]> git.ipfire.org Git - thirdparty/openssl.git/blob - test/evp_test.c
test: update EVP tests to include DRBG testing
[thirdparty/openssl.git] / test / evp_test.c
1 /*
2 * Copyright 2015-2020 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 #include <stdio.h>
11 #include <string.h>
12 #include <stdlib.h>
13 #include <ctype.h>
14 #include <openssl/evp.h>
15 #include <openssl/pem.h>
16 #include <openssl/err.h>
17 #include <openssl/provider.h>
18 #include <openssl/x509v3.h>
19 #include <openssl/pkcs12.h>
20 #include <openssl/kdf.h>
21 #include <openssl/params.h>
22 #include <openssl/core_names.h>
23 #include "internal/numbers.h"
24 #include "internal/nelem.h"
25 #include "testutil.h"
26 #include "evp_test.h"
27
28 DEFINE_STACK_OF_STRING()
29
30 #define AAD_NUM 4
31
32 typedef struct evp_test_method_st EVP_TEST_METHOD;
33
34 /*
35 * Structure holding test information
36 */
37 typedef struct evp_test_st {
38 STANZA s; /* Common test stanza */
39 char *name;
40 int skip; /* Current test should be skipped */
41 const EVP_TEST_METHOD *meth; /* method for this test */
42 const char *err, *aux_err; /* Error string for test */
43 char *expected_err; /* Expected error value of test */
44 char *reason; /* Expected error reason string */
45 void *data; /* test specific data */
46 } EVP_TEST;
47
48 /*
49 * Test method structure
50 */
51 struct evp_test_method_st {
52 /* Name of test as it appears in file */
53 const char *name;
54 /* Initialise test for "alg" */
55 int (*init) (EVP_TEST * t, const char *alg);
56 /* Clean up method */
57 void (*cleanup) (EVP_TEST * t);
58 /* Test specific name value pair processing */
59 int (*parse) (EVP_TEST * t, const char *name, const char *value);
60 /* Run the test itself */
61 int (*run_test) (EVP_TEST * t);
62 };
63
64
65 /*
66 * Linked list of named keys.
67 */
68 typedef struct key_list_st {
69 char *name;
70 EVP_PKEY *key;
71 struct key_list_st *next;
72 } KEY_LIST;
73
74 /*
75 * List of public and private keys
76 */
77 static KEY_LIST *private_keys;
78 static KEY_LIST *public_keys;
79 static int find_key(EVP_PKEY **ppk, const char *name, KEY_LIST *lst);
80
81 static int parse_bin(const char *value, unsigned char **buf, size_t *buflen);
82
83 /*
84 * Compare two memory regions for equality, returning zero if they differ.
85 * However, if there is expected to be an error and the actual error
86 * matches then the memory is expected to be different so handle this
87 * case without producing unnecessary test framework output.
88 */
89 static int memory_err_compare(EVP_TEST *t, const char *err,
90 const void *expected, size_t expected_len,
91 const void *got, size_t got_len)
92 {
93 int r;
94
95 if (t->expected_err != NULL && strcmp(t->expected_err, err) == 0)
96 r = !TEST_mem_ne(expected, expected_len, got, got_len);
97 else
98 r = TEST_mem_eq(expected, expected_len, got, got_len);
99 if (!r)
100 t->err = err;
101 return r;
102 }
103
104 /*
105 * Structure used to hold a list of blocks of memory to test
106 * calls to "update" like functions.
107 */
108 struct evp_test_buffer_st {
109 unsigned char *buf;
110 size_t buflen;
111 size_t count;
112 int count_set;
113 };
114
115 static void evp_test_buffer_free(EVP_TEST_BUFFER *db)
116 {
117 if (db != NULL) {
118 OPENSSL_free(db->buf);
119 OPENSSL_free(db);
120 }
121 }
122
123 /*
124 * append buffer to a list
125 */
126 static int evp_test_buffer_append(const char *value,
127 STACK_OF(EVP_TEST_BUFFER) **sk)
128 {
129 EVP_TEST_BUFFER *db = NULL;
130
131 if (!TEST_ptr(db = OPENSSL_malloc(sizeof(*db))))
132 goto err;
133
134 if (!parse_bin(value, &db->buf, &db->buflen))
135 goto err;
136 db->count = 1;
137 db->count_set = 0;
138
139 if (*sk == NULL && !TEST_ptr(*sk = sk_EVP_TEST_BUFFER_new_null()))
140 goto err;
141 if (!sk_EVP_TEST_BUFFER_push(*sk, db))
142 goto err;
143
144 return 1;
145
146 err:
147 evp_test_buffer_free(db);
148 return 0;
149 }
150
151 /*
152 * replace last buffer in list with copies of itself
153 */
154 static int evp_test_buffer_ncopy(const char *value,
155 STACK_OF(EVP_TEST_BUFFER) *sk)
156 {
157 EVP_TEST_BUFFER *db;
158 unsigned char *tbuf, *p;
159 size_t tbuflen;
160 int ncopy = atoi(value);
161 int i;
162
163 if (ncopy <= 0)
164 return 0;
165 if (sk == NULL || sk_EVP_TEST_BUFFER_num(sk) == 0)
166 return 0;
167 db = sk_EVP_TEST_BUFFER_value(sk, sk_EVP_TEST_BUFFER_num(sk) - 1);
168
169 tbuflen = db->buflen * ncopy;
170 if (!TEST_ptr(tbuf = OPENSSL_malloc(tbuflen)))
171 return 0;
172 for (i = 0, p = tbuf; i < ncopy; i++, p += db->buflen)
173 memcpy(p, db->buf, db->buflen);
174
175 OPENSSL_free(db->buf);
176 db->buf = tbuf;
177 db->buflen = tbuflen;
178 return 1;
179 }
180
181 /*
182 * set repeat count for last buffer in list
183 */
184 static int evp_test_buffer_set_count(const char *value,
185 STACK_OF(EVP_TEST_BUFFER) *sk)
186 {
187 EVP_TEST_BUFFER *db;
188 int count = atoi(value);
189
190 if (count <= 0)
191 return 0;
192
193 if (sk == NULL || sk_EVP_TEST_BUFFER_num(sk) == 0)
194 return 0;
195
196 db = sk_EVP_TEST_BUFFER_value(sk, sk_EVP_TEST_BUFFER_num(sk) - 1);
197 if (db->count_set != 0)
198 return 0;
199
200 db->count = (size_t)count;
201 db->count_set = 1;
202 return 1;
203 }
204
205 /*
206 * call "fn" with each element of the list in turn
207 */
208 static int evp_test_buffer_do(STACK_OF(EVP_TEST_BUFFER) *sk,
209 int (*fn)(void *ctx,
210 const unsigned char *buf,
211 size_t buflen),
212 void *ctx)
213 {
214 int i;
215
216 for (i = 0; i < sk_EVP_TEST_BUFFER_num(sk); i++) {
217 EVP_TEST_BUFFER *tb = sk_EVP_TEST_BUFFER_value(sk, i);
218 size_t j;
219
220 for (j = 0; j < tb->count; j++) {
221 if (fn(ctx, tb->buf, tb->buflen) <= 0)
222 return 0;
223 }
224 }
225 return 1;
226 }
227
228 /*
229 * Unescape some sequences in string literals (only \n for now).
230 * Return an allocated buffer, set |out_len|. If |input_len|
231 * is zero, get an empty buffer but set length to zero.
232 */
233 static unsigned char* unescape(const char *input, size_t input_len,
234 size_t *out_len)
235 {
236 unsigned char *ret, *p;
237 size_t i;
238
239 if (input_len == 0) {
240 *out_len = 0;
241 return OPENSSL_zalloc(1);
242 }
243
244 /* Escaping is non-expanding; over-allocate original size for simplicity. */
245 if (!TEST_ptr(ret = p = OPENSSL_malloc(input_len)))
246 return NULL;
247
248 for (i = 0; i < input_len; i++) {
249 if (*input == '\\') {
250 if (i == input_len - 1 || *++input != 'n') {
251 TEST_error("Bad escape sequence in file");
252 goto err;
253 }
254 *p++ = '\n';
255 i++;
256 input++;
257 } else {
258 *p++ = *input++;
259 }
260 }
261
262 *out_len = p - ret;
263 return ret;
264
265 err:
266 OPENSSL_free(ret);
267 return NULL;
268 }
269
270 /*
271 * For a hex string "value" convert to a binary allocated buffer.
272 * Return 1 on success or 0 on failure.
273 */
274 static int parse_bin(const char *value, unsigned char **buf, size_t *buflen)
275 {
276 long len;
277
278 /* Check for NULL literal */
279 if (strcmp(value, "NULL") == 0) {
280 *buf = NULL;
281 *buflen = 0;
282 return 1;
283 }
284
285 /* Check for empty value */
286 if (*value == '\0') {
287 /*
288 * Don't return NULL for zero length buffer. This is needed for
289 * some tests with empty keys: HMAC_Init_ex() expects a non-NULL key
290 * buffer even if the key length is 0, in order to detect key reset.
291 */
292 *buf = OPENSSL_malloc(1);
293 if (*buf == NULL)
294 return 0;
295 **buf = 0;
296 *buflen = 0;
297 return 1;
298 }
299
300 /* Check for string literal */
301 if (value[0] == '"') {
302 size_t vlen = strlen(++value);
303
304 if (vlen == 0 || value[vlen - 1] != '"')
305 return 0;
306 vlen--;
307 *buf = unescape(value, vlen, buflen);
308 return *buf == NULL ? 0 : 1;
309 }
310
311 /* Otherwise assume as hex literal and convert it to binary buffer */
312 if (!TEST_ptr(*buf = OPENSSL_hexstr2buf(value, &len))) {
313 TEST_info("Can't convert %s", value);
314 TEST_openssl_errors();
315 return -1;
316 }
317 /* Size of input buffer means we'll never overflow */
318 *buflen = len;
319 return 1;
320 }
321
322
323 /**
324 *** MESSAGE DIGEST TESTS
325 **/
326
327 typedef struct digest_data_st {
328 /* Digest this test is for */
329 const EVP_MD *digest;
330 EVP_MD *fetched_digest;
331 /* Input to digest */
332 STACK_OF(EVP_TEST_BUFFER) *input;
333 /* Expected output */
334 unsigned char *output;
335 size_t output_len;
336 /* Padding type */
337 int pad_type;
338 } DIGEST_DATA;
339
340 static int digest_test_init(EVP_TEST *t, const char *alg)
341 {
342 DIGEST_DATA *mdat;
343 const EVP_MD *digest;
344 EVP_MD *fetched_digest;
345
346 if ((digest = fetched_digest = EVP_MD_fetch(NULL, alg, NULL)) == NULL
347 && (digest = EVP_get_digestbyname(alg)) == NULL) {
348 /* If alg has an OID assume disabled algorithm */
349 if (OBJ_sn2nid(alg) != NID_undef || OBJ_ln2nid(alg) != NID_undef) {
350 t->skip = 1;
351 return 1;
352 }
353 return 0;
354 }
355 if (!TEST_ptr(mdat = OPENSSL_zalloc(sizeof(*mdat))))
356 return 0;
357 t->data = mdat;
358 mdat->digest = digest;
359 mdat->fetched_digest = fetched_digest;
360 mdat->pad_type = 0;
361 if (fetched_digest != NULL)
362 TEST_info("%s is fetched", alg);
363 return 1;
364 }
365
366 static void digest_test_cleanup(EVP_TEST *t)
367 {
368 DIGEST_DATA *mdat = t->data;
369
370 sk_EVP_TEST_BUFFER_pop_free(mdat->input, evp_test_buffer_free);
371 OPENSSL_free(mdat->output);
372 EVP_MD_meth_free(mdat->fetched_digest);
373 }
374
375 static int digest_test_parse(EVP_TEST *t,
376 const char *keyword, const char *value)
377 {
378 DIGEST_DATA *mdata = t->data;
379
380 if (strcmp(keyword, "Input") == 0)
381 return evp_test_buffer_append(value, &mdata->input);
382 if (strcmp(keyword, "Output") == 0)
383 return parse_bin(value, &mdata->output, &mdata->output_len);
384 if (strcmp(keyword, "Count") == 0)
385 return evp_test_buffer_set_count(value, mdata->input);
386 if (strcmp(keyword, "Ncopy") == 0)
387 return evp_test_buffer_ncopy(value, mdata->input);
388 if (strcmp(keyword, "Padding") == 0)
389 return (mdata->pad_type = atoi(value)) > 0;
390 return 0;
391 }
392
393 static int digest_update_fn(void *ctx, const unsigned char *buf, size_t buflen)
394 {
395 return EVP_DigestUpdate(ctx, buf, buflen);
396 }
397
398 static int digest_test_run(EVP_TEST *t)
399 {
400 DIGEST_DATA *expected = t->data;
401 EVP_MD_CTX *mctx;
402 unsigned char *got = NULL;
403 unsigned int got_len;
404 OSSL_PARAM params[2];
405
406 t->err = "TEST_FAILURE";
407 if (!TEST_ptr(mctx = EVP_MD_CTX_new()))
408 goto err;
409
410 got = OPENSSL_malloc(expected->output_len > EVP_MAX_MD_SIZE ?
