]> git.ipfire.org Git - thirdparty/openssl.git/blob - test/handshake_helper.c
Add support for parameterized SipHash
[thirdparty/openssl.git] / test / handshake_helper.c
1 /*
2 * Copyright 2016 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the OpenSSL license (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 #include <string.h>
11
12 #include <openssl/bio.h>
13 #include <openssl/x509_vfy.h>
14 #include <openssl/ssl.h>
15
16 #include "handshake_helper.h"
17 #include "testutil.h"
18
19 HANDSHAKE_RESULT *HANDSHAKE_RESULT_new()
20 {
21 HANDSHAKE_RESULT *ret = OPENSSL_zalloc(sizeof(*ret));
22 TEST_check(ret != NULL);
23 return ret;
24 }
25
26 void HANDSHAKE_RESULT_free(HANDSHAKE_RESULT *result)
27 {
28 if (result == NULL)
29 return;
30 OPENSSL_free(result->client_npn_negotiated);
31 OPENSSL_free(result->server_npn_negotiated);
32 OPENSSL_free(result->client_alpn_negotiated);
33 OPENSSL_free(result->server_alpn_negotiated);
34 OPENSSL_free(result);
35 }
36
37 /*
38 * Since there appears to be no way to extract the sent/received alert
39 * from the SSL object directly, we use the info callback and stash
40 * the result in ex_data.
41 */
42 typedef struct handshake_ex_data_st {
43 int alert_sent;
44 int num_fatal_alerts_sent;
45 int alert_received;
46 int session_ticket_do_not_call;
47 ssl_servername_t servername;
48 } HANDSHAKE_EX_DATA;
49
50 typedef struct ctx_data_st {
51 unsigned char *npn_protocols;
52 size_t npn_protocols_len;
53 unsigned char *alpn_protocols;
54 size_t alpn_protocols_len;
55 } CTX_DATA;
56
57 /* |ctx_data| itself is stack-allocated. */
58 static void ctx_data_free_data(CTX_DATA *ctx_data)
59 {
60 OPENSSL_free(ctx_data->npn_protocols);
61 ctx_data->npn_protocols = NULL;
62 OPENSSL_free(ctx_data->alpn_protocols);
63 ctx_data->alpn_protocols = NULL;
64 }
65
66 static int ex_data_idx;
67
68 static void info_cb(const SSL *s, int where, int ret)
69 {
70 if (where & SSL_CB_ALERT) {
71 HANDSHAKE_EX_DATA *ex_data =
72 (HANDSHAKE_EX_DATA*)(SSL_get_ex_data(s, ex_data_idx));
73 if (where & SSL_CB_WRITE) {
74 ex_data->alert_sent = ret;
75 if (strcmp(SSL_alert_type_string(ret), "F") == 0
76 || strcmp(SSL_alert_desc_string(ret), "CN") == 0)
77 ex_data->num_fatal_alerts_sent++;
78 } else {
79 ex_data->alert_received = ret;
80 }
81 }
82 }
83
84 /* Select the appropriate server CTX.
85 * Returns SSL_TLSEXT_ERR_OK if a match was found.
86 * If |ignore| is 1, returns SSL_TLSEXT_ERR_NOACK on mismatch.
87 * Otherwise, returns SSL_TLSEXT_ERR_ALERT_FATAL on mismatch.
88 * An empty SNI extension also returns SSL_TSLEXT_ERR_NOACK.
89 */
90 static int select_server_ctx(SSL *s, void *arg, int ignore)
91 {
92 const char *servername = SSL_get_servername(s, TLSEXT_NAMETYPE_host_name);
93 HANDSHAKE_EX_DATA *ex_data =
94 (HANDSHAKE_EX_DATA*)(SSL_get_ex_data(s, ex_data_idx));
95
96 if (servername == NULL) {
97 ex_data->servername = SSL_TEST_SERVERNAME_SERVER1;
98 return SSL_TLSEXT_ERR_NOACK;
99 }
100
101 if (strcmp(servername, "server2") == 0) {
102 SSL_CTX *new_ctx = (SSL_CTX*)arg;
103 SSL_set_SSL_CTX(s, new_ctx);
104 /*
105 * Copy over all the SSL_CTX options - reasonable behavior
106 * allows testing of cases where the options between two
107 * contexts differ/conflict
108 */
109 SSL_clear_options(s, 0xFFFFFFFFL);
110 SSL_set_options(s, SSL_CTX_get_options(new_ctx));
111
112 ex_data->servername = SSL_TEST_SERVERNAME_SERVER2;
113 return SSL_TLSEXT_ERR_OK;
114 } else if (strcmp(servername, "server1") == 0) {
115 ex_data->servername = SSL_TEST_SERVERNAME_SERVER1;
116 return SSL_TLSEXT_ERR_OK;
117 } else if (ignore) {
118 ex_data->servername = SSL_TEST_SERVERNAME_SERVER1;
119 return SSL_TLSEXT_ERR_NOACK;
120 } else {
121 /* Don't set an explicit alert, to test library defaults. */
122 return SSL_TLSEXT_ERR_ALERT_FATAL;
123 }
124 }
125
126 /*
127 * (RFC 6066):
128 * If the server understood the ClientHello extension but
129 * does not recognize the server name, the server SHOULD take one of two
130 * actions: either abort the handshake by sending a fatal-level
131 * unrecognized_name(112) alert or continue the handshake.
132 *
133 * This behaviour is up to the application to configure; we test both
134 * configurations to ensure the state machine propagates the result
135 * correctly.
