]> git.ipfire.org Git - thirdparty/mdadm.git/blob - util.c
0f77521149f8161bf1a243e0ce4f0cd4c64a2f1d
[thirdparty/mdadm.git] / util.c
1 /*
2 * mdadm - manage Linux "md" devices aka RAID arrays.
3 *
4 * Copyright (C) 2001-2013 Neil Brown <neilb@suse.de>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 * Author: Neil Brown
22 * Email: <neilb@suse.de>
23 */
24
25 #include "mdadm.h"
26 #include "md_p.h"
27 #include "xmalloc.h"
28
29 #include <sys/socket.h>
30 #include <sys/utsname.h>
31 #include <sys/wait.h>
32 #include <sys/un.h>
33 #include <sys/resource.h>
34 #include <sys/vfs.h>
35 #include <sys/mman.h>
36 #include <linux/magic.h>
37 #include <poll.h>
38 #include <ctype.h>
39 #include <dirent.h>
40 #include <dlfcn.h>
41 #include <limits.h>
42
43 /*
44 * following taken from linux/blkpg.h because they aren't
45 * anywhere else and it isn't safe to #include linux/ * stuff.
46 */
47
48 #define BLKPG _IO(0x12,105)
49
50 /* The argument structure */
51 struct blkpg_ioctl_arg {
52 int op;
53 int flags;
54 int datalen;
55 void *data;
56 };
57
58 /* The subfunctions (for the op field) */
59 #define BLKPG_ADD_PARTITION 1
60 #define BLKPG_DEL_PARTITION 2
61
62 /* Sizes of name fields. Unused at present. */
63 #define BLKPG_DEVNAMELTH 64
64 #define BLKPG_VOLNAMELTH 64
65
66 /* The data structure for ADD_PARTITION and DEL_PARTITION */
67 struct blkpg_partition {
68 long long start; /* starting offset in bytes */
69 long long length; /* length in bytes */
70 int pno; /* partition number */
71 char devname[BLKPG_DEVNAMELTH]; /* partition name, like sda5 or c0d1p2,
72 to be used in kernel messages */
73 char volname[BLKPG_VOLNAMELTH]; /* volume label */
74 };
75
76 #include "part.h"
77
78 /* Force a compilation error if condition is true */
79 #define BUILD_BUG_ON(condition) ((void)BUILD_BUG_ON_ZERO(condition))
80
81 /* Force a compilation error if condition is true, but also produce a
82 result (of value 0 and type size_t), so the expression can be used
83 e.g. in a structure initializer (or where-ever else comma expressions
84 aren't permitted). */
85 #define BUILD_BUG_ON_ZERO(e) (sizeof(struct { int:-!!(e); }))
86
87 static int is_dlm_hooks_ready = 0;
88
89 int dlm_funs_ready(void)
90 {
91 return is_dlm_hooks_ready ? 1 : 0;
92 }
93
94 static struct dlm_hooks *dlm_hooks = NULL;
95 struct dlm_lock_resource *dlm_lock_res = NULL;
96 static int ast_called = 0;
97
98 struct dlm_lock_resource {
99 dlm_lshandle_t *ls;
100 struct dlm_lksb lksb;
101 };
102
103 /* Using poll(2) to wait for and dispatch ASTs */
104 static int poll_for_ast(dlm_lshandle_t ls)
105 {
106 struct pollfd pfd;
107
108 pfd.fd = dlm_hooks->ls_get_fd(ls);
109 pfd.events = POLLIN;
110
111 while (!ast_called)
112 {
113 if (poll(&pfd, 1, 0) < 0)
114 {
115 perror("poll");
116 return -1;
117 }
118 dlm_hooks->dispatch(dlm_hooks->ls_get_fd(ls));
119 }
120 ast_called = 0;
121
122 return 0;
123 }
124
125 static void dlm_ast(void *arg)
126 {
127 ast_called = 1;
128 }
129
130 static char *cluster_name = NULL;
131 /* Create the lockspace, take bitmapXXX locks on all the bitmaps. */
132 int cluster_get_dlmlock(void)
133 {
134 int ret = -1;
135 char str[64];
136 int flags = LKF_NOQUEUE;
137 int retry_count = 0;
138
139 if (!dlm_funs_ready()) {
140 pr_err("Something wrong with dlm library\n");
141 return -1;
142 }
143
144 ret = get_cluster_name(&cluster_name);
145 if (ret) {
146 pr_err("The md can't get cluster name\n");
147 return -1;
148 }
149
150 dlm_lock_res = xmalloc(sizeof(struct dlm_lock_resource));
151 dlm_lock_res->ls = dlm_hooks->open_lockspace(cluster_name);
152 if (!dlm_lock_res->ls) {
153 dlm_lock_res->ls = dlm_hooks->create_lockspace(cluster_name, O_RDWR);
154 if (!dlm_lock_res->ls) {
155 pr_err("%s failed to create lockspace\n", cluster_name);
156 return -ENOMEM;
157 }
158 } else {
159 pr_err("open existed %s lockspace\n", cluster_name);
160 }
161
162 snprintf(str, 64, "bitmap%s", cluster_name);
163 retry:
164 ret = dlm_hooks->ls_lock(dlm_lock_res->ls, LKM_PWMODE,
165 &dlm_lock_res->lksb, flags, str, strlen(str),
166 0, dlm_ast, dlm_lock_res, NULL, NULL);
167 if (ret) {
168 pr_err("error %d when get PW mode on lock %s\n", errno, str);
169 /* let's try several times if EAGAIN happened */
170 if (dlm_lock_res->lksb.sb_status == EAGAIN && retry_count < 10) {
171 sleep_for(10, 0, true);
172 retry_count++;
173 goto retry;
174 }
175 dlm_hooks->release_lockspace(cluster_name, dlm_lock_res->ls, 1);
176 return ret;
177 }
178
179 /* Wait for it to complete */
180 poll_for_ast(dlm_lock_res->ls);
181
182 if (dlm_lock_res->lksb.sb_status) {
183 pr_err("failed to lock cluster\n");
184 return -1;
185 }
186 return 1;
187 }
188
189 int cluster_release_dlmlock(void)
190 {
191 int ret = -1;
192
193 if (!cluster_name)
194 goto out;
195
196 if (!dlm_lock_res->lksb.sb_lkid)
197 goto out;
198
199 ret = dlm_hooks->ls_unlock_wait(dlm_lock_res->ls,
200 dlm_lock_res->lksb.sb_lkid, 0,
201 &dlm_lock_res->lksb);
202 if (ret) {
203 pr_err("error %d happened when unlock\n", errno);
204 /* XXX make sure the lock is unlocked eventually */
205 goto out;
206 }
207
208 /* Wait for it to complete */
209 poll_for_ast(dlm_lock_res->ls);
210
211 errno = dlm_lock_res->lksb.sb_status;
212 if (errno != EUNLOCK) {
213 pr_err("error %d happened in ast when unlock lockspace\n",
214 errno);
215 /* XXX make sure the lockspace is unlocked eventually */
216 goto out;
217 }
218
219 ret = dlm_hooks->release_lockspace(cluster_name, dlm_lock_res->ls, 1);
220 if (ret) {
221 pr_err("error %d happened when release lockspace\n", errno);
222 /* XXX make sure the lockspace is released eventually */
223 goto out;
224 }
225 free(dlm_lock_res);
226
227 out:
228 return ret;
229 }
230
231 int md_array_valid(int fd)
232 {
233 struct mdinfo *sra;
234 int ret;
235
236 sra = sysfs_read(fd, NULL, GET_ARRAY_STATE);
237 if (sra) {
238 if (sra->array_state != ARRAY_UNKNOWN_STATE)
239 ret = 0;
240 else
241 ret = -ENODEV;
242
243 free(sra);
244 } else {
245 /*
246 * GET_ARRAY_INFO doesn't provide access to the proper state
247 * information, so fallback to a basic check for raid_disks != 0
248 */
249 ret = ioctl(fd, RAID_VERSION);
250 }
251
252 return !ret;
253 }
254
255 int md_array_active(int fd)
256 {
257 struct mdinfo *sra;
258 struct mdu_array_info_s array;
259 int ret = 0;
260
261 sra = sysfs_read(fd, NULL, GET_ARRAY_STATE);
262 if (sra) {
263 if (!md_array_is_active(sra))
264 ret = -ENODEV;
265
266 free(sra);
267 } else {
268 /*
269 * GET_ARRAY_INFO doesn't provide access to the proper state
270 * information, so fallback to a basic check for raid_disks != 0
271 */
272 ret = md_get_array_info(fd, &array);
273 }
274
275 return !ret;
276 }
277
278 int md_array_is_active(struct mdinfo *info)
279 {
280 return (info->array_state != ARRAY_CLEAR &&
281 info->array_state != ARRAY_INACTIVE &&
282 info->array_state != ARRAY_UNKNOWN_STATE);
283 }
284
285 /*
286 * Get array info from the kernel. Longer term we want to deprecate the
287 * ioctl and get it from sysfs.
288 */
289 int md_get_array_info(int fd, struct mdu_array_info_s *array)
290 {
291 return ioctl(fd, GET_ARRAY_INFO, array);
292 }
293
294 /*
295 * Set array info
296 */
297 int md_set_array_info(int fd, struct mdu_array_info_s *array)
298 {
299 return ioctl(fd, SET_ARRAY_INFO, array);
300 }
301
302 /*
303 * Get disk info from the kernel.
304 */
305 int md_get_disk_info(int fd, struct mdu_disk_info_s *disk)
306 {
307 return ioctl(fd, GET_DISK_INFO, disk);
308 }
309
310 int get_linux_version()
311 {
312 struct utsname name;
313 char *cp;
314 int a = 0, b = 0,c = 0;
315 if (uname(&name) <0)
316 return -1;
317
318 cp = name.release;
319 a = strtoul(cp, &cp, 10);
320 if (*cp == '.')
321 b = strtoul(cp+1, &cp, 10);
322 if (*cp == '.')
323 c = strtoul(cp+1, &cp, 10);
324
325 return (a*1000000)+(b*1000)+c;
326 }
327
328 int mdadm_version(char *version)
329 {
330 int a, b, c;
331 char *cp;
332
333 if (!version)
334 version = Version;
335
336 cp = strchr(version, '-');
337 if (!cp || *(cp+1) != ' ' || *(cp+2) != 'v')
338 return -1;
339 cp += 3;
340 a = strtoul(cp, &cp, 10);
341 if (*cp != '.')
342 return -1;
343 b = strtoul(cp+1, &cp, 10);
344 if (*cp == '.')