411 expected->output_len : EVP_MAX_MD_SIZE);
412 if (!TEST_ptr(got))
413 goto err;
414
415 if (!EVP_DigestInit_ex(mctx, expected->digest, NULL)) {
416 t->err = "DIGESTINIT_ERROR";
417 goto err;
418 }
419 if (expected->pad_type > 0) {
420 params[0] = OSSL_PARAM_construct_int(OSSL_DIGEST_PARAM_PAD_TYPE,
421 &expected->pad_type);
422 params[1] = OSSL_PARAM_construct_end();
423 if (!TEST_int_gt(EVP_MD_CTX_set_params(mctx, params), 0)) {
424 t->err = "PARAMS_ERROR";
425 goto err;
426 }
427 }
428 if (!evp_test_buffer_do(expected->input, digest_update_fn, mctx)) {
429 t->err = "DIGESTUPDATE_ERROR";
430 goto err;
431 }
432
433 if (EVP_MD_flags(expected->digest) & EVP_MD_FLAG_XOF) {
434 EVP_MD_CTX *mctx_cpy;
435 char dont[] = "touch";
436
437 if (!TEST_ptr(mctx_cpy = EVP_MD_CTX_new())) {
438 goto err;
439 }
440 if (!EVP_MD_CTX_copy(mctx_cpy, mctx)) {
441 EVP_MD_CTX_free(mctx_cpy);
442 goto err;
443 }
444 if (!EVP_DigestFinalXOF(mctx_cpy, (unsigned char *)dont, 0)) {
445 EVP_MD_CTX_free(mctx_cpy);
446 t->err = "DIGESTFINALXOF_ERROR";
447 goto err;
448 }
449 if (!TEST_str_eq(dont, "touch")) {
450 EVP_MD_CTX_free(mctx_cpy);
451 t->err = "DIGESTFINALXOF_ERROR";
452 goto err;
453 }
454 EVP_MD_CTX_free(mctx_cpy);
455
456 got_len = expected->output_len;
457 if (!EVP_DigestFinalXOF(mctx, got, got_len)) {
458 t->err = "DIGESTFINALXOF_ERROR";
459 goto err;
460 }
461 } else {
462 if (!EVP_DigestFinal(mctx, got, &got_len)) {
463 t->err = "DIGESTFINAL_ERROR";
464 goto err;
465 }
466 }
467 if (!TEST_int_eq(expected->output_len, got_len)) {
468 t->err = "DIGEST_LENGTH_MISMATCH";
469 goto err;
470 }
471 if (!memory_err_compare(t, "DIGEST_MISMATCH",
472 expected->output, expected->output_len,
473 got, got_len))
474 goto err;
475
476 t->err = NULL;
477
478 err:
479 OPENSSL_free(got);
480 EVP_MD_CTX_free(mctx);
481 return 1;
482 }
483
484 static const EVP_TEST_METHOD digest_test_method = {
485 "Digest",
486 digest_test_init,
487 digest_test_cleanup,
488 digest_test_parse,
489 digest_test_run
490 };
491
492
493 /**
494 *** CIPHER TESTS
495 **/
496
497 typedef struct cipher_data_st {
498 const EVP_CIPHER *cipher;
499 EVP_CIPHER *fetched_cipher;
500 int enc;
501 /* EVP_CIPH_GCM_MODE, EVP_CIPH_CCM_MODE or EVP_CIPH_OCB_MODE if AEAD */
502 int aead;
503 unsigned char *key;
504 size_t key_len;
505 size_t key_bits; /* Used by RC2 */
506 unsigned char *iv;
507 unsigned int rounds;
508 size_t iv_len;
509 unsigned char *plaintext;
510 size_t plaintext_len;
511 unsigned char *ciphertext;
512 size_t ciphertext_len;
513 /* GCM, CCM, OCB and SIV only */
514 unsigned char *aad[AAD_NUM];
515 size_t aad_len[AAD_NUM];
516 unsigned char *tag;
517 size_t tag_len;
518 int tag_late;
519 } CIPHER_DATA;
520
521 static int cipher_test_init(EVP_TEST *t, const char *alg)
522 {
523 const EVP_CIPHER *cipher;
524 EVP_CIPHER *fetched_cipher;
525 CIPHER_DATA *cdat;
526 int m;
527
528 if ((cipher = fetched_cipher = EVP_CIPHER_fetch(NULL, alg, NULL)) == NULL
529 && (cipher = EVP_get_cipherbyname(alg)) == NULL) {
530 /* If alg has an OID assume disabled algorithm */
531 if (OBJ_sn2nid(alg) != NID_undef || OBJ_ln2nid(alg) != NID_undef) {
532 t->skip = 1;
533 return 1;
534 }
535 return 0;
536 }
537 cdat = OPENSSL_zalloc(sizeof(*cdat));
538 cdat->cipher = cipher;
539 cdat->fetched_cipher = fetched_cipher;
540 cdat->enc = -1;
541 m = EVP_CIPHER_mode(cipher);
542 if (m == EVP_CIPH_GCM_MODE
543 || m == EVP_CIPH_OCB_MODE
544 || m == EVP_CIPH_SIV_MODE
545 || m == EVP_CIPH_CCM_MODE)
546 cdat->aead = m;
547 else if (EVP_CIPHER_flags(cipher) & EVP_CIPH_FLAG_AEAD_CIPHER)
548 cdat->aead = -1;
549 else
550 cdat->aead = 0;
551
552 t->data = cdat;
553 if (fetched_cipher != NULL)
554 TEST_info("%s is fetched", alg);
555 return 1;
556 }
557
558 static void cipher_test_cleanup(EVP_TEST *t)
559 {
560 int i;
561 CIPHER_DATA *cdat = t->data;
562
563 OPENSSL_free(cdat->key);
564 OPENSSL_free(cdat->iv);
565 OPENSSL_free(cdat->ciphertext);
566 OPENSSL_free(cdat->plaintext);
567 for (i = 0; i < AAD_NUM; i++)
568 OPENSSL_free(cdat->aad[i]);
569 OPENSSL_free(cdat->tag);
570 EVP_CIPHER_meth_free(cdat->fetched_cipher);
571 }
572
573 static int cipher_test_parse(EVP_TEST *t, const char *keyword,
574 const char *value)
575 {
576 CIPHER_DATA *cdat = t->data;
577 int i;
578
579 if (strcmp(keyword, "Key") == 0)
580 return parse_bin(value, &cdat->key, &cdat->key_len);
581 if (strcmp(keyword, "Rounds") == 0) {
582 i = atoi(value);
583 if (i < 0)
584 return -1;
585 cdat->rounds = (unsigned int)i;
586 return 1;
587 }
588 if (strcmp(keyword, "IV") == 0)
589 return parse_bin(value, &cdat->iv, &cdat->iv_len);
590 if (strcmp(keyword, "Plaintext") == 0)
591 return parse_bin(value, &cdat->plaintext, &cdat->plaintext_len);
592 if (strcmp(keyword, "Ciphertext") == 0)
593 return parse_bin(value, &cdat->ciphertext, &cdat->ciphertext_len);
594 if (strcmp(keyword, "KeyBits") == 0) {
595 i = atoi(value);
596 if (i < 0)
597 return -1;
598 cdat->key_bits = (size_t)i;
599 return 1;
600 }
601 if (cdat->aead) {
602 if (strcmp(keyword, "AAD") == 0) {
603 for (i = 0; i < AAD_NUM; i++) {
604 if (cdat->aad[i] == NULL)
605 return parse_bin(value, &cdat->aad[i], &cdat->aad_len[i]);
606 }
607 return -1;
608 }
609 if (strcmp(keyword, "Tag") == 0)
610 return parse_bin(value, &cdat->tag, &cdat->tag_len);
611 if (strcmp(keyword, "SetTagLate") == 0) {
612 if (strcmp(value, "TRUE") == 0)
613 cdat->tag_late = 1;
614 else if (strcmp(value, "FALSE") == 0)
615 cdat->tag_late = 0;
616 else
617 return -1;
618 return 1;
619 }
620 }
621
622 if (strcmp(keyword, "Operation") == 0) {
623 if (strcmp(value, "ENCRYPT") == 0)
624 cdat->enc = 1;
625 else if (strcmp(value, "DECRYPT") == 0)
626 cdat->enc = 0;
627 else
628 return -1;
629 return 1;
630 }
631 return 0;
632 }
633
634 static int cipher_test_enc(EVP_TEST *t, int enc,
635 size_t out_misalign, size_t inp_misalign, int frag)
636 {
637 CIPHER_DATA *expected = t->data;
638 unsigned char *in, *expected_out, *tmp = NULL;
639 size_t in_len, out_len, donelen = 0;
640 int ok = 0, tmplen, chunklen, tmpflen, i;
641 EVP_CIPHER_CTX *ctx_base = NULL;
642 EVP_CIPHER_CTX *ctx = NULL;
643
644 t->err = "TEST_FAILURE";
645 if (!TEST_ptr(ctx_base = EVP_CIPHER_CTX_new()))
646 goto err;
647 if (!TEST_ptr(ctx = EVP_CIPHER_CTX_new()))
648 goto err;
649 EVP_CIPHER_CTX_set_flags(ctx_base, EVP_CIPHER_CTX_FLAG_WRAP_ALLOW);
650 if (enc) {
651 in = expected->plaintext;
652 in_len = expected->plaintext_len;
653 expected_out = expected->ciphertext;
654 out_len = expected->ciphertext_len;
655 } else {
656 in = expected->ciphertext;
657 in_len = expected->ciphertext_len;
658 expected_out = expected->plaintext;
659 out_len = expected->plaintext_len;
660 }
661 if (inp_misalign == (size_t)-1) {
662 /*
663 * Exercise in-place encryption
664 */
665 tmp = OPENSSL_malloc(out_misalign + in_len + 2 * EVP_MAX_BLOCK_LENGTH);
666 if (!tmp)
667 goto err;
668 in = memcpy(tmp + out_misalign, in, in_len);
669 } else {
670 inp_misalign += 16 - ((out_misalign + in_len) & 15);
671 /*
672 * 'tmp' will store both output and copy of input. We make the copy
673 * of input to specifically aligned part of 'tmp'. So we just
674 * figured out how much padding would ensure the required alignment,
675 * now we allocate extended buffer and finally copy the input just
676 * past inp_misalign in expression below. Output will be written
677 * past out_misalign...
678 */
679 tmp = OPENSSL_malloc(out_misalign + in_len + 2 * EVP_MAX_BLOCK_LENGTH +
680 inp_misalign + in_len);
681 if (!tmp)
682 goto err;
683 in = memcpy(tmp + out_misalign + in_len + 2 * EVP_MAX_BLOCK_LENGTH +
684 inp_misalign, in, in_len);
685 }
686 if (!EVP_CipherInit_ex(ctx_base, expected->cipher, NULL, NULL, NULL, enc)) {
687 t->err = "CIPHERINIT_ERROR";
688 goto err;
689 }
690 if (expected->iv) {
691 if (expected->aead) {
692 if (!EVP_CIPHER_CTX_ctrl(ctx_base, EVP_CTRL_AEAD_SET_IVLEN,
693 expected->iv_len, 0)) {
694 t->err = "INVALID_IV_LENGTH";
695 goto err;
696 }
697 } else if (expected->iv_len != (size_t)EVP_CIPHER_CTX_iv_length(ctx_base)) {
698 t->err = "INVALID_IV_LENGTH";
699 goto err;
700 }
701 }
702 if (expected->aead) {
703 unsigned char *tag;
704 /*
705 * If encrypting or OCB just set tag length initially, otherwise
706 * set tag length and value.
707 */
708 if (enc || expected->aead == EVP_CIPH_OCB_MODE || expected->tag_late) {
709 t->err = "TAG_LENGTH_SET_ERROR";
710 tag = NULL;
711 } else {
712 t->err = "TAG_SET_ERROR";
713 tag = expected->tag;
714 }
715 if (tag || expected->aead != EVP_CIPH_GCM_MODE) {
716 if (!EVP_CIPHER_CTX_ctrl(ctx_base, EVP_CTRL_AEAD_SET_TAG,
717 expected->tag_len, tag))
718 goto err;
719 }
720 }
721
722 if (expected->rounds > 0) {
723 int rounds = (int)expected->rounds;
724
725 if (!EVP_CIPHER_CTX_ctrl(ctx_base, EVP_CTRL_SET_RC5_ROUNDS, rounds, NULL)) {
726 t->err = "INVALID_ROUNDS";
727 goto err;
728 }
729 }
730
731 if (!EVP_CIPHER_CTX_set_key_length(ctx_base, expected->key_len)) {
732 t->err = "INVALID_KEY_LENGTH";
733 goto err;
734 }
735 if (expected->key_bits > 0) {
736 int bits = (int)expected->key_bits;
737
738 if (!EVP_CIPHER_CTX_ctrl(ctx_base, EVP_CTRL_SET_RC2_KEY_BITS, bits, NULL)) {
739 t->err = "INVALID KEY BITS";
740 goto err;
741 }
742 }
743 if (!EVP_CipherInit_ex(ctx_base, NULL, NULL, expected->key, expected->iv, -1)) {
744 t->err = "KEY_SET_ERROR";
745 goto err;
746 }
747
748 /* Check that we get the same IV back */
749 if (expected->iv != NULL
750 && (EVP_CIPHER_flags(expected->cipher) & EVP_CIPH_CUSTOM_IV) == 0
751 && !TEST_mem_eq(expected->iv, expected->iv_len,
752 EVP_CIPHER_CTX_iv(ctx_base), expected->iv_len)) {
753 t->err = "INVALID_IV";
754 goto err;
755 }
756
757 /* Test that the cipher dup functions correctly if it is supported */
758 if (EVP_CIPHER_CTX_copy(ctx, ctx_base)) {
759 EVP_CIPHER_CTX_free(ctx_base);
760 ctx_base = NULL;
761 } else {
762 EVP_CIPHER_CTX_free(ctx);
763 ctx = ctx_base;
764 }
765
766 if (expected->aead == EVP_CIPH_CCM_MODE) {
767 if (!EVP_CipherUpdate(ctx, NULL, &tmplen, NULL, out_len)) {
768 t->err = "CCM_PLAINTEXT_LENGTH_SET_ERROR";
769 goto err;
770 }
771 }
772 if (expected->aad[0] != NULL) {
773 t->err = "AAD_SET_ERROR";
774 if (!frag) {
775 for (i = 0; expected->aad[i] != NULL; i++) {
776 if (!EVP_CipherUpdate(ctx, NULL, &chunklen, expected->aad[i],
777 expected->aad_len[i]))
778 goto err;
779 }
780 } else {
781 /*
782 * Supply the AAD in chunks less than the block size where possible
783 */
784 for (i = 0; expected->aad[i] != NULL; i++) {
785 if (expected->aad_len[i] > 0) {
786 if (!EVP_CipherUpdate(ctx, NULL, &chunklen, expected->aad[i], 1))
787 goto err;
788 donelen++;
789 }
790 if (expected->aad_len[i] > 2) {
791 if (!EVP_CipherUpdate(ctx, NULL, &chunklen,
792 expected->aad[i] + donelen,
793 expected->aad_len[i] - 2))
794 goto err;
795 donelen += expected->aad_len[i] - 2;
796 }
797 if (expected->aad_len[i] > 1
798 && !EVP_CipherUpdate(ctx, NULL, &chunklen,
799 expected->aad[i] + donelen, 1))
800 goto err;
801 }
802 }
803 }
804
805 if (!enc && (expected->aead == EVP_CIPH_OCB_MODE || expected->tag_late)) {
806 if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG,
807 expected->tag_len, expected->tag)) {
808 t->err = "TAG_SET_ERROR";
809 goto err;
810 }
811 }
812
813 EVP_CIPHER_CTX_set_padding(ctx, 0);
814 t->err = "CIPHERUPDATE_ERROR";
815 tmplen = 0;
816 if (!frag) {
817 /* We supply the data all in one go */
818 if (!EVP_CipherUpdate(ctx, tmp + out_misalign, &tmplen, in, in_len))
819 goto err;
820 } else {
821 /* Supply the data in chunks less than the block size where possible */
822 if (in_len > 0) {
823 if (!EVP_CipherUpdate(ctx, tmp + out_misalign, &chunklen, in, 1))
824 goto err;
825 tmplen += chunklen;
826 in++;
827 in_len--;
828 }
829 if (in_len > 1) {
830 if (!EVP_CipherUpdate(ctx, tmp + out_misalign + tmplen, &chunklen,
831 in, in_len - 1))
832 goto err;
833 tmplen += chunklen;
834 in += in_len - 1;
835 in_len = 1;
836 }
837 if (in_len > 0 ) {
838 if (!EVP_CipherUpdate(ctx, tmp + out_misalign + tmplen, &chunklen,
839 in, 1))
840 goto err;
841 tmplen += chunklen;
842 }
843 }
844 if (!EVP_CipherFinal_ex(ctx, tmp + out_misalign + tmplen, &tmpflen)) {
845 t->err = "CIPHERFINAL_ERROR";
846 goto err;
847 }
848 if (!memory_err_compare(t, "VALUE_MISMATCH", expected_out, out_len,
849 tmp + out_misalign, tmplen + tmpflen))
850 goto err;
851 if (enc && expected->aead) {
852 unsigned char rtag[16];
853
854 if (!TEST_size_t_le(expected->tag_len, sizeof(rtag))) {
855 t->err = "TAG_LENGTH_INTERNAL_ERROR";
856 goto err;
857 }
858 if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_GET_TAG,
859 expected->tag_len, rtag)) {
860 t->err = "TAG_RETRIEVE_ERROR";
861 goto err;
862 }
863 if (!memory_err_compare(t, "TAG_VALUE_MISMATCH",
864 expected->tag, expected->tag_len,
865 rtag, expected->tag_len))
866 goto err;
867 }
868 t->err = NULL;
869 ok = 1;
870 err:
871 OPENSSL_free(tmp);
872 if (ctx != ctx_base)
873 EVP_CIPHER_CTX_free(ctx_base);
874 EVP_CIPHER_CTX_free(ctx);
875 return ok;
876 }
877
878 static int cipher_test_run(EVP_TEST *t)
879 {
880 CIPHER_DATA *cdat = t->data;
881 int rv, frag = 0;
882 size_t out_misalign, inp_misalign;
883
884 if (!cdat->key) {
885 t->err = "NO_KEY";
886 return 0;
887 }
888 if (!cdat->iv && EVP_CIPHER_iv_length(cdat->cipher)) {
889 /* IV is optional and usually omitted in wrap mode */
890 if (EVP_CIPHER_mode(cdat->cipher) != EVP_CIPH_WRAP_MODE) {
891 t->err = "NO_IV";
892 return 0;
893 }
894 }
895 if (cdat->aead && !cdat->tag) {
896 t->err = "NO_TAG";
897 return 0;
898 }
899 for (out_misalign = 0; out_misalign <= 1;) {
900 static char aux_err[64];
901 t->aux_err = aux_err;
902 for (inp_misalign = (size_t)-1; inp_misalign != 2; inp_misalign++) {
903 if (inp_misalign == (size_t)-1) {
904 /* kludge: inp_misalign == -1 means "exercise in-place" */
905 BIO_snprintf(aux_err, sizeof(aux_err),
906 "%s in-place, %sfragmented",
907 out_misalign ? "misaligned" : "aligned",
908 frag ? "" : "not ");
909 } else {
910 BIO_snprintf(aux_err, sizeof(aux_err),
911 "%s output and %s input, %sfragmented",
912 out_misalign ? "misaligned" : "aligned",
913 inp_misalign ? "misaligned" : "aligned",
914 frag ? "" : "not ");
915 }
916 if (cdat->enc) {
917 rv = cipher_test_enc(t, 1, out_misalign, inp_misalign, frag);
918 /* Not fatal errors: return */
919 if (rv != 1) {
920 if (rv < 0)
921 return 0;
922 return 1;
923 }
924 }
925 if (cdat->enc != 1) {
926 rv = cipher_test_enc(t, 0, out_misalign, inp_misalign, frag);
927 /* Not fatal errors: return */
928 if (rv != 1) {
929 if (rv < 0)
930 return 0;
931 return 1;
932 }
933 }
934 }
935
936 if (out_misalign == 1 && frag == 0) {
937 /*
938 * XTS, SIV, CCM and Wrap modes have special requirements about input
939 * lengths so we don't fragment for those
940 */
941 if (cdat->aead == EVP_CIPH_CCM_MODE
942 || EVP_CIPHER_mode(cdat->cipher) == EVP_CIPH_SIV_MODE
943 || EVP_CIPHER_mode(cdat->cipher) == EVP_CIPH_XTS_MODE
944 || EVP_CIPHER_mode(cdat->cipher) == EVP_CIPH_WRAP_MODE)
945 break;
946 out_misalign = 0;
947 frag++;
948 } else {
949 out_misalign++;
950 }
951 }
952 t->aux_err = NULL;
953
954 return 1;
955 }
956
957 static const EVP_TEST_METHOD cipher_test_method = {
958 "Cipher",
959 cipher_test_init,
960 cipher_test_cleanup,
961 cipher_test_parse,
962 cipher_test_run
963 };
964
965
966 /**
967 *** MAC TESTS
968 **/
969
970 typedef struct mac_data_st {
971 /* MAC type in one form or another */
972 char *mac_name;
973 EVP_MAC *mac; /* for mac_test_run_mac */
974 int type; /* for mac_test_run_pkey */
975 /* Algorithm string for this MAC */
976 char *alg;
977 /* MAC key */
978 unsigned char *key;
979 size_t key_len;
980 /* MAC IV (GMAC) */
981 unsigned char *iv;
982 size_t iv_len;
983 /* Input to MAC */
984 unsigned char *input;
985 size_t input_len;
986 /* Expected output */
987 unsigned char *output;
988 size_t output_len;
989 unsigned char *custom;
990 size_t custom_len;
991 /* MAC salt (blake2) */
992 unsigned char *salt;
993 size_t salt_len;
994 /* Collection of controls */
995 STACK_OF(OPENSSL_STRING) *controls;
996 } MAC_DATA;
997
998 static int mac_test_init(EVP_TEST *t, const char *alg)
999 {
1000 EVP_MAC *mac = NULL;
1001 int type = NID_undef;
1002 MAC_DATA *mdat;
1003
1004 if ((mac = EVP_MAC_fetch(NULL, alg, NULL)) == NULL) {
1005 /*
1006 * Since we didn't find an EVP_MAC, we check for known EVP_PKEY methods
1007 * For debugging purposes, we allow 'NNNN by EVP_PKEY' to force running
1008 * the EVP_PKEY method.