136 */
137 static int servername_ignore_cb(SSL *s, int *ad, void *arg)
138 {
139 return select_server_ctx(s, arg, 1);
140 }
141
142 static int servername_reject_cb(SSL *s, int *ad, void *arg)
143 {
144 return select_server_ctx(s, arg, 0);
145 }
146
147 static unsigned char dummy_ocsp_resp_good_val = 0xff;
148 static unsigned char dummy_ocsp_resp_bad_val = 0xfe;
149
150 static int server_ocsp_cb(SSL *s, void *arg)
151 {
152 unsigned char *resp;
153
154 resp = OPENSSL_malloc(1);
155 if (resp == NULL)
156 return SSL_TLSEXT_ERR_ALERT_FATAL;
157 /*
158 * For the purposes of testing we just send back a dummy OCSP response
159 */
160 *resp = *(unsigned char *)arg;
161 if (!SSL_set_tlsext_status_ocsp_resp(s, resp, 1))
162 return SSL_TLSEXT_ERR_ALERT_FATAL;
163
164 return SSL_TLSEXT_ERR_OK;
165 }
166
167 static int client_ocsp_cb(SSL *s, void *arg)
168 {
169 const unsigned char *resp;
170 int len;
171
172 len = SSL_get_tlsext_status_ocsp_resp(s, &resp);
173 if (len != 1 || *resp != dummy_ocsp_resp_good_val)
174 return 0;
175
176 return 1;
177 }
178
179 static int verify_reject_cb(X509_STORE_CTX *ctx, void *arg) {
180 X509_STORE_CTX_set_error(ctx, X509_V_ERR_APPLICATION_VERIFICATION);
181 return 0;
182 }
183
184 static int verify_accept_cb(X509_STORE_CTX *ctx, void *arg) {
185 return 1;
186 }
187
188 static int broken_session_ticket_cb(SSL *s, unsigned char *key_name, unsigned char *iv,
189 EVP_CIPHER_CTX *ctx, HMAC_CTX *hctx, int enc)
190 {
191 return 0;
192 }
193
194 static int do_not_call_session_ticket_cb(SSL *s, unsigned char *key_name,
195 unsigned char *iv,
196 EVP_CIPHER_CTX *ctx,
197 HMAC_CTX *hctx, int enc)
198 {
199 HANDSHAKE_EX_DATA *ex_data =
200 (HANDSHAKE_EX_DATA*)(SSL_get_ex_data(s, ex_data_idx));
201 ex_data->session_ticket_do_not_call = 1;
202 return 0;
203 }
204
205 /* Parse the comma-separated list into TLS format. */
206 static void parse_protos(const char *protos, unsigned char **out, size_t *outlen)
207 {
208 size_t len, i, prefix;
209
210 len = strlen(protos);
211
212 /* Should never have reuse. */
213 TEST_check(*out == NULL);
214
215 /* Test values are small, so we omit length limit checks. */
216 *out = OPENSSL_malloc(len + 1);
217 TEST_check(*out != NULL);
218 *outlen = len + 1;
219
220 /*
221 * foo => '3', 'f', 'o', 'o'
222 * foo,bar => '3', 'f', 'o', 'o', '3', 'b', 'a', 'r'
223 */
224 memcpy(*out + 1, protos, len);
225
226 prefix = 0;
227 i = prefix + 1;
228 while (i <= len) {
229 if ((*out)[i] == ',') {
230 TEST_check(i - 1 - prefix > 0);
231 (*out)[prefix] = i - 1 - prefix;
232 prefix = i;
233 }
234 i++;
235 }
236 TEST_check(len - prefix > 0);
237 (*out)[prefix] = len - prefix;
238 }
239
240 #ifndef OPENSSL_NO_NEXTPROTONEG
241 /*
242 * The client SHOULD select the first protocol advertised by the server that it
243 * also supports. In the event that the client doesn't support any of server's
244 * protocols, or the server doesn't advertise any, it SHOULD select the first
245 * protocol that it supports.
246 */
247 static int client_npn_cb(SSL *s, unsigned char **out, unsigned char *outlen,
248 const unsigned char *in, unsigned int inlen,
249 void *arg)
250 {
251 CTX_DATA *ctx_data = (CTX_DATA*)(arg);
252 int ret;
253
254 ret = SSL_select_next_proto(out, outlen, in, inlen,
255 ctx_data->npn_protocols,
256 ctx_data->npn_protocols_len);
257 /* Accept both OPENSSL_NPN_NEGOTIATED and OPENSSL_NPN_NO_OVERLAP. */
258 TEST_check(ret == OPENSSL_NPN_NEGOTIATED || ret == OPENSSL_NPN_NO_OVERLAP);
259 return SSL_TLSEXT_ERR_OK;
260 }
261
262 static int server_npn_cb(SSL *s, const unsigned char **data,
263 unsigned int *len, void *arg)
264 {
265 CTX_DATA *ctx_data = (CTX_DATA*)(arg);
266 *data = ctx_data->npn_protocols;
267 *len = ctx_data->npn_protocols_len;
268 return SSL_TLSEXT_ERR_OK;
269 }
270 #endif
271
272 /*
273 * The server SHOULD select the most highly preferred protocol that it supports
274 * and that is also advertised by the client. In the event that the server
275 * supports no protocols that the client advertises, then the server SHALL
276 * respond with a fatal "no_application_protocol" alert.
277 */
278 static int server_alpn_cb(SSL *s, const unsigned char **out,
279 unsigned char *outlen, const unsigned char *in,
280 unsigned int inlen, void *arg)
281 {
282 CTX_DATA *ctx_data = (CTX_DATA*)(arg);
283 int ret;
284
285 /* SSL_select_next_proto isn't const-correct... */
286 unsigned char *tmp_out;
287
288 /*
289 * The result points either to |in| or to |ctx_data->alpn_protocols|.
290 * The callback is allowed to point to |in| or to a long-lived buffer,
291 * so we can return directly without storing a copy.