345 c = strtoul(cp+1, &cp, 10);
346 else
347 c = 0;
348 if (*cp != ' ' && *cp != '-')
349 return -1;
350 return (a*1000000)+(b*1000)+c;
351 }
352
353 unsigned long long parse_size(char *size)
354 {
355 /* parse 'size' which should be a number optionally
356 * followed by 'K', 'M'. 'G' or 'T'.
357 * Without a suffix, K is assumed.
358 * Number returned is in sectors (half-K)
359 * INVALID_SECTORS returned on error.
360 */
361 char *c;
362 long long s = strtoll(size, &c, 10);
363 if (s > 0) {
364 switch (*c) {
365 case 'K':
366 c++;
367 default:
368 s *= 2;
369 break;
370 case 'M':
371 c++;
372 s *= 1024 * 2;
373 break;
374 case 'G':
375 c++;
376 s *= 1024 * 1024 * 2;
377 break;
378 case 'T':
379 c++;
380 s *= 1024 * 1024 * 1024 * 2LL;
381 break;
382 case 's': /* sectors */
383 c++;
384 break;
385 }
386 } else
387 s = INVALID_SECTORS;
388 if (*c)
389 s = INVALID_SECTORS;
390 return s;
391 }
392
393 int is_near_layout_10(int layout)
394 {
395 int fc, fo;
396
397 fc = (layout >> 8) & 255;
398 fo = layout & (1 << 16);
399 if (fc > 1 || fo > 0)
400 return 0;
401 return 1;
402 }
403
404 int parse_layout_10(char *layout)
405 {
406 int copies, rv;
407 char *cp;
408 /* Parse the layout string for raid10 */
409 /* 'f', 'o' or 'n' followed by a number <= raid_disks */
410 if ((layout[0] != 'n' && layout[0] != 'f' && layout[0] != 'o') ||
411 (copies = strtoul(layout+1, &cp, 10)) < 1 ||
412 copies > 200 ||
413 *cp)
414 return -1;
415 if (layout[0] == 'n')
416 rv = 256 + copies;
417 else if (layout[0] == 'o')
418 rv = 0x10000 + (copies<<8) + 1;
419 else
420 rv = 1 + (copies<<8);
421 return rv;
422 }
423
424 int parse_layout_faulty(char *layout)
425 {
426 int ln, mode;
427 char *m;
428
429 if (!layout)
430 return -1;
431
432 /* Parse the layout string for 'faulty' */
433 ln = strcspn(layout, "0123456789");
434 m = xstrdup(layout);
435 m[ln] = 0;
436 mode = map_name(faultylayout, m);
437 free(m);
438
439 if (mode == UnSet)
440 return -1;
441
442 return mode | (atoi(layout+ln)<< ModeShift);
443 }
444
445 int parse_cluster_confirm_arg(char *input, char **devname, int *slot)
446 {
447 char *dev;
448 *slot = strtoul(input, &dev, 10);
449 if (dev == input || dev[0] != ':')
450 return -1;
451 *devname = dev+1;
452 return 0;
453 }
454
455 void remove_partitions(int fd)
456 {
457 /* remove partitions from this block devices.
458 * This is used for components added to an array
459 */
460 #ifdef BLKPG_DEL_PARTITION
461 struct blkpg_ioctl_arg a;
462 struct blkpg_partition p;
463
464 a.op = BLKPG_DEL_PARTITION;
465 a.data = (void*)&p;
466 a.datalen = sizeof(p);
467 a.flags = 0;
468 memset(a.data, 0, a.datalen);
469 for (p.pno = 0; p.pno < 16; p.pno++)
470 ioctl(fd, BLKPG, &a);
471 #endif
472 }
473
474 int test_partition(int fd)
475 {
476 /* Check if fd is a whole-disk or a partition.
477 * BLKPG will return EINVAL on a partition, and BLKPG_DEL_PARTITION
478 * will return ENXIO on an invalid partition number.
479 */
480 struct blkpg_ioctl_arg a;
481 struct blkpg_partition p;
482 a.op = BLKPG_DEL_PARTITION;
483 a.data = (void*)&p;
484 a.datalen = sizeof(p);
485 a.flags = 0;
486 memset(a.data, 0, a.datalen);
487 p.pno = 1<<30;
488 if (ioctl(fd, BLKPG, &a) == 0)
489 /* Very unlikely, but not a partition */
490 return 0;
491 if (errno == ENXIO || errno == ENOTTY)
492 /* not a partition */
493 return 0;
494
495 return 1;
496 }
497
498 int test_partition_from_id(dev_t id)
499 {
500 char buf[20];
501 int fd, rv;
502
503 sprintf(buf, "%d:%d", major(id), minor(id));
504 fd = dev_open(buf, O_RDONLY);
505 if (fd < 0)
506 return -1;
507 rv = test_partition(fd);
508 close(fd);
509 return rv;
510 }
511
512 int enough(int level, int raid_disks, int layout, int clean, char *avail)
513 {
514 int copies, first;
515 int i;
516 int avail_disks = 0;
517
518 if (raid_disks <= 0)
519 return 0;
520
521 for (i = 0; i < raid_disks; i++)
522 avail_disks += !!avail[i];
523
524 switch (level) {
525 case 10:
526 /* This is the tricky one - we need to check
527 * which actual disks are present.
528 */
529 copies = (layout & 255) * ((layout >> 8) & 255);
530 first = 0;
531 do {
532 /* there must be one of the 'copies' form 'first' */
533 int n = copies;
534 int cnt = 0;
535 int this = first;
536 while (n--) {
537 if (avail[this])
538 cnt++;
539 this = (this + 1) % raid_disks;
540 }
541 if (cnt == 0)
542 return 0;
543 first = (first + (layout & 255)) % raid_disks;
544 } while (first != 0);
545 return 1;
546
547 case LEVEL_MULTIPATH:
548 return avail_disks >= 1;
549 case LEVEL_LINEAR:
550 case 0:
551 return avail_disks == raid_disks;
552 case 1:
553 return avail_disks >= 1;
554 case 4:
555 if (avail_disks == raid_disks - 1 &&
556 !avail[raid_disks - 1])
557 /* If just the parity device is missing, then we
558 * have enough, even if not clean
559 */
560 return 1;
561 /* FALL THROUGH */
562 case 5:
563 if (clean)
564 return avail_disks >= raid_disks - 1;
565 else
566 return avail_disks >= raid_disks;
567 case 6:
568 if (clean)
569 return avail_disks >= raid_disks - 2;
570 else
571 return avail_disks >= raid_disks;
572 default:
573 return 0;
574 }
575 }
576
577 char *__fname_from_uuid(int id[4], int swap, char *buf, char sep)
578 {
579 int i, j;
580 char uuid[16];
581 char *c = buf;
582 strcpy(c, "UUID-");
583 c += strlen(c);
584 copy_uuid(uuid, id, swap);
585 for (i = 0; i < 4; i++) {
586 if (i)
587 *c++ = sep;
588 for (j = 3; j >= 0; j--) {
589 sprintf(c,"%02x", (unsigned char) uuid[j+4*i]);
590 c+= 2;
591 }
592 }
593 return buf;
594
595 }
596
597 /**
598 * fname_from_uuid() - generate uuid string. Should not be used with super1.
599 * @info: info with uuid
600 * @buf: buf to fill.
601 *
602 * This routine should not be used with super1. See detail_fname_from_uuid() for details. It does
603 * not use superswitch swapuuid as it should be 0 but it has to do UUID conversion if host is big
604 * endian- left for backward compatibility.
605 */
606 char *fname_from_uuid(struct mdinfo *info, char *buf)
607 {
608 #if __BYTE_ORDER == BIG_ENDIAN
609 return __fname_from_uuid(info->uuid, true, buf, ':');
610 #else
611 return __fname_from_uuid(info->uuid, false, buf, ':');
612 #endif
613 }
614
615 int check_ext2(int fd, char *name)
616 {
617 /*
618 * Check for an ext2fs file system.
619 * Superblock is always 1K at 1K offset
620 *
621 * s_magic is le16 at 56 == 0xEF53
622 * report mtime - le32 at 44
623 * blocks - le32 at 4
624 * logblksize - le32 at 24
625 */
626 unsigned char sb[1024];
627 time_t mtime;
628 unsigned long long size;
629 int bsize;
630 if (lseek(fd, 1024,0)!= 1024)
631 return 0;
632 if (read(fd, sb, 1024)!= 1024)
633 return 0;
634 if (sb[56] != 0x53 || sb[57] != 0xef)
635 return 0;
636
637 mtime = sb[44]|(sb[45]|(sb[46]|sb[47]<<8)<<8)<<8;
638 bsize = sb[24]|(sb[25]|(sb[26]|sb[27]<<8)<<8)<<8;
639 size = sb[4]|(sb[5]|(sb[6]|sb[7]<<8)<<8)<<8;
640 size <<= bsize;
641 pr_info("%s appears to contain an ext2fs file system\n",
642 name);
643 pr_info("size=%lluK mtime=%s", size, ctime(&mtime));
644 return 1;
645 }
646
647 int check_reiser(int fd, char *name)
648 {
649 /*
650 * superblock is at 64K
651 * size is 1024;
652 * Magic string "ReIsErFs" or "ReIsEr2Fs" at 52
653 *
654 */
655 unsigned char sb[1024];
656 unsigned long long size;
657 if (lseek(fd, 64*1024, 0) != 64*1024)
658 return 0;
659 if (read(fd, sb, 1024) != 1024)
660 return 0;
661 if (strncmp((char*)sb+52, "ReIsErFs",8) != 0 &&
662 strncmp((char*)sb+52, "ReIsEr2Fs",9) != 0)
663 return 0;
664 pr_err("%s appears to contain a reiserfs file system\n",name);
665 size = sb[0]|(sb[1]|(sb[2]|sb[3]<<8)<<8)<<8;
666 cont_err("size = %lluK\n", size*4);
667
668 return 1;
669 }
670
671 int check_raid(int fd, char *name)
672 {
673 struct mdinfo info;
674 time_t crtime;
675 char *level;
676 struct supertype *st = guess_super(fd);
677
678 if (!st)
679 return 0;
680 if (st->ss->add_to_super != NULL) {
681 st->ss->load_super(st, fd, name);
682 /* Looks like a raid array .. */
683 pr_err("%s appears to be part of a raid array:\n", name);
684 st->ss->getinfo_super(st, &info, NULL);
685 st->ss->free_super(st);
686 crtime = info.array.ctime;
687 level = map_num(pers, info.array.level);
688 if (!level)
689 level = "-unknown-";
690 cont_err("level=%s devices=%d ctime=%s",
691 level, info.array.raid_disks, ctime(&crtime));
692 } else {
693 /* Looks like GPT or MBR */
694 pr_err("partition table exists on %s\n", name);
695 }
696 return 1;
697 }
698
699 int fstat_is_blkdev(int fd, char *devname, dev_t *rdev)
700 {
701 struct stat stb;
702
703 if (fstat(fd, &stb) != 0) {
704 pr_err("fstat failed for %s: %s\n", devname, strerror(errno));
705 return 0;
706 }
707 if ((S_IFMT & stb.st_mode) != S_IFBLK) {
708 pr_err("%s is not a block device.\n", devname);
709 return 0;
710 }
711 if (rdev)
712 *rdev = stb.st_rdev;
713 return 1;
714 }
715
716 int stat_is_blkdev(char *devname, dev_t *rdev)
717 {
718 struct stat stb;
719
720 if (stat(devname, &stb) != 0) {
721 pr_err("stat failed for %s: %s\n", devname, strerror(errno));
722 return 0;
723 }
724 if ((S_IFMT & stb.st_mode) != S_IFBLK) {
725 pr_err("%s is not a block device.\n", devname);
726 return 0;
727 }
728 if (rdev)
729 *rdev = stb.st_rdev;
730 return 1;
731 }
732
733 /**
734 * ask() - prompt user for "yes/no" dialog.
