219 {
2220 return digestsigver_test_init(t, alg, 0, 0);
2221 }
2222
2223 static void digestsigver_test_cleanup(EVP_TEST *t)
2224 {
2225 DIGESTSIGN_DATA *mdata = t->data;
2226
2227 EVP_MD_CTX_free(mdata->ctx);
2228 sk_EVP_TEST_BUFFER_pop_free(mdata->input, evp_test_buffer_free);
2229 OPENSSL_free(mdata->osin);
2230 OPENSSL_free(mdata->output);
2231 OPENSSL_free(mdata);
2232 t->data = NULL;
2233 }
2234
2235 static int digestsigver_test_parse(EVP_TEST *t,
2236 const char *keyword, const char *value)
2237 {
2238 DIGESTSIGN_DATA *mdata = t->data;
2239
2240 if (strcmp(keyword, "Key") == 0) {
2241 EVP_PKEY *pkey = NULL;
2242 int rv = 0;
2243
2244 if (mdata->is_verify)
2245 rv = find_key(&pkey, value, public_keys);
2246 if (rv == 0)
2247 rv = find_key(&pkey, value, private_keys);
2248 if (rv == 0 || pkey == NULL) {
2249 t->skip = 1;
2250 return 1;
2251 }
2252 if (mdata->is_verify) {
2253 if (!EVP_DigestVerifyInit(mdata->ctx, &mdata->pctx, mdata->md,
2254 NULL, pkey))
2255 t->err = "DIGESTVERIFYINIT_ERROR";
2256 return 1;
2257 }
2258 if (!EVP_DigestSignInit(mdata->ctx, &mdata->pctx, mdata->md, NULL,
2259 pkey))
2260 t->err = "DIGESTSIGNINIT_ERROR";
2261 return 1;
2262 }
2263
2264 if (strcmp(keyword, "Input") == 0) {
2265 if (mdata->is_oneshot)
2266 return parse_bin(value, &mdata->osin, &mdata->osin_len);
2267 return evp_test_buffer_append(value, &mdata->input);
2268 }
2269 if (strcmp(keyword, "Output") == 0)
2270 return parse_bin(value, &mdata->output, &mdata->output_len);
2271
2272 if (!mdata->is_oneshot) {
2273 if (strcmp(keyword, "Count") == 0)
2274 return evp_test_buffer_set_count(value, mdata->input);
2275 if (strcmp(keyword, "Ncopy") == 0)
2276 return evp_test_buffer_ncopy(value, mdata->input);
2277 }
2278 if (strcmp(keyword, "Ctrl") == 0) {
2279 if (mdata->pctx == NULL)
2280 return 0;
2281 return pkey_test_ctrl(t, mdata->pctx, value);
2282 }
2283 return 0;
2284 }
2285
2286 static int digestsign_update_fn(void *ctx, const unsigned char *buf,
2287 size_t buflen)
2288 {
2289 return EVP_DigestSignUpdate(ctx, buf, buflen);
2290 }
2291
2292 static int digestsign_test_run(EVP_TEST *t)
2293 {
2294 DIGESTSIGN_DATA *expected = t->data;
2295 unsigned char *got = NULL;
2296 size_t got_len;
2297
2298 if (!evp_test_buffer_do(expected->input, digestsign_update_fn,
2299 expected->ctx)) {
2300 t->err = "DIGESTUPDATE_ERROR";
2301 goto err;
2302 }
2303
2304 if (!EVP_DigestSignFinal(expected->ctx, NULL, &got_len)) {
2305 t->err = "DIGESTSIGNFINAL_LENGTH_ERROR";
2306 goto err;
2307 }
2308 if (!TEST_ptr(got = OPENSSL_malloc(got_len))) {
2309 t->err = "MALLOC_FAILURE";
2310 goto err;
2311 }
2312 if (!EVP_DigestSignFinal(expected->ctx, got, &got_len)) {
2313 t->err = "DIGESTSIGNFINAL_ERROR";
2314 goto err;
2315 }
2316 if (!memory_err_compare(t, "SIGNATURE_MISMATCH",
2317 expected->output, expected->output_len,
2318 got, got_len))
2319 goto err;
2320
2321 t->err = NULL;
2322 err:
2323 OPENSSL_free(got);
2324 return 1;
