]> git.ipfire.org Git - people/arne_f/kernel.git/blob - drivers/atm/firestream.c
firestream: Fix memleak in fs_open
[people/arne_f/kernel.git] / drivers / atm / firestream.c
1
2 /* drivers/atm/firestream.c - FireStream 155 (MB86697) and
3 * FireStream 50 (MB86695) device driver
4 */
5
6 /* Written & (C) 2000 by R.E.Wolff@BitWizard.nl
7 * Copied snippets from zatm.c by Werner Almesberger, EPFL LRC/ICA
8 * and ambassador.c Copyright (C) 1995-1999 Madge Networks Ltd
9 */
10
11 /*
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
16
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software
24 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25
26 The GNU GPL is contained in /usr/doc/copyright/GPL on a Debian
27 system and in the file COPYING in the Linux kernel source.
28 */
29
30
31 #include <linux/module.h>
32 #include <linux/sched.h>
33 #include <linux/kernel.h>
34 #include <linux/mm.h>
35 #include <linux/pci.h>
36 #include <linux/poison.h>
37 #include <linux/errno.h>
38 #include <linux/atm.h>
39 #include <linux/atmdev.h>
40 #include <linux/sonet.h>
41 #include <linux/skbuff.h>
42 #include <linux/netdevice.h>
43 #include <linux/delay.h>
44 #include <linux/ioport.h> /* for request_region */
45 #include <linux/uio.h>
46 #include <linux/init.h>
47 #include <linux/interrupt.h>
48 #include <linux/capability.h>
49 #include <linux/bitops.h>
50 #include <linux/slab.h>
51 #include <asm/byteorder.h>
52 #include <asm/string.h>
53 #include <asm/io.h>
54 #include <linux/atomic.h>
55 #include <linux/uaccess.h>
56 #include <linux/wait.h>
57
58 #include "firestream.h"
59
60 static int loopback = 0;
61 static int num=0x5a;
62
63 /* According to measurements (but they look suspicious to me!) done in
64 * '97, 37% of the packets are one cell in size. So it pays to have
65 * buffers allocated at that size. A large jump in percentage of
66 * packets occurs at packets around 536 bytes in length. So it also
67 * pays to have those pre-allocated. Unfortunately, we can't fully
68 * take advantage of this as the majority of the packets is likely to
69 * be TCP/IP (As where obviously the measurement comes from) There the
70 * link would be opened with say a 1500 byte MTU, and we can't handle
71 * smaller buffers more efficiently than the larger ones. -- REW
72 */
73
74 /* Due to the way Linux memory management works, specifying "576" as
75 * an allocation size here isn't going to help. They are allocated
76 * from 1024-byte regions anyway. With the size of the sk_buffs (quite
77 * large), it doesn't pay to allocate the smallest size (64) -- REW */
78
79 /* This is all guesswork. Hard numbers to back this up or disprove this,
80 * are appreciated. -- REW */
81
82 /* The last entry should be about 64k. However, the "buffer size" is
83 * passed to the chip in a 16 bit field. I don't know how "65536"
84 * would be interpreted. -- REW */
85
86 #define NP FS_NR_FREE_POOLS
87 static int rx_buf_sizes[NP] = {128, 256, 512, 1024, 2048, 4096, 16384, 65520};
88 /* log2: 7 8 9 10 11 12 14 16 */
89
90 #if 0
91 static int rx_pool_sizes[NP] = {1024, 1024, 512, 256, 128, 64, 32, 32};
92 #else
93 /* debug */
94 static int rx_pool_sizes[NP] = {128, 128, 128, 64, 64, 64, 32, 32};
95 #endif
96 /* log2: 10 10 9 8 7 6 5 5 */
97 /* sumlog2: 17 18 18 18 18 18 19 21 */
98 /* mem allocated: 128k 256k 256k 256k 256k 256k 512k 2M */
99 /* tot mem: almost 4M */
100
101 /* NP is shorter, so that it fits on a single line. */
102 #undef NP
103
104
105 /* Small hardware gotcha:
106
107 The FS50 CAM (VP/VC match registers) always take the lowest channel
108 number that matches. This is not a problem.
109
110 However, they also ignore whether the channel is enabled or
111 not. This means that if you allocate channel 0 to 1.2 and then
112 channel 1 to 0.0, then disabeling channel 0 and writing 0 to the
113 match channel for channel 0 will "steal" the traffic from channel
114 1, even if you correctly disable channel 0.
115
116 Workaround:
117
118 - When disabling channels, write an invalid VP/VC value to the
119 match register. (We use 0xffffffff, which in the worst case
120 matches VP/VC = <maxVP>/<maxVC>, but I expect it not to match
121 anything as some "when not in use, program to 0" bits are now
122 programmed to 1...)
123
124 - Don't initialize the match registers to 0, as 0.0 is a valid
125 channel.
126 */
127
128
129 /* Optimization hints and tips.
130
131 The FireStream chips are very capable of reducing the amount of
132 "interrupt-traffic" for the CPU. This driver requests an interrupt on EVERY
133 action. You could try to minimize this a bit.
134
135 Besides that, the userspace->kernel copy and the PCI bus are the
136 performance limiting issues for this driver.
137
138 You could queue up a bunch of outgoing packets without telling the
139 FireStream. I'm not sure that's going to win you much though. The
140 Linux layer won't tell us in advance when it's not going to give us
141 any more packets in a while. So this is tricky to implement right without
142 introducing extra delays.