735 * @mesg: message to be printed, without '?' sign.
736 * Returns: 1 if 'Y/y', 0 otherwise.
737 *
738 * The default value is 'N/n', thus the caps on "N" on prompt.
739 */
740 int ask(char *mesg)
741 {
742 char buf[3] = {0};
743
744 fprintf(stderr, "%s [y/N]? ", mesg);
745 fflush(stderr);
746 if (fgets(buf, 3, stdin) == NULL)
747 return 0;
748 if (strlen(buf) == 1) {
749 pr_err("assuming no.\n");
750 return 0;
751 }
752 if (buf[1] != '\n')
753 goto bad_option;
754 if (toupper(buf[0]) == 'Y')
755 return 1;
756 if (toupper(buf[0]) == 'N')
757 return 0;
758 bad_option:
759 pr_err("bad option.\n");
760 return 0;
761 }
762
763 unsigned long calc_csum(void *super, int bytes)
764 {
765 unsigned long long newcsum = 0;
766 int i;
767 unsigned int csum;
768 unsigned int *superc = (unsigned int*) super;
769
770 for(i = 0; i < bytes/4; i++)
771 newcsum += superc[i];
772 csum = (newcsum& 0xffffffff) + (newcsum>>32);
773 #ifdef __alpha__
774 /* The in-kernel checksum calculation is always 16bit on
775 * the alpha, though it is 32 bit on i386...
776 * I wonder what it is elsewhere... (it uses an API in
777 * a way that it shouldn't).
778 */
779 csum = (csum & 0xffff) + (csum >> 16);
780 csum = (csum & 0xffff) + (csum >> 16);
781 #endif
782 return csum;
783 }
784
785 char *human_size(long long bytes)
786 {
787 static char buf[47];
788
789 /* We convert bytes to either centi-M{ega,ibi}bytes,
790 * centi-G{igi,ibi}bytes or centi-T{era,ebi}bytes
791 * with appropriate rounding, and then print
792 * 1/100th of those as a decimal.
793 * We allow upto 2048Megabytes before converting to
794 * gigabytes and 2048Gigabytes before converting to
795 * terabytes, as that shows more precision and isn't
796 * too large a number.
797 */
798
799 if (bytes < 5000*1024)
800 buf[0] = 0;
801 else if (bytes < 2*1024LL*1024LL*1024LL) {
802 long cMiB = (bytes * 200LL / (1LL<<20) + 1) / 2;
803 long cMB = (bytes / ( 1000000LL / 200LL ) +1) /2;
804 snprintf(buf, sizeof(buf), " (%ld.%02ld MiB %ld.%02ld MB)",
805 cMiB/100, cMiB % 100, cMB/100, cMB % 100);
806 } else if (bytes < 2*1024LL*1024LL*1024LL*1024LL) {
807 long cGiB = (bytes * 200LL / (1LL<<30) +1) / 2;
808 long cGB = (bytes / (1000000000LL/200LL ) +1) /2;
809 snprintf(buf, sizeof(buf), " (%ld.%02ld GiB %ld.%02ld GB)",
810 cGiB/100, cGiB % 100, cGB/100, cGB % 100);
811 } else {
812 long cTiB = (bytes * 200LL / (1LL<<40) + 1) / 2;
813 long cTB = (bytes / (1000000000000LL / 200LL) + 1) / 2;
814 snprintf(buf, sizeof(buf), " (%ld.%02ld TiB %ld.%02ld TB)",
815 cTiB/100, cTiB % 100, cTB/100, cTB % 100);
816 }
817 return buf;
818 }
819
820 char *human_size_brief(long long bytes, int prefix)
821 {
822 static char buf[30];
823
824 /* We convert bytes to either centi-M{ega,ibi}bytes,
825 * centi-G{igi,ibi}bytes or centi-T{era,ebi}bytes
826 * with appropriate rounding, and then print
827 * 1/100th of those as a decimal.
828 * We allow upto 2048Megabytes before converting to
829 * gigabytes and 2048Gigabytes before converting to
830 * terabytes, as that shows more precision and isn't
831 * too large a number.
832 *
833 * If prefix == IEC, we mean prefixes like kibi,mebi,gibi etc.
834 * If prefix == JEDEC, we mean prefixes like kilo,mega,giga etc.
835 */
836
837 if (bytes < 5000*1024)
838 buf[0] = 0;
839 else if (prefix == IEC) {
840 if (bytes < 2*1024LL*1024LL*1024LL) {
841 long cMiB = (bytes * 200LL / (1LL<<20) +1) /2;
842 snprintf(buf, sizeof(buf), "%ld.%02ldMiB",
843 cMiB/100, cMiB % 100);
844 } else if (bytes < 2*1024LL*1024LL*1024LL*1024LL) {
845 long cGiB = (bytes * 200LL / (1LL<<30) +1) /2;
846 snprintf(buf, sizeof(buf), "%ld.%02ldGiB",
847 cGiB/100, cGiB % 100);
848 } else {
849 long cTiB = (bytes * 200LL / (1LL<<40) + 1) / 2;
850 snprintf(buf, sizeof(buf), "%ld.%02ldTiB",
851 cTiB/100, cTiB % 100);
852 }
853 }
854 else if (prefix == JEDEC) {
855 if (bytes < 2*1024LL*1024LL*1024LL) {
856 long cMB = (bytes / ( 1000000LL / 200LL ) +1) /2;
857 snprintf(buf, sizeof(buf), "%ld.%02ldMB",
858 cMB/100, cMB % 100);
859 } else if (bytes < 2*1024LL*1024LL*1024LL*1024LL) {
860 long cGB = (bytes / (1000000000LL/200LL ) +1) /2;
861 snprintf(buf, sizeof(buf), "%ld.%02ldGB",
862 cGB/100, cGB % 100);
863 } else {
864 long cTB = (bytes / (1000000000000LL / 200LL) + 1) / 2;
865 snprintf(buf, sizeof(buf), "%ld.%02ldTB",
866 cTB/100, cTB % 100);
867 }
868 }
869 else
870 buf[0] = 0;
871
872 return buf;
873 }
874
875 void print_r10_layout(int layout)
876 {
877 int near = layout & 255;
878 int far = (layout >> 8) & 255;
879 int offset = (layout&0x10000);
880 char *sep = "";
881
882 if (near != 1) {
883 printf("%s near=%d", sep, near);
884 sep = ",";
885 }
886 if (far != 1)
887 printf("%s %s=%d", sep, offset?"offset":"far", far);
888 if (near*far == 1)
889 printf("NO REDUNDANCY");
890 }
891
892 unsigned long long calc_array_size(int level, int raid_disks, int layout,
893 int chunksize, unsigned long long devsize)
894 {
895 if (level == 1)
896 return devsize;
897 devsize &= ~(unsigned long long)((chunksize>>9)-1);
898 return get_data_disks(level, layout, raid_disks) * devsize;
899 }
900
901 int get_data_disks(int level, int layout, int raid_disks)
902 {
903 int data_disks = 0;
904 switch (level) {
905 case 0: data_disks = raid_disks;
906 break;
907 case 1: data_disks = 1;
908 break;
909 case 4:
910 case 5: data_disks = raid_disks - 1;
911 break;
912 case 6: data_disks = raid_disks - 2;
913 break;
914 case 10: data_disks = raid_disks / (layout & 255) / ((layout>>8)&255);
915 break;
916 }
917
918 return data_disks;
919 }
920
921 dev_t devnm2devid(char *devnm)
922 {
923 /* First look in /sys/block/$DEVNM/dev for %d:%d
924 * If that fails, try parsing out a number
925 */
926 char path[PATH_MAX];
927 char *ep;
928 int fd;
929 int mjr,mnr;
930
931 snprintf(path, sizeof(path), "/sys/block/%s/dev", devnm);
932 fd = open(path, O_RDONLY);
933 if (fd >= 0) {
934 char buf[20];
935 int n = read(fd, buf, sizeof(buf));
936 close(fd);
937 if (n > 0)
938 buf[n] = 0;
939 if (n > 0 && sscanf(buf, "%d:%d\n", &mjr, &mnr) == 2)
940 return makedev(mjr, mnr);
941 }
942 if (strncmp(devnm, "md_d", 4) == 0 &&
943 isdigit(devnm[4]) &&
944 (mnr = strtoul(devnm+4, &ep, 10)) >= 0 &&
945 ep > devnm && *ep == 0)
946 return makedev(get_mdp_major(), mnr << MdpMinorShift);
947
948 if (strncmp(devnm, "md", 2) == 0 &&
949 isdigit(devnm[2]) &&
950 (mnr = strtoul(devnm+2, &ep, 10)) >= 0 &&
951 ep > devnm && *ep == 0)
952 return makedev(MD_MAJOR, mnr);
953
954 return 0;
955 }
956
957 /**
958 * is_devname_numbered() - helper for numbered devname verification.
959 * @devname: path or name to check.
960 * @pref: expected devname prefix.
961 * @pref_len: prefix len.
962 */
963 static bool is_devname_numbered(const char *devname, const char *pref, const int pref_len)
964 {
965 int val;
966
967 assert(devname && pref);
968
969 if (strncmp(devname, pref, pref_len) != 0)
970 return false;
971
972 if (parse_num(&val, devname + pref_len) != 0)
973 return false;
974
975 /* Allow any number that represents a valid minor number */
976 if (val >= (1 << 20))
977 return false;
978
979 return true;
980 }
981
982 /**
983 * is_devname_md_numbered() - check if &devname is numbered MD device (md).