2325 }
2326
2327 static const EVP_TEST_METHOD digestsign_test_method = {
2328 "DigestSign",
2329 digestsign_test_init,
2330 digestsigver_test_cleanup,
2331 digestsigver_test_parse,
2332 digestsign_test_run
2333 };
2334
2335 static int digestverify_test_init(EVP_TEST *t, const char *alg)
2336 {
2337 return digestsigver_test_init(t, alg, 1, 0);
2338 }
2339
2340 static int digestverify_update_fn(void *ctx, const unsigned char *buf,
2341 size_t buflen)
2342 {
2343 return EVP_DigestVerifyUpdate(ctx, buf, buflen);
2344 }
2345
2346 static int digestverify_test_run(EVP_TEST *t)
2347 {
2348 DIGESTSIGN_DATA *mdata = t->data;
2349
2350 if (!evp_test_buffer_do(mdata->input, digestverify_update_fn, mdata->ctx)) {
2351 t->err = "DIGESTUPDATE_ERROR";
2352 return 1;
2353 }
2354
2355 if (EVP_DigestVerifyFinal(mdata->ctx, mdata->output,
2356 mdata->output_len) <= 0)
2357 t->err = "VERIFY_ERROR";
2358 return 1;
2359 }
2360
2361 static const EVP_TEST_METHOD digestverify_test_method = {
2362 "DigestVerify",
2363 digestverify_test_init,
2364 digestsigver_test_cleanup,
2365 digestsigver_test_parse,
2366 digestverify_test_run
2367 };
2368
2369 static int oneshot_digestsign_test_init(EVP_TEST *t, const char *alg)
2370 {
2371 return digestsigver_test_init(t, alg, 0, 1);
2372 }
2373
2374 static int oneshot_digestsign_test_run(EVP_TEST *t)
2375 {
2376 DIGESTSIGN_DATA *expected = t->data;
2377 unsigned char *got = NULL;
2378 size_t got_len;
2379
2380 if (!EVP_DigestSign(expected->ctx, NULL, &got_len,
2381 expected->osin, expected->osin_len)) {
2382 t->err = "DIGESTSIGN_LENGTH_ERROR";
2383 goto err;
2384 }
2385 if (!TEST_ptr(got = OPENSSL_malloc(got_len))) {
2386 t->err = "MALLOC_FAILURE";
2387 goto err;
2388 }
2389 if (!EVP_DigestSign(expected->ctx, got, &got_len,
2390 expected->osin, expected->osin_len)) {
2391 t->err = "DIGESTSIGN_ERROR";
2392 goto err;
2393 }
2394 if (!memory_err_compare(t, "SIGNATURE_MISMATCH",
2395 expected->output, expected->output_len,
2396 got, got_len))
2397 goto err;
2398
2399 t->err = NULL;
2400 err:
2401 OPENSSL_free(got);
2402 return 1;
2403 }
2404
2405 static const EVP_TEST_METHOD oneshot_digestsign_test_method = {
2406 "OneShotDigestSign",
2407 oneshot_digestsign_test_init,
2408 digestsigver_test_cleanup,
2409 digestsigver_test_parse,
2410 oneshot_digestsign_test_run
2411 };
2412
2413 static int oneshot_digestverify_test_init(EVP_TEST *t, const char *alg)
2414 {
2415 return digestsigver_test_init(t, alg, 1, 1);
2416 }
2417
2418 static int oneshot_digestverify_test_run(EVP_TEST *t)
2419 {
2420 DIGESTSIGN_DATA *mdata = t->data;
2421
2422 if (EVP_DigestVerify(mdata->ctx, mdata->output, mdata->output_len,
2423 mdata->osin, mdata->osin_len) <= 0)
2424 t->err = "VERIFY_ERROR";
2425 return 1;
2426 }
2427
2428 static const EVP_TEST_METHOD oneshot_digestverify_test_method = {
2429 "OneShotDigestVerify",
2430 oneshot_digestverify_test_init,
2431 digestsigver_test_cleanup,
2432 digestsigver_test_parse,