143
144 -- REW
145 */
146
147
148
149
150 /* The strings that define what the RX queue entry is all about. */
151 /* Fujitsu: Please tell me which ones can have a pointer to a
152 freepool descriptor! */
153 static char *res_strings[] = {
154 "RX OK: streaming not EOP",
155 "RX OK: streaming EOP",
156 "RX OK: Single buffer packet",
157 "RX OK: packet mode",
158 "RX OK: F4 OAM (end to end)",
159 "RX OK: F4 OAM (Segment)",
160 "RX OK: F5 OAM (end to end)",
161 "RX OK: F5 OAM (Segment)",
162 "RX OK: RM cell",
163 "RX OK: TRANSP cell",
164 "RX OK: TRANSPC cell",
165 "Unmatched cell",
166 "reserved 12",
167 "reserved 13",
168 "reserved 14",
169 "Unrecognized cell",
170 "reserved 16",
171 "reassembly abort: AAL5 abort",
172 "packet purged",
173 "packet ageing timeout",
174 "channel ageing timeout",
175 "calculated length error",
176 "programmed length limit error",
177 "aal5 crc32 error",
178 "oam transp or transpc crc10 error",
179 "reserved 25",
180 "reserved 26",
181 "reserved 27",
182 "reserved 28",
183 "reserved 29",
184 "reserved 30", /* FIXME: The strings between 30-40 might be wrong. */
185 "reassembly abort: no buffers",
186 "receive buffer overflow",
187 "change in GFC",
188 "receive buffer full",
189 "low priority discard - no receive descriptor",
190 "low priority discard - missing end of packet",
191 "reserved 37",
192 "reserved 38",
193 "reserved 39",
194 "reseverd 40",
195 "reserved 41",
196 "reserved 42",
197 "reserved 43",
198 "reserved 44",
199 "reserved 45",
200 "reserved 46",
201 "reserved 47",
202 "reserved 48",
203 "reserved 49",
204 "reserved 50",
205 "reserved 51",
206 "reserved 52",
207 "reserved 53",
208 "reserved 54",
209 "reserved 55",
210 "reserved 56",
211 "reserved 57",
212 "reserved 58",
213 "reserved 59",
214 "reserved 60",
215 "reserved 61",
216 "reserved 62",
217 "reserved 63",
218 };
219
220 static char *irq_bitname[] = {
221 "LPCO",
222 "DPCO",
223 "RBRQ0_W",
224 "RBRQ1_W",
225 "RBRQ2_W",
226 "RBRQ3_W",
227 "RBRQ0_NF",
228 "RBRQ1_NF",
229 "RBRQ2_NF",
230 "RBRQ3_NF",
231 "BFP_SC",
232 "INIT",
233 "INIT_ERR",
234 "USCEO",
235 "UPEC0",
236 "VPFCO",
237 "CRCCO",
238 "HECO",
239 "TBRQ_W",
240 "TBRQ_NF",
241 "CTPQ_E",
242 "GFC_C0",
243 "PCI_FTL",
244 "CSQ_W",
245 "CSQ_NF",
246 "EXT_INT",
247 "RXDMA_S"
248 };
249
250
251 #define PHY_EOF -1
252 #define PHY_CLEARALL -2
253
254 struct reginit_item {
255 int reg, val;
256 };
257
258
259 static struct reginit_item PHY_NTC_INIT[] = {
260 { PHY_CLEARALL, 0x40 },
261 { 0x12, 0x0001 },
262 { 0x13, 0x7605 },
263 { 0x1A, 0x0001 },
264 { 0x1B, 0x0005 },
265 { 0x38, 0x0003 },
266 { 0x39, 0x0006 }, /* changed here to make loopback */
267 { 0x01, 0x5262 },
268 { 0x15, 0x0213 },
269 { 0x00, 0x0003 },
270 { PHY_EOF, 0}, /* -1 signals end of list */
271 };
272
273
274 /* Safetyfeature: If the card interrupts more than this number of times
275 in a jiffy (1/100th of a second) then we just disable the interrupt and
276 print a message. This prevents the system from hanging.
277
278 150000 packets per second is close to the limit a PC is going to have
279 anyway. We therefore have to disable this for production. -- REW */
280 #undef IRQ_RATE_LIMIT // 100
281
282 /* Interrupts work now. Unlike serial cards, ATM cards don't work all
283 that great without interrupts. -- REW */
284 #undef FS_POLL_FREQ // 100
285
286 /*
287 This driver can spew a whole lot of debugging output at you. If you
288 need maximum performance, you should disable the DEBUG define. To
289 aid in debugging in the field, I'm leaving the compile-time debug
290 features enabled, and disable them "runtime". That allows me to
291 instruct people with problems to enable debugging without requiring
292 them to recompile... -- REW
293 */
294 #define DEBUG
295
296 #ifdef DEBUG
297 #define fs_dprintk(f, str...) if (fs_debug & f) printk (str)
298 #else
299 #define fs_dprintk(f, str...) /* nothing */
300 #endif
301
302
303 static int fs_keystream = 0;
304
305 #ifdef DEBUG
306 /* I didn't forget to set this to zero before shipping. Hit me with a stick
307 if you get this with the debug default not set to zero again. -- REW */
308 static int fs_debug = 0;
309 #else
310 #define fs_debug 0
311 #endif
312
313 #ifdef MODULE
314 #ifdef DEBUG
315 module_param(fs_debug, int, 0644);
316 #endif
317 module_param(loopback, int, 0);
318 module_param(num, int, 0);
319 module_param(fs_keystream, int, 0);
320 /* XXX Add rx_buf_sizes, and rx_pool_sizes As per request Amar. -- REW */
321 #endif
322
323
324 #define FS_DEBUG_FLOW 0x00000001
325 #define FS_DEBUG_OPEN 0x00000002
326 #define FS_DEBUG_QUEUE 0x00000004
327 #define FS_DEBUG_IRQ 0x00000008
328 #define FS_DEBUG_INIT 0x00000010
329 #define FS_DEBUG_SEND 0x00000020
330 #define FS_DEBUG_PHY 0x00000040
331 #define FS_DEBUG_CLEANUP 0x00000080
332 #define FS_DEBUG_QOS 0x00000100
333 #define FS_DEBUG_TXQ 0x00000200
334 #define FS_DEBUG_ALLOC 0x00000400
335 #define FS_DEBUG_TXMEM 0x00000800
336 #define FS_DEBUG_QSIZE 0x00001000
337
338
339 #define func_enter() fs_dprintk(FS_DEBUG_FLOW, "fs: enter %s\n", __func__)
340 #define func_exit() fs_dprintk(FS_DEBUG_FLOW, "fs: exit %s\n", __func__)
341
342
343 static struct fs_dev *fs_boards = NULL;
344
345 #ifdef DEBUG
346
347 static void my_hd (void *addr, int len)
348 {
349 int j, ch;
350 unsigned char *ptr = addr;
351
352 while (len > 0) {
353 printk ("%p ", ptr);
354 for (j=0;j < ((len < 16)?len:16);j++) {
355 printk ("%02x %s", ptr[j], (j==7)?" ":"");
356 }
357 for ( ;j < 16;j++) {
358 printk (" %s", (j==7)?" ":"");
359 }
360 for (j=0;j < ((len < 16)?len:16);j++) {
361 ch = ptr[j];
362 printk ("%c", (ch < 0x20)?'.':((ch > 0x7f)?'.':ch));
363 }
364 printk ("\n");
365 ptr += 16;
366 len -= 16;
367 }
368 }
369 #else /* DEBUG */
370 static void my_hd (void *addr, int len){}
371 #endif /* DEBUG */
372
373 /********** free an skb (as per ATM device driver documentation) **********/
374
375 /* Hmm. If this is ATM specific, why isn't there an ATM routine for this?
376 * I copied it over from the ambassador driver. -- REW */
377
378 static inline void fs_kfree_skb (struct sk_buff * skb)
379 {
380 if (ATM_SKB(skb)->vcc->pop)
381 ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb);
382 else
383 dev_kfree_skb_any (skb);
384 }
385
386
387
388
389 /* It seems the ATM forum recommends this horribly complicated 16bit
390 * floating point format. Turns out the Ambassador uses the exact same
391 * encoding. I just copied it over. If Mitch agrees, I'll move it over
392 * to the atm_misc file or something like that. (and remove it from
393 * here and the ambassador driver) -- REW
394 */
395
396 /* The good thing about this format is that it is monotonic. So,
397 a conversion routine need not be very complicated. To be able to
398 round "nearest" we need to take along a few extra bits. Lets
399 put these after 16 bits, so that we can just return the top 16
400 bits of the 32bit number as the result:
401
402 int mr (unsigned int rate, int r)
403 {
404 int e = 16+9;
405 static int round[4]={0, 0, 0xffff, 0x8000};
406 if (!rate) return 0;
407 while (rate & 0xfc000000) {
408 rate >>= 1;
409 e++;
410 }
411 while (! (rate & 0xfe000000)) {
412 rate <<= 1;
413 e--;
414 }
415
416 // Now the mantissa is in positions bit 16-25. Excepf for the "hidden 1" that's in bit 26.