984 * @devname: path or name to check.
985 */
986 bool is_devname_md_numbered(const char *devname)
987 {
988 return is_devname_numbered(devname, DEV_NUM_PREF, DEV_NUM_PREF_LEN);
989 }
990
991 /**
992 * is_devname_md_d_numbered() - check if &devname is secondary numbered MD device (md_d).
993 * @devname: path or name to check.
994 */
995 bool is_devname_md_d_numbered(const char *devname)
996 {
997 static const char d_dev[] = DEV_NUM_PREF "_d";
998
999 return is_devname_numbered(devname, d_dev, sizeof(d_dev) - 1);
1000 }
1001
1002 /**
1003 * get_md_name() - Get main dev node of the md device.
1004 * @devnm: Md device name or path.
1005 *
1006 * Function checks if the full name was passed and returns md name
1007 * if it is the MD device.
1008 *
1009 * Return: Main dev node of the md device or NULL if not found.
1010 */
1011 char *get_md_name(char *devnm)
1012 {
1013 static char devname[NAME_MAX];
1014 struct stat stb;
1015
1016 if (strncmp(devnm, "/dev/", 5) == 0)
1017 snprintf(devname, sizeof(devname), "%s", devnm);
1018 else
1019 snprintf(devname, sizeof(devname), "/dev/%s", devnm);
1020
1021 if (!is_mddev(devname))
1022 return NULL;
1023 if (stat(devname, &stb) == 0 && (S_IFMT&stb.st_mode) == S_IFBLK)
1024 return devname;
1025
1026 return NULL;
1027 }
1028
1029 void put_md_name(char *name)
1030 {
1031 if (strncmp(name, "/dev/.tmp.md", 12) == 0)
1032 unlink(name);
1033 }
1034
1035 int get_maj_min(char *dev, int *major, int *minor)
1036 {
1037 char *e;
1038 *major = strtoul(dev, &e, 0);
1039 return (e > dev && *e == ':' && e[1] &&
1040 (*minor = strtoul(e+1, &e, 0)) >= 0 &&
1041 *e == 0);
1042 }
1043
1044 /**
1045 * is_bit_set() - get bit value by index.
1046 * @val: value.
1047 * @index: index of the bit (LSB numbering).
1048 *
1049 * Return: bit value.
1050 */
1051 bool is_bit_set(int *val, unsigned char index)
1052 {
1053 if ((*val) & (1 << index))
1054 return true;
1055 return false;
1056 }
1057
1058 int dev_open(char *dev, int flags)
1059 {
1060 /* like 'open', but if 'dev' matches %d:%d, create a temp
1061 * block device and open that
1062 */
1063 int fd = -1;
1064 char devname[32];
1065 int major;
1066 int minor;
1067
1068 if (!dev)
1069 return -1;
1070 flags |= O_DIRECT;
1071
1072 if (get_maj_min(dev, &major, &minor)) {
1073 snprintf(devname, sizeof(devname), "/dev/.tmp.md.%d:%d:%d",
1074 (int)getpid(), major, minor);
1075 if (mknod(devname, S_IFBLK|0600, makedev(major, minor)) == 0) {
1076 fd = open(devname, flags);
1077 unlink(devname);
1078 }
1079 } else
1080 fd = open(dev, flags);
1081 return fd;
1082 }
1083
1084 int open_dev_flags(char *devnm, int flags)
1085 {
1086 dev_t devid;
1087 char buf[20];
1088
1089 devid = devnm2devid(devnm);
1090 sprintf(buf, "%d:%d", major(devid), minor(devid));
1091 return dev_open(buf, flags);
1092 }
1093
1094 int open_dev(char *devnm)
1095 {
1096 return open_dev_flags(devnm, O_RDONLY);
1097 }
1098
1099 int open_dev_excl(char *devnm)
1100 {
1101 char buf[20];
1102 int i;
1103 int flags = O_RDWR;
1104 dev_t devid = devnm2devid(devnm);
1105 unsigned int delay = 1; // miliseconds
1106
1107 sprintf(buf, "%d:%d", major(devid), minor(devid));
1108 for (i = 0; i < 25; i++) {
1109 int fd = dev_open(buf, flags|O_EXCL);
1110 if (fd >= 0)
1111 return fd;
1112 if (errno == EACCES && flags == O_RDWR) {
1113 flags = O_RDONLY;
1114 continue;
1115 }
1116 if (errno != EBUSY)
1117 return fd;
1118 sleep_for(0, MSEC_TO_NSEC(delay), true);
1119 if (delay < 200)
1120 delay *= 2;
1121 }
1122 return -1;
1123 }
1124
1125 int same_dev(char *one, char *two)
1126 {
1127 struct stat st1, st2;
1128 if (stat(one, &st1) != 0)
1129 return 0;
1130 if (stat(two, &st2) != 0)
1131 return 0;
1132 if ((st1.st_mode & S_IFMT) != S_IFBLK)
1133 return 0;
1134 if ((st2.st_mode & S_IFMT) != S_IFBLK)
1135 return 0;
1136 return st1.st_rdev == st2.st_rdev;
1137 }
1138
1139 void wait_for(char *dev, int fd)
1140 {
1141 int i;
1142 struct stat stb_want;
1143 unsigned int delay = 1; // miliseconds
1144
1145 if (fstat(fd, &stb_want) != 0 ||
1146 (stb_want.st_mode & S_IFMT) != S_IFBLK)
1147 return;
1148
1149 for (i = 0; i < 25; i++) {
1150 struct stat stb;
1151 if (stat(dev, &stb) == 0 &&
1152 (stb.st_mode & S_IFMT) == S_IFBLK &&
1153 (stb.st_rdev == stb_want.st_rdev))
1154 return;
1155 sleep_for(0, MSEC_TO_NSEC(delay), true);
1156 if (delay < 200)
1157 delay *= 2;
1158 }
1159 if (i == 25)
1160 pr_err("timeout waiting for %s\n", dev);
1161 }
1162
1163 struct superswitch *superlist[] =
1164 {
1165 &super0, &super1,
1166 &super_ddf, &super_imsm,
1167 &mbr, &gpt,
1168 NULL
1169 };
1170
1171 struct supertype *super_by_fd(int fd, char **subarrayp)
1172 {
1173 mdu_array_info_t array;
1174 int vers;
1175 int minor;
1176 struct supertype *st = NULL;
1177 struct mdinfo *sra;
1178 char *verstr;
1179 char version[20];
1180 int i;
1181 char *subarray = NULL;
1182 char container[32] = "";
1183 char *devnm = NULL;
1184
1185 devnm = fd2devnm(fd);
1186 if (!devnm)
1187 return NULL;
1188
1189 sra = sysfs_read(fd, NULL, GET_VERSION);
1190
1191 if (sra) {
1192 vers = sra->array.major_version;
1193 minor = sra->array.minor_version;
1194 verstr = sra->text_version;
1195 } else {
1196 if (md_get_array_info(fd, &array))
1197 array.major_version = array.minor_version = 0;
1198 vers = array.major_version;
1199 minor = array.minor_version;
1200 verstr = "";
1201 }
1202
1203 if (vers != -1) {
1204 sprintf(version, "%d.%d", vers, minor);
1205 verstr = version;
1206 }
1207 if (minor == -2 && is_subarray(verstr)) {
1208 char *dev = verstr+1;
1209
1210 subarray = strchr(dev, '/');
1211 if (subarray) {
1212 *subarray++ = '\0';
1213 subarray = xstrdup(subarray);
1214 }
1215 snprintf(container, sizeof(container), "%s", dev);
1216 sysfs_free(sra);
1217 sra = sysfs_read(-1, container, GET_VERSION);
1218 if (sra && sra->text_version[0])
1219 verstr = sra->text_version;
1220 else
1221 verstr = "-no-metadata-";
1222 }
1223
1224 for (i = 0; st == NULL && superlist[i]; i++)
1225 st = superlist[i]->match_metadata_desc(verstr);
1226
1227 sysfs_free(sra);
1228 if (st) {
1229 st->sb = NULL;
1230 if (subarrayp)
1231 *subarrayp = subarray;
1232 strcpy(st->container_devnm, container);
1233 strncpy(st->devnm, devnm, MD_NAME_MAX - 1);
1234 } else
1235 free(subarray);
1236
1237 return st;
1238 }
1239
1240 struct supertype *dup_super(struct supertype *orig)
1241 {
1242 struct supertype *st;
1243
1244 if (!orig)
1245 return orig;
1246 st = xcalloc(1, sizeof(*st));
1247 st->ss = orig->ss;
1248 st->max_devs = orig->max_devs;
1249 st->minor_version = orig->minor_version;
1250 st->ignore_hw_compat = orig->ignore_hw_compat;
1251 st->data_offset = orig->data_offset;
1252 st->sb = NULL;
1253 st->info = NULL;
1254 return st;
1255 }
1256
1257 struct supertype *guess_super_type(int fd, enum guess_types guess_type)
1258 {
1259 /* try each load_super to find the best match,
1260 * and return the best superswitch
1261 */
1262 struct superswitch *ss;
1263 struct supertype *st;
1264 unsigned int besttime = 0;
1265 int bestsuper = -1;
1266 int i;
1267
1268 st = xcalloc(1, sizeof(*st));
1269 st->container_devnm[0] = 0;
1270
1271 for (i = 0; superlist[i]; i++) {
1272 int rv;
1273 ss = superlist[i];
1274 if (guess_type == guess_array && ss->add_to_super == NULL)
1275 continue;
1276 if (guess_type == guess_partitions && ss->add_to_super != NULL)
1277 continue;
1278 memset(st, 0, sizeof(*st));
1279 st->ignore_hw_compat = 1;
1280 rv = ss->load_super(st, fd, NULL);
1281 if (rv == 0) {
1282 struct mdinfo info;
1283 st->ss->getinfo_super(st, &info, NULL);
1284 if (bestsuper == -1 ||
1285 besttime < info.array.ctime) {
1286 bestsuper = i;
1287 besttime = info.array.ctime;
1288 }
1289 ss->free_super(st);
1290 }
1291 }
1292 if (bestsuper != -1) {
1293 int rv;
1294 memset(st, 0, sizeof(*st));
1295 st->ignore_hw_compat = 1;
1296 rv = superlist[bestsuper]->load_super(st, fd, NULL);
1297 if (rv == 0) {
1298 superlist[bestsuper]->free_super(st);
1299 return st;
1300 }
1301 }
1302 free(st);
1303 return NULL;
1304 }
1305
1306 /* Return size of device in bytes */
1307 int get_dev_size(int fd, char *dname, unsigned long long *sizep)
1308 {
1309 unsigned long long ldsize;
1310 struct stat st;
1311
1312 if (fstat(fd, &st) != -1 && S_ISREG(st.st_mode))
1313 ldsize = (unsigned long long)st.st_size;
1314 else
1315 #ifdef BLKGETSIZE64
1316 if (ioctl(fd, BLKGETSIZE64, &ldsize) != 0)
1317 #endif
1318 {
1319 unsigned long dsize;
1320 if (ioctl(fd, BLKGETSIZE, &dsize) == 0) {
1321 ldsize = dsize;
1322 ldsize <<= 9;
1323 } else {
1324 if (dname)
1325 pr_err("Cannot get size of %s: %s\n",
1326 dname, strerror(errno));
1327 return 0;
1328 }
1329 }
1330 *sizep = ldsize;
1331 return 1;
1332 }
1333
1334 /* Return sector size of device in bytes */
1335 int get_dev_sector_size(int fd, char *dname, unsigned int *sectsizep)
1336 {
1337 unsigned int sectsize;
1338
1339 if (ioctl(fd, BLKSSZGET, &sectsize) != 0) {
1340 if (dname)
1341 pr_err("Cannot get sector size of %s: %s\n",
1342 dname, strerror(errno));
1343 return 0;
1344 }
1345
1346 *sectsizep = sectsize;
1347 return 1;
1348 }
1349
1350 /* Return true if this can only be a container, not a member device.