2433 oneshot_digestverify_test_run
2434 };
2435
2436
2437 /**
2438 *** PARSING AND DISPATCH
2439 **/
2440
2441 static const EVP_TEST_METHOD *evp_test_list[] = {
2442 &cipher_test_method,
2443 &digest_test_method,
2444 &digestsign_test_method,
2445 &digestverify_test_method,
2446 &encode_test_method,
2447 &kdf_test_method,
2448 &keypair_test_method,
2449 &keygen_test_method,
2450 &mac_test_method,
2451 &oneshot_digestsign_test_method,
2452 &oneshot_digestverify_test_method,
2453 &pbe_test_method,
2454 &pdecrypt_test_method,
2455 &pderive_test_method,
2456 &psign_test_method,
2457 &pverify_recover_test_method,
2458 &pverify_test_method,
2459 NULL
2460 };
2461
2462 static const EVP_TEST_METHOD *find_test(const char *name)
2463 {
2464 const EVP_TEST_METHOD **tt;
2465
2466 for (tt = evp_test_list; *tt; tt++) {
2467 if (strcmp(name, (*tt)->name) == 0)
2468 return *tt;
2469 }
2470 return NULL;
2471 }
2472
2473 static void clear_test(EVP_TEST *t)
2474 {
2475 test_clearstanza(&t->s);
2476 ERR_clear_error();
2477 if (t->data != NULL) {
2478 if (t->meth != NULL)
2479 t->meth->cleanup(t);
2480 OPENSSL_free(t->data);
2481 t->data = NULL;
2482 }
2483 OPENSSL_free(t->expected_err);
2484 t->expected_err = NULL;
2485 OPENSSL_free(t->func);
2486 t->func = NULL;
2487 OPENSSL_free(t->reason);
2488 t->reason = NULL;
2489
2490 /* Text literal. */
2491 t->err = NULL;
2492 t->skip = 0;
2493 t->meth = NULL;
2494 }
2495
2496 /*
2497 * Check for errors in the test structure; return 1 if okay, else 0.
2498 */
2499 static int check_test_error(EVP_TEST *t)
2500 {
2501 unsigned long err;
2502 const char *func;
2503 const char *reason;
2504
2505 if (t->err == NULL && t->expected_err == NULL)
2506 return 1;
2507 if (t->err != NULL && t->expected_err == NULL) {
2508 if (t->aux_err != NULL) {
2509 TEST_info("%s:%d: Source of above error (%s); unexpected error %s",
2510 t->s.test_file, t->s.start, t->aux_err, t->err);
2511 } else {
2512 TEST_info("%s:%d: Source of above error; unexpected error %s",
2513 t->s.test_file, t->s.start, t->err);
2514 }
2515 return 0;
2516 }
2517 if (t->err == NULL && t->expected_err != NULL) {
2518 TEST_info("%s:%d: Succeeded but was expecting %s",
2519 t->s.test_file, t->s.start, t->expected_err);
2520 return 0;
2521 }
2522
2523 if (strcmp(t->err, t->expected_err) != 0) {
2524 TEST_info("%s:%d: Expected %s got %s",
2525 t->s.test_file, t->s.start, t->expected_err, t->err);
2526 return 0;
2527 }
2528
2529 if (t->func == NULL && t->reason == NULL)
2530 return 1;
2531
2532 if (t->func == NULL || t->reason == NULL) {
2533 TEST_info("%s:%d: Test is missing function or reason code",
2534 t->s.test_file, t->s.start);
2535 return 0;
2536 }
2537
2538 err = ERR_peek_error();
2539 if (err == 0) {
2540 TEST_info("%s:%d: Expected error \"%s:%s\" not set",
2541 t->s.test_file, t->s.start, t->func, t->reason);
2542 return 0;
2543 }
2544
2545 func = ERR_func_error_string(err);
2546 reason = ERR_reason_error_string(err);