417 rate &= ~0x02000000;
418 // Next add in the exponent
419 rate |= e << (16+9);
420 // And perform the rounding:
421 return (rate + round[r]) >> 16;
422 }
423
424 14 lines-of-code. Compare that with the 120 that the Ambassador
425 guys needed. (would be 8 lines shorter if I'd try to really reduce
426 the number of lines:
427
428 int mr (unsigned int rate, int r)
429 {
430 int e = 16+9;
431 static int round[4]={0, 0, 0xffff, 0x8000};
432 if (!rate) return 0;
433 for (; rate & 0xfc000000 ;rate >>= 1, e++);
434 for (;!(rate & 0xfe000000);rate <<= 1, e--);
435 return ((rate & ~0x02000000) | (e << (16+9)) + round[r]) >> 16;
436 }
437
438 Exercise for the reader: Remove one more line-of-code, without
439 cheating. (Just joining two lines is cheating). (I know it's
440 possible, don't think you've beat me if you found it... If you
441 manage to lose two lines or more, keep me updated! ;-)
442
443 -- REW */
444
445
446 #define ROUND_UP 1
447 #define ROUND_DOWN 2
448 #define ROUND_NEAREST 3
449 /********** make rate (not quite as much fun as Horizon) **********/
450
451 static int make_rate(unsigned int rate, int r,
452 u16 *bits, unsigned int *actual)
453 {
454 unsigned char exp = -1; /* hush gcc */
455 unsigned int man = -1; /* hush gcc */
456
457 fs_dprintk (FS_DEBUG_QOS, "make_rate %u", rate);
458
459 /* rates in cells per second, ITU format (nasty 16-bit floating-point)
460 given 5-bit e and 9-bit m:
461 rate = EITHER (1+m/2^9)*2^e OR 0
462 bits = EITHER 1<<14 | e<<9 | m OR 0
463 (bit 15 is "reserved", bit 14 "non-zero")
464 smallest rate is 0 (special representation)
465 largest rate is (1+511/512)*2^31 = 4290772992 (< 2^32-1)
466 smallest non-zero rate is (1+0/512)*2^0 = 1 (> 0)
467 simple algorithm:
468 find position of top bit, this gives e
469 remove top bit and shift (rounding if feeling clever) by 9-e
470 */
471 /* Ambassador ucode bug: please don't set bit 14! so 0 rate not
472 representable. // This should move into the ambassador driver
473 when properly merged. -- REW */
474
475 if (rate > 0xffc00000U) {
476 /* larger than largest representable rate */
477
478 if (r == ROUND_UP) {
479 return -EINVAL;
480 } else {
481 exp = 31;
482 man = 511;
483 }
484
485 } else if (rate) {
486 /* representable rate */
487
488 exp = 31;
489 man = rate;
490
491 /* invariant: rate = man*2^(exp-31) */
492 while (!(man & (1<<31))) {
493 exp = exp - 1;
494 man = man<<1;
495 }
496
497 /* man has top bit set
498 rate = (2^31+(man-2^31))*2^(exp-31)
499 rate = (1+(man-2^31)/2^31)*2^exp
500 */
501 man = man<<1;
502 man &= 0xffffffffU; /* a nop on 32-bit systems */
503 /* rate = (1+man/2^32)*2^exp
504
505 exp is in the range 0 to 31, man is in the range 0 to 2^32-1
506 time to lose significance... we want m in the range 0 to 2^9-1
507 rounding presents a minor problem... we first decide which way
508 we are rounding (based on given rounding direction and possibly
509 the bits of the mantissa that are to be discarded).
510 */
511
512 switch (r) {
513 case ROUND_DOWN: {
514 /* just truncate */
515 man = man>>(32-9);
516 break;
517 }
518 case ROUND_UP: {
519 /* check all bits that we are discarding */
520 if (man & (~0U>>9)) {
521 man = (man>>(32-9)) + 1;
522 if (man == (1<<9)) {
523 /* no need to check for round up outside of range */
524 man = 0;
525 exp += 1;
526 }
527 } else {
528 man = (man>>(32-9));
529 }
530 break;
531 }
532 case ROUND_NEAREST: {
533 /* check msb that we are discarding */
534 if (man & (1<<(32-9-1))) {
535 man = (man>>(32-9)) + 1;
536 if (man == (1<<9)) {
537 /* no need to check for round up outside of range */
538 man = 0;
539 exp += 1;
540 }
541 } else {
542 man = (man>>(32-9));
543 }
544 break;
545 }
546 }
547
548 } else {
549 /* zero rate - not representable */
550
551 if (r == ROUND_DOWN) {
552 return -EINVAL;
553 } else {
554 exp = 0;
555 man = 0;
556 }
557 }
558
559 fs_dprintk (FS_DEBUG_QOS, "rate: man=%u, exp=%hu", man, exp);
560
561 if (bits)
562 *bits = /* (1<<14) | */ (exp<<9) | man;
563
564 if (actual)
565 *actual = (exp >= 9)
566 ? (1 << exp) + (man << (exp-9))
567 : (1 << exp) + ((man + (1<<(9-exp-1))) >> (9-exp));
568
569 return 0;
570 }
571
572
573
574
575 /* FireStream access routines */
576 /* For DEEP-DOWN debugging these can be rigged to intercept accesses to
577 certain registers or to just log all accesses. */
578
579 static inline void write_fs (struct fs_dev *dev, int offset, u32 val)
580 {
581 writel (val, dev->base + offset);
582 }
583
584
585 static inline u32 read_fs (struct fs_dev *dev, int offset)
586 {
587 return readl (dev->base + offset);
588 }
589
590
591
592 static inline struct FS_QENTRY *get_qentry (struct fs_dev *dev, struct queue *q)
593 {
594 return bus_to_virt (read_fs (dev, Q_WP(q->offset)) & Q_ADDR_MASK);
595 }
596
597
598 static void submit_qentry (struct fs_dev *dev, struct queue *q, struct FS_QENTRY *qe)
599 {
600 u32 wp;
601 struct FS_QENTRY *cqe;
602
603 /* XXX Sanity check: the write pointer can be checked to be
604 still the same as the value passed as qe... -- REW */
605 /* udelay (5); */
606 while ((wp = read_fs (dev, Q_WP (q->offset))) & Q_FULL) {
607 fs_dprintk (FS_DEBUG_TXQ, "Found queue at %x full. Waiting.\n",
608 q->offset);
609 schedule ();
610 }
611
612 wp &= ~0xf;
613 cqe = bus_to_virt (wp);
614 if (qe != cqe) {
615 fs_dprintk (FS_DEBUG_TXQ, "q mismatch! %p %p\n", qe, cqe);
616 }
617
618 write_fs (dev, Q_WP(q->offset), Q_INCWRAP);
619
620 {
621 static int c;
622 if (!(c++ % 100))
623 {
624 int rp, wp;
625 rp = read_fs (dev, Q_RP(q->offset));
626 wp = read_fs (dev, Q_WP(q->offset));
627 fs_dprintk (FS_DEBUG_TXQ, "q at %d: %x-%x: %x entries.\n",
628 q->offset, rp, wp, wp-rp);
629 }
630 }
631 }
632
