]> git.ipfire.org Git - thirdparty/gcc.git/blobdiff - contrib/analyze_brprob.py
gcc-changelog: support patterns
[thirdparty/gcc.git] / contrib / analyze_brprob.py
index b4dbbc4ac158a5066b16e22347fb028527ff27b9..de5f474d6298c224cbd6000b601e5b18fb39650e 100755 (executable)
@@ -71,6 +71,7 @@ from math import *
 
 counter_aggregates = set(['combined', 'first match', 'DS theory',
     'no prediction'])
+hot_threshold = 10
 
 def percentage(a, b):
     return 100.0 * a / b
@@ -90,38 +91,129 @@ def median(values):
     values.sort()
     return values[int(len(values) / 2)]
 
+class PredictDefFile:
+    def __init__(self, path):
+        self.path = path
+        self.predictors = {}
+
+    def parse_and_modify(self, heuristics, write_def_file):
+        lines = [x.rstrip() for x in open(self.path).readlines()]
+
+        p = None
+        modified_lines = []
+        for l in lines:
+            if l.startswith('DEF_PREDICTOR'):
+                m = re.match('.*"(.*)".*', l)
+                p = m.group(1)
+            elif l == '':
+                p = None
+
+            if p != None:
+                heuristic = [x for x in heuristics if x.name == p]
+                heuristic = heuristic[0] if len(heuristic) == 1 else None
+
+                m = re.match('.*HITRATE \(([^)]*)\).*', l)
+                if (m != None):
+                    self.predictors[p] = int(m.group(1))
+
+                    # modify the line
+                    if heuristic != None:
+                        new_line = (l[:m.start(1)]
+                            + str(round(heuristic.get_hitrate()))
+                            + l[m.end(1):])
+                        l = new_line
+                    p = None
+                elif 'PROB_VERY_LIKELY' in l:
+                    self.predictors[p] = 100
+            modified_lines.append(l)
+
+        # save the file
+        if write_def_file:
+            with open(self.path, 'w+') as f:
+                for l in modified_lines:
+                    f.write(l + '\n')
+class Heuristics:
+    def __init__(self, count, hits, fits):
+        self.count = count
+        self.hits = hits
+        self.fits = fits
+
 class Summary:
     def __init__(self, name):
         self.name = name
-        self.branches = 0
-        self.successfull_branches = 0
-        self.count = 0
-        self.hits = 0
-        self.fits = 0
+        self.edges= []
+
+    def branches(self):
+        return len(self.edges)
+
+    def hits(self):
+        return sum([x.hits for x in self.edges])
+
+    def fits(self):
+        return sum([x.fits for x in self.edges])
+
+    def count(self):
+        return sum([x.count for x in self.edges])
+
+    def successfull_branches(self):
+        return len([x for x in self.edges if 2 * x.hits >= x.count])
 
     def get_hitrate(self):
-        return 100.0 * self.hits / self.count
+        return 100.0 * self.hits() / self.count()
 
     def get_branch_hitrate(self):
-        return 100.0 * self.successfull_branches / self.branches
+        return 100.0 * self.successfull_branches() / self.branches()
 
     def count_formatted(self):
-        v = self.count
-        for unit in ['','K','M','G','T','P','E','Z']:
+        v = self.count()
+        for unit in ['', 'k', 'M', 'G', 'T', 'P', 'E', 'Z', 'Y']:
             if v < 1000:
                 return "%3.2f%s" % (v, unit)
             v /= 1000.0
         return "%.1f%s" % (v, 'Y')
 
-    def print(self, branches_max, count_max):
+    def count(self):
+        return sum([x.count for x in self.edges])
+
+    def print(self, branches_max, count_max, predict_def):
+        # filter out most hot edges (if requested)
+        self.edges = sorted(self.edges, reverse = True, key = lambda x: x.count)
+        if args.coverage_threshold != None:
+            threshold = args.coverage_threshold * self.count() / 100
+            edges = [x for x in self.edges if x.count < threshold]
+            if len(edges) != 0:
+                self.edges = edges
+
+        predicted_as = None
+        if predict_def != None and self.name in predict_def.predictors:
+            predicted_as = predict_def.predictors[self.name]
+
         print('%-40s %8i %5.1f%% %11.2f%% %7.2f%% / %6.2f%% %14i %8s %5.1f%%' %
-            (self.name, self.branches,
-                percentage(self.branches, branches_max),
+            (self.name, self.branches(),
+                percentage(self.branches(), branches_max),
                 self.get_branch_hitrate(),
                 self.get_hitrate(),
-                percentage(self.fits, self.count),
-                self.count, self.count_formatted(),
-                percentage(self.count, count_max)))
+                percentage(self.fits(), self.count()),
+                self.count(), self.count_formatted(),
+                percentage(self.count(), count_max)), end = '')
+
+        if predicted_as != None:
+            print('%12i%% %5.1f%%' % (predicted_as,
+                self.get_hitrate() - predicted_as), end = '')
+        else:
+            print(' ' * 20, end = '')
+
+        # print details about the most important edges
+        if args.coverage_threshold == None:
+            edges = [x for x in self.edges[:100] if x.count * hot_threshold > self.count()]
+            if args.verbose:
+                for c in edges:
+                    r = 100.0 * c.count / self.count()
+                    print(' %.0f%%:%d' % (r, c.count), end = '')
+            elif len(edges) > 0:
+                print(' %0.0f%%:%d' % (100.0 * sum([x.count for x in edges]) / self.count(), len(edges)), end = '')
+
+        print()
 
 class Profile:
     def __init__(self, filename):
@@ -134,33 +226,29 @@ class Profile:
             self.heuristics[name] = Summary(name)
 
         s = self.heuristics[name]
-        s.branches += 1
 
-        s.count += count
         if prediction < 50:
             hits = count - hits
         remaining = count - hits
-        if hits >= remaining:
-            s.successfull_branches += 1
+        fits = max(hits, remaining)
 