292 */
293 ret = SSL_select_next_proto(&tmp_out, outlen,
294 ctx_data->alpn_protocols,
295 ctx_data->alpn_protocols_len, in, inlen);
296
297 *out = tmp_out;
298 /* Unlike NPN, we don't tolerate a mismatch. */
299 return ret == OPENSSL_NPN_NEGOTIATED ? SSL_TLSEXT_ERR_OK
300 : SSL_TLSEXT_ERR_NOACK;
301 }
302
303 /*
304 * Configure callbacks and other properties that can't be set directly
305 * in the server/client CONF.
306 */
307 static void configure_handshake_ctx(SSL_CTX *server_ctx, SSL_CTX *server2_ctx,
308 SSL_CTX *client_ctx,
309 const SSL_TEST_CTX *test,
310 const SSL_TEST_EXTRA_CONF *extra,
311 CTX_DATA *server_ctx_data,
312 CTX_DATA *server2_ctx_data,
313 CTX_DATA *client_ctx_data)
314 {
315 unsigned char *ticket_keys;
316 size_t ticket_key_len;
317
318 TEST_check(SSL_CTX_set_max_send_fragment(server_ctx,
319 test->max_fragment_size) == 1);
320 if (server2_ctx != NULL) {
321 TEST_check(SSL_CTX_set_max_send_fragment(server2_ctx,
322 test->max_fragment_size) == 1);
323 }
324 TEST_check(SSL_CTX_set_max_send_fragment(client_ctx,
325 test->max_fragment_size) == 1);
326
327 switch (extra->client.verify_callback) {
328 case SSL_TEST_VERIFY_ACCEPT_ALL:
329 SSL_CTX_set_cert_verify_callback(client_ctx, &verify_accept_cb,
330 NULL);
331 break;
332 case SSL_TEST_VERIFY_REJECT_ALL:
333 SSL_CTX_set_cert_verify_callback(client_ctx, &verify_reject_cb,
334 NULL);
335 break;
336 case SSL_TEST_VERIFY_NONE:
337 break;
338 }
339
340 /* link the two contexts for SNI purposes */
341 switch (extra->server.servername_callback) {
342 case SSL_TEST_SERVERNAME_IGNORE_MISMATCH:
343 SSL_CTX_set_tlsext_servername_callback(server_ctx, servername_ignore_cb);
344 SSL_CTX_set_tlsext_servername_arg(server_ctx, server2_ctx);
345 break;
346 case SSL_TEST_SERVERNAME_REJECT_MISMATCH:
347 SSL_CTX_set_tlsext_servername_callback(server_ctx, servername_reject_cb);
348 SSL_CTX_set_tlsext_servername_arg(server_ctx, server2_ctx);
349 break;
350 case SSL_TEST_SERVERNAME_CB_NONE:
351 break;
352 }
353
354 if (extra->server.cert_status != SSL_TEST_CERT_STATUS_NONE) {
355 SSL_CTX_set_tlsext_status_type(client_ctx, TLSEXT_STATUSTYPE_ocsp);
356 SSL_CTX_set_tlsext_status_cb(client_ctx, client_ocsp_cb);
357 SSL_CTX_set_tlsext_status_arg(client_ctx, NULL);
358 SSL_CTX_set_tlsext_status_cb(server_ctx, server_ocsp_cb);
359 SSL_CTX_set_tlsext_status_arg(server_ctx,
360 ((extra->server.cert_status == SSL_TEST_CERT_STATUS_GOOD_RESPONSE)
361 ? &dummy_ocsp_resp_good_val : &dummy_ocsp_resp_bad_val));
362 }
363
364 /*
365 * The initial_ctx/session_ctx always handles the encrypt/decrypt of the
366 * session ticket. This ticket_key callback is assigned to the second
367 * session (assigned via SNI), and should never be invoked
368 */
369 if (server2_ctx != NULL)
370 SSL_CTX_set_tlsext_ticket_key_cb(server2_ctx,
371 do_not_call_session_ticket_cb);
372
373 if (extra->server.broken_session_ticket) {
374 SSL_CTX_set_tlsext_ticket_key_cb(server_ctx, broken_session_ticket_cb);
375 }
376 #ifndef OPENSSL_NO_NEXTPROTONEG
377 if (extra->server.npn_protocols != NULL) {
378 parse_protos(extra->server.npn_protocols,
379 &server_ctx_data->npn_protocols,
380 &server_ctx_data->npn_protocols_len);
381 SSL_CTX_set_npn_advertised_cb(server_ctx, server_npn_cb,
382 server_ctx_data);
383 }
384 if (extra->server2.npn_protocols != NULL) {
385 parse_protos(extra->server2.npn_protocols,
386 &server2_ctx_data->npn_protocols,
387 &server2_ctx_data->npn_protocols_len);
388 TEST_check(server2_ctx != NULL);
389 SSL_CTX_set_npn_advertised_cb(server2_ctx, server_npn_cb,
390 server2_ctx_data);
391 }
392 if (extra->client.npn_protocols != NULL) {
393 parse_protos(extra->client.npn_protocols,
394 &client_ctx_data->npn_protocols,
395 &client_ctx_data->npn_protocols_len);
396 SSL_CTX_set_next_proto_select_cb(client_ctx, client_npn_cb,
397 client_ctx_data);
398 }
399 #endif
400 if (extra->server.alpn_protocols != NULL) {
401 parse_protos(extra->server.alpn_protocols,
402 &server_ctx_data->alpn_protocols,
403 &server_ctx_data->alpn_protocols_len);
404 SSL_CTX_set_alpn_select_cb(server_ctx, server_alpn_cb, server_ctx_data);
405 }
406 if (extra->server2.alpn_protocols != NULL) {
407 TEST_check(server2_ctx != NULL);
408 parse_protos(extra->server2.alpn_protocols,
409 &server2_ctx_data->alpn_protocols,
410 &server2_ctx_data->alpn_protocols_len);
411 SSL_CTX_set_alpn_select_cb(server2_ctx, server_alpn_cb, server2_ctx_data);
412 }
413 if (extra->client.alpn_protocols != NULL) {
414 unsigned char *alpn_protos = NULL;
415 size_t alpn_protos_len;
416 parse_protos(extra->client.alpn_protocols,
417 &alpn_protos, &alpn_protos_len);
418 /* Reversed return value convention... */
419 TEST_check(SSL_CTX_set_alpn_protos(client_ctx, alpn_protos,
420 alpn_protos_len) == 0);
421 OPENSSL_free(alpn_protos);
422 }
423
424 /*
425 * Use fixed session ticket keys so that we can decrypt a ticket created with
426 * one CTX in another CTX. Don't address server2 for the moment.