633 #ifdef DEBUG_EXTRA
634 static struct FS_QENTRY pq[60];
635 static int qp;
636
637 static struct FS_BPENTRY dq[60];
638 static int qd;
639 static void *da[60];
640 #endif
641
642 static void submit_queue (struct fs_dev *dev, struct queue *q,
643 u32 cmd, u32 p1, u32 p2, u32 p3)
644 {
645 struct FS_QENTRY *qe;
646
647 qe = get_qentry (dev, q);
648 qe->cmd = cmd;
649 qe->p0 = p1;
650 qe->p1 = p2;
651 qe->p2 = p3;
652 submit_qentry (dev, q, qe);
653
654 #ifdef DEBUG_EXTRA
655 pq[qp].cmd = cmd;
656 pq[qp].p0 = p1;
657 pq[qp].p1 = p2;
658 pq[qp].p2 = p3;
659 qp++;
660 if (qp >= 60) qp = 0;
661 #endif
662 }
663
664 /* Test the "other" way one day... -- REW */
665 #if 1
666 #define submit_command submit_queue
667 #else
668
669 static void submit_command (struct fs_dev *dev, struct queue *q,
670 u32 cmd, u32 p1, u32 p2, u32 p3)
671 {
672 write_fs (dev, CMDR0, cmd);
673 write_fs (dev, CMDR1, p1);
674 write_fs (dev, CMDR2, p2);
675 write_fs (dev, CMDR3, p3);
676 }
677 #endif
678
679
680
681 static void process_return_queue (struct fs_dev *dev, struct queue *q)
682 {
683 long rq;
684 struct FS_QENTRY *qe;
685 void *tc;
686
687 while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
688 fs_dprintk (FS_DEBUG_QUEUE, "reaping return queue entry at %lx\n", rq);
689 qe = bus_to_virt (rq);
690
691 fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x. (%d)\n",
692 qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
693
694 switch (STATUS_CODE (qe)) {
695 case 5:
696 tc = bus_to_virt (qe->p0);
697 fs_dprintk (FS_DEBUG_ALLOC, "Free tc: %p\n", tc);
698 kfree (tc);
699 break;
700 }
701
702 write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
703 }
704 }
705
706
707 static void process_txdone_queue (struct fs_dev *dev, struct queue *q)
708 {
709 long rq;
710 long tmp;
711 struct FS_QENTRY *qe;
712 struct sk_buff *skb;
713 struct FS_BPENTRY *td;
714
715 while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
716 fs_dprintk (FS_DEBUG_QUEUE, "reaping txdone entry at %lx\n", rq);
717 qe = bus_to_virt (rq);
718
719 fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x: %d\n",
720 qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
721
722 if (STATUS_CODE (qe) != 2)
723 fs_dprintk (FS_DEBUG_TXMEM, "queue entry: %08x %08x %08x %08x: %d\n",
724 qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
725
726
727 switch (STATUS_CODE (qe)) {
728 case 0x01: /* This is for AAL0 where we put the chip in streaming mode */
729 /* Fall through */
730 case 0x02:
731 /* Process a real txdone entry. */
732 tmp = qe->p0;
733 if (tmp & 0x0f)
734 printk (KERN_WARNING "td not aligned: %ld\n", tmp);
735 tmp &= ~0x0f;
736 td = bus_to_virt (tmp);
737
738 fs_dprintk (FS_DEBUG_QUEUE, "Pool entry: %08x %08x %08x %08x %p.\n",
739 td->flags, td->next, td->bsa, td->aal_bufsize, td->skb );
740
741 skb = td->skb;
742 if (skb == FS_VCC (ATM_SKB(skb)->vcc)->last_skb) {
743 FS_VCC (ATM_SKB(skb)->vcc)->last_skb = NULL;
744 wake_up_interruptible (& FS_VCC (ATM_SKB(skb)->vcc)->close_wait);
745 }
746 td->dev->ntxpckts--;
747
748 {
749 static int c=0;
750
751 if (!(c++ % 100)) {
752 fs_dprintk (FS_DEBUG_QSIZE, "[%d]", td->dev->ntxpckts);
753 }
754 }
755
756 atomic_inc(&ATM_SKB(skb)->vcc->stats->tx);
757
758 fs_dprintk (FS_DEBUG_TXMEM, "i");
759 fs_dprintk (FS_DEBUG_ALLOC, "Free t-skb: %p\n", skb);
760 fs_kfree_skb (skb);
761
762 fs_dprintk (FS_DEBUG_ALLOC, "Free trans-d: %p\n", td);
763 memset (td, ATM_POISON_FREE, sizeof(struct FS_BPENTRY));
764 kfree (td);
765 break;
766 default:
767 /* Here we get the tx purge inhibit command ... */
768 /* Action, I believe, is "don't do anything". -- REW */
769 ;
770 }
771
772 write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
773 }
774 }
775
776
777 static void process_incoming (struct fs_dev *dev, struct queue *q)
778 {
779 long rq;
780 struct FS_QENTRY *qe;
781 struct FS_BPENTRY *pe;
782 struct sk_buff *skb;
783 unsigned int channo;
784 struct atm_vcc *atm_vcc;
785
786 while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
787 fs_dprintk (FS_DEBUG_QUEUE, "reaping incoming queue entry at %lx\n", rq);
788 qe = bus_to_virt (rq);
789
790 fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x. ",
791 qe->cmd, qe->p0, qe->p1, qe->p2);
792
793 fs_dprintk (FS_DEBUG_QUEUE, "-> %x: %s\n",
794 STATUS_CODE (qe),
795 res_strings[STATUS_CODE(qe)]);
796
797 pe = bus_to_virt (qe->p0);
798 fs_dprintk (FS_DEBUG_QUEUE, "Pool entry: %08x %08x %08x %08x %p %p.\n",
799 pe->flags, pe->next, pe->bsa, pe->aal_bufsize,
800 pe->skb, pe->fp);
801
802 channo = qe->cmd & 0xffff;
803
804 if (channo < dev->nchannels)
805 atm_vcc = dev->atm_vccs[channo];
806 else
807 atm_vcc = NULL;
808
809 /* Single buffer packet */
810 switch (STATUS_CODE (qe)) {
811 case 0x1:
812 /* Fall through for streaming mode */
813 case 0x2:/* Packet received OK.... */
814 if (atm_vcc) {
815 skb = pe->skb;
816 pe->fp->n--;
817 #if 0
818 fs_dprintk (FS_DEBUG_QUEUE, "Got skb: %p\n", skb);
819 if (FS_DEBUG_QUEUE & fs_debug) my_hd (bus_to_virt (pe->bsa), 0x20);
820 #endif
821 skb_put (skb, qe->p1 & 0xffff);
822 ATM_SKB(skb)->vcc = atm_vcc;
823 atomic_inc(&atm_vcc->stats->rx);
824 __net_timestamp(skb);
825 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p (pushed)\n", skb);
826 atm_vcc->push (atm_vcc, skb);
827 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", pe);
828 kfree (pe);
829 } else {
830 printk (KERN_ERR "Got a receive on a non-open channel %d.\n", channo);
831 }
832 break;
833 case 0x17:/* AAL 5 CRC32 error. IFF the length field is nonzero, a buffer
834 has been consumed and needs to be processed. -- REW */
835 if (qe->p1 & 0xffff) {
836 pe = bus_to_virt (qe->p0);
837 pe->fp->n--;