1009 */
1010 size_t sz = strlen(alg);
1011 static const char epilogue[] = " by EVP_PKEY";
1012
1013 if (sz >= sizeof(epilogue)
1014 && strcmp(alg + sz - (sizeof(epilogue) - 1), epilogue) == 0)
1015 sz -= sizeof(epilogue) - 1;
1016
1017 if (strncmp(alg, "HMAC", sz) == 0) {
1018 type = EVP_PKEY_HMAC;
1019 } else if (strncmp(alg, "CMAC", sz) == 0) {
1020 #ifndef OPENSSL_NO_CMAC
1021 type = EVP_PKEY_CMAC;
1022 #else
1023 t->skip = 1;
1024 return 1;
1025 #endif
1026 } else if (strncmp(alg, "Poly1305", sz) == 0) {
1027 #ifndef OPENSSL_NO_POLY1305
1028 type = EVP_PKEY_POLY1305;
1029 #else
1030 t->skip = 1;
1031 return 1;
1032 #endif
1033 } else if (strncmp(alg, "SipHash", sz) == 0) {
1034 #ifndef OPENSSL_NO_SIPHASH
1035 type = EVP_PKEY_SIPHASH;
1036 #else
1037 t->skip = 1;
1038 return 1;
1039 #endif
1040 } else {
1041 /*
1042 * Not a known EVP_PKEY method either. If it's a known OID, then
1043 * assume it's been disabled.
1044 */
1045 if (OBJ_sn2nid(alg) != NID_undef || OBJ_ln2nid(alg) != NID_undef) {
1046 t->skip = 1;
1047 return 1;
1048 }
1049
1050 return 0;
1051 }
1052 }
1053
1054 mdat = OPENSSL_zalloc(sizeof(*mdat));
1055 mdat->type = type;
1056 mdat->mac_name = OPENSSL_strdup(alg);
1057 mdat->mac = mac;
1058 mdat->controls = sk_OPENSSL_STRING_new_null();
1059 t->data = mdat;
1060 return 1;
1061 }
1062
1063 /* Because OPENSSL_free is a macro, it can't be passed as a function pointer */
1064 static void openssl_free(char *m)
1065 {
1066 OPENSSL_free(m);
1067 }
1068
1069 static void mac_test_cleanup(EVP_TEST *t)
1070 {
1071 MAC_DATA *mdat = t->data;
1072
1073 EVP_MAC_free(mdat->mac);
1074 OPENSSL_free(mdat->mac_name);
1075 sk_OPENSSL_STRING_pop_free(mdat->controls, openssl_free);
1076 OPENSSL_free(mdat->alg);
1077 OPENSSL_free(mdat->key);
1078 OPENSSL_free(mdat->iv);
1079 OPENSSL_free(mdat->custom);
1080 OPENSSL_free(mdat->salt);
1081 OPENSSL_free(mdat->input);
1082 OPENSSL_free(mdat->output);
1083 }
1084
1085 static int mac_test_parse(EVP_TEST *t,
1086 const char *keyword, const char *value)
1087 {
1088 MAC_DATA *mdata = t->data;
1089
1090 if (strcmp(keyword, "Key") == 0)
1091 return parse_bin(value, &mdata->key, &mdata->key_len);
1092 if (strcmp(keyword, "IV") == 0)
1093 return parse_bin(value, &mdata->iv, &mdata->iv_len);
1094 if (strcmp(keyword, "Custom") == 0)
1095 return parse_bin(value, &mdata->custom, &mdata->custom_len);
1096 if (strcmp(keyword, "Salt") == 0)
1097 return parse_bin(value, &mdata->salt, &mdata->salt_len);
1098 if (strcmp(keyword, "Algorithm") == 0) {
1099 mdata->alg = OPENSSL_strdup(value);
1100 if (!mdata->alg)
1101 return -1;
1102 return 1;
1103 }
1104 if (strcmp(keyword, "Input") == 0)
1105 return parse_bin(value, &mdata->input, &mdata->input_len);
1106 if (strcmp(keyword, "Output") == 0)
1107 return parse_bin(value, &mdata->output, &mdata->output_len);
1108 if (strcmp(keyword, "Ctrl") == 0)
1109 return sk_OPENSSL_STRING_push(mdata->controls,
1110 OPENSSL_strdup(value)) != 0;
1111 return 0;
1112 }
1113
1114 static int mac_test_ctrl_pkey(EVP_TEST *t, EVP_PKEY_CTX *pctx,
1115 const char *value)
1116 {
1117 int rv;
1118 char *p, *tmpval;
1119
1120 if (!TEST_ptr(tmpval = OPENSSL_strdup(value)))
1121 return 0;
1122 p = strchr(tmpval, ':');
1123 if (p != NULL)
1124 *p++ = '\0';
1125 rv = EVP_PKEY_CTX_ctrl_str(pctx, tmpval, p);
1126 if (rv == -2)
1127 t->err = "PKEY_CTRL_INVALID";
1128 else if (rv <= 0)
1129 t->err = "PKEY_CTRL_ERROR";
1130 else
1131 rv = 1;
1132 OPENSSL_free(tmpval);
1133 return rv > 0;
1134 }
1135
1136 static int mac_test_run_pkey(EVP_TEST *t)
1137 {
1138 MAC_DATA *expected = t->data;
1139 EVP_MD_CTX *mctx = NULL;
1140 EVP_PKEY_CTX *pctx = NULL, *genctx = NULL;
1141 EVP_PKEY *key = NULL;
1142 const EVP_MD *md = NULL;
1143 unsigned char *got = NULL;
1144 size_t got_len;
1145 int i;
1146
1147 if (expected->alg == NULL)
1148 TEST_info("Trying the EVP_PKEY %s test", OBJ_nid2sn(expected->type));
1149 else
1150 TEST_info("Trying the EVP_PKEY %s test with %s",
1151 OBJ_nid2sn(expected->type), expected->alg);
1152
1153 #ifdef OPENSSL_NO_DES
1154 if (expected->alg != NULL && strstr(expected->alg, "DES") != NULL) {
1155 /* Skip DES */
1156 t->err = NULL;
1157 goto err;
1158 }
1159 #endif
1160
1161 if (expected->type == EVP_PKEY_CMAC)
1162 key = EVP_PKEY_new_CMAC_key(NULL, expected->key, expected->key_len,
1163 EVP_get_cipherbyname(expected->alg));
1164 else
1165 key = EVP_PKEY_new_raw_private_key(expected->type, NULL, expected->key,
1166 expected->key_len);
1167 if (key == NULL) {
1168 t->err = "MAC_KEY_CREATE_ERROR";
1169 goto err;
1170 }
1171
1172 if (expected->type == EVP_PKEY_HMAC) {
1173 if (!TEST_ptr(md = EVP_get_digestbyname(expected->alg))) {
1174 t->err = "MAC_ALGORITHM_SET_ERROR";
1175 goto err;
1176 }
1177 }
1178 if (!TEST_ptr(mctx = EVP_MD_CTX_new())) {
1179 t->err = "INTERNAL_ERROR";
1180 goto err;
1181 }
1182 if (!EVP_DigestSignInit(mctx, &pctx, md, NULL, key)) {
1183 t->err = "DIGESTSIGNINIT_ERROR";
1184 goto err;
1185 }
1186 for (i = 0; i < sk_OPENSSL_STRING_num(expected->controls); i++)
1187 if (!mac_test_ctrl_pkey(t, pctx,
1188 sk_OPENSSL_STRING_value(expected->controls,
1189 i))) {
1190 t->err = "EVPPKEYCTXCTRL_ERROR";
1191 goto err;
1192 }
1193 if (!EVP_DigestSignUpdate(mctx, expected->input, expected->input_len)) {
1194 t->err = "DIGESTSIGNUPDATE_ERROR";
1195 goto err;
1196 }
1197 if (!EVP_DigestSignFinal(mctx, NULL, &got_len)) {
1198 t->err = "DIGESTSIGNFINAL_LENGTH_ERROR";
1199 goto err;
1200 }
1201 if (!TEST_ptr(got = OPENSSL_malloc(got_len))) {
1202 t->err = "TEST_FAILURE";
1203 goto err;
1204 }
1205 if (!EVP_DigestSignFinal(mctx, got, &got_len)
1206 || !memory_err_compare(t, "TEST_MAC_ERR",
1207 expected->output, expected->output_len,
1208 got, got_len)) {
1209 t->err = "TEST_MAC_ERR";
1210 goto err;
1211 }
1212 t->err = NULL;
1213 err:
1214 EVP_MD_CTX_free(mctx);
1215 OPENSSL_free(got);
1216 EVP_PKEY_CTX_free(genctx);
1217 EVP_PKEY_free(key);
1218 return 1;
1219 }
1220
1221 static int mac_test_run_mac(EVP_TEST *t)
1222 {
1223 MAC_DATA *expected = t->data;
1224 EVP_MAC_CTX *ctx = NULL;
1225 unsigned char *got = NULL;
1226 size_t got_len;
1227 int i;
1228 OSSL_PARAM params[21];
1229 size_t params_n = 0;
1230 size_t params_n_allocstart = 0;
1231 const OSSL_PARAM *defined_params =
1232 EVP_MAC_settable_ctx_params(expected->mac);
1233
1234 if (expected->alg == NULL)
1235 TEST_info("Trying the EVP_MAC %s test", expected->mac_name);
1236 else
1237 TEST_info("Trying the EVP_MAC %s test with %s",
1238 expected->mac_name, expected->alg);
1239
1240 #ifdef OPENSSL_NO_DES
1241 if (expected->alg != NULL && strstr(expected->alg, "DES") != NULL) {
1242 /* Skip DES */
1243 t->err = NULL;
1244 goto err;
1245 }
1246 #endif
1247
1248 if (expected->alg != NULL) {
1249 /*
1250 * The underlying algorithm may be a cipher or a digest.
1251 * We don't know which it is, but we can ask the MAC what it
1252 * should be and bet on that.
1253 */
1254 if (OSSL_PARAM_locate_const(defined_params,
1255 OSSL_MAC_PARAM_CIPHER) != NULL) {
1256 params[params_n++] =
1257 OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_CIPHER,
1258 expected->alg, 0);
1259 } else if (OSSL_PARAM_locate_const(defined_params,
1260 OSSL_MAC_PARAM_DIGEST) != NULL) {
1261 params[params_n++] =
1262 OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST,
1263 expected->alg, 0);
1264 } else {
1265 t->err = "MAC_BAD_PARAMS";
1266 goto err;
1267 }
1268 }
1269 if (expected->key != NULL)
1270 params[params_n++] =
1271 OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_KEY,
1272 expected->key,
1273 expected->key_len);
1274 if (expected->custom != NULL)
1275 params[params_n++] =
1276 OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_CUSTOM,
1277 expected->custom,
1278 expected->custom_len);
1279 if (expected->salt != NULL)
1280 params[params_n++] =
1281 OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_SALT,
1282 expected->salt,
1283 expected->salt_len);
1284 if (expected->iv != NULL)
1285 params[params_n++] =
1286 OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_IV,
1287 expected->iv,
1288 expected->iv_len);
1289
1290 /*
1291 * Unknown controls. They must match parameters that the MAC recognises
1292 */
1293 if (params_n + sk_OPENSSL_STRING_num(expected->controls)
1294 >= OSSL_NELEM(params)) {
1295 t->err = "MAC_TOO_MANY_PARAMETERS";
1296 goto err;
1297 }
1298 params_n_allocstart = params_n;
1299 for (i = 0; i < sk_OPENSSL_STRING_num(expected->controls); i++) {
1300 char *tmpkey, *tmpval;
1301 char *value = sk_OPENSSL_STRING_value(expected->controls, i);
1302
1303 if (!TEST_ptr(tmpkey = OPENSSL_strdup(value))) {
1304 t->err = "MAC_PARAM_ERROR";
1305 goto err;
1306 }
1307 tmpval = strchr(tmpkey, ':');
1308 if (tmpval != NULL)
1309 *tmpval++ = '\0';
1310
1311 if (tmpval == NULL
1312 || !OSSL_PARAM_allocate_from_text(&params[params_n],
1313 defined_params,
1314 tmpkey, tmpval,
1315 strlen(tmpval), NULL)) {
1316 OPENSSL_free(tmpkey);
1317 t->err = "MAC_PARAM_ERROR";
1318 goto err;
1319 }
1320 params_n++;
1321
1322 OPENSSL_free(tmpkey);
1323 }
1324 params[params_n] = OSSL_PARAM_construct_end();
1325
1326 if ((ctx = EVP_MAC_new_ctx(expected->mac)) == NULL) {
1327 t->err = "MAC_CREATE_ERROR";
1328 goto err;
1329 }
1330
1331 if (!EVP_MAC_set_ctx_params(ctx, params)) {
1332 t->err = "MAC_BAD_PARAMS";
1333 goto err;
1334 }
1335 if (!EVP_MAC_init(ctx)) {
1336 t->err = "MAC_INIT_ERROR";
1337 goto err;
1338 }
1339 if (!EVP_MAC_update(ctx, expected->input, expected->input_len)) {
1340 t->err = "MAC_UPDATE_ERROR";
1341 goto err;
1342 }
1343 if (!EVP_MAC_final(ctx, NULL, &got_len, 0)) {
1344 t->err = "MAC_FINAL_LENGTH_ERROR";
1345 goto err;
1346 }
1347 if (!TEST_ptr(got = OPENSSL_malloc(got_len))) {
1348 t->err = "TEST_FAILURE";
1349 goto err;
1350 }
1351 if (!EVP_MAC_final(ctx, got, &got_len, got_len)
1352 || !memory_err_compare(t, "TEST_MAC_ERR",
1353 expected->output, expected->output_len,
1354 got, got_len)) {
1355 t->err = "TEST_MAC_ERR";
1356 goto err;
1357 }
1358 t->err = NULL;
1359 err:
1360 while (params_n-- > params_n_allocstart) {
1361 OPENSSL_free(params[params_n].data);
1362 }
1363 EVP_MAC_free_ctx(ctx);
1364 OPENSSL_free(got);
1365 return 1;
1366 }
1367
1368 static int mac_test_run(EVP_TEST *t)
1369 {
1370 MAC_DATA *expected = t->data;
1371
1372 if (expected->mac != NULL)
1373 return mac_test_run_mac(t);
1374 return mac_test_run_pkey(t);
1375 }
1376
1377 static const EVP_TEST_METHOD mac_test_method = {
1378 "MAC",
1379 mac_test_init,
1380 mac_test_cleanup,
1381 mac_test_parse,
1382 mac_test_run
1383 };
1384
1385
1386 /**
1387 *** PUBLIC KEY TESTS
1388 *** These are all very similar and share much common code.