1351 * i.e. is and md device and size is zero
1352 */
1353 int must_be_container(int fd)
1354 {
1355 struct mdinfo *mdi;
1356 unsigned long long size;
1357
1358 mdi = sysfs_read(fd, NULL, GET_VERSION);
1359 if (!mdi)
1360 return 0;
1361 sysfs_free(mdi);
1362
1363 if (get_dev_size(fd, NULL, &size) == 0)
1364 return 1;
1365 if (size == 0)
1366 return 1;
1367 return 0;
1368 }
1369
1370 /* Sets endofpart parameter to the last block used by the last GPT partition on the device.
1371 * Returns: 1 if successful
1372 * -1 for unknown partition type
1373 * 0 for other errors
1374 */
1375 static int get_gpt_last_partition_end(int fd, unsigned long long *endofpart)
1376 {
1377 struct GPT gpt;
1378 unsigned char empty_gpt_entry[16]= {0};
1379 struct GPT_part_entry *part;
1380 char buf[512];
1381 unsigned long long curr_part_end;
1382 unsigned all_partitions, entry_size;
1383 unsigned part_nr;
1384 unsigned int sector_size = 0;
1385
1386 *endofpart = 0;
1387
1388 BUILD_BUG_ON(sizeof(gpt) != 512);
1389 /* skip protective MBR */
1390 if (!get_dev_sector_size(fd, NULL, &sector_size))
1391 return 0;
1392 if (lseek(fd, sector_size, SEEK_SET) == -1L)
1393 return 0;
1394 /* read GPT header */
1395 if (read(fd, &gpt, 512) != 512)
1396 return 0;
1397
1398 /* get the number of partition entries and the entry size */
1399 all_partitions = __le32_to_cpu(gpt.part_cnt);
1400 entry_size = __le32_to_cpu(gpt.part_size);
1401
1402 /* Check GPT signature*/
1403 if (gpt.magic != GPT_SIGNATURE_MAGIC)
1404 return -1;
1405
1406 /* sanity checks */
1407 if (all_partitions > 1024 ||
1408 entry_size > sizeof(buf))
1409 return -1;
1410
1411 part = (struct GPT_part_entry *)buf;
1412
1413 /* set offset to third block (GPT entries) */
1414 if (lseek(fd, sector_size*2, SEEK_SET) == -1L)
1415 return 0;
1416 for (part_nr = 0; part_nr < all_partitions; part_nr++) {
1417 /* read partition entry */
1418 if (read(fd, buf, entry_size) != (ssize_t)entry_size)
1419 return 0;
1420
1421 /* is this valid partition? */
1422 if (memcmp(part->type_guid, empty_gpt_entry, 16) != 0) {
1423 /* check the last lba for the current partition */
1424 curr_part_end = __le64_to_cpu(part->ending_lba);
1425 if (curr_part_end > *endofpart)
1426 *endofpart = curr_part_end;
1427 }
1428
1429 }
1430 return 1;
1431 }
1432
1433 /* Sets endofpart parameter to the last block used by the last partition on the device.
1434 * Returns: 1 if successful
1435 * -1 for unknown partition type
1436 * 0 for other errors
1437 */
1438 static int get_last_partition_end(int fd, unsigned long long *endofpart)
1439 {
1440 struct MBR boot_sect;
1441 unsigned long long curr_part_end;
1442 unsigned part_nr;
1443 unsigned int sector_size;
1444 int retval = 0;
1445
1446 *endofpart = 0;
1447
1448 BUILD_BUG_ON(sizeof(boot_sect) != 512);
1449 /* read MBR */
1450 if (lseek(fd, 0, 0) == -1L)
1451 goto abort;
1452 if (read(fd, &boot_sect, 512) != 512)
1453 goto abort;
1454
1455 /* check MBP signature */
1456 if (boot_sect.magic == MBR_SIGNATURE_MAGIC) {
1457 retval = 1;
1458 /* found the correct signature */
1459
1460 for (part_nr = 0; part_nr < MBR_PARTITIONS; part_nr++) {
1461 /*
1462 * Have to make every access through boot_sect rather
1463 * than using a pointer to the partition table (or an
1464 * entry), since the entries are not properly aligned.
1465 */
1466
1467 /* check for GPT type */
1468 if (boot_sect.parts[part_nr].part_type ==
1469 MBR_GPT_PARTITION_TYPE) {
1470 retval = get_gpt_last_partition_end(fd, endofpart);
1471 break;
1472 }
1473 /* check the last used lba for the current partition */
1474 curr_part_end =
1475 __le32_to_cpu(boot_sect.parts[part_nr].first_sect_lba) +
1476 __le32_to_cpu(boot_sect.parts[part_nr].blocks_num);
1477 if (curr_part_end > *endofpart)
1478 *endofpart = curr_part_end;
1479 }
1480 } else {
1481 /* Unknown partition table */
1482 retval = -1;
1483 }
1484 /* calculate number of 512-byte blocks */
1485 if (get_dev_sector_size(fd, NULL, &sector_size))
1486 *endofpart *= (sector_size / 512);
1487 abort:
1488 return retval;
1489 }
1490
1491 int check_partitions(int fd, char *dname, unsigned long long freesize,
1492 unsigned long long size)
1493 {
1494 /*
1495 * Check where the last partition ends
1496 */
1497 unsigned long long endofpart;
1498
1499 if (get_last_partition_end(fd, &endofpart) > 0) {
1500 /* There appears to be a partition table here */
1501 if (freesize == 0) {
1502 /* partitions will not be visible in new device */
1503 pr_err("partition table exists on %s but will be lost or\n"
1504 " meaningless after creating array\n",
1505 dname);
1506 return 1;
1507 } else if (endofpart > freesize) {
1508 /* last partition overlaps metadata */
1509 pr_err("metadata will over-write last partition on %s.\n",
1510 dname);
1511 return 1;
1512 } else if (size && endofpart > size) {
1513 /* partitions will be truncated in new device */
1514 pr_err("array size is too small to cover all partitions on %s.\n",
1515 dname);
1516 return 1;
1517 }
1518 }
1519 return 0;
1520 }
1521
1522 int open_container(int fd)
1523 {
1524 /* 'fd' is a block device. Find out if it is in use
1525 * by a container, and return an open fd on that container.
1526 */
1527 char path[288];
1528 char *e;
1529 DIR *dir;
1530 struct dirent *de;
1531 int dfd, n;
1532 char buf[200];
1533 int major, minor;
1534 struct stat st;
1535
1536 if (fstat(fd, &st) != 0)
1537 return -1;
1538 sprintf(path, "/sys/dev/block/%d:%d/holders",
1539 (int)major(st.st_rdev), (int)minor(st.st_rdev));
1540 e = path + strlen(path);
1541
1542 dir = opendir(path);
1543 if (!dir)
1544 return -1;
1545 while ((de = readdir(dir))) {
1546 if (de->d_ino == 0)
1547 continue;
1548 if (de->d_name[0] == '.')