838 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", pe->skb);
839 dev_kfree_skb_any (pe->skb);
840 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", pe);
841 kfree (pe);
842 }
843 if (atm_vcc)
844 atomic_inc(&atm_vcc->stats->rx_drop);
845 break;
846 case 0x1f: /* Reassembly abort: no buffers. */
847 /* Silently increment error counter. */
848 if (atm_vcc)
849 atomic_inc(&atm_vcc->stats->rx_drop);
850 break;
851 default: /* Hmm. Haven't written the code to handle the others yet... -- REW */
852 printk (KERN_WARNING "Don't know what to do with RX status %x: %s.\n",
853 STATUS_CODE(qe), res_strings[STATUS_CODE (qe)]);
854 }
855 write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
856 }
857 }
858
859
860
861 #define DO_DIRECTION(tp) ((tp)->traffic_class != ATM_NONE)
862
863 static int fs_open(struct atm_vcc *atm_vcc)
864 {
865 struct fs_dev *dev;
866 struct fs_vcc *vcc;
867 struct fs_transmit_config *tc;
868 struct atm_trafprm * txtp;
869 struct atm_trafprm * rxtp;
870 /* struct fs_receive_config *rc;*/
871 /* struct FS_QENTRY *qe; */
872 int error;
873 int bfp;
874 int to;
875 unsigned short tmc0;
876 short vpi = atm_vcc->vpi;
877 int vci = atm_vcc->vci;
878
879 func_enter ();
880
881 dev = FS_DEV(atm_vcc->dev);
882 fs_dprintk (FS_DEBUG_OPEN, "fs: open on dev: %p, vcc at %p\n",
883 dev, atm_vcc);
884
885 if (vci != ATM_VPI_UNSPEC && vpi != ATM_VCI_UNSPEC)
886 set_bit(ATM_VF_ADDR, &atm_vcc->flags);
887
888 if ((atm_vcc->qos.aal != ATM_AAL5) &&
889 (atm_vcc->qos.aal != ATM_AAL2))
890 return -EINVAL; /* XXX AAL0 */
891
892 fs_dprintk (FS_DEBUG_OPEN, "fs: (itf %d): open %d.%d\n",
893 atm_vcc->dev->number, atm_vcc->vpi, atm_vcc->vci);
894
895 /* XXX handle qos parameters (rate limiting) ? */
896
897 vcc = kmalloc(sizeof(struct fs_vcc), GFP_KERNEL);
898 fs_dprintk (FS_DEBUG_ALLOC, "Alloc VCC: %p(%zd)\n", vcc, sizeof(struct fs_vcc));
899 if (!vcc) {
900 clear_bit(ATM_VF_ADDR, &atm_vcc->flags);
901 return -ENOMEM;
902 }
903
904 atm_vcc->dev_data = vcc;
905 vcc->last_skb = NULL;
906
907 init_waitqueue_head (&vcc->close_wait);
908
909 txtp = &atm_vcc->qos.txtp;
910 rxtp = &atm_vcc->qos.rxtp;
911
912 if (!test_bit(ATM_VF_PARTIAL, &atm_vcc->flags)) {
913 if (IS_FS50(dev)) {
914 /* Increment the channel numer: take a free one next time. */
915 for (to=33;to;to--, dev->channo++) {
916 /* We only have 32 channels */
917 if (dev->channo >= 32)
918 dev->channo = 0;
919 /* If we need to do RX, AND the RX is inuse, try the next */
920 if (DO_DIRECTION(rxtp) && dev->atm_vccs[dev->channo])
921 continue;
922 /* If we need to do TX, AND the TX is inuse, try the next */
923 if (DO_DIRECTION(txtp) && test_bit (dev->channo, dev->tx_inuse))
924 continue;
925 /* Ok, both are free! (or not needed) */
926 break;
927 }
928 if (!to) {
929 printk ("No more free channels for FS50..\n");
930 kfree(vcc);
931 return -EBUSY;
932 }
933 vcc->channo = dev->channo;
934 dev->channo &= dev->channel_mask;
935
936 } else {
937 vcc->channo = (vpi << FS155_VCI_BITS) | (vci);
938 if (((DO_DIRECTION(rxtp) && dev->atm_vccs[vcc->channo])) ||
939 ( DO_DIRECTION(txtp) && test_bit (vcc->channo, dev->tx_inuse))) {
940 printk ("Channel is in use for FS155.\n");
941 kfree(vcc);
942 return -EBUSY;
943 }
944 }
945 fs_dprintk (FS_DEBUG_OPEN, "OK. Allocated channel %x(%d).\n",
946 vcc->channo, vcc->channo);
947 }
948
949 if (DO_DIRECTION (txtp)) {
950 tc = kmalloc (sizeof (struct fs_transmit_config), GFP_KERNEL);
951 fs_dprintk (FS_DEBUG_ALLOC, "Alloc tc: %p(%zd)\n",
952 tc, sizeof (struct fs_transmit_config));
953 if (!tc) {
954 fs_dprintk (FS_DEBUG_OPEN, "fs: can't alloc transmit_config.\n");
955 kfree(vcc);
956 return -ENOMEM;
957 }
958
959 /* Allocate the "open" entry from the high priority txq. This makes
960 it most likely that the chip will notice it. It also prevents us
961 from having to wait for completion. On the other hand, we may
962 need to wait for completion anyway, to see if it completed
963 successfully. */
964
965 switch (atm_vcc->qos.aal) {
966 case ATM_AAL2:
967 case ATM_AAL0:
968 tc->flags = 0
969 | TC_FLAGS_TRANSPARENT_PAYLOAD
970 | TC_FLAGS_PACKET
971 | (1 << 28)
972 | TC_FLAGS_TYPE_UBR /* XXX Change to VBR -- PVDL */
973 | TC_FLAGS_CAL0;
974 break;
975 case ATM_AAL5:
976 tc->flags = 0
977 | TC_FLAGS_AAL5
978 | TC_FLAGS_PACKET /* ??? */
979 | TC_FLAGS_TYPE_CBR
980 | TC_FLAGS_CAL0;
981 break;
982 default:
983 printk ("Unknown aal: %d\n", atm_vcc->qos.aal);
984 tc->flags = 0;
985 }
986 /* Docs are vague about this atm_hdr field. By the way, the FS
987 * chip makes odd errors if lower bits are set.... -- REW */
988 tc->atm_hdr = (vpi << 20) | (vci << 4);
989 tmc0 = 0;
990 {
991 int pcr = atm_pcr_goal (txtp);
992
993 fs_dprintk (FS_DEBUG_OPEN, "pcr = %d.\n", pcr);
994
995 /* XXX Hmm. officially we're only allowed to do this if rounding
996 is round_down -- REW */
997 if (IS_FS50(dev)) {
998 if (pcr > 51840000/53/8) pcr = 51840000/53/8;
999 } else {
1000 if (pcr > 155520000/53/8) pcr = 155520000/53/8;
1001 }
1002 if (!pcr) {
1003 /* no rate cap */
1004 tmc0 = IS_FS50(dev)?0x61BE:0x64c9; /* Just copied over the bits from Fujitsu -- REW */
1005 } else {
1006 int r;
1007 if (pcr < 0) {
1008 r = ROUND_DOWN;
1009 pcr = -pcr;
1010 } else {
1011 r = ROUND_UP;
1012 }
1013 error = make_rate (pcr, r, &tmc0, NULL);
1014 if (error) {
1015 kfree(tc);
1016 kfree(vcc);
1017 return error;
1018 }
1019 }
1020 fs_dprintk (FS_DEBUG_OPEN, "pcr = %d.\n", pcr);
1021 }
1022
1023 tc->TMC[0] = tmc0 | 0x4000;
1024 tc->TMC[1] = 0; /* Unused */
1025 tc->TMC[2] = 0; /* Unused */
1026 tc->TMC[3] = 0; /* Unused */
1027
1028 tc->spec = 0; /* UTOPIA address, UDF, HEC: Unused -> 0 */
1029 tc->rtag[0] = 0; /* What should I do with routing tags???