1389 **/
1390
1391 typedef struct pkey_data_st {
1392 /* Context for this operation */
1393 EVP_PKEY_CTX *ctx;
1394 /* Key operation to perform */
1395 int (*keyop) (EVP_PKEY_CTX *ctx,
1396 unsigned char *sig, size_t *siglen,
1397 const unsigned char *tbs, size_t tbslen);
1398 /* Input to MAC */
1399 unsigned char *input;
1400 size_t input_len;
1401 /* Expected output */
1402 unsigned char *output;
1403 size_t output_len;
1404 } PKEY_DATA;
1405
1406 /*
1407 * Perform public key operation setup: lookup key, allocated ctx and call
1408 * the appropriate initialisation function
1409 */
1410 static int pkey_test_init(EVP_TEST *t, const char *name,
1411 int use_public,
1412 int (*keyopinit) (EVP_PKEY_CTX *ctx),
1413 int (*keyop)(EVP_PKEY_CTX *ctx,
1414 unsigned char *sig, size_t *siglen,
1415 const unsigned char *tbs,
1416 size_t tbslen))
1417 {
1418 PKEY_DATA *kdata;
1419 EVP_PKEY *pkey = NULL;
1420 int rv = 0;
1421
1422 if (use_public)
1423 rv = find_key(&pkey, name, public_keys);
1424 if (rv == 0)
1425 rv = find_key(&pkey, name, private_keys);
1426 if (rv == 0 || pkey == NULL) {
1427 t->skip = 1;
1428 return 1;
1429 }
1430
1431 if (!TEST_ptr(kdata = OPENSSL_zalloc(sizeof(*kdata)))) {
1432 EVP_PKEY_free(pkey);
1433 return 0;
1434 }
1435 kdata->keyop = keyop;
1436 if (!TEST_ptr(kdata->ctx = EVP_PKEY_CTX_new(pkey, NULL))) {
1437 EVP_PKEY_free(pkey);
1438 OPENSSL_free(kdata);
1439 return 0;
1440 }
1441 if (keyopinit(kdata->ctx) <= 0)
1442 t->err = "KEYOP_INIT_ERROR";
1443 t->data = kdata;
1444 return 1;
1445 }
1446
1447 static void pkey_test_cleanup(EVP_TEST *t)
1448 {
1449 PKEY_DATA *kdata = t->data;
1450
1451 OPENSSL_free(kdata->input);
1452 OPENSSL_free(kdata->output);
1453 EVP_PKEY_CTX_free(kdata->ctx);
1454 }
1455
1456 static int pkey_test_ctrl(EVP_TEST *t, EVP_PKEY_CTX *pctx,
1457 const char *value)
1458 {
1459 int rv;
1460 char *p, *tmpval;
1461
1462 if (!TEST_ptr(tmpval = OPENSSL_strdup(value)))
1463 return 0;
1464 p = strchr(tmpval, ':');
1465 if (p != NULL)
1466 *p++ = '\0';
1467 rv = EVP_PKEY_CTX_ctrl_str(pctx, tmpval, p);
1468 if (rv == -2) {
1469 t->err = "PKEY_CTRL_INVALID";
1470 rv = 1;
1471 } else if (p != NULL && rv <= 0) {
1472 /* If p has an OID and lookup fails assume disabled algorithm */
1473 int nid = OBJ_sn2nid(p);
1474
1475 if (nid == NID_undef)
1476 nid = OBJ_ln2nid(p);
1477 if (nid != NID_undef
1478 && EVP_get_digestbynid(nid) == NULL
1479 && EVP_get_cipherbynid(nid) == NULL) {
1480 t->skip = 1;
1481 rv = 1;
1482 } else {
1483 t->err = "PKEY_CTRL_ERROR";
1484 rv = 1;
1485 }
1486 }
1487 OPENSSL_free(tmpval);
1488 return rv > 0;
1489 }
1490
1491 static int pkey_test_parse(EVP_TEST *t,
1492 const char *keyword, const char *value)
1493 {
1494 PKEY_DATA *kdata = t->data;
1495 if (strcmp(keyword, "Input") == 0)
1496 return parse_bin(value, &kdata->input, &kdata->input_len);
1497 if (strcmp(keyword, "Output") == 0)
1498 return parse_bin(value, &kdata->output, &kdata->output_len);
1499 if (strcmp(keyword, "Ctrl") == 0)
1500 return pkey_test_ctrl(t, kdata->ctx, value);
1501 return 0;
1502 }
1503
1504 static int pkey_test_run(EVP_TEST *t)
1505 {
1506 PKEY_DATA *expected = t->data;
1507 unsigned char *got = NULL;
1508 size_t got_len;
1509 EVP_PKEY_CTX *copy = NULL;
1510
1511 if (expected->keyop(expected->ctx, NULL, &got_len,
1512 expected->input, expected->input_len) <= 0
1513 || !TEST_ptr(got = OPENSSL_malloc(got_len))) {
1514 t->err = "KEYOP_LENGTH_ERROR";
1515 goto err;
1516 }
1517 if (expected->keyop(expected->ctx, got, &got_len,
1518 expected->input, expected->input_len) <= 0) {
1519 t->err = "KEYOP_ERROR";
1520 goto err;
1521 }
1522 if (!memory_err_compare(t, "KEYOP_MISMATCH",
1523 expected->output, expected->output_len,
1524 got, got_len))
1525 goto err;
1526
1527 t->err = NULL;
1528 OPENSSL_free(got);
1529 got = NULL;
1530
1531 /* Repeat the test on a copy. */
1532 if (!TEST_ptr(copy = EVP_PKEY_CTX_dup(expected->ctx))) {
1533 t->err = "INTERNAL_ERROR";
1534 goto err;
1535 }
1536 if (expected->keyop(copy, NULL, &got_len, expected->input,
1537 expected->input_len) <= 0
1538 || !TEST_ptr(got = OPENSSL_malloc(got_len))) {
1539 t->err = "KEYOP_LENGTH_ERROR";
1540 goto err;
1541 }
1542 if (expected->keyop(copy, got, &got_len, expected->input,
1543 expected->input_len) <= 0) {
1544 t->err = "KEYOP_ERROR";
1545 goto err;
1546 }
1547 if (!memory_err_compare(t, "KEYOP_MISMATCH",
1548 expected->output, expected->output_len,
1549 got, got_len))
1550 goto err;
1551
1552 err:
1553 OPENSSL_free(got);
1554 EVP_PKEY_CTX_free(copy);
1555 return 1;
1556 }
1557
1558 static int sign_test_init(EVP_TEST *t, const char *name)
1559 {
1560 return pkey_test_init(t, name, 0, EVP_PKEY_sign_init, EVP_PKEY_sign);
1561 }
1562
1563 static const EVP_TEST_METHOD psign_test_method = {
1564 "Sign",
1565 sign_test_init,
1566 pkey_test_cleanup,
1567 pkey_test_parse,
1568 pkey_test_run
1569 };
1570
1571 static int verify_recover_test_init(EVP_TEST *t, const char *name)
1572 {
1573 return pkey_test_init(t, name, 1, EVP_PKEY_verify_recover_init,
1574 EVP_PKEY_verify_recover);
1575 }
1576
1577 static const EVP_TEST_METHOD pverify_recover_test_method = {
1578 "VerifyRecover",
1579 verify_recover_test_init,
1580 pkey_test_cleanup,
1581 pkey_test_parse,
1582 pkey_test_run
1583 };
1584
1585 static int decrypt_test_init(EVP_TEST *t, const char *name)
1586 {
1587 return pkey_test_init(t, name, 0, EVP_PKEY_decrypt_init,
1588 EVP_PKEY_decrypt);
1589 }
1590
1591 static const EVP_TEST_METHOD pdecrypt_test_method = {
1592 "Decrypt",
1593 decrypt_test_init,
1594 pkey_test_cleanup,
1595 pkey_test_parse,
1596 pkey_test_run
1597 };
1598
1599 static int verify_test_init(EVP_TEST *t, const char *name)
1600 {
1601 return pkey_test_init(t, name, 1, EVP_PKEY_verify_init, 0);
1602 }
1603
1604 static int verify_test_run(EVP_TEST *t)
1605 {
1606 PKEY_DATA *kdata = t->data;
1607
1608 if (EVP_PKEY_verify(kdata->ctx, kdata->output, kdata->output_len,
1609 kdata->input, kdata->input_len) <= 0)
1610 t->err = "VERIFY_ERROR";
1611 return 1;
1612 }
1613
1614 static const EVP_TEST_METHOD pverify_test_method = {
1615 "Verify",
1616 verify_test_init,
1617 pkey_test_cleanup,
1618 pkey_test_parse,
1619 verify_test_run
1620 };
1621
1622
1623 static int pderive_test_init(EVP_TEST *t, const char *name)
1624 {
1625 return pkey_test_init(t, name, 0, EVP_PKEY_derive_init, 0);
1626 }
1627
1628 static int pderive_test_parse(EVP_TEST *t,
1629 const char *keyword, const char *value)
1630 {
1631 PKEY_DATA *kdata = t->data;
1632
1633 if (strcmp(keyword, "PeerKey") == 0) {
1634 EVP_PKEY *peer;
1635 if (find_key(&peer, value, public_keys) == 0)
1636 return -1;
1637 if (EVP_PKEY_derive_set_peer(kdata->ctx, peer) <= 0)
1638 return -1;
1639 return 1;
1640 }
1641 if (strcmp(keyword, "SharedSecret") == 0)
1642 return parse_bin(value, &kdata->output, &kdata->output_len);
1643 if (strcmp(keyword, "Ctrl") == 0)
1644 return pkey_test_ctrl(t, kdata->ctx, value);
1645 return 0;
1646 }
1647
1648 static int pderive_test_run(EVP_TEST *t)
1649 {
1650 PKEY_DATA *expected = t->data;
1651 unsigned char *got = NULL;
1652 size_t got_len;
1653
1654 if (EVP_PKEY_derive(expected->ctx, NULL, &got_len) <= 0) {
1655 t->err = "DERIVE_ERROR";
1656 goto err;
1657 }
1658 if (!TEST_ptr(got = OPENSSL_malloc(got_len))) {
1659 t->err = "DERIVE_ERROR";
1660 goto err;
1661 }
1662 if (EVP_PKEY_derive(expected->ctx, got, &got_len) <= 0) {
1663 t->err = "DERIVE_ERROR";
1664 goto err;
1665 }
1666 if (!memory_err_compare(t, "SHARED_SECRET_MISMATCH",
1667 expected->output, expected->output_len,
1668 got, got_len))
1669 goto err;
1670
1671 t->err = NULL;
1672 err:
1673 OPENSSL_free(got);
1674 return 1;
1675 }
1676
1677 static const EVP_TEST_METHOD pderive_test_method = {
1678 "Derive",
1679 pderive_test_init,
1680 pkey_test_cleanup,
1681 pderive_test_parse,
1682 pderive_test_run
1683 };
1684
1685
1686 /**
1687 *** PBE TESTS
1688 **/
1689
1690 typedef enum pbe_type_enum {
1691 PBE_TYPE_INVALID = 0,
1692 PBE_TYPE_SCRYPT, PBE_TYPE_PBKDF2, PBE_TYPE_PKCS12
1693 } PBE_TYPE;
1694
1695 typedef struct pbe_data_st {
1696 PBE_TYPE pbe_type;
1697 /* scrypt parameters */
1698 uint64_t N, r, p, maxmem;
1699 /* PKCS#12 parameters */
1700 int id, iter;
1701 const EVP_MD *md;
1702 /* password */
1703 unsigned char *pass;
1704 size_t pass_len;
1705 /* salt */
1706 unsigned char *salt;
1707 size_t salt_len;
1708 /* Expected output */
1709 unsigned char *key;
1710 size_t key_len;
1711 } PBE_DATA;
1712
1713 #ifndef OPENSSL_NO_SCRYPT
1714 /*
1715 * Parse unsigned decimal 64 bit integer value
1716 */
1717 static int parse_uint64(const char *value, uint64_t *pr)
1718 {
1719 const char *p = value;
1720
1721 if (!TEST_true(*p)) {
1722 TEST_info("Invalid empty integer value");
1723 return -1;
1724 }
1725 for (*pr = 0; *p; ) {
1726 if (*pr > UINT64_MAX / 10) {
1727 TEST_error("Integer overflow in string %s", value);
1728 return -1;
1729 }
1730 *pr *= 10;
1731 if (!TEST_true(isdigit((unsigned char)*p))) {
1732 TEST_error("Invalid character in string %s", value);
1733 return -1;
1734 }
1735 *pr += *p - '0';
1736 p++;
1737 }
1738 return 1;
1739 }
1740
1741 static int scrypt_test_parse(EVP_TEST *t,
1742 const char *keyword, const char *value)
1743 {
1744 PBE_DATA *pdata = t->data;
1745
1746 if (strcmp(keyword, "N") == 0)
1747 return parse_uint64(value, &pdata->N);
1748 if (strcmp(keyword, "p") == 0)
1749 return parse_uint64(value, &pdata->p);
1750 if (strcmp(keyword, "r") == 0)
1751 return parse_uint64(value, &pdata->r);
1752 if (strcmp(keyword, "maxmem") == 0)
1753 return parse_uint64(value, &pdata->maxmem);
1754 return 0;
1755 }
1756 #endif
1757
1758 static int pbkdf2_test_parse(EVP_TEST *t,
1759 const char *keyword, const char *value)
1760 {
1761 PBE_DATA *pdata = t->data;
1762
1763 if (strcmp(keyword, "iter") == 0) {
1764 pdata->iter = atoi(value);
1765 if (pdata->iter <= 0)
1766 return -1;
1767 return 1;
1768 }
1769 if (strcmp(keyword, "MD") == 0) {
1770 pdata->md = EVP_get_digestbyname(value);
1771 if (pdata->md == NULL)
1772 return -1;
1773 return 1;
1774 }
1775 return 0;
1776 }
1777
1778 static int pkcs12_test_parse(EVP_TEST *t,
1779 const char *keyword, const char *value)
1780 {
1781 PBE_DATA *pdata = t->data;
1782
1783 if (strcmp(keyword, "id") == 0) {
1784 pdata->id = atoi(value);
1785 if (pdata->id <= 0)
1786 return -1;
1787 return 1;
1788 }
1789 return pbkdf2_test_parse(t, keyword, value);
1790 }
1791
1792 static int pbe_test_init(EVP_TEST *t, const char *alg)
1793 {
1794 PBE_DATA *pdat;
1795 PBE_TYPE pbe_type = PBE_TYPE_INVALID;
1796
1797 if (strcmp(alg, "scrypt") == 0) {
1798 #ifndef OPENSSL_NO_SCRYPT
1799 pbe_type = PBE_TYPE_SCRYPT;
1800 #else
1801 t->skip = 1;
1802 return 1;
1803 #endif
1804 } else if (strcmp(alg, "pbkdf2") == 0) {
1805 pbe_type = PBE_TYPE_PBKDF2;
1806 } else if (strcmp(alg, "pkcs12") == 0) {
1807 pbe_type = PBE_TYPE_PKCS12;
1808 } else {
1809 TEST_error("Unknown pbe algorithm %s", alg);
1810 }
1811 pdat = OPENSSL_zalloc(sizeof(*pdat));
1812 pdat->pbe_type = pbe_type;
1813 t->data = pdat;
1814 return 1;
1815 }
1816
1817 static void pbe_test_cleanup(EVP_TEST *t)
1818 {
1819 PBE_DATA *pdat = t->data;
1820
1821 OPENSSL_free(pdat->pass);
1822 OPENSSL_free(pdat->salt);
1823 OPENSSL_free(pdat->key);
1824 }
1825
1826 static int pbe_test_parse(EVP_TEST *t,
1827 const char *keyword, const char *value)
1828 {
1829 PBE_DATA *pdata = t->data;
1830
1831 if (strcmp(keyword, "Password") == 0)
1832 return parse_bin(value, &pdata->pass, &pdata->pass_len);
1833 if (strcmp(keyword, "Salt") == 0)
1834 return parse_bin(value, &pdata->salt, &pdata->salt_len);
1835 if (strcmp(keyword, "Key") == 0)
1836 return parse_bin(value, &pdata->key, &pdata->key_len);
1837 if (pdata->pbe_type == PBE_TYPE_PBKDF2)
1838 return pbkdf2_test_parse(t, keyword, value);
1839 else if (pdata->pbe_type == PBE_TYPE_PKCS12)