2547 if (func == NULL && reason == NULL) {
2548 TEST_info("%s:%d: Expected error \"%s:%s\", no strings available."
2549 " Assuming ok.",
2550 t->s.test_file, t->s.start, t->func, t->reason);
2551 return 1;
2552 }
2553
2554 if (strcmp(func, t->func) == 0 && strcmp(reason, t->reason) == 0)
2555 return 1;
2556
2557 TEST_info("%s:%d: Expected error \"%s:%s\", got \"%s:%s\"",
2558 t->s.test_file, t->s.start, t->func, t->reason, func, reason);
2559
2560 return 0;
2561 }
2562
2563 /*
2564 * Run a parsed test. Log a message and return 0 on error.
2565 */
2566 static int run_test(EVP_TEST *t)
2567 {
2568 if (t->meth == NULL)
2569 return 1;
2570 t->s.numtests++;
2571 if (t->skip) {
2572 t->s.numskip++;
2573 } else {
2574 /* run the test */
2575 if (t->err == NULL && t->meth->run_test(t) != 1) {
2576 TEST_info("%s:%d %s error",
2577 t->s.test_file, t->s.start, t->meth->name);
2578 return 0;
2579 }
2580 if (!check_test_error(t)) {
2581 TEST_openssl_errors();
2582 t->s.errors++;
2583 }
2584 }
2585
2586 /* clean it up */
2587 return 1;
2588 }
2589
2590 static int find_key(EVP_PKEY **ppk, const char *name, KEY_LIST *lst)
2591 {
2592 for (; lst != NULL; lst = lst->next) {
2593 if (strcmp(lst->name, name) == 0) {
2594 if (ppk != NULL)
2595 *ppk = lst->key;
2596 return 1;
2597 }
2598 }
2599 return 0;
2600 }
2601
2602 static void free_key_list(KEY_LIST *lst)
2603 {
2604 while (lst != NULL) {
2605 KEY_LIST *next = lst->next;
2606
2607 EVP_PKEY_free(lst->key);
2608 OPENSSL_free(lst->name);
2609 OPENSSL_free(lst);
2610 lst = next;
2611 }
2612 }
2613
2614 /*
2615 * Is the key type an unsupported algorithm?
2616 */
2617 static int key_unsupported(void)
2618 {
2619 long err = ERR_peek_error();
2620
2621 if (ERR_GET_LIB(err) == ERR_LIB_EVP
2622 && ERR_GET_REASON(err) == EVP_R_UNSUPPORTED_ALGORITHM) {
2623 ERR_clear_error();
2624 return 1;
2625 }
2626 #ifndef OPENSSL_NO_EC
2627 /*
2628 * If EC support is enabled we should catch also EC_R_UNKNOWN_GROUP as an
2629 * hint to an unsupported algorithm/curve (e.g. if binary EC support is
2630 * disabled).
2631 */
2632 if (ERR_GET_LIB(err) == ERR_LIB_EC
2633 && ERR_GET_REASON(err) == EC_R_UNKNOWN_GROUP) {
2634 ERR_clear_error();
2635 return 1;
2636 }
2637 #endif /* OPENSSL_NO_EC */
2638 return 0;
2639 }
2640
2641 /*
2642 * NULL out the value from |pp| but return it. This "steals" a pointer.