1030 -- Not used -- AS -- Thanks -- REW*/
1031 tc->rtag[1] = 0;
1032 tc->rtag[2] = 0;
1033
1034 if (fs_debug & FS_DEBUG_OPEN) {
1035 fs_dprintk (FS_DEBUG_OPEN, "TX config record:\n");
1036 my_hd (tc, sizeof (*tc));
1037 }
1038
1039 /* We now use the "submit_command" function to submit commands to
1040 the firestream. There is a define up near the definition of
1041 that routine that switches this routine between immediate write
1042 to the immediate command registers and queuing the commands in
1043 the HPTXQ for execution. This last technique might be more
1044 efficient if we know we're going to submit a whole lot of
1045 commands in one go, but this driver is not setup to be able to
1046 use such a construct. So it probably doen't matter much right
1047 now. -- REW */
1048
1049 /* The command is IMMediate and INQueue. The parameters are out-of-line.. */
1050 submit_command (dev, &dev->hp_txq,
1051 QE_CMD_CONFIG_TX | QE_CMD_IMM_INQ | vcc->channo,
1052 virt_to_bus (tc), 0, 0);
1053
1054 submit_command (dev, &dev->hp_txq,
1055 QE_CMD_TX_EN | QE_CMD_IMM_INQ | vcc->channo,
1056 0, 0, 0);
1057 set_bit (vcc->channo, dev->tx_inuse);
1058 }
1059
1060 if (DO_DIRECTION (rxtp)) {
1061 dev->atm_vccs[vcc->channo] = atm_vcc;
1062
1063 for (bfp = 0;bfp < FS_NR_FREE_POOLS; bfp++)
1064 if (atm_vcc->qos.rxtp.max_sdu <= dev->rx_fp[bfp].bufsize) break;
1065 if (bfp >= FS_NR_FREE_POOLS) {
1066 fs_dprintk (FS_DEBUG_OPEN, "No free pool fits sdu: %d.\n",
1067 atm_vcc->qos.rxtp.max_sdu);
1068 /* XXX Cleanup? -- Would just calling fs_close work??? -- REW */
1069
1070 /* XXX clear tx inuse. Close TX part? */
1071 dev->atm_vccs[vcc->channo] = NULL;
1072 kfree (vcc);
1073 return -EINVAL;
1074 }
1075
1076 switch (atm_vcc->qos.aal) {
1077 case ATM_AAL0:
1078 case ATM_AAL2:
1079 submit_command (dev, &dev->hp_txq,
1080 QE_CMD_CONFIG_RX | QE_CMD_IMM_INQ | vcc->channo,
1081 RC_FLAGS_TRANSP |
1082 RC_FLAGS_BFPS_BFP * bfp |
1083 RC_FLAGS_RXBM_PSB, 0, 0);
1084 break;
1085 case ATM_AAL5:
1086 submit_command (dev, &dev->hp_txq,
1087 QE_CMD_CONFIG_RX | QE_CMD_IMM_INQ | vcc->channo,
1088 RC_FLAGS_AAL5 |
1089 RC_FLAGS_BFPS_BFP * bfp |
1090 RC_FLAGS_RXBM_PSB, 0, 0);
1091 break;
1092 };
1093 if (IS_FS50 (dev)) {
1094 submit_command (dev, &dev->hp_txq,
1095 QE_CMD_REG_WR | QE_CMD_IMM_INQ,
1096 0x80 + vcc->channo,
1097 (vpi << 16) | vci, 0 ); /* XXX -- Use defines. */
1098 }
1099 submit_command (dev, &dev->hp_txq,
1100 QE_CMD_RX_EN | QE_CMD_IMM_INQ | vcc->channo,
1101 0, 0, 0);
1102 }
1103
1104 /* Indicate we're done! */
1105 set_bit(ATM_VF_READY, &atm_vcc->flags);
1106
1107 func_exit ();
1108 return 0;
1109 }
1110
1111
1112 static void fs_close(struct atm_vcc *atm_vcc)
1113 {
1114 struct fs_dev *dev = FS_DEV (atm_vcc->dev);
1115 struct fs_vcc *vcc = FS_VCC (atm_vcc);
1116 struct atm_trafprm * txtp;
1117 struct atm_trafprm * rxtp;
1118
1119 func_enter ();
1120
1121 clear_bit(ATM_VF_READY, &atm_vcc->flags);
1122
1123 fs_dprintk (FS_DEBUG_QSIZE, "--==**[%d]**==--", dev->ntxpckts);
1124 if (vcc->last_skb) {
1125 fs_dprintk (FS_DEBUG_QUEUE, "Waiting for skb %p to be sent.\n",
1126 vcc->last_skb);
1127 /* We're going to wait for the last packet to get sent on this VC. It would
1128 be impolite not to send them don't you think?
1129 XXX
1130 We don't know which packets didn't get sent. So if we get interrupted in
1131 this sleep_on, we'll lose any reference to these packets. Memory leak!
1132 On the other hand, it's awfully convenient that we can abort a "close" that
1133 is taking too long. Maybe just use non-interruptible sleep on? -- REW */
1134 wait_event_interruptible(vcc->close_wait, !vcc->last_skb);
1135 }
1136
1137 txtp = &atm_vcc->qos.txtp;
1138 rxtp = &atm_vcc->qos.rxtp;
1139
1140
1141 /* See App note XXX (Unpublished as of now) for the reason for the
1142 removal of the "CMD_IMM_INQ" part of the TX_PURGE_INH... -- REW */
1143
1144 if (DO_DIRECTION (txtp)) {
1145 submit_command (dev, &dev->hp_txq,
1146 QE_CMD_TX_PURGE_INH | /*QE_CMD_IMM_INQ|*/ vcc->channo, 0,0,0);
1147 clear_bit (vcc->channo, dev->tx_inuse);
1148 }
1149
1150 if (DO_DIRECTION (rxtp)) {
1151 submit_command (dev, &dev->hp_txq,
1152 QE_CMD_RX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1153 dev->atm_vccs [vcc->channo] = NULL;
1154
1155 /* This means that this is configured as a receive channel */
1156 if (IS_FS50 (dev)) {
1157 /* Disable the receive filter. Is 0/0 indeed an invalid receive
1158 channel? -- REW. Yes it is. -- Hang. Ok. I'll use -1
1159 (0xfff...) -- REW */
1160 submit_command (dev, &dev->hp_txq,
1161 QE_CMD_REG_WR | QE_CMD_IMM_INQ,
1162 0x80 + vcc->channo, -1, 0 );
1163 }
1164 }
1165
1166 fs_dprintk (FS_DEBUG_ALLOC, "Free vcc: %p\n", vcc);
1167 kfree (vcc);
1168
1169 func_exit ();
1170 }
1171
1172
1173 static int fs_send (struct atm_vcc *atm_vcc, struct sk_buff *skb)
1174 {
1175 struct fs_dev *dev = FS_DEV (atm_vcc->dev);
1176 struct fs_vcc *vcc = FS_VCC (atm_vcc);
1177 struct FS_BPENTRY *td;
1178
1179 func_enter ();
1180
1181 fs_dprintk (FS_DEBUG_TXMEM, "I");
1182 fs_dprintk (FS_DEBUG_SEND, "Send: atm_vcc %p skb %p vcc %p dev %p\n",
1183 atm_vcc, skb, vcc, dev);
1184
1185 fs_dprintk (FS_DEBUG_ALLOC, "Alloc t-skb: %p (atm_send)\n", skb);
1186
1187 ATM_SKB(skb)->vcc = atm_vcc;