1840 return pkcs12_test_parse(t, keyword, value);
1841 #ifndef OPENSSL_NO_SCRYPT
1842 else if (pdata->pbe_type == PBE_TYPE_SCRYPT)
1843 return scrypt_test_parse(t, keyword, value);
1844 #endif
1845 return 0;
1846 }
1847
1848 static int pbe_test_run(EVP_TEST *t)
1849 {
1850 PBE_DATA *expected = t->data;
1851 unsigned char *key;
1852
1853 if (!TEST_ptr(key = OPENSSL_malloc(expected->key_len))) {
1854 t->err = "INTERNAL_ERROR";
1855 goto err;
1856 }
1857 if (expected->pbe_type == PBE_TYPE_PBKDF2) {
1858 if (PKCS5_PBKDF2_HMAC((char *)expected->pass, expected->pass_len,
1859 expected->salt, expected->salt_len,
1860 expected->iter, expected->md,
1861 expected->key_len, key) == 0) {
1862 t->err = "PBKDF2_ERROR";
1863 goto err;
1864 }
1865 #ifndef OPENSSL_NO_SCRYPT
1866 } else if (expected->pbe_type == PBE_TYPE_SCRYPT) {
1867 if (EVP_PBE_scrypt((const char *)expected->pass, expected->pass_len,
1868 expected->salt, expected->salt_len, expected->N,
1869 expected->r, expected->p, expected->maxmem,
1870 key, expected->key_len) == 0) {
1871 t->err = "SCRYPT_ERROR";
1872 goto err;
1873 }
1874 #endif
1875 } else if (expected->pbe_type == PBE_TYPE_PKCS12) {
1876 if (PKCS12_key_gen_uni(expected->pass, expected->pass_len,
1877 expected->salt, expected->salt_len,
1878 expected->id, expected->iter, expected->key_len,
1879 key, expected->md) == 0) {
1880 t->err = "PKCS12_ERROR";
1881 goto err;
1882 }
1883 }
1884 if (!memory_err_compare(t, "KEY_MISMATCH", expected->key, expected->key_len,
1885 key, expected->key_len))
1886 goto err;
1887
1888 t->err = NULL;
1889 err:
1890 OPENSSL_free(key);
1891 return 1;
1892 }
1893
1894 static const EVP_TEST_METHOD pbe_test_method = {
1895 "PBE",
1896 pbe_test_init,
1897 pbe_test_cleanup,
1898 pbe_test_parse,
1899 pbe_test_run
1900 };
1901
1902
1903 /**
1904 *** BASE64 TESTS
1905 **/
1906
1907 typedef enum {
1908 BASE64_CANONICAL_ENCODING = 0,
1909 BASE64_VALID_ENCODING = 1,
1910 BASE64_INVALID_ENCODING = 2
1911 } base64_encoding_type;
1912
1913 typedef struct encode_data_st {
1914 /* Input to encoding */
1915 unsigned char *input;
1916 size_t input_len;
1917 /* Expected output */
1918 unsigned char *output;
1919 size_t output_len;
1920 base64_encoding_type encoding;
1921 } ENCODE_DATA;
1922
1923 static int encode_test_init(EVP_TEST *t, const char *encoding)
1924 {
1925 ENCODE_DATA *edata;
1926
1927 if (!TEST_ptr(edata = OPENSSL_zalloc(sizeof(*edata))))
1928 return 0;
1929 if (strcmp(encoding, "canonical") == 0) {
1930 edata->encoding = BASE64_CANONICAL_ENCODING;
1931 } else if (strcmp(encoding, "valid") == 0) {
1932 edata->encoding = BASE64_VALID_ENCODING;
1933 } else if (strcmp(encoding, "invalid") == 0) {
1934 edata->encoding = BASE64_INVALID_ENCODING;
1935 if (!TEST_ptr(t->expected_err = OPENSSL_strdup("DECODE_ERROR")))
1936 goto err;
1937 } else {
1938 TEST_error("Bad encoding: %s."
1939 " Should be one of {canonical, valid, invalid}",
1940 encoding);
1941 goto err;
1942 }
1943 t->data = edata;
1944 return 1;
1945 err:
1946 OPENSSL_free(edata);
1947 return 0;
1948 }
1949
1950 static void encode_test_cleanup(EVP_TEST *t)
1951 {
1952 ENCODE_DATA *edata = t->data;
1953
1954 OPENSSL_free(edata->input);
1955 OPENSSL_free(edata->output);
1956 memset(edata, 0, sizeof(*edata));
1957 }
1958
1959 static int encode_test_parse(EVP_TEST *t,
1960 const char *keyword, const char *value)
1961 {
1962 ENCODE_DATA *edata = t->data;
1963
1964 if (strcmp(keyword, "Input") == 0)
1965 return parse_bin(value, &edata->input, &edata->input_len);
1966 if (strcmp(keyword, "Output") == 0)
1967 return parse_bin(value, &edata->output, &edata->output_len);
1968 return 0;
1969 }
1970
1971 static int encode_test_run(EVP_TEST *t)
1972 {
1973 ENCODE_DATA *expected = t->data;
1974 unsigned char *encode_out = NULL, *decode_out = NULL;
1975 int output_len, chunk_len;
1976 EVP_ENCODE_CTX *decode_ctx = NULL, *encode_ctx = NULL;
1977
1978 if (!TEST_ptr(decode_ctx = EVP_ENCODE_CTX_new())) {
1979 t->err = "INTERNAL_ERROR";
1980 goto err;
1981 }
1982
1983 if (expected->encoding == BASE64_CANONICAL_ENCODING) {
1984
1985 if (!TEST_ptr(encode_ctx = EVP_ENCODE_CTX_new())
1986 || !TEST_ptr(encode_out =
1987 OPENSSL_malloc(EVP_ENCODE_LENGTH(expected->input_len))))
1988 goto err;
1989
1990 EVP_EncodeInit(encode_ctx);
1991 if (!TEST_true(EVP_EncodeUpdate(encode_ctx, encode_out, &chunk_len,
1992 expected->input, expected->input_len)))
1993 goto err;
1994
1995 output_len = chunk_len;
1996
1997 EVP_EncodeFinal(encode_ctx, encode_out + chunk_len, &chunk_len);
1998 output_len += chunk_len;
1999
2000 if (!memory_err_compare(t, "BAD_ENCODING",
2001 expected->output, expected->output_len,
2002 encode_out, output_len))
2003 goto err;
2004 }
2005
2006 if (!TEST_ptr(decode_out =
2007 OPENSSL_malloc(EVP_DECODE_LENGTH(expected->output_len))))
2008 goto err;
2009
2010 EVP_DecodeInit(decode_ctx);
2011 if (EVP_DecodeUpdate(decode_ctx, decode_out, &chunk_len, expected->output,
2012 expected->output_len) < 0) {
2013 t->err = "DECODE_ERROR";
2014 goto err;
2015 }
2016 output_len = chunk_len;
2017
2018 if (EVP_DecodeFinal(decode_ctx, decode_out + chunk_len, &chunk_len) != 1) {
2019 t->err = "DECODE_ERROR";
2020 goto err;
2021 }
2022 output_len += chunk_len;
2023
2024 if (expected->encoding != BASE64_INVALID_ENCODING
2025 && !memory_err_compare(t, "BAD_DECODING",
2026 expected->input, expected->input_len,
2027 decode_out, output_len)) {
2028 t->err = "BAD_DECODING";
2029 goto err;
2030 }
2031
2032 t->err = NULL;
2033 err:
2034 OPENSSL_free(encode_out);
2035 OPENSSL_free(decode_out);
2036 EVP_ENCODE_CTX_free(decode_ctx);
2037 EVP_ENCODE_CTX_free(encode_ctx);
2038 return 1;
2039 }
2040
2041 static const EVP_TEST_METHOD encode_test_method = {
2042 "Encoding",
2043 encode_test_init,
2044 encode_test_cleanup,
2045 encode_test_parse,
2046 encode_test_run,
2047 };
2048
2049
2050 /**
2051 *** RAND TESTS
2052 **/
2053
2054 #define MAX_RAND_REPEATS 15
2055
2056 typedef struct rand_data_pass_st {
2057 unsigned char *entropy;
2058 unsigned char *reseed_entropy;
2059 unsigned char *nonce;
2060 unsigned char *pers;
2061 unsigned char *reseed_addin;
2062 unsigned char *addinA;
2063 unsigned char *addinB;
2064 unsigned char *pr_entropyA;
2065 unsigned char *pr_entropyB;
2066 unsigned char *output;
2067 size_t entropy_len, nonce_len, pers_len, addinA_len, addinB_len,
2068 pr_entropyA_len, pr_entropyB_len, output_len, reseed_entropy_len,
2069 reseed_addin_len;
2070 } RAND_DATA_PASS;
2071
2072 typedef struct rand_data_st {
2073 /* Context for this operation */
2074 EVP_RAND_CTX *ctx;
2075 EVP_RAND_CTX *parent;
2076 int n;
2077 int prediction_resistance;
2078 int use_df;
2079 unsigned int generate_bits;
2080 char *cipher;
2081 char *digest;
2082
2083 /* Expected output */
2084 RAND_DATA_PASS data[MAX_RAND_REPEATS];
2085 } RAND_DATA;
2086
2087 static int rand_test_init(EVP_TEST *t, const char *name)
2088 {
2089 RAND_DATA *rdata;
2090 EVP_RAND *rand;
2091 OSSL_PARAM params[2] = { OSSL_PARAM_END, OSSL_PARAM_END };
2092 unsigned int strength = 256;
2093
2094 if (!TEST_ptr(rdata = OPENSSL_zalloc(sizeof(*rdata))))
2095 return 0;
2096
2097 rand = EVP_RAND_fetch(NULL, "TEST-RAND", NULL);
2098 if (rand == NULL)
2099 goto err;
2100 rdata->parent = EVP_RAND_CTX_new(rand, NULL);
2101 EVP_RAND_free(rand);
2102 if (rdata->parent == NULL)
2103 goto err;
2104
2105 *params = OSSL_PARAM_construct_uint(OSSL_RAND_PARAM_STRENGTH, &strength);
2106 if (!EVP_RAND_set_ctx_params(rdata->parent, params))
2107 goto err;
2108
2109 rand = EVP_RAND_fetch(NULL, name, NULL);
2110 if (rand == NULL)
2111 goto err;
2112 rdata->ctx = EVP_RAND_CTX_new(rand, rdata->parent);
2113 EVP_RAND_free(rand);
2114 if (rdata->ctx == NULL)
2115 goto err;
2116
2117 rdata->n = -1;
2118 t->data = rdata;
2119 return 1;
2120 err:
2121 EVP_RAND_CTX_free(rdata->parent);
2122 OPENSSL_free(rdata);
2123 return 0;
2124 }
2125
2126 static void rand_test_cleanup(EVP_TEST *t)
2127 {
2128 RAND_DATA *rdata = t->data;
2129 int i;
2130
2131 OPENSSL_free(rdata->cipher);
2132 OPENSSL_free(rdata->digest);
2133
2134 for (i = 0; i <= rdata->n; i++) {
2135 OPENSSL_free(rdata->data[i].entropy);
2136 OPENSSL_free(rdata->data[i].reseed_entropy);
2137 OPENSSL_free(rdata->data[i].nonce);
2138 OPENSSL_free(rdata->data[i].pers);
2139 OPENSSL_free(rdata->data[i].reseed_addin);
2140 OPENSSL_free(rdata->data[i].addinA);
2141 OPENSSL_free(rdata->data[i].addinB);
2142 OPENSSL_free(rdata->data[i].pr_entropyA);
2143 OPENSSL_free(rdata->data[i].pr_entropyB);
2144 OPENSSL_free(rdata->data[i].output);
2145 }
2146 EVP_RAND_CTX_free(rdata->ctx);
2147 EVP_RAND_CTX_free(rdata->parent);
2148 }
2149
2150 static int rand_test_parse(EVP_TEST *t,
2151 const char *keyword, const char *value)
2152 {
2153 RAND_DATA *rdata = t->data;
2154 RAND_DATA_PASS *item;
2155 const char *p;
2156 int n;
2157
2158 if ((p = strchr(keyword, '.')) != NULL) {
2159 n = atoi(++p);
2160 if (n >= MAX_RAND_REPEATS)
2161 return 0;
2162 if (n > rdata->n)
2163 rdata->n = n;
2164 item = rdata->data + n;
2165 if (strncmp(keyword, "Entropy.", sizeof("Entropy")) == 0)
2166 return parse_bin(value, &item->entropy, &item->entropy_len);
2167 if (strncmp(keyword, "ReseedEntropy.", sizeof("ReseedEntropy")) == 0)
2168 return parse_bin(value, &item->reseed_entropy,
2169 &item->reseed_entropy_len);
2170 if (strncmp(keyword, "Nonce.", sizeof("Nonce")) == 0)
2171 return parse_bin(value, &item->nonce, &item->nonce_len);
2172 if (strncmp(keyword, "PersonalisationString.",
2173 sizeof("PersonalisationString")) == 0)
2174 return parse_bin(value, &item->pers, &item->pers_len);
2175 if (strncmp(keyword, "ReseedAdditionalInput.",
2176 sizeof("ReseedAdditionalInput")) == 0)
2177 return parse_bin(value, &item->reseed_addin,
2178 &item->reseed_addin_len);
2179 if (strncmp(keyword, "AdditionalInputA.",
2180 sizeof("AdditionalInputA")) == 0)
2181 return parse_bin(value, &item->addinA, &item->addinA_len);
2182 if (strncmp(keyword, "AdditionalInputB.",
2183 sizeof("AdditionalInputB")) == 0)
2184 return parse_bin(value, &item->addinB, &item->addinB_len);
2185 if (strncmp(keyword, "EntropyPredictionResistanceA.",
2186 sizeof("EntropyPredictionResistanceA")) == 0)
2187 return parse_bin(value, &item->pr_entropyA, &item->pr_entropyA_len);
2188 if (strncmp(keyword, "EntropyPredictionResistanceB.",
2189 sizeof("EntropyPredictionResistanceB")) == 0)
2190 return parse_bin(value, &item->pr_entropyB, &item->pr_entropyB_len);
2191 if (strncmp(keyword, "Output.", sizeof("Output")) == 0)
2192 return parse_bin(value, &item->output, &item->output_len);
2193 } else {
2194 if (strcmp(keyword, "Cipher") == 0)
2195 return TEST_ptr(rdata->cipher = OPENSSL_strdup(value));
2196 if (strcmp(keyword, "Digest") == 0)
2197 return TEST_ptr(rdata->digest = OPENSSL_strdup(value));
2198 if (strcmp(keyword, "DerivationFunction") == 0) {
2199 rdata->use_df = atoi(value) != 0;
2200 return 1;
2201 }
2202 if (strcmp(keyword, "GenerateBits") == 0) {
2203 if ((n = atoi(value)) <= 0 || n % 8 != 0)
2204 return 0;
2205 rdata->generate_bits = (unsigned int)n;
2206 return 1;
2207 }
2208 if (strcmp(keyword, "PredictionResistance") == 0) {
2209 rdata->prediction_resistance = atoi(value) != 0;
2210 return 1;
2211 }
2212 }
2213 return 0;
2214 }
2215
2216 static int rand_test_run(EVP_TEST *t)
2217 {
2218 RAND_DATA *expected = t->data;
2219 RAND_DATA_PASS *item;
2220 unsigned char *got;
2221 size_t got_len = expected->generate_bits / 8;
2222 OSSL_PARAM params[5], *p = params;
2223 int i = -1, ret = 0;
2224 unsigned int strength;
2225 unsigned char *z;
2226
2227 if (!TEST_ptr(got = OPENSSL_malloc(got_len)))
2228 return 0;
2229
2230 *p++ = OSSL_PARAM_construct_int(OSSL_DRBG_PARAM_USE_DF, &expected->use_df);
2231 if (expected->cipher != NULL)
2232 *p++ = OSSL_PARAM_construct_utf8_string(OSSL_DRBG_PARAM_CIPHER,
2233 expected->cipher, 0);
2234 if (expected->digest != NULL)