427 */
428 ticket_key_len = SSL_CTX_set_tlsext_ticket_keys(server_ctx, NULL, 0);
429 ticket_keys = OPENSSL_zalloc(ticket_key_len);
430 TEST_check(ticket_keys != NULL);
431 TEST_check(SSL_CTX_set_tlsext_ticket_keys(server_ctx, ticket_keys,
432 ticket_key_len) == 1);
433 OPENSSL_free(ticket_keys);
434
435 /* The default log list includes EC keys, so CT can't work without EC. */
436 #if !defined(OPENSSL_NO_CT) && !defined(OPENSSL_NO_EC)
437 TEST_check(SSL_CTX_set_default_ctlog_list_file(client_ctx));
438 switch (extra->client.ct_validation) {
439 case SSL_TEST_CT_VALIDATION_PERMISSIVE:
440 TEST_check(SSL_CTX_enable_ct(client_ctx, SSL_CT_VALIDATION_PERMISSIVE));
441 break;
442 case SSL_TEST_CT_VALIDATION_STRICT:
443 TEST_check(SSL_CTX_enable_ct(client_ctx, SSL_CT_VALIDATION_STRICT));
444 break;
445 case SSL_TEST_CT_VALIDATION_NONE:
446 break;
447 }
448 #endif
449 }
450
451 /* Configure per-SSL callbacks and other properties. */
452 static void configure_handshake_ssl(SSL *server, SSL *client,
453 const SSL_TEST_EXTRA_CONF *extra)
454 {
455 if (extra->client.servername != SSL_TEST_SERVERNAME_NONE)
456 SSL_set_tlsext_host_name(client,
457 ssl_servername_name(extra->client.servername));
458 }
459
460 /* The status for each connection phase. */
461 typedef enum {
462 PEER_SUCCESS,
463 PEER_RETRY,
464 PEER_ERROR
465 } peer_status_t;
466
467 /* An SSL object and associated read-write buffers. */
468 typedef struct peer_st {
469 SSL *ssl;
470 /* Buffer lengths are int to match the SSL read/write API. */
471 unsigned char *write_buf;
472 int write_buf_len;
473 unsigned char *read_buf;
474 int read_buf_len;
475 int bytes_to_write;
476 int bytes_to_read;
477 peer_status_t status;
478 } PEER;
479
480 static void create_peer(PEER *peer, SSL_CTX *ctx)
481 {
482 static const int peer_buffer_size = 64 * 1024;
483
484 peer->ssl = SSL_new(ctx);
485 TEST_check(peer->ssl != NULL);
486 peer->write_buf = OPENSSL_zalloc(peer_buffer_size);
487 TEST_check(peer->write_buf != NULL);
488 peer->read_buf = OPENSSL_zalloc(peer_buffer_size);
489 TEST_check(peer->read_buf != NULL);
490 peer->write_buf_len = peer->read_buf_len = peer_buffer_size;
491 }
492
493 static void peer_free_data(PEER *peer)
494 {
495 SSL_free(peer->ssl);
496 OPENSSL_free(peer->write_buf);
497 OPENSSL_free(peer->read_buf);
498 }
499
500 /*
501 * Note that we could do the handshake transparently under an SSL_write,
502 * but separating the steps is more helpful for debugging test failures.
503 */
504 static void do_handshake_step(PEER *peer)
505 {
506 int ret;
507
508 TEST_check(peer->status == PEER_RETRY);
509 ret = SSL_do_handshake(peer->ssl);
510
511 if (ret == 1) {
512 peer->status = PEER_SUCCESS;
513 } else if (ret == 0) {
514 peer->status = PEER_ERROR;
515 } else {
516 int error = SSL_get_error(peer->ssl, ret);
517 /* Memory bios should never block with SSL_ERROR_WANT_WRITE. */
518 if (error != SSL_ERROR_WANT_READ)
519 peer->status = PEER_ERROR;
520 }
521 }
522
523 /*-
524 * Send/receive some application data. The read-write sequence is
525 * Peer A: (R) W - first read will yield no data
526 * Peer B: R W
527 * ...