1188
1189 vcc->last_skb = skb;
1190
1191 td = kmalloc (sizeof (struct FS_BPENTRY), GFP_ATOMIC);
1192 fs_dprintk (FS_DEBUG_ALLOC, "Alloc transd: %p(%zd)\n", td, sizeof (struct FS_BPENTRY));
1193 if (!td) {
1194 /* Oops out of mem */
1195 return -ENOMEM;
1196 }
1197
1198 fs_dprintk (FS_DEBUG_SEND, "first word in buffer: %x\n",
1199 *(int *) skb->data);
1200
1201 td->flags = TD_EPI | TD_DATA | skb->len;
1202 td->next = 0;
1203 td->bsa = virt_to_bus (skb->data);
1204 td->skb = skb;
1205 td->dev = dev;
1206 dev->ntxpckts++;
1207
1208 #ifdef DEBUG_EXTRA
1209 da[qd] = td;
1210 dq[qd].flags = td->flags;
1211 dq[qd].next = td->next;
1212 dq[qd].bsa = td->bsa;
1213 dq[qd].skb = td->skb;
1214 dq[qd].dev = td->dev;
1215 qd++;
1216 if (qd >= 60) qd = 0;
1217 #endif
1218
1219 submit_queue (dev, &dev->hp_txq,
1220 QE_TRANSMIT_DE | vcc->channo,
1221 virt_to_bus (td), 0,
1222 virt_to_bus (td));
1223
1224 fs_dprintk (FS_DEBUG_QUEUE, "in send: txq %d txrq %d\n",
1225 read_fs (dev, Q_EA (dev->hp_txq.offset)) -
1226 read_fs (dev, Q_SA (dev->hp_txq.offset)),
1227 read_fs (dev, Q_EA (dev->tx_relq.offset)) -
1228 read_fs (dev, Q_SA (dev->tx_relq.offset)));
1229
1230 func_exit ();
1231 return 0;
1232 }
1233
1234
1235 /* Some function placeholders for functions we don't yet support. */
1236
1237 #if 0
1238 static int fs_ioctl(struct atm_dev *dev,unsigned int cmd,void __user *arg)
1239 {
1240 func_enter ();
1241 func_exit ();
1242 return -ENOIOCTLCMD;
1243 }
1244
1245
1246 static int fs_getsockopt(struct atm_vcc *vcc,int level,int optname,
1247 void __user *optval,int optlen)
1248 {
1249 func_enter ();
1250 func_exit ();
1251 return 0;
1252 }
1253
1254
1255 static int fs_setsockopt(struct atm_vcc *vcc,int level,int optname,
1256 void __user *optval,unsigned int optlen)
1257 {
1258 func_enter ();
1259 func_exit ();
1260 return 0;
1261 }
1262
1263
1264 static void fs_phy_put(struct atm_dev *dev,unsigned char value,
1265 unsigned long addr)
1266 {
1267 func_enter ();
1268 func_exit ();
1269 }
1270
1271
1272 static unsigned char fs_phy_get(struct atm_dev *dev,unsigned long addr)
1273 {
1274 func_enter ();
1275 func_exit ();
1276 return 0;
1277 }
1278
1279
1280 static int fs_change_qos(struct atm_vcc *vcc,struct atm_qos *qos,int flags)
1281 {
1282 func_enter ();
1283 func_exit ();
1284 return 0;
1285 };
1286
1287 #endif
1288
1289
1290 static const struct atmdev_ops ops = {
1291 .open = fs_open,
1292 .close = fs_close,
1293 .send = fs_send,
1294 .owner = THIS_MODULE,
1295 /* ioctl: fs_ioctl, */
1296 /* getsockopt: fs_getsockopt, */
1297 /* setsockopt: fs_setsockopt, */
1298 /* change_qos: fs_change_qos, */
1299
1300 /* For now implement these internally here... */
1301 /* phy_put: fs_phy_put, */
1302 /* phy_get: fs_phy_get, */
1303 };
1304
1305
1306 static void undocumented_pci_fix(struct pci_dev *pdev)
1307 {
1308 u32 tint;
1309
1310 /* The Windows driver says: */
1311 /* Switch off FireStream Retry Limit Threshold
1312 */
1313
1314 /* The register at 0x28 is documented as "reserved", no further
1315 comments. */
1316
1317 pci_read_config_dword (pdev, 0x28, &tint);
1318 if (tint != 0x80) {
1319 tint = 0x80;
1320 pci_write_config_dword (pdev, 0x28, tint);
1321 }
1322 }
1323
1324
1325
1326 /**************************************************************************
1327 * PHY routines *
1328 **************************************************************************/
1329
1330 static void write_phy(struct fs_dev *dev, int regnum, int val)
1331 {
1332 submit_command (dev, &dev->hp_txq, QE_CMD_PRP_WR | QE_CMD_IMM_INQ,
1333 regnum, val, 0);
1334 }
1335
1336 static int init_phy(struct fs_dev *dev, struct reginit_item *reginit)
1337 {
1338 int i;
1339
1340 func_enter ();
1341 while (reginit->reg != PHY_EOF) {
1342 if (reginit->reg == PHY_CLEARALL) {
1343 /* "PHY_CLEARALL means clear all registers. Numregisters is in "val". */
1344 for (i=0;i<reginit->val;i++) {
1345 write_phy (dev, i, 0);
1346 }
1347 } else {
1348 write_phy (dev, reginit->reg, reginit->val);
1349 }
1350 reginit++;
1351 }
1352 func_exit ();
1353 return 0;
1354 }
1355
1356 static void reset_chip (struct fs_dev *dev)
1357 {
1358 int i;
1359
1360 write_fs (dev, SARMODE0, SARMODE0_SRTS0);
1361
1362 /* Undocumented delay */
1363 udelay (128);
1364
1365 /* The "internal registers are documented to all reset to zero, but
1366 comments & code in the Windows driver indicates that the pools are
1367 NOT reset. */
1368 for (i=0;i < FS_NR_FREE_POOLS;i++) {
1369 write_fs (dev, FP_CNF (RXB_FP(i)), 0);
1370 write_fs (dev, FP_SA (RXB_FP(i)), 0);
1371 write_fs (dev, FP_EA (RXB_FP(i)), 0);
1372 write_fs (dev, FP_CNT (RXB_FP(i)), 0);
1373 write_fs (dev, FP_CTU (RXB_FP(i)), 0);
1374 }
1375
1376 /* The same goes for the match channel registers, although those are
1377 NOT documented that way in the Windows driver. -- REW */
1378 /* The Windows driver DOES write 0 to these registers somewhere in
1379 the init sequence. However, a small hardware-feature, will
1380 prevent reception of data on VPI/VCI = 0/0 (Unless the channel
1381 allocated happens to have no disabled channels that have a lower
1382 number. -- REW */
1383
1384 /* Clear the match channel registers. */
1385 if (IS_FS50 (dev)) {