2643 */
2644 static char *take_value(PAIR *pp)
2645 {
2646 char *p = pp->value;
2647
2648 pp->value = NULL;
2649 return p;
2650 }
2651
2652 /*
2653 * Read and parse one test. Return 0 if failure, 1 if okay.
2654 */
2655 static int parse(EVP_TEST *t)
2656 {
2657 KEY_LIST *key, **klist;
2658 EVP_PKEY *pkey;
2659 PAIR *pp;
2660 int i;
2661
2662 top:
2663 do {
2664 if (BIO_eof(t->s.fp))
2665 return EOF;
2666 clear_test(t);
2667 if (!test_readstanza(&t->s))
2668 return 0;
2669 } while (t->s.numpairs == 0);
2670 pp = &t->s.pairs[0];
2671
2672 /* Are we adding a key? */
2673 klist = NULL;
2674 pkey = NULL;
2675 if (strcmp(pp->key, "PrivateKey") == 0) {
2676 pkey = PEM_read_bio_PrivateKey(t->s.key, NULL, 0, NULL);
2677 if (pkey == NULL && !key_unsupported()) {
2678 EVP_PKEY_free(pkey);
2679 TEST_info("Can't read private key %s", pp->value);
2680 TEST_openssl_errors();
2681 return 0;
2682 }
2683 klist = &private_keys;
2684 } else if (strcmp(pp->key, "PublicKey") == 0) {
2685 pkey = PEM_read_bio_PUBKEY(t->s.key, NULL, 0, NULL);
2686 if (pkey == NULL && !key_unsupported()) {
2687 EVP_PKEY_free(pkey);
2688 TEST_info("Can't read public key %s", pp->value);
2689 TEST_openssl_errors();
2690 return 0;
2691 }
2692 klist = &public_keys;
2693 } else if (strcmp(pp->key, "PrivateKeyRaw") == 0
2694 || strcmp(pp->key, "PublicKeyRaw") == 0 ) {
2695 char *strnid = NULL, *keydata = NULL;
2696 unsigned char *keybin;
2697 size_t keylen;
2698 int nid;
2699
2700 if (strcmp(pp->key, "PrivateKeyRaw") == 0)
2701 klist = &private_keys;
2702 else
2703 klist = &public_keys;
2704
2705 strnid = strchr(pp->value, ':');
2706 if (strnid != NULL) {
2707 *strnid++ = '\0';
2708 keydata = strchr(strnid, ':');
2709 if (keydata != NULL)
2710 *keydata++ = '\0';
2711 }
2712 if (keydata == NULL) {
2713 TEST_info("Failed to parse %s value", pp->key);
2714 return 0;
2715 }
2716
2717 nid = OBJ_txt2nid(strnid);
2718 if (nid == NID_undef) {
2719 TEST_info("Uncrecognised algorithm NID");
2720 return 0;
2721 }
2722 if (!parse_bin(keydata, &keybin, &keylen)) {
2723 TEST_info("Failed to create binary key");
2724 return 0;
2725 }
2726 if (klist == &private_keys)
2727 pkey = EVP_PKEY_new_raw_private_key(nid, NULL, keybin, keylen);
2728 else
2729 pkey = EVP_PKEY_new_raw_public_key(nid, NULL, keybin, keylen);
2730 if (pkey == NULL && !key_unsupported()) {
2731 TEST_info("Can't read %s data", pp->key);
2732 OPENSSL_free(keybin);
2733 TEST_openssl_errors();
2734 return 0;
2735 }
2736 OPENSSL_free(keybin);
2737 }
2738
2739 /* If we have a key add to list */
2740 if (klist != NULL) {
2741 if (find_key(NULL, pp->value, *klist)) {
2742 TEST_info("Duplicate key %s", pp->value);
2743 return 0;
2744 }
2745 if (!TEST_ptr(key = OPENSSL_malloc(sizeof(*key))))
2746 return 0;
2747 key->name = take_value(pp);
2748
2749 /* Hack to detect SM2 keys */