528 * Peer A: R W
529 * Peer B: R W
530 * Peer A: R
531 */
532 static void do_app_data_step(PEER *peer)
533 {
534 int ret = 1, write_bytes;
535
536 TEST_check(peer->status == PEER_RETRY);
537
538 /* We read everything available... */
539 while (ret > 0 && peer->bytes_to_read) {
540 ret = SSL_read(peer->ssl, peer->read_buf, peer->read_buf_len);
541 if (ret > 0) {
542 TEST_check(ret <= peer->bytes_to_read);
543 peer->bytes_to_read -= ret;
544 } else if (ret == 0) {
545 peer->status = PEER_ERROR;
546 return;
547 } else {
548 int error = SSL_get_error(peer->ssl, ret);
549 if (error != SSL_ERROR_WANT_READ) {
550 peer->status = PEER_ERROR;
551 return;
552 } /* Else continue with write. */
553 }
554 }
555
556 /* ... but we only write one write-buffer-full of data. */
557 write_bytes = peer->bytes_to_write < peer->write_buf_len ? peer->bytes_to_write :
558 peer->write_buf_len;
559 if (write_bytes) {
560 ret = SSL_write(peer->ssl, peer->write_buf, write_bytes);
561 if (ret > 0) {
562 /* SSL_write will only succeed with a complete write. */
563 TEST_check(ret == write_bytes);
564 peer->bytes_to_write -= ret;
565 } else {
566 /*
567 * We should perhaps check for SSL_ERROR_WANT_READ/WRITE here
568 * but this doesn't yet occur with current app data sizes.
569 */
570 peer->status = PEER_ERROR;
571 return;
572 }
573 }
574
575 /*
576 * We could simply finish when there was nothing to read, and we have
577 * nothing left to write. But keeping track of the expected number of bytes
578 * to read gives us somewhat better guarantees that all data sent is in fact
579 * received.
580 */
581 if (!peer->bytes_to_write && !peer->bytes_to_read) {
582 peer->status = PEER_SUCCESS;
583 }
584 }
585
586 static void do_reneg_setup_step(const SSL_TEST_CTX *test_ctx, PEER *peer)
587 {
588 int ret;
589 char buf;
590
591 TEST_check(peer->status == PEER_RETRY);
592 TEST_check(test_ctx->handshake_mode == SSL_TEST_HANDSHAKE_RENEG_SERVER
593 || test_ctx->handshake_mode == SSL_TEST_HANDSHAKE_RENEG_CLIENT);
594
595 /* Check if we are the peer that is going to initiate */
596 if ((test_ctx->handshake_mode == SSL_TEST_HANDSHAKE_RENEG_SERVER
597 && SSL_is_server(peer->ssl))
598 || (test_ctx->handshake_mode == SSL_TEST_HANDSHAKE_RENEG_CLIENT
599 && !SSL_is_server(peer->ssl))) {
600 /*
601 * If we already asked for a renegotiation then fall through to the
602 * SSL_read() below.
603 */
604 if (!SSL_renegotiate_pending(peer->ssl)) {
605 /*
606 * If we are the client we will always attempt to resume the
607 * session. The server may or may not resume dependant on the
608 * setting of SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION
609 */
610 if (SSL_is_server(peer->ssl))
611 ret = SSL_renegotiate(peer->ssl);
612 else
613 ret = SSL_renegotiate_abbreviated(peer->ssl);
614 if (!ret) {
615 peer->status = PEER_ERROR;
616 return;
617 }
618 do_handshake_step(peer);
619 /*
620 * If status is PEER_RETRY it means we're waiting on the peer to
621 * continue the handshake. As far as setting up the renegotiation is
622 * concerned that is a success. The next step will continue the
623 * handshake to its conclusion.
624 *
625 * If status is PEER_SUCCESS then we are the server and we have
626 * successfully sent the HelloRequest. We need to continue to wait
627 * until the handshake arrives from the client.
628 */
629 if (peer->status == PEER_RETRY)
630 peer->status = PEER_SUCCESS;
631 else if (peer->status == PEER_SUCCESS)
632 peer->status = PEER_RETRY;
633 return;
634 }
635 }
636
637 /*
638 * The SSL object is still expecting app data, even though it's going to
639 * get a handshake message. We try to read, and it should fail - after which
640 * we should be in a handshake
641 */
642 ret = SSL_read(peer->ssl, &buf, sizeof(buf));
643 if (ret >= 0) {
644 /*
645 * We're not actually expecting data - we're expecting a reneg to
646 * start
647 */
648 peer->status = PEER_ERROR;
649 return;
650 } else {
651 int error = SSL_get_error(peer->ssl, ret);
652 if (error != SSL_ERROR_WANT_READ) {
653 peer->status = PEER_ERROR;
654 return;
655 }
656 /* If we're no in init yet then we're not done with setup yet */
657 if (!SSL_in_init(peer->ssl))
658 return;
659 }
660
661 peer->status = PEER_SUCCESS;
662 }
663
664
665 /*
666 * RFC 5246 says:
667 *
668 * Note that as of TLS 1.1,
669 * failure to properly close a connection no longer requires that a
670 * session not be resumed. This is a change from TLS 1.0 to conform
671 * with widespread implementation practice.
672 *
673 * However,
674 * (a) OpenSSL requires that a connection be shutdown for all protocol versions.
675 * (b) We test lower versions, too.
676 * So we just implement shutdown. We do a full bidirectional shutdown so that we
677 * can compare sent and received close_notify alerts and get some test coverage
678 * for SSL_shutdown as a bonus.