2235 *p++ = OSSL_PARAM_construct_utf8_string(OSSL_DRBG_PARAM_DIGEST,
2236 expected->digest, 0);
2237 *p++ = OSSL_PARAM_construct_utf8_string(OSSL_DRBG_PARAM_MAC, "HMAC", 0);
2238 *p = OSSL_PARAM_construct_end();
2239 if (!TEST_true(EVP_RAND_set_ctx_params(expected->ctx, params)))
2240 goto err;
2241
2242 strength = EVP_RAND_strength(expected->ctx);
2243 for (i = 0; i <= expected->n; i++) {
2244 item = expected->data + i;
2245
2246 p = params;
2247 z = item->entropy != NULL ? item->entropy : (unsigned char *)"";
2248 *p++ = OSSL_PARAM_construct_octet_string(OSSL_RAND_PARAM_TEST_ENTROPY,
2249 z, item->entropy_len);
2250 z = item->nonce != NULL ? item->nonce : (unsigned char *)"";
2251 *p++ = OSSL_PARAM_construct_octet_string(OSSL_RAND_PARAM_TEST_NONCE,
2252 z, item->nonce_len);
2253 *p = OSSL_PARAM_construct_end();
2254 if (!TEST_true(EVP_RAND_set_ctx_params(expected->parent, params))
2255 || !TEST_true(EVP_RAND_instantiate(expected->parent, strength,
2256 0, NULL, 0)))
2257 goto err;
2258
2259 z = item->pers != NULL ? item->pers : (unsigned char *)"";
2260 if (!TEST_true(EVP_RAND_instantiate
2261 (expected->ctx, strength,
2262 expected->prediction_resistance, z,
2263 item->pers_len)))
2264 goto err;
2265
2266 if (item->reseed_entropy != NULL) {
2267 params[0] = OSSL_PARAM_construct_octet_string
2268 (OSSL_RAND_PARAM_TEST_ENTROPY, item->reseed_entropy,
2269 item->reseed_entropy_len);
2270 params[1] = OSSL_PARAM_construct_end();
2271 if (!TEST_true(EVP_RAND_set_ctx_params(expected->parent, params)))
2272 goto err;
2273
2274 if (!TEST_true(EVP_RAND_reseed
2275 (expected->ctx, expected->prediction_resistance,
2276 NULL, 0, item->reseed_addin,
2277 item->reseed_addin_len)))
2278 goto err;
2279 }
2280 if (item->pr_entropyA != NULL) {
2281 params[0] = OSSL_PARAM_construct_octet_string
2282 (OSSL_RAND_PARAM_TEST_ENTROPY, item->pr_entropyA,
2283 item->pr_entropyA_len);
2284 params[1] = OSSL_PARAM_construct_end();
2285 if (!TEST_true(EVP_RAND_set_ctx_params(expected->parent, params)))
2286 goto err;
2287 }
2288 if (!TEST_true(EVP_RAND_generate
2289 (expected->ctx, got, got_len,
2290 strength, expected->prediction_resistance,
2291 item->addinA, item->addinA_len)))
2292 goto err;
2293
2294 if (item->pr_entropyB != NULL) {
2295 params[0] = OSSL_PARAM_construct_octet_string
2296 (OSSL_RAND_PARAM_TEST_ENTROPY, item->pr_entropyB,
2297 item->pr_entropyB_len);
2298 params[1] = OSSL_PARAM_construct_end();
2299 if (!TEST_true(EVP_RAND_set_ctx_params(expected->parent, params)))
2300 return 0;
2301 }
2302 if (!TEST_true(EVP_RAND_generate
2303 (expected->ctx, got, got_len,
2304 strength, expected->prediction_resistance,
2305 item->addinB, item->addinB_len)))
2306 goto err;
2307 if (!TEST_mem_eq(got, got_len, item->output, item->output_len))
2308 goto err;
2309 if (!TEST_true(EVP_RAND_uninstantiate(expected->ctx))
2310 || !TEST_true(EVP_RAND_uninstantiate(expected->parent))
2311 || !TEST_true(EVP_RAND_verify_zeroization(expected->ctx))
2312 || !TEST_int_eq(EVP_RAND_state(expected->ctx),
2313 EVP_RAND_STATE_UNINITIALISED))
2314 goto err;
2315 }
2316 t->err = NULL;
2317 ret = 1;
2318
2319 err:
2320 if (ret == 0 && i >= 0)
2321 TEST_info("Error in test case %d of %d\n", i, expected->n + 1);
2322 OPENSSL_free(got);
2323 return ret;
2324 }
2325
2326 static const EVP_TEST_METHOD rand_test_method = {
2327 "RAND",
2328 rand_test_init,
2329 rand_test_cleanup,
2330 rand_test_parse,
2331 rand_test_run
2332 };
2333
2334
2335 /**
2336 *** KDF TESTS
2337 **/
2338
2339 typedef struct kdf_data_st {
2340 /* Context for this operation */
2341 EVP_KDF_CTX *ctx;
2342 /* Expected output */
2343 unsigned char *output;
2344 size_t output_len;
2345 OSSL_PARAM params[20];
2346 OSSL_PARAM *p;
2347 } KDF_DATA;
2348
2349 /*
2350 * Perform public key operation setup: lookup key, allocated ctx and call
2351 * the appropriate initialisation function
2352 */
2353 static int kdf_test_init(EVP_TEST *t, const char *name)
2354 {
2355 KDF_DATA *kdata;
2356 EVP_KDF *kdf;
2357
2358 #ifdef OPENSSL_NO_SCRYPT
2359 /* TODO(3.0) Replace with "scrypt" once aliases are supported */
2360 if (strcmp(name, "id-scrypt") == 0) {
2361 t->skip = 1;
2362 return 1;
2363 }
2364 #endif /* OPENSSL_NO_SCRYPT */
2365
2366 #ifdef OPENSSL_NO_CMS
2367 if (strcmp(name, "X942KDF") == 0) {
2368 t->skip = 1;
2369 return 1;
2370 }
2371 #endif /* OPENSSL_NO_CMS */
2372
2373 if (!TEST_ptr(kdata = OPENSSL_zalloc(sizeof(*kdata))))
2374 return 0;
2375 kdata->p = kdata->params;
2376 *kdata->p = OSSL_PARAM_construct_end();
2377
2378 kdf = EVP_KDF_fetch(NULL, name, NULL);
2379 if (kdf == NULL) {
2380 OPENSSL_free(kdata);
2381 return 0;
2382 }
2383 kdata->ctx = EVP_KDF_new_ctx(kdf);
2384 EVP_KDF_free(kdf);
2385 if (kdata->ctx == NULL) {
2386 OPENSSL_free(kdata);
2387 return 0;
2388 }
2389 t->data = kdata;
2390 return 1;
2391 }
2392
2393 static void kdf_test_cleanup(EVP_TEST *t)
2394 {
2395 KDF_DATA *kdata = t->data;
2396 OSSL_PARAM *p;
2397
2398 for (p = kdata->params; p->key != NULL; p++)
2399 OPENSSL_free(p->data);
2400 OPENSSL_free(kdata->output);
2401 EVP_KDF_free_ctx(kdata->ctx);
2402 }
2403
2404 static int kdf_test_ctrl(EVP_TEST *t, EVP_KDF_CTX *kctx,
2405 const char *value)
2406 {
2407 KDF_DATA *kdata = t->data;
2408 int rv;
2409 char *p, *name;
2410 const OSSL_PARAM *defs =
2411 EVP_KDF_settable_ctx_params(EVP_KDF_get_ctx_kdf(kctx));
2412
2413 if (!TEST_ptr(name = OPENSSL_strdup(value)))
2414 return 0;
2415 p = strchr(name, ':');
2416 if (p != NULL)
2417 *p++ = '\0';
2418
2419 rv = OSSL_PARAM_allocate_from_text(kdata->p, defs, name, p,
2420 p != NULL ? strlen(p) : 0, NULL);
2421 *++kdata->p = OSSL_PARAM_construct_end();
2422 if (!rv) {
2423 t->err = "KDF_PARAM_ERROR";
2424 OPENSSL_free(name);
2425 return 0;
2426 }
2427 if (p != NULL && strcmp(name, "digest") == 0) {
2428 /* If p has an OID and lookup fails assume disabled algorithm */
2429 int nid = OBJ_sn2nid(p);
2430
2431 if (nid == NID_undef)
2432 nid = OBJ_ln2nid(p);
2433 if (nid != NID_undef && EVP_get_digestbynid(nid) == NULL)
2434 t->skip = 1;
2435 }
2436 if (p != NULL && strcmp(name, "cipher") == 0) {
2437 /* If p has an OID and lookup fails assume disabled algorithm */
2438 int nid = OBJ_sn2nid(p);
2439
2440 if (nid == NID_undef)
2441 nid = OBJ_ln2nid(p);
2442 if (nid != NID_undef && EVP_get_cipherbynid(nid) == NULL)
2443 t->skip = 1;
2444 }
2445 OPENSSL_free(name);
2446 return 1;
2447 }
2448
2449 static int kdf_test_parse(EVP_TEST *t,
2450 const char *keyword, const char *value)
2451 {
2452 KDF_DATA *kdata = t->data;
2453
2454 if (strcmp(keyword, "Output") == 0)
2455 return parse_bin(value, &kdata->output, &kdata->output_len);
2456 if (strncmp(keyword, "Ctrl", 4) == 0)
2457 return kdf_test_ctrl(t, kdata->ctx, value);
2458 return 0;
2459 }
2460
2461 static int kdf_test_run(EVP_TEST *t)
2462 {
2463 KDF_DATA *expected = t->data;
2464 unsigned char *got = NULL;
2465 size_t got_len = expected->output_len;
2466
2467 if (!EVP_KDF_set_ctx_params(expected->ctx, expected->params)) {
2468 t->err = "KDF_CTRL_ERROR";
2469 return 1;
2470 }
2471 if (!TEST_ptr(got = OPENSSL_malloc(got_len))) {
2472 t->err = "INTERNAL_ERROR";
2473 goto err;
2474 }
2475 if (EVP_KDF_derive(expected->ctx, got, got_len) <= 0) {
2476 t->err = "KDF_DERIVE_ERROR";
2477 goto err;
2478 }
2479 if (!memory_err_compare(t, "KDF_MISMATCH",
2480 expected->output, expected->output_len,
2481 got, got_len))
2482 goto err;
2483
2484 t->err = NULL;
2485
2486 err:
2487 OPENSSL_free(got);
2488 return 1;
2489 }
2490
2491 static const EVP_TEST_METHOD kdf_test_method = {
2492 "KDF",
2493 kdf_test_init,
2494 kdf_test_cleanup,
2495 kdf_test_parse,
2496 kdf_test_run
2497 };
2498
2499
2500 /**
2501 *** PKEY KDF TESTS
2502 **/
2503
2504 typedef struct pkey_kdf_data_st {
2505 /* Context for this operation */
2506 EVP_PKEY_CTX *ctx;
2507 /* Expected output */
2508 unsigned char *output;
2509 size_t output_len;
2510 } PKEY_KDF_DATA;
2511
2512 /*
2513 * Perform public key operation setup: lookup key, allocated ctx and call
2514 * the appropriate initialisation function
2515 */
2516 static int pkey_kdf_test_init(EVP_TEST *t, const char *name)
2517 {
2518 PKEY_KDF_DATA *kdata;
2519 int kdf_nid = OBJ_sn2nid(name);
2520
2521 #ifdef OPENSSL_NO_SCRYPT
2522 if (strcmp(name, "scrypt") == 0) {
2523 t->skip = 1;
2524 return 1;
2525 }
2526 #endif /* OPENSSL_NO_SCRYPT */
2527
2528 #ifdef OPENSSL_NO_CMS
2529 if (strcmp(name, "X942KDF") == 0) {
2530 t->skip = 1;
2531 return 1;
2532 }
2533 #endif /* OPENSSL_NO_CMS */
2534
2535 if (kdf_nid == NID_undef)
2536 kdf_nid = OBJ_ln2nid(name);
2537
2538 if (!TEST_ptr(kdata = OPENSSL_zalloc(sizeof(*kdata))))
2539 return 0;
2540 kdata->ctx = EVP_PKEY_CTX_new_id(kdf_nid, NULL);
2541 if (kdata->ctx == NULL) {
2542 OPENSSL_free(kdata);
2543 return 0;
2544 }
2545 if (EVP_PKEY_derive_init(kdata->ctx) <= 0) {
2546 EVP_PKEY_CTX_free(kdata->ctx);
2547 OPENSSL_free(kdata);
2548 return 0;
2549 }
2550 t->data = kdata;
2551 return 1;
2552 }
2553
2554 static void pkey_kdf_test_cleanup(EVP_TEST *t)
2555 {
2556 PKEY_KDF_DATA *kdata = t->data;
2557
2558 OPENSSL_free(kdata->output);
2559 EVP_PKEY_CTX_free(kdata->ctx);
2560 }
2561
2562 static int pkey_kdf_test_parse(EVP_TEST *t,
2563 const char *keyword, const char *value)
2564 {
2565 PKEY_KDF_DATA *kdata = t->data;
2566
2567 if (strcmp(keyword, "Output") == 0)
2568 return parse_bin(value, &kdata->output, &kdata->output_len);
2569 if (strncmp(keyword, "Ctrl", 4) == 0)
2570 return pkey_test_ctrl(t, kdata->ctx, value);
2571 return 0;
2572 }
2573
2574 static int pkey_kdf_test_run(EVP_TEST *t)
2575 {
2576 PKEY_KDF_DATA *expected = t->data;
2577 unsigned char *got = NULL;
2578 size_t got_len = expected->output_len;
2579
2580 if (!TEST_ptr(got = OPENSSL_malloc(got_len))) {
2581 t->err = "INTERNAL_ERROR";
2582 goto err;
2583 }
2584 if (EVP_PKEY_derive(expected->ctx, got, &got_len) <= 0) {
2585 t->err = "KDF_DERIVE_ERROR";
2586 goto err;
2587 }
2588 if (!TEST_mem_eq(expected->output, expected->output_len, got, got_len)) {
2589 t->err = "KDF_MISMATCH";
2590 goto err;
2591 }
2592 t->err = NULL;
2593
2594 err:
2595 OPENSSL_free(got);
2596 return 1;
2597 }
2598
2599 static const EVP_TEST_METHOD pkey_kdf_test_method = {
2600 "PKEYKDF",
2601 pkey_kdf_test_init,
2602 pkey_kdf_test_cleanup,
2603 pkey_kdf_test_parse,
2604 pkey_kdf_test_run
2605 };
2606
2607
2608 /**
2609 *** KEYPAIR TESTS
2610 **/
2611
2612 typedef struct keypair_test_data_st {
2613 EVP_PKEY *privk;
2614 EVP_PKEY *pubk;
2615 } KEYPAIR_TEST_DATA;
2616
2617 static int keypair_test_init(EVP_TEST *t, const char *pair)
2618 {
2619 KEYPAIR_TEST_DATA *data;
2620 int rv = 0;
2621 EVP_PKEY *pk = NULL, *pubk = NULL;
2622 char *pub, *priv = NULL;
2623
2624 /* Split private and public names. */
2625 if (!TEST_ptr(priv = OPENSSL_strdup(pair))
2626 || !TEST_ptr(pub = strchr(priv, ':'))) {
2627 t->err = "PARSING_ERROR";
2628 goto end;
2629 }
2630 *pub++ = '\0';
2631
2632 if (!TEST_true(find_key(&pk, priv, private_keys))) {
2633 TEST_info("Can't find private key: %s", priv);
2634 t->err = "MISSING_PRIVATE_KEY";
2635 goto end;
2636 }
2637 if (!TEST_true(find_key(&pubk, pub, public_keys))) {
2638 TEST_info("Can't find public key: %s", pub);
2639 t->err = "MISSING_PUBLIC_KEY";
2640 goto end;
2641 }
2642
2643 if (pk == NULL && pubk == NULL) {
2644 /* Both keys are listed but unsupported: skip this test */
2645 t->skip = 1;
2646 rv = 1;
2647 goto end;
2648 }
2649
2650 if (!TEST_ptr(data = OPENSSL_malloc(sizeof(*data))))
2651 goto end;
2652 data->privk = pk;
2653 data->pubk = pubk;
2654 t->data = data;
2655 rv = 1;
2656 t->err = NULL;
2657
2658 end:
2659 OPENSSL_free(priv);
2660 return rv;
2661 }
2662
2663 static void keypair_test_cleanup(EVP_TEST *t)
2664 {
2665 OPENSSL_free(t->data);
2666 t->data = NULL;
2667 }
2668
2669 /*
2670 * For tests that do not accept any custom keywords.