-        s.hits += hits
-        s.fits += max(hits, remaining)
+        s.edges.append(Heuristics(count, hits, fits))
 
     def add_loop_niter(self, niter):
         if niter > 0:
             self.niter_vector.append(niter)
 
     def branches_max(self):
-        return max([v.branches for k, v in self.heuristics.items()])
+        return max([v.branches() for k, v in self.heuristics.items()])
 
     def count_max(self):
-        return max([v.count for k, v in self.heuristics.items()])
+        return max([v.count() for k, v in self.heuristics.items()])
 
-    def print_group(self, sorting, group_name, heuristics):
+    def print_group(self, sorting, group_name, heuristics, predict_def):
         count_max = self.count_max()
         branches_max = self.branches_max()
 
-        sorter = lambda x: x.branches
+        sorter = lambda x: x.branches()
         if sorting == 'branch-hitrate':
             sorter = lambda x: x.get_branch_hitrate()
         elif sorting == 'hitrate':
@@ -170,11 +258,12 @@ class Profile:
         elif sorting == 'name':
             sorter = lambda x: x.name.lower()
 
-        print('%-40s %8s %6s %12s %18s %14s %8s %6s' %
+        print('%-40s %8s %6s %12s %18s %14s %8s %6s %12s %6s %s' %
             ('HEURISTICS', 'BRANCHES', '(REL)',
-            'BR. HITRATE', 'HITRATE', 'COVERAGE', 'COVERAGE', '(REL)'))
+            'BR. HITRATE', 'HITRATE', 'COVERAGE', 'COVERAGE', '(REL)',
+            'predict.def', '(REL)', 'HOT branches (>%d%%)' % hot_threshold))
         for h in sorted(heuristics, key = sorter):
-            h.print(branches_max, count_max)
+            h.print(branches_max, count_max, predict_def)
 
     def dump(self, sorting):
         heuristics = self.heuristics.values()
@@ -182,14 +271,19 @@ class Profile:
             print('No heuristics available')
             return
 
+        predict_def = None
+        if args.def_file != None:
+            predict_def = PredictDefFile(args.def_file)
+            predict_def.parse_and_modify(heuristics, args.write_def_file)
+
         special = list(filter(lambda x: x.name in counter_aggregates,
             heuristics))
         normal = list(filter(lambda x: x.name not in counter_aggregates,
             heuristics))
 
-        self.print_group(sorting, 'HEURISTICS', normal)
+        self.print_group(sorting, 'HEURISTICS', normal, predict_def)
         print()
-        self.print_group(sorting, 'HEURISTIC AGGREGATES', special)
+        self.print_group(sorting, 'HEURISTIC AGGREGATES', special, predict_def)
 
         if len(self.niter_vector) > 0:
             print ('\nLoop count: %d' % len(self.niter_vector)),
@@ -206,19 +300,26 @@ parser.add_argument('dump_file', metavar = 'dump_file',
 parser.add_argument('-s', '--sorting', dest = 'sorting',
     choices = ['branches', 'branch-hitrate', 'hitrate', 'coverage', 'name'],
     default = 'branches')
+parser.add_argument('-d', '--def-file', help = 'path to predict.def')
+parser.add_argument('-w', '--write-def-file', action = 'store_true',
+    help = 'Modify predict.def file in order to set new numbers')
+parser.add_argument('-c', '--coverage-threshold', type = int,
+    help = 'Ignore edges that have percentage coverage >= coverage-threshold')
+parser.add_argument('-v', '--verbose', action = 'store_true', help = 'Print verbose informations')
 
 args = parser.parse_args()
 
-profile = Profile(sys.argv[1])
-r = re.compile('  (.*) heuristics( of edge [0-9]*->[0-9]*)?( \\(.*\\))?: (.*)%.*exec ([0-9]*) hit ([0-9]*)')
+profile = Profile(args.dump_file)
 loop_niter_str = ';;  profile-based iteration count: '
-for l in open(args.dump_file).readlines():
-    m = r.match(l)
-    if m != None and m.group(3) == None:
-        name = m.group(1)
-        prediction = float(m.group(4))
-        count = int(m.group(5))
-        hits = int(m.group(6))
+
+for l in open(args.dump_file):
+    if l.startswith(';;heuristics;'):
+        parts = l.strip().split(';')
+        assert len(parts) == 8
+        name = parts[3]
+        prediction = float(parts[6])
+        count = int(parts[4])
+        hits = int(parts[5])
 
         profile.add(name, prediction, count, hits)
     elif l.startswith(loop_niter_str):