679 */
680 static void do_shutdown_step(PEER *peer)
681 {
682 int ret;
683
684 TEST_check(peer->status == PEER_RETRY);
685 ret = SSL_shutdown(peer->ssl);
686
687 if (ret == 1) {
688 peer->status = PEER_SUCCESS;
689 } else if (ret < 0) { /* On 0, we retry. */
690 int error = SSL_get_error(peer->ssl, ret);
691 /* Memory bios should never block with SSL_ERROR_WANT_WRITE. */
692 if (error != SSL_ERROR_WANT_READ)
693 peer->status = PEER_ERROR;
694 }
695 }
696
697 typedef enum {
698 HANDSHAKE,
699 RENEG_APPLICATION_DATA,
700 RENEG_SETUP,
701 RENEG_HANDSHAKE,
702 APPLICATION_DATA,
703 SHUTDOWN,
704 CONNECTION_DONE
705 } connect_phase_t;
706
707 static connect_phase_t next_phase(const SSL_TEST_CTX *test_ctx,
708 connect_phase_t phase)
709 {
710 switch (phase) {
711 case HANDSHAKE:
712 if (test_ctx->handshake_mode == SSL_TEST_HANDSHAKE_RENEG_SERVER
713 || test_ctx->handshake_mode == SSL_TEST_HANDSHAKE_RENEG_CLIENT)
714 return RENEG_APPLICATION_DATA;
715 return APPLICATION_DATA;
716 case RENEG_APPLICATION_DATA:
717 return RENEG_SETUP;
718 case RENEG_SETUP:
719 return RENEG_HANDSHAKE;
720 case RENEG_HANDSHAKE:
721 return APPLICATION_DATA;
722 case APPLICATION_DATA:
723 return SHUTDOWN;
724 case SHUTDOWN:
725 return CONNECTION_DONE;
726 case CONNECTION_DONE:
727 TEST_check(0);
728 break;
729 }
730 return -1;
731 }
732
733 static void do_connect_step(const SSL_TEST_CTX *test_ctx, PEER *peer,
734 connect_phase_t phase)
735 {
736 switch (phase) {
737 case HANDSHAKE:
738 do_handshake_step(peer);
739 break;
740 case RENEG_APPLICATION_DATA:
741 do_app_data_step(peer);
742 break;
743 case RENEG_SETUP:
744 do_reneg_setup_step(test_ctx, peer);
745 break;
746 case RENEG_HANDSHAKE:
747 do_handshake_step(peer);
748 break;
749 case APPLICATION_DATA:
750 do_app_data_step(peer);
751 break;
752 case SHUTDOWN:
753 do_shutdown_step(peer);
754 break;
755 case CONNECTION_DONE:
756 TEST_check(0);
757 break;
758 }
759 }
760
761 typedef enum {
762 /* Both parties succeeded. */
763 HANDSHAKE_SUCCESS,
764 /* Client errored. */
765 CLIENT_ERROR,
766 /* Server errored. */
767 SERVER_ERROR,
768 /* Peers are in inconsistent state. */
769 INTERNAL_ERROR,
770 /* One or both peers not done. */
771 HANDSHAKE_RETRY
772 } handshake_status_t;
773
774 /*
775 * Determine the handshake outcome.
776 * last_status: the status of the peer to have acted last.
777 * previous_status: the status of the peer that didn't act last.
778 * client_spoke_last: 1 if the client went last.
779 */
780 static handshake_status_t handshake_status(peer_status_t last_status,
781 peer_status_t previous_status,
782 int client_spoke_last)
783 {
784 switch (last_status) {
785 case PEER_SUCCESS:
786 switch (previous_status) {
787 case PEER_SUCCESS:
788 /* Both succeeded. */
789 return HANDSHAKE_SUCCESS;
790 case PEER_RETRY:
791 /* Let the first peer finish. */
792 return HANDSHAKE_RETRY;
793 case PEER_ERROR:
794 /*
795 * Second peer succeeded despite the fact that the first peer
796 * already errored. This shouldn't happen.
797 */
798 return INTERNAL_ERROR;
799 }
800
801 case PEER_RETRY:
802 if (previous_status == PEER_RETRY) {
803 /* Neither peer is done. */
804 return HANDSHAKE_RETRY;
805 } else {
806 /*
807 * Deadlock: second peer is waiting for more input while first
808 * peer thinks they're done (no more input is coming).
809 */
810 return INTERNAL_ERROR;
811 }
812 case PEER_ERROR:
813 switch (previous_status) {
814 case PEER_SUCCESS:
815 /*
816 * First peer succeeded but second peer errored.
817 * TODO(emilia): we should be able to continue here (with some
818 * application data?) to ensure the first peer receives the
819 * alert / close_notify.
820 * (No tests currently exercise this branch.)
821 */
822 return client_spoke_last ? CLIENT_ERROR : SERVER_ERROR;
823 case PEER_RETRY:
824 /* We errored; let the peer finish. */
825 return HANDSHAKE_RETRY;
826 case PEER_ERROR:
827 /* Both peers errored. Return the one that errored first. */
828 return client_spoke_last ? SERVER_ERROR : CLIENT_ERROR;
829 }
830 }
831 /* Control should never reach here. */
832 return INTERNAL_ERROR;
833 }
834
835 /* Convert unsigned char buf's that shouldn't contain any NUL-bytes to char. */
836 static char *dup_str(const unsigned char *in, size_t len)
837 {
838 char *ret;
839
840 if (len == 0)
841 return NULL;
842
843 /* Assert that the string does not contain NUL-bytes. */
844 TEST_check(OPENSSL_strnlen((const char*)(in), len) == len);
845 ret = OPENSSL_strndup((const char*)(in), len);
846 TEST_check(ret != NULL);
847 return ret;
848 }
849
850 static int pkey_type(EVP_PKEY *pkey)
851 {
852 int nid = EVP_PKEY_id(pkey);
853
854 #ifndef OPENSSL_NO_EC
855 if (nid == EVP_PKEY_EC) {
856 const EC_KEY *ec = EVP_PKEY_get0_EC_KEY(pkey);
857 return EC_GROUP_get_curve_name(EC_KEY_get0_group(ec));
858 }
859 #endif
860 return nid;
861 }
862
863 static int peer_pkey_type(SSL *s)
864 {
865 X509 *x = SSL_get_peer_certificate(s);
866
867 if (x != NULL) {
868 int nid = pkey_type(X509_get0_pubkey(x));
869
870 X509_free(x);
871 return nid;
872 }
873 return NID_undef;
874 }
875
876 /*
877 * Note that |extra| points to the correct client/server configuration
878 * within |test_ctx|. When configuring the handshake, general mode settings
879 * are taken from |test_ctx|, and client/server-specific settings should be
880 * taken from |extra|.