1549 continue;
1550 /* Need to make sure it is a container and not a volume */
1551 sprintf(e, "/%s/md/metadata_version", de->d_name);
1552 dfd = open(path, O_RDONLY);
1553 if (dfd < 0)
1554 continue;
1555 n = read(dfd, buf, sizeof(buf));
1556 close(dfd);
1557 if (n <= 0 || (unsigned)n >= sizeof(buf))
1558 continue;
1559 buf[n] = 0;
1560 if (strncmp(buf, "external", 8) != 0 ||
1561 n < 10 ||
1562 buf[9] == '/')
1563 continue;
1564 sprintf(e, "/%s/dev", de->d_name);
1565 dfd = open(path, O_RDONLY);
1566 if (dfd < 0)
1567 continue;
1568 n = read(dfd, buf, sizeof(buf));
1569 close(dfd);
1570 if (n <= 0 || (unsigned)n >= sizeof(buf))
1571 continue;
1572 buf[n] = 0;
1573 if (sscanf(buf, "%d:%d", &major, &minor) != 2)
1574 continue;
1575 sprintf(buf, "%d:%d", major, minor);
1576 dfd = dev_open(buf, O_RDONLY);
1577 if (dfd >= 0) {
1578 closedir(dir);
1579 return dfd;
1580 }
1581 }
1582 closedir(dir);
1583 return -1;
1584 }
1585
1586 struct superswitch *version_to_superswitch(char *vers)
1587 {
1588 int i;
1589
1590 for (i = 0; superlist[i]; i++) {
1591 struct superswitch *ss = superlist[i];
1592
1593 if (strcmp(vers, ss->name) == 0)
1594 return ss;
1595 }
1596
1597 return NULL;
1598 }
1599
1600 int metadata_container_matches(char *metadata, char *devnm)
1601 {
1602 /* Check if 'devnm' is the container named in 'metadata'
1603 * which is
1604 * /containername/componentname or
1605 * -containername/componentname
1606 */
1607 int l;
1608 if (*metadata != '/' && *metadata != '-')
1609 return 0;
1610 l = strlen(devnm);
1611 if (strncmp(metadata+1, devnm, l) != 0)
1612 return 0;
1613 if (metadata[l+1] != '/')
1614 return 0;
1615 return 1;
1616 }
1617
1618 int metadata_subdev_matches(char *metadata, char *devnm)
1619 {
1620 /* Check if 'devnm' is the subdev named in 'metadata'
1621 * which is
1622 * /containername/subdev or
1623 * -containername/subdev
1624 */
1625 char *sl;
1626 if (*metadata != '/' && *metadata != '-')
1627 return 0;
1628 sl = strchr(metadata+1, '/');
1629 if (!sl)
1630 return 0;
1631 if (strcmp(sl+1, devnm) == 0)
1632 return 1;
1633 return 0;
1634 }
1635
1636 int is_subarray_active(char *subarray, char *container)
1637 {
1638 struct mdstat_ent *mdstat = mdstat_read(0, 0);
1639 struct mdstat_ent *ent;
1640
1641 for (ent = mdstat; ent; ent = ent->next)
1642 if (is_container_member(ent, container))
1643 if (strcmp(to_subarray(ent, container), subarray) == 0)
1644 break;
1645
1646 free_mdstat(mdstat);
1647
1648 return ent != NULL;
1649 }
1650
1651 /* open_subarray - opens a subarray in a container
1652 * @dev: container device name
1653 * @st: empty supertype
1654 * @quiet: block reporting errors flag
1655 *
1656 * On success returns an fd to a container and fills in *st
1657 */
1658 int open_subarray(char *dev, char *subarray, struct supertype *st, int quiet)
1659 {
1660 struct mdinfo *mdi;
1661 struct mdinfo *info;
1662 int fd, err = 1;
1663 char *_devnm;
1664
1665 fd = open(dev, O_RDWR|O_EXCL);
1666 if (fd < 0) {
1667 if (!quiet)
1668 pr_err("Couldn't open %s, aborting\n",
1669 dev);
1670 return -1;
1671 }
1672
1673 _devnm = fd2devnm(fd);
1674 if (_devnm == NULL) {
1675 if (!quiet)
1676 pr_err("Failed to determine device number for %s\n",
1677 dev);
1678 goto close_fd;
1679 }
1680 snprintf(st->devnm, sizeof(st->devnm), "%s", _devnm);
1681
1682 mdi = sysfs_read(fd, st->devnm, GET_VERSION|GET_LEVEL);
1683 if (!mdi) {
1684 if (!quiet)
1685 pr_err("Failed to read sysfs for %s\n",
1686 dev);
1687 goto close_fd;
1688 }
1689
1690 if (mdi->array.level != UnSet) {
1691 if (!quiet)
1692 pr_err("%s is not a container\n", dev);
1693 goto free_sysfs;
1694 }
1695
1696 st->ss = version_to_superswitch(mdi->text_version);
1697 if (!st->ss) {
1698 if (!quiet)
1699 pr_err("Operation not supported for %s metadata\n",
1700 mdi->text_version);
1701 goto free_sysfs;
1702 }
1703
1704 if (st->devnm[0] == 0) {
1705 if (!quiet)
1706 pr_err("Failed to allocate device name\n");
1707 goto free_sysfs;
1708 }
1709
1710 if (!st->ss->load_container) {
1711 if (!quiet)
1712 pr_err("%s is not a container\n", dev);
1713 goto free_sysfs;
1714 }
1715
1716 if (st->ss->load_container(st, fd, NULL)) {
1717 if (!quiet)
1718 pr_err("Failed to load metadata for %s\n",
1719 dev);
1720 goto free_sysfs;
1721 }
1722
1723 info = st->ss->container_content(st, subarray);
1724 if (!info) {
1725 if (!quiet)
1726 pr_err("Failed to find subarray-%s in %s\n",
1727 subarray, dev);
1728 goto free_super;
1729 }
1730 free(info);
1731
1732 err = 0;
1733
1734 free_super:
1735 if (err)
1736 st->ss->free_super(st);
1737 free_sysfs:
1738 sysfs_free(mdi);
1739 close_fd:
1740 if (err)
1741 close(fd);
1742
1743 if (err)
1744 return -1;
1745 else
1746 return fd;
1747 }
1748
1749 int add_disk(int mdfd, struct supertype *st,
1750 struct mdinfo *sra, struct mdinfo *info)
1751 {
1752 /* Add a device to an array, in one of 2 ways. */
1753 int rv;
1754
1755 if (st->ss->external) {
1756 if (info->disk.state & (1<<MD_DISK_SYNC))
1757 info->recovery_start = MaxSector;
1758 else
1759 info->recovery_start = 0;
1760 rv = sysfs_add_disk(sra, info, 0);
1761 if (! rv) {
1762 struct mdinfo *sd2;
1763 for (sd2 = sra->devs; sd2; sd2=sd2->next)
1764 if (sd2 == info)
1765 break;
1766 if (sd2 == NULL) {
1767 sd2 = xmalloc(sizeof(*sd2));
1768 *sd2 = *info;
1769 sd2->next = sra->devs;
1770 sra->devs = sd2;
1771 }
1772 }
1773 } else
1774 rv = ioctl(mdfd, ADD_NEW_DISK, &info->disk);
1775 return rv;
1776 }
1777
1778 int remove_disk(int mdfd, struct supertype *st,
1779 struct mdinfo *sra, struct mdinfo *info)
1780 {
1781 int rv;
1782
1783 /* Remove the disk given by 'info' from the array */
1784 if (st->ss->external)
1785 rv = sysfs_set_str(sra, info, "slot", STR_COMMON_NONE);
1786 else
1787 rv = ioctl(mdfd, HOT_REMOVE_DISK, makedev(info->disk.major,
1788 info->disk.minor));
1789 return rv;
1790 }
1791
1792 int hot_remove_disk(int mdfd, unsigned long dev, int force)
1793 {
1794 int cnt = force ? 500 : 5;
1795 int ret;
1796
1797 /* HOT_REMOVE_DISK can fail with EBUSY if there are
1798 * outstanding IO requests to the device.
1799 * In this case, it can be helpful to wait a little while,
1800 * up to 5 seconds if 'force' is set, or 50 msec if not.
1801 */
1802 while ((ret = ioctl(mdfd, HOT_REMOVE_DISK, dev)) == -1 &&
1803 errno == EBUSY &&
1804 cnt-- > 0)
1805 sleep_for(0, MSEC_TO_NSEC(10), true);
1806
1807 return ret;
1808 }
1809
1810 int sys_hot_remove_disk(int statefd, int force)
1811 {
1812 int cnt = force ? 500 : 5;
1813
1814 while (cnt--) {
1815 int err = 0;
1816 int ret = sysfs_set_memb_state_fd(statefd, MEMB_STATE_REMOVE, &err);
1817
1818 if (ret == MDADM_STATUS_SUCCESS)
1819 return 0;
1820
1821 if (err != EBUSY)
1822 break;
1823
1824 sleep_for(0, MSEC_TO_NSEC(10), true);
1825 }
1826
1827 return -1;
1828 }
1829
1830 int set_array_info(int mdfd, struct supertype *st, struct mdinfo *info)
1831 {
1832 /* Initialise kernel's knowledge of array.
1833 * This varies between externally managed arrays
1834 * and older kernels
1835 */
1836 mdu_array_info_t inf;
1837 int rv;
1838
1839 if (st->ss->external)
1840 return sysfs_set_array(info);
1841
1842 memset(&inf, 0, sizeof(inf));
1843 inf.major_version = info->array.major_version;
1844 inf.minor_version = info->array.minor_version;
1845 rv = md_set_array_info(mdfd, &inf);
1846
1847 return rv;
1848 }
1849
1850 unsigned long long min_recovery_start(struct mdinfo *array)
1851 {
1852 /* find the minimum recovery_start in an array for metadata
1853 * formats that only record per-array recovery progress instead
1854 * of per-device
1855 */
1856 unsigned long long recovery_start = MaxSector;
1857 struct mdinfo *d;
1858
1859 for (d = array->devs; d; d = d->next)
1860 recovery_start = min(recovery_start, d->recovery_start);
1861
1862 return recovery_start;
1863 }
1864
1865 int mdmon_pid(const char *devnm)
1866 {
1867 char path[100];
1868 char pid[10];
1869 int fd;
1870 int n;
1871
1872 sprintf(path, "%s/%s.pid", MDMON_DIR, devnm);
1873
1874 fd = open(path, O_RDONLY | O_NOATIME, 0);
1875
1876 if (fd < 0)
1877 return -1;
1878 n = read(fd, pid, 9);
1879 close(fd);
1880 if (n <= 0)
1881 return -1;
1882 return atoi(pid);
1883 }
1884
1885 int mdmon_running(const char *devnm)
1886 {
1887 int pid = mdmon_pid(devnm);
1888 if (pid <= 0)
1889 return 0;
1890 if (kill(pid, 0) == 0)
1891 return 1;
1892 return 0;
1893 }
1894
1895 /*
1896 * wait_for_mdmon_control_socket() - Waits for mdmon control socket
1897 * to be created within specified time.
1898 * @container_devnm: Device for which mdmon control socket should start.
1899 *
1900 * In foreground mode, when mdadm is trying to connect to control
1901 * socket it is possible that the mdmon has not created it yet.
1902 * Give some time to mdmon to create socket. Timeout set to 2 sec.
1903 *
1904 * Return: MDADM_STATUS_SUCCESS if connect succeed, otherwise return
1905 * error code.
1906 */
1907 mdadm_status_t wait_for_mdmon_control_socket(const char *container_devnm)
1908 {
1909 enum mdadm_status status = MDADM_STATUS_SUCCESS;
1910 int sfd, rv, retry_count = 0;
1911 struct sockaddr_un addr;
1912 char path[PATH_MAX];
1913
1914 snprintf(path, PATH_MAX, "%s/%s.sock", MDMON_DIR, container_devnm);
1915 sfd = socket(PF_LOCAL, SOCK_STREAM, 0);
1916 if (!is_fd_valid(sfd))
1917 return MDADM_STATUS_ERROR;
1918
1919 addr.sun_family = PF_LOCAL;
1920 strncpy(addr.sun_path, path, sizeof(addr.sun_path) - 1);
1921 addr.sun_path[sizeof(addr.sun_path) - 1] = '\0';
1922
1923 for (retry_count = 0; retry_count < 10; retry_count++) {
1924 rv = connect(sfd, (struct sockaddr*)&addr, sizeof(addr));
1925 if (rv < 0) {
1926 sleep_for(0, MSEC_TO_NSEC(200), true);
1927 continue;
1928 }
1929 break;
1930 }
1931
1932 if (rv < 0) {
1933 pr_err("Failed to connect to control socket.\n");
1934 status = MDADM_STATUS_ERROR;
1935 }
1936 close(sfd);
1937 return status;
1938 }
1939
1940 /*
1941 * wait_for_mdmon() - Waits for mdmon within specified time.