2671 */
2672 static int void_test_parse(EVP_TEST *t, const char *keyword, const char *value)
2673 {
2674 return 0;
2675 }
2676
2677 static int keypair_test_run(EVP_TEST *t)
2678 {
2679 int rv = 0;
2680 const KEYPAIR_TEST_DATA *pair = t->data;
2681
2682 if (pair->privk == NULL || pair->pubk == NULL) {
2683 /*
2684 * this can only happen if only one of the keys is not set
2685 * which means that one of them was unsupported while the
2686 * other isn't: hence a key type mismatch.
2687 */
2688 t->err = "KEYPAIR_TYPE_MISMATCH";
2689 rv = 1;
2690 goto end;
2691 }
2692
2693 if ((rv = EVP_PKEY_eq(pair->privk, pair->pubk)) != 1 ) {
2694 if ( 0 == rv ) {
2695 t->err = "KEYPAIR_MISMATCH";
2696 } else if ( -1 == rv ) {
2697 t->err = "KEYPAIR_TYPE_MISMATCH";
2698 } else if ( -2 == rv ) {
2699 t->err = "UNSUPPORTED_KEY_COMPARISON";
2700 } else {
2701 TEST_error("Unexpected error in key comparison");
2702 rv = 0;
2703 goto end;
2704 }
2705 rv = 1;
2706 goto end;
2707 }
2708
2709 rv = 1;
2710 t->err = NULL;
2711
2712 end:
2713 return rv;
2714 }
2715
2716 static const EVP_TEST_METHOD keypair_test_method = {
2717 "PrivPubKeyPair",
2718 keypair_test_init,
2719 keypair_test_cleanup,
2720 void_test_parse,
2721 keypair_test_run
2722 };
2723
2724 /**
2725 *** KEYGEN TEST
2726 **/
2727
2728 typedef struct keygen_test_data_st {
2729 EVP_PKEY_CTX *genctx; /* Keygen context to use */
2730 char *keyname; /* Key name to store key or NULL */
2731 } KEYGEN_TEST_DATA;
2732
2733 static int keygen_test_init(EVP_TEST *t, const char *alg)
2734 {
2735 KEYGEN_TEST_DATA *data;
2736 EVP_PKEY_CTX *genctx;
2737 int nid = OBJ_sn2nid(alg);
2738
2739 if (nid == NID_undef) {
2740 nid = OBJ_ln2nid(alg);
2741 if (nid == NID_undef)
2742 return 0;
2743 }
2744
2745 if (!TEST_ptr(genctx = EVP_PKEY_CTX_new_id(nid, NULL))) {
2746 /* assume algorithm disabled */
2747 t->skip = 1;
2748 return 1;
2749 }
2750
2751 if (EVP_PKEY_keygen_init(genctx) <= 0) {
2752 t->err = "KEYGEN_INIT_ERROR";
2753 goto err;
2754 }
2755
2756 if (!TEST_ptr(data = OPENSSL_malloc(sizeof(*data))))
2757 goto err;
2758 data->genctx = genctx;
2759 data->keyname = NULL;
2760 t->data = data;
2761 t->err = NULL;
2762 return 1;
2763
2764 err:
2765 EVP_PKEY_CTX_free(genctx);
2766 return 0;
2767 }
2768
2769 static void keygen_test_cleanup(EVP_TEST *t)
2770 {
2771 KEYGEN_TEST_DATA *keygen = t->data;
2772
2773 EVP_PKEY_CTX_free(keygen->genctx);
2774 OPENSSL_free(keygen->keyname);
2775 OPENSSL_free(t->data);
2776 t->data = NULL;
2777 }
2778
2779 static int keygen_test_parse(EVP_TEST *t,
2780 const char *keyword, const char *value)
2781 {
2782 KEYGEN_TEST_DATA *keygen = t->data;
2783
2784 if (strcmp(keyword, "KeyName") == 0)
2785 return TEST_ptr(keygen->keyname = OPENSSL_strdup(value));
2786 if (strcmp(keyword, "Ctrl") == 0)
2787 return pkey_test_ctrl(t, keygen->genctx, value);
2788 return 0;
2789 }
2790
2791 static int keygen_test_run(EVP_TEST *t)
2792 {
2793 KEYGEN_TEST_DATA *keygen = t->data;
2794 EVP_PKEY *pkey = NULL;
2795 int rv = 1;
2796
2797 if (EVP_PKEY_keygen(keygen->genctx, &pkey) <= 0) {
2798 t->err = "KEYGEN_GENERATE_ERROR";
2799 goto err;
2800 }
2801
2802 if (keygen->keyname != NULL) {
2803 KEY_LIST *key;
2804
2805 rv = 0;
2806 if (find_key(NULL, keygen->keyname, private_keys)) {
2807 TEST_info("Duplicate key %s", keygen->keyname);
2808 goto err;
2809 }
2810
2811 if (!TEST_ptr(key = OPENSSL_malloc(sizeof(*key))))
2812 goto err;
2813 key->name = keygen->keyname;
2814 keygen->keyname = NULL;
2815 key->key = pkey;
2816 key->next = private_keys;
2817 private_keys = key;
2818 rv = 1;
2819 } else {
2820 EVP_PKEY_free(pkey);
2821 }
2822
2823 t->err = NULL;
2824
2825 err:
2826 return rv;
2827 }
2828
2829 static const EVP_TEST_METHOD keygen_test_method = {
2830 "KeyGen",
2831 keygen_test_init,
2832 keygen_test_cleanup,
2833 keygen_test_parse,
2834 keygen_test_run,
2835 };
2836
2837 /**
2838 *** DIGEST SIGN+VERIFY TESTS
2839 **/
2840
2841 typedef struct {
2842 int is_verify; /* Set to 1 if verifying */
2843 int is_oneshot; /* Set to 1 for one shot operation */
2844 const EVP_MD *md; /* Digest to use */
2845 EVP_MD_CTX *ctx; /* Digest context */
2846 EVP_PKEY_CTX *pctx;
2847 STACK_OF(EVP_TEST_BUFFER) *input; /* Input data: streaming */
2848 unsigned char *osin; /* Input data if one shot */
2849 size_t osin_len; /* Input length data if one shot */
2850 unsigned char *output; /* Expected output */
2851 size_t output_len; /* Expected output length */
2852 } DIGESTSIGN_DATA;
2853
2854 static int digestsigver_test_init(EVP_TEST *t, const char *alg, int is_verify,
2855 int is_oneshot)
2856 {
2857 const EVP_MD *md = NULL;
2858 DIGESTSIGN_DATA *mdat;
2859
2860 if (strcmp(alg, "NULL") != 0) {
2861 if ((md = EVP_get_digestbyname(alg)) == NULL) {
2862 /* If alg has an OID assume disabled algorithm */
2863 if (OBJ_sn2nid(alg) != NID_undef || OBJ_ln2nid(alg) != NID_undef) {
2864 t->skip = 1;
2865 return 1;
2866 }
2867 return 0;
2868 }
2869 }
2870 if (!TEST_ptr(mdat = OPENSSL_zalloc(sizeof(*mdat))))
2871 return 0;
2872 mdat->md = md;
2873 if (!TEST_ptr(mdat->ctx = EVP_MD_CTX_new())) {
2874 OPENSSL_free(mdat);
2875 return 0;
2876 }
2877 mdat->is_verify = is_verify;
2878 mdat->is_oneshot = is_oneshot;
2879 t->data = mdat;
2880 return 1;
2881 }
2882
2883 static int digestsign_test_init(EVP_TEST *t, const char *alg)
2884 {
2885 return digestsigver_test_init(t, alg, 0, 0);
2886 }
2887
2888 static void digestsigver_test_cleanup(EVP_TEST *t)
2889 {
2890 DIGESTSIGN_DATA *mdata = t->data;
2891
2892 EVP_MD_CTX_free(mdata->ctx);
2893 sk_EVP_TEST_BUFFER_pop_free(mdata->input, evp_test_buffer_free);
2894 OPENSSL_free(mdata->osin);
2895 OPENSSL_free(mdata->output);
2896 OPENSSL_free(mdata);
2897 t->data = NULL;
2898 }
2899
2900 static int digestsigver_test_parse(EVP_TEST *t,
2901 const char *keyword, const char *value)
2902 {
2903 DIGESTSIGN_DATA *mdata = t->data;
2904
2905 if (strcmp(keyword, "Key") == 0) {
2906 EVP_PKEY *pkey = NULL;
2907 int rv = 0;
2908
2909 if (mdata->is_verify)
2910 rv = find_key(&pkey, value, public_keys);
2911 if (rv == 0)
2912 rv = find_key(&pkey, value, private_keys);
2913 if (rv == 0 || pkey == NULL) {
2914 t->skip = 1;
2915 return 1;
2916 }
2917 if (mdata->is_verify) {
2918 if (!EVP_DigestVerifyInit(mdata->ctx, &mdata->pctx, mdata->md,
2919 NULL, pkey))
2920 t->err = "DIGESTVERIFYINIT_ERROR";
2921 return 1;
2922 }
2923 if (!EVP_DigestSignInit(mdata->ctx, &mdata->pctx, mdata->md, NULL,
2924 pkey))
2925 t->err = "DIGESTSIGNINIT_ERROR";
2926 return 1;
2927 }
2928
2929 if (strcmp(keyword, "Input") == 0) {
2930 if (mdata->is_oneshot)
2931 return parse_bin(value, &mdata->osin, &mdata->osin_len);
2932 return evp_test_buffer_append(value, &mdata->input);
2933 }
2934 if (strcmp(keyword, "Output") == 0)
2935 return parse_bin(value, &mdata->output, &mdata->output_len);
2936
2937 if (!mdata->is_oneshot) {
2938 if (strcmp(keyword, "Count") == 0)
2939 return evp_test_buffer_set_count(value, mdata->input);
2940 if (strcmp(keyword, "Ncopy") == 0)
2941 return evp_test_buffer_ncopy(value, mdata->input);
2942 }
2943 if (strcmp(keyword, "Ctrl") == 0) {
2944 if (mdata->pctx == NULL)
2945 return -1;
2946 return pkey_test_ctrl(t, mdata->pctx, value);
2947 }
2948 return 0;
2949 }
2950
2951 static int digestsign_update_fn(void *ctx, const unsigned char *buf,
2952 size_t buflen)
2953 {
2954 return EVP_DigestSignUpdate(ctx, buf, buflen);
2955 }
2956
2957 static int digestsign_test_run(EVP_TEST *t)
2958 {
2959 DIGESTSIGN_DATA *expected = t->data;
2960 unsigned char *got = NULL;
2961 size_t got_len;
2962
2963 if (!evp_test_buffer_do(expected->input, digestsign_update_fn,
2964 expected->ctx)) {
2965 t->err = "DIGESTUPDATE_ERROR";
2966 goto err;
2967 }
2968
2969 if (!EVP_DigestSignFinal(expected->ctx, NULL, &got_len)) {
2970 t->err = "DIGESTSIGNFINAL_LENGTH_ERROR";
2971 goto err;
2972 }
2973 if (!TEST_ptr(got = OPENSSL_malloc(got_len))) {
2974 t->err = "MALLOC_FAILURE";
2975 goto err;
2976 }
2977 if (!EVP_DigestSignFinal(expected->ctx, got, &got_len)) {
2978 t->err = "DIGESTSIGNFINAL_ERROR";
2979 goto err;
2980 }
2981 if (!memory_err_compare(t, "SIGNATURE_MISMATCH",
2982 expected->output, expected->output_len,
2983 got, got_len))
2984 goto err;
2985
2986 t->err = NULL;
2987 err:
2988 OPENSSL_free(got);
2989 return 1;
2990 }
2991
2992 static const EVP_TEST_METHOD digestsign_test_method = {
2993 "DigestSign",
2994 digestsign_test_init,
2995 digestsigver_test_cleanup,
2996 digestsigver_test_parse,
2997 digestsign_test_run
2998 };
2999
3000 static int digestverify_test_init(EVP_TEST *t, const char *alg)
3001 {
3002 return digestsigver_test_init(t, alg, 1, 0);
3003 }
3004
3005 static int digestverify_update_fn(void *ctx, const unsigned char *buf,
3006 size_t buflen)
3007 {
3008 return EVP_DigestVerifyUpdate(ctx, buf, buflen);
3009 }
3010
3011 static int digestverify_test_run(EVP_TEST *t)
3012 {
3013 DIGESTSIGN_DATA *mdata = t->data;
3014
3015 if (!evp_test_buffer_do(mdata->input, digestverify_update_fn, mdata->ctx)) {
3016 t->err = "DIGESTUPDATE_ERROR";
3017 return 1;
3018 }
3019
3020 if (EVP_DigestVerifyFinal(mdata->ctx, mdata->output,
3021 mdata->output_len) <= 0)
3022 t->err = "VERIFY_ERROR";
3023 return 1;
3024 }
3025
3026 static const EVP_TEST_METHOD digestverify_test_method = {
3027 "DigestVerify",
3028 digestverify_test_init,
3029 digestsigver_test_cleanup,
3030 digestsigver_test_parse,
3031 digestverify_test_run
3032 };
3033
3034 static int oneshot_digestsign_test_init(EVP_TEST *t, const char *alg)
3035 {
3036 return digestsigver_test_init(t, alg, 0, 1);
3037 }
3038
3039 static int oneshot_digestsign_test_run(EVP_TEST *t)
3040 {
3041 DIGESTSIGN_DATA *expected = t->data;
3042 unsigned char *got = NULL;
3043 size_t got_len;
3044
3045 if (!EVP_DigestSign(expected->ctx, NULL, &got_len,
3046 expected->osin, expected->osin_len)) {
3047 t->err = "DIGESTSIGN_LENGTH_ERROR";
3048 goto err;
3049 }
3050 if (!TEST_ptr(got = OPENSSL_malloc(got_len))) {
3051 t->err = "MALLOC_FAILURE";
3052 goto err;
3053 }
3054 if (!EVP_DigestSign(expected->ctx, got, &got_len,
3055 expected->osin, expected->osin_len)) {
3056 t->err = "DIGESTSIGN_ERROR";
3057 goto err;
3058 }
3059 if (!memory_err_compare(t, "SIGNATURE_MISMATCH",
3060 expected->output, expected->output_len,
3061 got, got_len))
3062 goto err;
3063
3064 t->err = NULL;
3065 err:
3066 OPENSSL_free(got);
3067 return 1;
3068 }
3069
3070 static const EVP_TEST_METHOD oneshot_digestsign_test_method = {
3071 "OneShotDigestSign",
3072 oneshot_digestsign_test_init,
3073 digestsigver_test_cleanup,
3074 digestsigver_test_parse,
3075 oneshot_digestsign_test_run
3076 };
3077
3078 static int oneshot_digestverify_test_init(EVP_TEST *t, const char *alg)
3079 {
3080 return digestsigver_test_init(t, alg, 1, 1);
3081 }
3082
3083 static int oneshot_digestverify_test_run(EVP_TEST *t)
3084 {
3085 DIGESTSIGN_DATA *mdata = t->data;
3086
3087 if (EVP_DigestVerify(mdata->ctx, mdata->output, mdata->output_len,
3088 mdata->osin, mdata->osin_len) <= 0)
3089 t->err = "VERIFY_ERROR";
3090 return 1;
3091 }
3092
3093 static const EVP_TEST_METHOD oneshot_digestverify_test_method = {
3094 "OneShotDigestVerify",
3095 oneshot_digestverify_test_init,
3096 digestsigver_test_cleanup,
3097 digestsigver_test_parse,
3098 oneshot_digestverify_test_run
3099 };
3100
3101
3102 /**
3103 *** PARSING AND DISPATCH
3104 **/
3105
3106 static const EVP_TEST_METHOD *evp_test_list[] = {
3107 &rand_test_method,
3108 &cipher_test_method,
3109 &digest_test_method,
3110 &digestsign_test_method,
3111 &digestverify_test_method,
3112 &encode_test_method,
3113 &kdf_test_method,
3114 &pkey_kdf_test_method,
3115 &keypair_test_method,
3116 &keygen_test_method,
3117 &mac_test_method,
3118 &oneshot_digestsign_test_method,
3119 &oneshot_digestverify_test_method,
3120 &pbe_test_method,
3121 &pdecrypt_test_method,
3122 &pderive_test_method,
3123 &psign_test_method,
3124 &pverify_recover_test_method,
3125 &pverify_test_method,
3126 NULL
3127 };
3128
3129 static const EVP_TEST_METHOD *find_test(const char *name)
3130 {
3131 const EVP_TEST_METHOD **tt;
3132
3133 for (tt = evp_test_list; *tt; tt++) {
3134 if (strcmp(name, (*tt)->name) == 0)
3135 return *tt;
3136 }
3137 return NULL;
3138 }
3139
3140 static void clear_test(EVP_TEST *t)
3141 {
3142 test_clearstanza(&t->s);
3143 ERR_clear_error();
3144 if (t->data != NULL) {
3145 if (t->meth != NULL)
3146 t->meth->cleanup(t);
3147 OPENSSL_free(t->data);
3148 t->data = NULL;
3149 }
3150 OPENSSL_free(t->expected_err);
3151 t->expected_err = NULL;
3152 OPENSSL_free(t->reason);
3153 t->reason = NULL;
3154
3155 /* Text literal. */
3156 t->err = NULL;
3157 t->skip = 0;
3158 t->meth = NULL;
3159 }
3160
3161 /*
3162 * Check for errors in the test structure; return 1 if okay, else 0.