881 *
882 * The configuration code should never reach into |test_ctx->extra| or
883 * |test_ctx->resume_extra| directly.
884 *
885 * (We could refactor test mode settings into a substructure. This would result
886 * in cleaner argument passing but would complicate the test configuration
887 * parsing.)
888 */
889 static HANDSHAKE_RESULT *do_handshake_internal(
890 SSL_CTX *server_ctx, SSL_CTX *server2_ctx, SSL_CTX *client_ctx,
891 const SSL_TEST_CTX *test_ctx, const SSL_TEST_EXTRA_CONF *extra,
892 SSL_SESSION *session_in, SSL_SESSION **session_out)
893 {
894 PEER server, client;
895 BIO *client_to_server, *server_to_client;
896 HANDSHAKE_EX_DATA server_ex_data, client_ex_data;
897 CTX_DATA client_ctx_data, server_ctx_data, server2_ctx_data;
898 HANDSHAKE_RESULT *ret = HANDSHAKE_RESULT_new();
899 int client_turn = 1, client_turn_count = 0;
900 connect_phase_t phase = HANDSHAKE;
901 handshake_status_t status = HANDSHAKE_RETRY;
902 const unsigned char* tick = NULL;
903 size_t tick_len = 0;
904 SSL_SESSION* sess = NULL;
905 const unsigned char *proto = NULL;
906 /* API dictates unsigned int rather than size_t. */
907 unsigned int proto_len = 0;
908 EVP_PKEY *tmp_key;
909
910 memset(&server_ctx_data, 0, sizeof(server_ctx_data));
911 memset(&server2_ctx_data, 0, sizeof(server2_ctx_data));
912 memset(&client_ctx_data, 0, sizeof(client_ctx_data));
913 memset(&server, 0, sizeof(server));
914 memset(&client, 0, sizeof(client));
915
916 configure_handshake_ctx(server_ctx, server2_ctx, client_ctx, test_ctx, extra,
917 &server_ctx_data, &server2_ctx_data, &client_ctx_data);
918
919 /* Setup SSL and buffers; additional configuration happens below. */
920 create_peer(&server, server_ctx);
921 create_peer(&client, client_ctx);
922
923 server.bytes_to_write = client.bytes_to_read = test_ctx->app_data_size;
924 client.bytes_to_write = server.bytes_to_read = test_ctx->app_data_size;
925
926 configure_handshake_ssl(server.ssl, client.ssl, extra);
927 if (session_in != NULL) {
928 /* In case we're testing resumption without tickets. */
929 TEST_check(SSL_CTX_add_session(server_ctx, session_in));
930 TEST_check(SSL_set_session(client.ssl, session_in));
931 }
932
933 memset(&server_ex_data, 0, sizeof(server_ex_data));
934 memset(&client_ex_data, 0, sizeof(client_ex_data));
935
936 ret->result = SSL_TEST_INTERNAL_ERROR;
937
938 client_to_server = BIO_new(BIO_s_mem());
939 server_to_client = BIO_new(BIO_s_mem());
940
941 TEST_check(client_to_server != NULL);
942 TEST_check(server_to_client != NULL);
943
944 /* Non-blocking bio. */
945 BIO_set_nbio(client_to_server, 1);
946 BIO_set_nbio(server_to_client, 1);
947
948 SSL_set_connect_state(client.ssl);
949 SSL_set_accept_state(server.ssl);
950
951 /* The bios are now owned by the SSL object. */
952 SSL_set_bio(client.ssl, server_to_client, client_to_server);
953 TEST_check(BIO_up_ref(server_to_client) > 0);
954 TEST_check(BIO_up_ref(client_to_server) > 0);
955 SSL_set_bio(server.ssl, client_to_server, server_to_client);
956
957 ex_data_idx = SSL_get_ex_new_index(0, "ex data", NULL, NULL, NULL);
958 TEST_check(ex_data_idx >= 0);
959
960 TEST_check(SSL_set_ex_data(server.ssl, ex_data_idx, &server_ex_data) == 1);
961 TEST_check(SSL_set_ex_data(client.ssl, ex_data_idx, &client_ex_data) == 1);
962
963 SSL_set_info_callback(server.ssl, &info_cb);
964 SSL_set_info_callback(client.ssl, &info_cb);
965
966 client.status = server.status = PEER_RETRY;
967
968 /*
969 * Half-duplex handshake loop.
970 * Client and server speak to each other synchronously in the same process.
971 * We use non-blocking BIOs, so whenever one peer blocks for read, it
972 * returns PEER_RETRY to indicate that it's the other peer's turn to write.
973 * The handshake succeeds once both peers have succeeded. If one peer
974 * errors out, we also let the other peer retry (and presumably fail).
975 */
976 for(;;) {
977 if (client_turn) {
978 do_connect_step(test_ctx, &client, phase);
979 status = handshake_status(client.status, server.status,
980 1 /* client went last */);
981 } else {
982 do_connect_step(test_ctx, &server, phase);
983 status = handshake_status(server.status, client.status,
984 0 /* server went last */);
985 }
986
987 switch (status) {
988 case HANDSHAKE_SUCCESS:
989 client_turn_count = 0;
990 phase = next_phase(test_ctx, phase);
991 if (phase == CONNECTION_DONE) {
992 ret->result = SSL_TEST_SUCCESS;
993 goto err;
994 } else {
995 client.status = server.status = PEER_RETRY;
996 /*
997 * For now, client starts each phase. Since each phase is
998 * started separately, we can later control this more
999 * precisely, for example, to test client-initiated and
1000 * server-initiated shutdown.