1942 * @devnm: Device for which mdmon should start.
1943 *
1944 * Function waits for mdmon to start. It may need few seconds
1945 * to start, we set timeout to 5, it should be sufficient.
1946 * Do not wait if mdmon has been started.
1947 *
1948 * Return: MDADM_STATUS_SUCCESS if mdmon is running, error code otherwise.
1949 */
1950 mdadm_status_t wait_for_mdmon(const char *devnm)
1951 {
1952 const time_t mdmon_timeout = 5;
1953 time_t start_time = time(0);
1954
1955 if (mdmon_running(devnm))
1956 return MDADM_STATUS_SUCCESS;
1957
1958 pr_info("Waiting for mdmon to start\n");
1959 while (time(0) - start_time < mdmon_timeout) {
1960 sleep_for(0, MSEC_TO_NSEC(200), true);
1961 if (mdmon_running(devnm))
1962 return MDADM_STATUS_SUCCESS;
1963 };
1964
1965 pr_err("Timeout waiting for mdmon\n");
1966 return MDADM_STATUS_ERROR;
1967 }
1968
1969 int start_mdmon(char *devnm)
1970 {
1971 int i;
1972 int len;
1973 pid_t pid;
1974 int status;
1975 char *prefix = in_initrd() ? "initrd-" : "";
1976 char pathbuf[1024];
1977 char *paths[4] = {
1978 pathbuf,
1979 BINDIR "/mdmon",
1980 "./mdmon",
1981 NULL
1982 };
1983
1984 if (check_env("MDADM_NO_MDMON"))
1985 return 0;
1986 if (continue_via_systemd(devnm, MDMON_SERVICE, prefix) == MDADM_STATUS_SUCCESS)
1987 return 0;
1988
1989 /* That failed, try running mdmon directly */
1990 len = readlink("/proc/self/exe", pathbuf, sizeof(pathbuf)-1);
1991 if (len > 0) {
1992 char *sl;
1993 pathbuf[len] = 0;
1994 sl = strrchr(pathbuf, '/');
1995 if (sl)
1996 sl++;
1997 else
1998 sl = pathbuf;
1999 strcpy(sl, "mdmon");
2000 } else
2001 pathbuf[0] = '\0';
2002
2003 switch(fork()) {
2004 case 0:
2005 manage_fork_fds(1);
2006 for (i = 0; paths[i]; i++)
2007 if (paths[i][0]) {
2008 execl(paths[i], paths[i],
2009 devnm, NULL);
2010 }
2011 exit(1);
2012 case -1: pr_err("cannot run mdmon. Array remains readonly\n");
2013 return -1;
2014 default: /* parent - good */
2015 pid = wait(&status);
2016 if (pid < 0 || status != 0) {
2017 pr_err("failed to launch mdmon. Array remains readonly\n");
2018 return -1;
2019 }
2020 }
2021 return 0;
2022 }
2023
2024 __u32 random32(void)
2025 {
2026 __u32 rv;
2027 int rfd = open("/dev/urandom", O_RDONLY);
2028 if (rfd < 0 || read(rfd, &rv, 4) != 4)
2029 rv = random();
2030 if (rfd >= 0)
2031 close(rfd);
2032 return rv;
2033 }
2034
2035 void random_uuid(__u8 *buf)
2036 {
2037 int fd, i, len;
2038 __u32 r[4];
2039
2040 fd = open("/dev/urandom", O_RDONLY);
2041 if (fd < 0)
2042 goto use_random;
2043 len = read(fd, buf, 16);
2044 close(fd);
2045 if (len != 16)
2046 goto use_random;
2047
2048 return;
2049
2050 use_random:
2051 for (i = 0; i < 4; i++)
2052 r[i] = random();
2053 memcpy(buf, r, 16);
2054 }
2055
2056 int flush_metadata_updates(struct supertype *st)
2057 {
2058 int sfd;
2059 if (!st->updates) {
2060 st->update_tail = NULL;
2061 return -1;
2062 }
2063
2064 sfd = connect_monitor(st->container_devnm);
2065 if (sfd < 0)
2066 return -1;
2067
2068 while (st->updates) {
2069 struct metadata_update *mu = st->updates;
2070 st->updates = mu->next;
2071
2072 send_message(sfd, mu, 0);
2073 wait_reply(sfd, 0);
2074 free(mu->buf);
2075 free(mu);
2076 }
2077 ack(sfd, 0);
2078 wait_reply(sfd, 0);
2079 close(sfd);
2080 st->update_tail = NULL;
2081 return 0;
2082 }
2083
2084 void append_metadata_update(struct supertype *st, void *buf, int len)
2085 {
2086
2087 struct metadata_update *mu = xmalloc(sizeof(*mu));
2088
2089 mu->buf = buf;
2090 mu->len = len;
2091 mu->space = NULL;
2092 mu->space_list = NULL;
2093 mu->next = NULL;
2094 *st->update_tail = mu;
2095 st->update_tail = &mu->next;
2096 }
2097
2098 #ifdef __TINYC__
2099 /* tinyc doesn't optimize this check in ioctl.h out ... */
2100 unsigned int __invalid_size_argument_for_IOC = 0;
2101 #endif
2102
2103 /**
2104 * disk_fd_matches_criteria() - check if device matches spare criteria.
2105 * @st: supertype, not NULL.
2106 * @disk_fd: file descriptor of the disk.
2107 * @sc: criteria to test.
2108 *
2109 * Return: true if disk matches criteria, false otherwise.
2110 */
2111 bool disk_fd_matches_criteria(struct supertype *st, int disk_fd, struct spare_criteria *sc)
2112 {
2113 unsigned int dev_sector_size = 0;
2114 unsigned long long dev_size = 0;
2115
2116 if (!sc->criteria_set)
2117 return true;
2118
2119 if (!get_dev_size(disk_fd, NULL, &dev_size) || dev_size < sc->min_size)
2120 return false;
2121
2122 if (!get_dev_sector_size(disk_fd, NULL, &dev_sector_size) ||
2123 sc->sector_size != dev_sector_size)
2124 return false;
2125
2126 if (drive_test_and_add_policies(st, &sc->pols, disk_fd, 0))
2127 return false;
2128
2129 return true;
2130 }
2131
2132 /**
2133 * devid_matches_criteria() - check if device referenced by devid matches spare criteria.
2134 * @st: supertype, not NULL.
2135 * @devid: devid of the device to check.
2136 * @sc: criteria to test.
2137 *
2138 * Return: true if disk matches criteria, false otherwise.
2139 */
2140 bool devid_matches_criteria(struct supertype *st, dev_t devid, struct spare_criteria *sc)
2141 {
2142 char buf[NAME_MAX];
2143 bool ret;
2144 int fd;
2145
2146 if (!sc->criteria_set)
2147 return true;
2148
2149 snprintf(buf, NAME_MAX, "%d:%d", major(devid), minor(devid));
2150
2151 fd = dev_open(buf, O_RDONLY);
2152 if (!is_fd_valid(fd))
2153 return false;
2154
2155 /* Error code inherited */
2156 ret = disk_fd_matches_criteria(st, fd, sc);
2157
2158 close(fd);
2159 return ret;
2160 }
2161
2162 /* Pick all spares matching given criteria from a container
2163 * if min_size == 0 do not check size
2164 * if domlist == NULL do not check domains
2165 * if spare_group given add it to domains of each spare
2166 * metadata allows to test domains using metadata of destination array */
2167 struct mdinfo *container_choose_spares(struct supertype *st,
2168 struct spare_criteria *criteria,
2169 struct domainlist *domlist,
2170 char *spare_group,
2171 const char *metadata, int get_one)
2172 {
2173 struct mdinfo *d, **dp, *disks = NULL;
2174
2175 /* get list of all disks in container */
2176 if (st->ss->getinfo_super_disks)
2177 disks = st->ss->getinfo_super_disks(st);
2178
2179 if (!disks)
2180 return disks;
2181 /* find spare devices on the list */
2182 dp = &disks->devs;
2183 disks->array.spare_disks = 0;
2184 while (*dp) {
2185 bool found = false;
2186
2187 d = *dp;
2188 if (d->disk.state == 0) {
2189 dev_t dev = makedev(d->disk.major,d->disk.minor);
2190
2191 found = devid_matches_criteria(st, dev, criteria);
2192
2193 /* check if domain matches */
2194 if (found && domlist) {
2195 struct dev_policy *pol = devid_policy(dev);
2196 if (spare_group)
2197 pol_add(&pol, pol_domain,
2198 spare_group, NULL);
2199 if (domain_test(domlist, pol, metadata) != 1)
2200 found = false;
2201
2202 dev_policy_free(pol);
2203 }
2204 }
2205 if (found) {
2206 dp = &d->next;
2207 disks->array.spare_disks++;
2208 if (get_one) {
2209 sysfs_free(*dp);
2210 d->next = NULL;
2211 }
2212 } else {
2213 *dp = d->next;
2214 d->next = NULL;
2215 sysfs_free(d);
2216 }
2217 }
2218 return disks;
2219 }
2220
2221 /* Checks if paths point to the same device
2222 * Returns 0 if they do.
2223 * Returns 1 if they don't.
2224 * Returns -1 if something went wrong,
2225 * e.g. paths are empty or the files
2226 * they point to don't exist */
2227 int compare_paths (char* path1, char* path2)
2228 {
2229 struct stat st1,st2;
2230
2231 if (path1 == NULL || path2 == NULL)
2232 return -1;
2233 if (stat(path1,&st1) != 0)
2234 return -1;
2235 if (stat(path2,&st2) != 0)
2236 return -1;
2237 if ((st1.st_ino == st2.st_ino) && (st1.st_dev == st2.st_dev))
2238 return 0;
2239 return 1;
2240 }
2241
2242 /* Make sure we can open as many devices as needed */
2243 void enable_fds(int devices)
2244 {
2245 unsigned int fds = 20 + devices;
2246 struct rlimit lim;
2247 if (getrlimit(RLIMIT_NOFILE, &lim) != 0 || lim.rlim_cur >= fds)
2248 return;
2249 if (lim.rlim_max < fds)
2250 lim.rlim_max = fds;
2251 lim.rlim_cur = fds;
2252 setrlimit(RLIMIT_NOFILE, &lim);
2253 }
2254
2255 /* Close all opened descriptors if needed and redirect
2256 * streams to /dev/null.