2750 if(pkey != NULL && strstr(key->name, "SM2") != NULL) {
2751 #ifdef OPENSSL_NO_SM2
2752 EVP_PKEY_free(pkey);
2753 pkey = NULL;
2754 #else
2755 EVP_PKEY_set_alias_type(pkey, EVP_PKEY_SM2);
2756 #endif
2757 }
2758
2759 key->key = pkey;
2760 key->next = *klist;
2761 *klist = key;
2762
2763 /* Go back and start a new stanza. */
2764 if (t->s.numpairs != 1)
2765 TEST_info("Line %d: missing blank line\n", t->s.curr);
2766 goto top;
2767 }
2768
2769 /* Find the test, based on first keyword. */
2770 if (!TEST_ptr(t->meth = find_test(pp->key)))
2771 return 0;
2772 if (!t->meth->init(t, pp->value)) {
2773 TEST_error("unknown %s: %s\n", pp->key, pp->value);
2774 return 0;
2775 }
2776 if (t->skip == 1) {
2777 /* TEST_info("skipping %s %s", pp->key, pp->value); */
2778 return 0;
2779 }
2780
2781 for (pp++, i = 1; i < t->s.numpairs; pp++, i++) {
2782 if (strcmp(pp->key, "Result") == 0) {
2783 if (t->expected_err != NULL) {
2784 TEST_info("Line %d: multiple result lines", t->s.curr);
2785 return 0;
2786 }
2787 t->expected_err = take_value(pp);
2788 } else if (strcmp(pp->key, "Function") == 0) {
2789 if (t->func != NULL) {
2790 TEST_info("Line %d: multiple function lines\n", t->s.curr);
2791 return 0;
2792 }
2793 t->func = take_value(pp);
2794 } else if (strcmp(pp->key, "Reason") == 0) {
2795 if (t->reason != NULL) {
2796 TEST_info("Line %d: multiple reason lines", t->s.curr);
2797 return 0;
2798 }
2799 t->reason = take_value(pp);
2800 } else {
2801 /* Must be test specific line: try to parse it */
2802 int rv = t->meth->parse(t, pp->key, pp->value);
2803
2804 if (rv == 0) {
2805 TEST_info("Line %d: unknown keyword %s", t->s.curr, pp->key);
2806 return 0;
2807 }
2808 if (rv < 0) {
2809 TEST_info("Line %d: error processing keyword %s = %s\n",
2810 t->s.curr, pp->key, pp->value);
2811 return 0;
2812 }
2813 }
2814 }
2815
2816 return 1;
2817 }
2818
2819 static int run_file_tests(int i)
2820 {
2821 EVP_TEST *t;
2822 const char *testfile = test_get_argument(i);
2823 int c;
2824
2825 if (!TEST_ptr(t = OPENSSL_zalloc(sizeof(*t))))
2826 return 0;
2827 if (!test_start_file(&t->s, testfile)) {
2828 OPENSSL_free(t);
2829 return 0;
2830 }
2831
2832 while (!BIO_eof(t->s.fp)) {
2833 c = parse(t);
2834 if (t->skip)
2835 continue;
2836 if (c == 0 || !run_test(t)) {
2837 t->s.errors++;
2838 break;
2839 }
2840 }
2841 test_end_file(&t->s);
2842 clear_test(t);
2843
2844 free_key_list(public_keys);
2845 free_key_list(private_keys);
2846 BIO_free(t->s.key);
2847 c = t->s.errors;
2848 OPENSSL_free(t);
2849 return c == 0;
2850 }
2851
2852 int setup_tests(void)
2853 {
2854 size_t n = test_get_argument_count();
2855
2856 if (n == 0) {
2857 TEST_error("Usage: %s file...", test_get_program_name());
2858 return 0;
2859 }
2860
2861 ADD_ALL_TESTS(run_file_tests, n);
2862 return 1;
2863 }