3163 */
3164 static int check_test_error(EVP_TEST *t)
3165 {
3166 unsigned long err;
3167 const char *reason;
3168
3169 if (t->err == NULL && t->expected_err == NULL)
3170 return 1;
3171 if (t->err != NULL && t->expected_err == NULL) {
3172 if (t->aux_err != NULL) {
3173 TEST_info("%s:%d: Source of above error (%s); unexpected error %s",
3174 t->s.test_file, t->s.start, t->aux_err, t->err);
3175 } else {
3176 TEST_info("%s:%d: Source of above error; unexpected error %s",
3177 t->s.test_file, t->s.start, t->err);
3178 }
3179 return 0;
3180 }
3181 if (t->err == NULL && t->expected_err != NULL) {
3182 TEST_info("%s:%d: Succeeded but was expecting %s",
3183 t->s.test_file, t->s.start, t->expected_err);
3184 return 0;
3185 }
3186
3187 if (strcmp(t->err, t->expected_err) != 0) {
3188 TEST_info("%s:%d: Expected %s got %s",
3189 t->s.test_file, t->s.start, t->expected_err, t->err);
3190 return 0;
3191 }
3192
3193 if (t->reason == NULL)
3194 return 1;
3195
3196 if (t->reason == NULL) {
3197 TEST_info("%s:%d: Test is missing function or reason code",
3198 t->s.test_file, t->s.start);
3199 return 0;
3200 }
3201
3202 err = ERR_peek_error();
3203 if (err == 0) {
3204 TEST_info("%s:%d: Expected error \"%s\" not set",
3205 t->s.test_file, t->s.start, t->reason);
3206 return 0;
3207 }
3208
3209 reason = ERR_reason_error_string(err);
3210 if (reason == NULL) {
3211 TEST_info("%s:%d: Expected error \"%s\", no strings available."
3212 " Assuming ok.",
3213 t->s.test_file, t->s.start, t->reason);
3214 return 1;
3215 }
3216
3217 if (strcmp(reason, t->reason) == 0)
3218 return 1;
3219
3220 TEST_info("%s:%d: Expected error \"%s\", got \"%s\"",
3221 t->s.test_file, t->s.start, t->reason, reason);
3222
3223 return 0;
3224 }
3225
3226 /*
3227 * Run a parsed test. Log a message and return 0 on error.
3228 */
3229 static int run_test(EVP_TEST *t)
3230 {
3231 if (t->meth == NULL)
3232 return 1;
3233 t->s.numtests++;
3234 if (t->skip) {
3235 t->s.numskip++;
3236 } else {
3237 /* run the test */
3238 if (t->err == NULL && t->meth->run_test(t) != 1) {
3239 TEST_info("%s:%d %s error",
3240 t->s.test_file, t->s.start, t->meth->name);
3241 return 0;
3242 }
3243 if (!check_test_error(t)) {
3244 TEST_openssl_errors();
3245 t->s.errors++;
3246 }
3247 }
3248
3249 /* clean it up */
3250 return 1;
3251 }
3252
3253 static int find_key(EVP_PKEY **ppk, const char *name, KEY_LIST *lst)
3254 {
3255 for (; lst != NULL; lst = lst->next) {
3256 if (strcmp(lst->name, name) == 0) {
3257 if (ppk != NULL)
3258 *ppk = lst->key;
3259 return 1;
3260 }
3261 }
3262 return 0;
3263 }
3264
3265 static void free_key_list(KEY_LIST *lst)
3266 {
3267 while (lst != NULL) {
3268 KEY_LIST *next = lst->next;
3269
3270 EVP_PKEY_free(lst->key);
3271 OPENSSL_free(lst->name);
3272 OPENSSL_free(lst);
3273 lst = next;
3274 }
3275 }
3276
3277 /*
3278 * Is the key type an unsupported algorithm?
3279 */
3280 static int key_unsupported(void)
3281 {
3282 long err = ERR_peek_error();
3283
3284 if (ERR_GET_LIB(err) == ERR_LIB_EVP
3285 && (ERR_GET_REASON(err) == EVP_R_UNSUPPORTED_ALGORITHM
3286 || ERR_GET_REASON(err) == EVP_R_FETCH_FAILED)) {
3287 ERR_clear_error();
3288 return 1;
3289 }
3290 #ifndef OPENSSL_NO_EC
3291 /*
3292 * If EC support is enabled we should catch also EC_R_UNKNOWN_GROUP as an
3293 * hint to an unsupported algorithm/curve (e.g. if binary EC support is
3294 * disabled).
3295 */
3296 if (ERR_GET_LIB(err) == ERR_LIB_EC
3297 && ERR_GET_REASON(err) == EC_R_UNKNOWN_GROUP) {
3298 ERR_clear_error();
3299 return 1;
3300 }
3301 #endif /* OPENSSL_NO_EC */
3302 return 0;
3303 }
3304
3305 /*
3306 * NULL out the value from |pp| but return it. This "steals" a pointer.
3307 */
3308 static char *take_value(PAIR *pp)
3309 {
3310 char *p = pp->value;
3311
3312 pp->value = NULL;
3313 return p;
3314 }
3315
3316 /*
3317 * Return 1 if one of the providers named in the string is available.
3318 * The provider names are separated with whitespace.
3319 * NOTE: destructive function, it inserts '\0' after each provider name.
3320 */
3321 static int prov_available(char *providers)
3322 {
3323 char *p;
3324 int more = 1;
3325
3326 while (more) {
3327 for (; isspace(*providers); providers++)
3328 continue;
3329 if (*providers == '\0')
3330 break; /* End of the road */
3331 for (p = providers; *p != '\0' && !isspace(*p); p++)
3332 continue;
3333 if (*p == '\0')
3334 more = 0;
3335 else
3336 *p = '\0';
3337 if (OSSL_PROVIDER_available(NULL, providers))
3338 return 1; /* Found one */
3339 }
3340 return 0;
3341 }
3342
3343 /*
3344 * Read and parse one test. Return 0 if failure, 1 if okay.
3345 */
3346 static int parse(EVP_TEST *t)
3347 {
3348 KEY_LIST *key, **klist;
3349 EVP_PKEY *pkey;
3350 PAIR *pp;
3351 int i;
3352
3353 top:
3354 do {
3355 if (BIO_eof(t->s.fp))
3356 return EOF;
3357 clear_test(t);
3358 if (!test_readstanza(&t->s))
3359 return 0;
3360 } while (t->s.numpairs == 0);
3361 pp = &t->s.pairs[0];
3362
3363 /* Are we adding a key? */
3364 klist = NULL;
3365 pkey = NULL;
3366 if (strcmp(pp->key, "PrivateKey") == 0) {
3367 pkey = PEM_read_bio_PrivateKey(t->s.key, NULL, 0, NULL);
3368 if (pkey == NULL && !key_unsupported()) {
3369 EVP_PKEY_free(pkey);
3370 TEST_info("Can't read private key %s", pp->value);
3371 TEST_openssl_errors();
3372 return 0;
3373 }
3374 klist = &private_keys;
3375 } else if (strcmp(pp->key, "PublicKey") == 0) {
3376 pkey = PEM_read_bio_PUBKEY(t->s.key, NULL, 0, NULL);
3377 if (pkey == NULL && !key_unsupported()) {
3378 EVP_PKEY_free(pkey);
3379 TEST_info("Can't read public key %s", pp->value);
3380 TEST_openssl_errors();
3381 return 0;
3382 }
3383 klist = &public_keys;
3384 } else if (strcmp(pp->key, "PrivateKeyRaw") == 0
3385 || strcmp(pp->key, "PublicKeyRaw") == 0 ) {
3386 char *strnid = NULL, *keydata = NULL;
3387 unsigned char *keybin;
3388 size_t keylen;
3389 int nid;
3390
3391 if (strcmp(pp->key, "PrivateKeyRaw") == 0)
3392 klist = &private_keys;
3393 else
3394 klist = &public_keys;
3395
3396 strnid = strchr(pp->value, ':');
3397 if (strnid != NULL) {
3398 *strnid++ = '\0';
3399 keydata = strchr(strnid, ':');
3400 if (keydata != NULL)
3401 *keydata++ = '\0';
3402 }
3403 if (keydata == NULL) {
3404 TEST_info("Failed to parse %s value", pp->key);
3405 return 0;
3406 }
3407
3408 nid = OBJ_txt2nid(strnid);
3409 if (nid == NID_undef) {
3410 TEST_info("Uncrecognised algorithm NID");
3411 return 0;
3412 }
3413 if (!parse_bin(keydata, &keybin, &keylen)) {
3414 TEST_info("Failed to create binary key");
3415 return 0;
3416 }
3417 if (klist == &private_keys)
3418 pkey = EVP_PKEY_new_raw_private_key(nid, NULL, keybin, keylen);
3419 else
3420 pkey = EVP_PKEY_new_raw_public_key(nid, NULL, keybin, keylen);
3421 if (pkey == NULL && !key_unsupported()) {
3422 TEST_info("Can't read %s data", pp->key);
3423 OPENSSL_free(keybin);
3424 TEST_openssl_errors();
3425 return 0;
3426 }
3427 OPENSSL_free(keybin);
3428 }
3429
3430 /* If we have a key add to list */
3431 if (klist != NULL) {
3432 if (find_key(NULL, pp->value, *klist)) {
3433 TEST_info("Duplicate key %s", pp->value);
3434 return 0;
3435 }
3436 if (!TEST_ptr(key = OPENSSL_malloc(sizeof(*key))))
3437 return 0;
3438 key->name = take_value(pp);
3439 key->key = pkey;
3440 key->next = *klist;
3441 *klist = key;
3442
3443 /* Go back and start a new stanza. */
3444 if (t->s.numpairs != 1)
3445 TEST_info("Line %d: missing blank line\n", t->s.curr);
3446 goto top;
3447 }
3448
3449 /* Find the test, based on first keyword. */
3450 if (!TEST_ptr(t->meth = find_test(pp->key)))
3451 return 0;
3452 if (!t->meth->init(t, pp->value)) {
3453 TEST_error("unknown %s: %s\n", pp->key, pp->value);
3454 return 0;
3455 }
3456 if (t->skip == 1) {
3457 /* TEST_info("skipping %s %s", pp->key, pp->value); */
3458 return 0;
3459 }
3460
3461 for (pp++, i = 1; i < t->s.numpairs; pp++, i++) {
3462 if (strcmp(pp->key, "Availablein") == 0) {
3463 if (!prov_available(pp->value)) {
3464 TEST_info("skipping, providers not available: %s:%d",
3465 t->s.test_file, t->s.start);
3466 t->skip = 1;
3467 return 0;
3468 }
3469 } else if (strcmp(pp->key, "Result") == 0) {
3470 if (t->expected_err != NULL) {
3471 TEST_info("Line %d: multiple result lines", t->s.curr);
3472 return 0;
3473 }
3474 t->expected_err = take_value(pp);
3475 } else if (strcmp(pp->key, "Function") == 0) {
3476 /* Ignore old line. */
3477 } else if (strcmp(pp->key, "Reason") == 0) {
3478 if (t->reason != NULL) {
3479 TEST_info("Line %d: multiple reason lines", t->s.curr);
3480 return 0;
3481 }
3482 t->reason = take_value(pp);
3483 } else {
3484 /* Must be test specific line: try to parse it */
3485 int rv = t->meth->parse(t, pp->key, pp->value);
3486
3487 if (rv == 0) {
3488 TEST_info("Line %d: unknown keyword %s", t->s.curr, pp->key);
3489 return 0;
3490 }
3491 if (rv < 0) {
3492 TEST_info("Line %d: error processing keyword %s = %s\n",
3493 t->s.curr, pp->key, pp->value);
3494 return 0;
3495 }
3496 }
3497 }
3498
3499 return 1;
3500 }
3501
3502 static int run_file_tests(int i)
3503 {
3504 EVP_TEST *t;
3505 const char *testfile = test_get_argument(i);
3506 int c;
3507
3508 if (!TEST_ptr(t = OPENSSL_zalloc(sizeof(*t))))
3509 return 0;
3510 if (!test_start_file(&t->s, testfile)) {
3511 OPENSSL_free(t);
3512 return 0;
3513 }
3514
3515 while (!BIO_eof(t->s.fp)) {
3516 c = parse(t);
3517 if (t->skip) {
3518 t->s.numskip++;
3519 continue;
3520 }
3521 if (c == 0 || !run_test(t)) {
3522 t->s.errors++;
3523 break;
3524 }
3525 }
3526 test_end_file(&t->s);
3527 clear_test(t);
3528
3529 free_key_list(public_keys);
3530 free_key_list(private_keys);
3531 BIO_free(t->s.key);
3532 c = t->s.errors;
3533 OPENSSL_free(t);
3534 return c == 0;
3535 }
3536
3537 OPT_TEST_DECLARE_USAGE("file...\n")
3538
3539 int setup_tests(void)
3540 {
3541 size_t n;
3542
3543 if (!test_skip_common_options()) {
3544 TEST_error("Error parsing test options\n");
3545 return 0;
3546 }
3547
3548 n = test_get_argument_count();
3549 if (n == 0)
3550 return 0;
3551
3552 ADD_ALL_TESTS(run_file_tests, n);
3553 return 1;
3554 }