2257 * For debug purposed, leave STDOUT and STDERR untouched
2258 * Returns:
2259 * 1- if any error occurred
2260 * 0- otherwise
2261 */
2262 void manage_fork_fds(int close_all)
2263 {
2264 DIR *dir;
2265 struct dirent *dirent;
2266 int fd = open("/dev/null", O_RDWR);
2267
2268 if (is_fd_valid(fd)) {
2269 dup2(fd, 0);
2270 #ifndef DEBUG
2271 dup2(0, 1);
2272 dup2(0, 2);
2273 close_fd(&fd);
2274 #endif
2275 }
2276
2277 if (close_all == 0)
2278 return;
2279
2280 dir = opendir("/proc/self/fd");
2281 if (!dir) {
2282 pr_err("Cannot open /proc/self/fd directory.\n");
2283 return;
2284 }
2285 for (dirent = readdir(dir); dirent; dirent = readdir(dir)) {
2286 int fd = -1;
2287
2288 if ((strcmp(dirent->d_name, ".") == 0) ||
2289 (strcmp(dirent->d_name, "..")) == 0)
2290 continue;
2291
2292 fd = strtol(dirent->d_name, NULL, 10);
2293 if (fd > 2)
2294 close_fd(&fd);
2295 }
2296 closedir(dir);
2297 return;
2298 }
2299
2300 /* In a systemd/udev world, it is best to get systemd to
2301 * run daemon rather than running in the background.
2302 * Returns:
2303 * MDADM_STATUS_SUCCESS - if systemd service has been started.
2304 * MDADM_STATUS_ERROR - otherwise.
2305 */
2306 mdadm_status_t continue_via_systemd(char *devnm, char *service_name, char *prefix)
2307 {
2308 int pid, status;
2309 char pathbuf[PATH_MAX];
2310
2311 dprintf("Start %s service\n", service_name);
2312 /* Simply return that service cannot be started */
2313 if (check_env("MDADM_NO_SYSTEMCTL"))
2314 return MDADM_STATUS_ERROR;
2315
2316 /* Fork in attempt to start services */
2317 switch (fork()) {
2318 case -1: /* Fork failed, just do it ourselves. */
2319 break;
2320 case 0: /* child */
2321 manage_fork_fds(1);
2322 snprintf(pathbuf, sizeof(pathbuf), "%s@%s%s.service",
2323 service_name, prefix ? prefix : "", devnm);
2324
2325 /* Attempt to start service.
2326 * On success execl() will "kill" the fork, and return status of systemctl call.
2327 */
2328 execl("/usr/bin/systemctl", "systemctl", "restart", pathbuf, NULL);
2329 execl("/bin/systemctl", "systemctl", "restart", pathbuf, NULL);
2330 exit(MDADM_STATUS_ERROR);
2331 default: /* parent */
2332 /* Check if forked process successfully trigered service */
2333 pid = wait(&status);
2334 if (pid >= 0 && status == 0)
2335 return MDADM_STATUS_SUCCESS;
2336 }
2337 return MDADM_STATUS_ERROR;
2338 }
2339
2340 int in_initrd(void)
2341 {
2342 return access("/etc/initrd-release", F_OK) >= 0;
2343 }
2344
2345 void reopen_mddev(int mdfd)
2346 {
2347 /* Re-open without any O_EXCL, but keep
2348 * the same fd
2349 */
2350 char *devnm = fd2devnm(mdfd);
2351 int fd = open_dev(devnm);
2352
2353 if (!is_fd_valid(fd))
2354 return;
2355
2356 dup2(fd, mdfd);
2357
2358 close_fd(&fd);
2359 }
2360
2361 static struct cmap_hooks *cmap_hooks = NULL;
2362 static int is_cmap_hooks_ready = 0;
2363
2364 void set_cmap_hooks(void)
2365 {
2366 cmap_hooks = xmalloc(sizeof(struct cmap_hooks));
2367 cmap_hooks->cmap_handle = dlopen("libcmap.so.4", RTLD_NOW | RTLD_LOCAL);
2368 if (!cmap_hooks->cmap_handle)
2369 return;
2370
2371 cmap_hooks->initialize =
2372 dlsym(cmap_hooks->cmap_handle, "cmap_initialize");
2373 cmap_hooks->get_string =
2374 dlsym(cmap_hooks->cmap_handle, "cmap_get_string");
2375 cmap_hooks->finalize = dlsym(cmap_hooks->cmap_handle, "cmap_finalize");
2376
2377 if (!cmap_hooks->initialize || !cmap_hooks->get_string ||
2378 !cmap_hooks->finalize)
2379 dlclose(cmap_hooks->cmap_handle);
2380 else
2381 is_cmap_hooks_ready = 1;
2382 }
2383
2384 int get_cluster_name(char **cluster_name)
2385 {
2386 int rv = -1;
2387 cmap_handle_t handle;
2388
2389 if (!is_cmap_hooks_ready)
2390 return rv;
2391
2392 rv = cmap_hooks->initialize(&handle);
2393 if (rv != CS_OK)
2394 goto out;
2395
2396 rv = cmap_hooks->get_string(handle, "totem.cluster_name", cluster_name);
2397 if (rv != CS_OK) {
2398 free(*cluster_name);
2399 rv = -1;
2400 goto name_err;
2401 }
2402
2403 rv = 0;
2404 name_err:
2405 cmap_hooks->finalize(handle);
2406 out:
2407 return rv;
2408 }
2409
2410 void set_dlm_hooks(void)
2411 {
2412 dlm_hooks = xmalloc(sizeof(struct dlm_hooks));
2413 dlm_hooks->dlm_handle = dlopen("libdlm_lt.so.3", RTLD_NOW | RTLD_LOCAL);
2414 if (!dlm_hooks->dlm_handle)
2415 return;
2416
2417 dlm_hooks->open_lockspace =
2418 dlsym(dlm_hooks->dlm_handle, "dlm_open_lockspace");
2419 dlm_hooks->create_lockspace =
2420 dlsym(dlm_hooks->dlm_handle, "dlm_create_lockspace");
2421 dlm_hooks->release_lockspace =
2422 dlsym(dlm_hooks->dlm_handle, "dlm_release_lockspace");
2423 dlm_hooks->ls_lock = dlsym(dlm_hooks->dlm_handle, "dlm_ls_lock");
2424 dlm_hooks->ls_unlock_wait =
2425 dlsym(dlm_hooks->dlm_handle, "dlm_ls_unlock_wait");
2426 dlm_hooks->ls_get_fd = dlsym(dlm_hooks->dlm_handle, "dlm_ls_get_fd");
2427 dlm_hooks->dispatch = dlsym(dlm_hooks->dlm_handle, "dlm_dispatch");
2428
2429 if (!dlm_hooks->open_lockspace || !dlm_hooks->create_lockspace ||
2430 !dlm_hooks->ls_lock || !dlm_hooks->ls_unlock_wait ||
2431 !dlm_hooks->release_lockspace || !dlm_hooks->ls_get_fd ||
2432 !dlm_hooks->dispatch)
2433 dlclose(dlm_hooks->dlm_handle);
2434 else
2435 is_dlm_hooks_ready = 1;
2436 }
2437
2438 void set_hooks(void)
2439 {
2440 set_dlm_hooks();
2441 set_cmap_hooks();
2442 }
2443
2444 int zero_disk_range(int fd, unsigned long long sector, size_t count)
2445 {
2446 int ret = 0;
2447 int fd_zero;
2448 void *addr = NULL;
2449 size_t written = 0;
2450 size_t len = count * 512;
2451 ssize_t n;
2452
2453 fd_zero = open("/dev/zero", O_RDONLY);
2454 if (fd_zero < 0) {
2455 pr_err("Cannot open /dev/zero\n");
2456 return -1;
2457 }
2458
2459 if (lseek64(fd, sector * 512, SEEK_SET) < 0) {
2460 ret = -errno;
2461 pr_err("Failed to seek offset for zeroing\n");
2462 goto out;
2463 }
2464
2465 addr = mmap(NULL, len, PROT_READ, MAP_PRIVATE, fd_zero, 0);
2466
2467 if (addr == MAP_FAILED) {
2468 ret = -errno;
2469 pr_err("Mapping /dev/zero failed\n");
2470 goto out;
2471 }
2472
2473 do {
2474 n = write(fd, addr + written, len - written);
2475 if (n < 0) {
2476 if (errno == EINTR)
2477 continue;
2478 ret = -errno;
2479 pr_err("Zeroing disk range failed\n");
2480 break;
2481 }
2482 written += n;
2483 } while (written != len);
2484
2485 munmap(addr, len);
2486
2487 out:
2488 close(fd_zero);
2489 return ret;
2490 }
2491
2492 /**
2493 * sleep_for() - Sleeps for specified time.
2494 * @sec: Seconds to sleep for.
2495 * @nsec: Nanoseconds to sleep for, has to be less than one second.
2496 * @wake_after_interrupt: If set, wake up if interrupted.
2497 *
2498 * Function immediately returns if error different than EINTR occurs.
2499 */
2500 void sleep_for(unsigned int sec, long nsec, bool wake_after_interrupt)
2501 {
2502 struct timespec delay = {.tv_sec = sec, .tv_nsec = nsec};
2503
2504 assert(nsec < MSEC_TO_NSEC(1000));
2505
2506 do {
2507 errno = 0;
2508 nanosleep(&delay, &delay);
2509 if (errno != 0 && errno != EINTR) {
2510 pr_err("Error sleeping for %us %ldns: %s\n", sec, nsec, strerror(errno));
2511 return;
2512 }
2513 } while (!wake_after_interrupt && errno == EINTR);
2514 }
2515
2516 /* is_directory() - Checks if directory provided by path is indeed a regular directory.
2517 * @path: directory path to be checked
2518 *
2519 * Doesn't accept symlinks.
2520 *
2521 * Return: true if is a directory, false if not
2522 */
2523 bool is_directory(const char *path)
2524 {
2525 struct stat st;
2526
2527 if (lstat(path, &st) != 0) {
2528 pr_err("%s: %s\n", strerror(errno), path);
2529 return false;
2530 }
2531
2532 if (!S_ISDIR(st.st_mode))
2533 return false;
2534
2535 return true;
2536 }
2537
2538 /*
2539 * is_file() - Checks if file provided by path is indeed a regular file.
2540 * @path: file path to be checked
2541 *
2542 * Doesn't accept symlinks.
2543 *
2544 * Return: true if is a file, false if not
2545 */
2546 bool is_file(const char *path)
2547 {
2548 struct stat st;
2549
2550 if (lstat(path, &st) != 0) {
2551 pr_err("%s: %s\n", strerror(errno), path);
2552 return false;
2553 }
2554
2555 if (!S_ISREG(st.st_mode))
2556 return false;
2557
2558 return true;
2559 }