1001 */
1002 client_turn = 1;
1003 break;
1004 }
1005 case CLIENT_ERROR:
1006 ret->result = SSL_TEST_CLIENT_FAIL;
1007 goto err;
1008 case SERVER_ERROR:
1009 ret->result = SSL_TEST_SERVER_FAIL;
1010 goto err;
1011 case INTERNAL_ERROR:
1012 ret->result = SSL_TEST_INTERNAL_ERROR;
1013 goto err;
1014 case HANDSHAKE_RETRY:
1015 if (client_turn_count++ >= 2000) {
1016 /*
1017 * At this point, there's been so many PEER_RETRY in a row
1018 * that it's likely both sides are stuck waiting for a read.
1019 * It's time to give up.
1020 */
1021 ret->result = SSL_TEST_INTERNAL_ERROR;
1022 goto err;
1023 }
1024
1025 /* Continue. */
1026 client_turn ^= 1;
1027 break;
1028 }
1029 }
1030 err:
1031 ret->server_alert_sent = server_ex_data.alert_sent;
1032 ret->server_num_fatal_alerts_sent = server_ex_data.num_fatal_alerts_sent;
1033 ret->server_alert_received = client_ex_data.alert_received;
1034 ret->client_alert_sent = client_ex_data.alert_sent;
1035 ret->client_num_fatal_alerts_sent = client_ex_data.num_fatal_alerts_sent;
1036 ret->client_alert_received = server_ex_data.alert_received;
1037 ret->server_protocol = SSL_version(server.ssl);
1038 ret->client_protocol = SSL_version(client.ssl);
1039 ret->servername = server_ex_data.servername;
1040 if ((sess = SSL_get0_session(client.ssl)) != NULL)
1041 SSL_SESSION_get0_ticket(sess, &tick, &tick_len);
1042 if (tick == NULL || tick_len == 0)
1043 ret->session_ticket = SSL_TEST_SESSION_TICKET_NO;
1044 else
1045 ret->session_ticket = SSL_TEST_SESSION_TICKET_YES;
1046 ret->session_ticket_do_not_call = server_ex_data.session_ticket_do_not_call;
1047
1048 #ifndef OPENSSL_NO_NEXTPROTONEG
1049 SSL_get0_next_proto_negotiated(client.ssl, &proto, &proto_len);
1050 ret->client_npn_negotiated = dup_str(proto, proto_len);
1051
1052 SSL_get0_next_proto_negotiated(server.ssl, &proto, &proto_len);
1053 ret->server_npn_negotiated = dup_str(proto, proto_len);
1054 #endif
1055
1056 SSL_get0_alpn_selected(client.ssl, &proto, &proto_len);
1057 ret->client_alpn_negotiated = dup_str(proto, proto_len);
1058
1059 SSL_get0_alpn_selected(server.ssl, &proto, &proto_len);
1060 ret->server_alpn_negotiated = dup_str(proto, proto_len);
1061
1062 ret->client_resumed = SSL_session_reused(client.ssl);
1063 ret->server_resumed = SSL_session_reused(server.ssl);
1064
1065 if (session_out != NULL)
1066 *session_out = SSL_get1_session(client.ssl);
1067
1068 if (SSL_get_server_tmp_key(client.ssl, &tmp_key)) {
1069 ret->tmp_key_type = pkey_type(tmp_key);
1070 EVP_PKEY_free(tmp_key);
1071 }
1072
1073 SSL_get_peer_signature_nid(client.ssl, &ret->server_sign_hash);
1074 SSL_get_peer_signature_nid(server.ssl, &ret->client_sign_hash);
1075
1076 SSL_get_peer_signature_type_nid(client.ssl, &ret->server_sign_type);
1077 SSL_get_peer_signature_type_nid(server.ssl, &ret->client_sign_type);
1078
1079 ret->server_cert_type = peer_pkey_type(client.ssl);
1080 ret->client_cert_type = peer_pkey_type(server.ssl);
1081
1082 ctx_data_free_data(&server_ctx_data);
1083 ctx_data_free_data(&server2_ctx_data);
1084 ctx_data_free_data(&client_ctx_data);
1085
1086 peer_free_data(&server);
1087 peer_free_data(&client);
1088 return ret;
1089 }
1090
1091 HANDSHAKE_RESULT *do_handshake(SSL_CTX *server_ctx, SSL_CTX *server2_ctx,
1092 SSL_CTX *client_ctx, SSL_CTX *resume_server_ctx,
1093 SSL_CTX *resume_client_ctx,
1094 const SSL_TEST_CTX *test_ctx)
1095 {
1096 HANDSHAKE_RESULT *result;
1097 SSL_SESSION *session = NULL;
1098
1099 result = do_handshake_internal(server_ctx, server2_ctx, client_ctx,
1100 test_ctx, &test_ctx->extra,
1101 NULL, &session);
1102 if (test_ctx->handshake_mode != SSL_TEST_HANDSHAKE_RESUME)
1103 goto end;
1104
1105 if (result->result != SSL_TEST_SUCCESS) {
1106 result->result = SSL_TEST_FIRST_HANDSHAKE_FAILED;
1107 goto end;
1108 }
1109
1110 HANDSHAKE_RESULT_free(result);
1111 /* We don't support SNI on second handshake yet, so server2_ctx is NULL. */
1112 result = do_handshake_internal(resume_server_ctx, NULL, resume_client_ctx,
1113 test_ctx, &test_ctx->resume_extra,
1114 session, NULL);
1115 end:
1116 SSL_SESSION_free(session);
1117 return result;
1118 }