1386 for (i=0;i<FS50_NR_CHANNELS;i++) {
1387 write_fs (dev, 0x200 + i * 4, -1);
1388 }
1389 }
1390 }
1391
1392 static void *aligned_kmalloc(int size, gfp_t flags, int alignment)
1393 {
1394 void *t;
1395
1396 if (alignment <= 0x10) {
1397 t = kmalloc (size, flags);
1398 if ((unsigned long)t & (alignment-1)) {
1399 printk ("Kmalloc doesn't align things correctly! %p\n", t);
1400 kfree (t);
1401 return aligned_kmalloc (size, flags, alignment * 4);
1402 }
1403 return t;
1404 }
1405 printk (KERN_ERR "Request for > 0x10 alignment not yet implemented (hard!)\n");
1406 return NULL;
1407 }
1408
1409 static int init_q(struct fs_dev *dev, struct queue *txq, int queue,
1410 int nentries, int is_rq)
1411 {
1412 int sz = nentries * sizeof (struct FS_QENTRY);
1413 struct FS_QENTRY *p;
1414
1415 func_enter ();
1416
1417 fs_dprintk (FS_DEBUG_INIT, "Inititing queue at %x: %d entries:\n",
1418 queue, nentries);
1419
1420 p = aligned_kmalloc (sz, GFP_KERNEL, 0x10);
1421 fs_dprintk (FS_DEBUG_ALLOC, "Alloc queue: %p(%d)\n", p, sz);
1422
1423 if (!p) return 0;
1424
1425 write_fs (dev, Q_SA(queue), virt_to_bus(p));
1426 write_fs (dev, Q_EA(queue), virt_to_bus(p+nentries-1));
1427 write_fs (dev, Q_WP(queue), virt_to_bus(p));
1428 write_fs (dev, Q_RP(queue), virt_to_bus(p));
1429 if (is_rq) {
1430 /* Configuration for the receive queue: 0: interrupt immediately,
1431 no pre-warning to empty queues: We do our best to keep the
1432 queue filled anyway. */
1433 write_fs (dev, Q_CNF(queue), 0 );
1434 }
1435
1436 txq->sa = p;
1437 txq->ea = p;
1438 txq->offset = queue;
1439
1440 func_exit ();
1441 return 1;
1442 }
1443
1444
1445 static int init_fp(struct fs_dev *dev, struct freepool *fp, int queue,
1446 int bufsize, int nr_buffers)
1447 {
1448 func_enter ();
1449
1450 fs_dprintk (FS_DEBUG_INIT, "Inititing free pool at %x:\n", queue);
1451
1452 write_fs (dev, FP_CNF(queue), (bufsize * RBFP_RBS) | RBFP_RBSVAL | RBFP_CME);
1453 write_fs (dev, FP_SA(queue), 0);
1454 write_fs (dev, FP_EA(queue), 0);
1455 write_fs (dev, FP_CTU(queue), 0);
1456 write_fs (dev, FP_CNT(queue), 0);
1457
1458 fp->offset = queue;
1459 fp->bufsize = bufsize;
1460 fp->nr_buffers = nr_buffers;
1461
1462 func_exit ();
1463 return 1;
1464 }
1465
1466
1467 static inline int nr_buffers_in_freepool (struct fs_dev *dev, struct freepool *fp)
1468 {
1469 #if 0
1470 /* This seems to be unreliable.... */
1471 return read_fs (dev, FP_CNT (fp->offset));
1472 #else
1473 return fp->n;
1474 #endif
1475 }
1476
1477
1478 /* Check if this gets going again if a pool ever runs out. -- Yes, it
1479 does. I've seen "receive abort: no buffers" and things started
1480 working again after that... -- REW */
1481
1482 static void top_off_fp (struct fs_dev *dev, struct freepool *fp,
1483 gfp_t gfp_flags)
1484 {
1485 struct FS_BPENTRY *qe, *ne;
1486 struct sk_buff *skb;
1487 int n = 0;
1488 u32 qe_tmp;
1489
1490 fs_dprintk (FS_DEBUG_QUEUE, "Topping off queue at %x (%d-%d/%d)\n",
1491 fp->offset, read_fs (dev, FP_CNT (fp->offset)), fp->n,
1492 fp->nr_buffers);
1493 while (nr_buffers_in_freepool(dev, fp) < fp->nr_buffers) {
1494
1495 skb = alloc_skb (fp->bufsize, gfp_flags);
1496 fs_dprintk (FS_DEBUG_ALLOC, "Alloc rec-skb: %p(%d)\n", skb, fp->bufsize);
1497 if (!skb) break;
1498 ne = kmalloc (sizeof (struct FS_BPENTRY), gfp_flags);
1499 fs_dprintk (FS_DEBUG_ALLOC, "Alloc rec-d: %p(%zd)\n", ne, sizeof (struct FS_BPENTRY));
1500 if (!ne) {
1501 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", skb);
1502 dev_kfree_skb_any (skb);
1503 break;
1504 }
1505
1506 fs_dprintk (FS_DEBUG_QUEUE, "Adding skb %p desc %p -> %p(%p) ",
1507 skb, ne, skb->data, skb->head);
1508 n++;
1509 ne->flags = FP_FLAGS_EPI | fp->bufsize;
1510 ne->next = virt_to_bus (NULL);
1511 ne->bsa = virt_to_bus (skb->data);
1512 ne->aal_bufsize = fp->bufsize;
1513 ne->skb = skb;
1514 ne->fp = fp;
1515
1516 /*
1517 * FIXME: following code encodes and decodes
1518 * machine pointers (could be 64-bit) into a
1519 * 32-bit register.
1520 */
1521
1522 qe_tmp = read_fs (dev, FP_EA(fp->offset));
1523 fs_dprintk (FS_DEBUG_QUEUE, "link at %x\n", qe_tmp);
1524 if (qe_tmp) {
1525 qe = bus_to_virt ((long) qe_tmp);
1526 qe->next = virt_to_bus(ne);
1527 qe->flags &= ~FP_FLAGS_EPI;
1528 } else
1529 write_fs (dev, FP_SA(fp->offset), virt_to_bus(ne));
1530
1531 write_fs (dev, FP_EA(fp->offset), virt_to_bus (ne));
1532 fp->n++; /* XXX Atomic_inc? */
1533 write_fs (dev, FP_CTU(fp->offset), 1);
1534 }
1535
1536 fs_dprintk (FS_DEBUG_QUEUE, "Added %d entries. \n", n);
1537 }
1538
1539 static void free_queue(struct fs_dev *dev, struct queue *txq)
1540 {
1541 func_enter ();
1542
1543 write_fs (dev, Q_SA(txq->offset), 0);
1544 write_fs (dev, Q_EA(txq->offset), 0);
1545 write_fs (dev, Q_RP(txq->offset), 0);
1546 write_fs (dev, Q_WP(txq->offset), 0);
1547 /* Configuration ? */
1548
1549 fs_dprintk (FS_DEBUG_ALLOC, "Free queue: %p\n", txq->sa);
1550 kfree (txq->sa);
1551
1552 func_exit ();
1553 }
1554
1555 static void free_freepool(struct fs_dev *dev, struct freepool *fp)
1556 {
1557 func_enter ();
1558
1559 write_fs (dev, FP_CNF(fp->offset), 0);
1560 write_fs (dev, FP_SA (fp->offset), 0);
1561 write_fs (dev, FP_EA (fp->offset), 0);
1562 write_fs (dev, FP_CNT(fp->offset), 0);
1563 write_fs (dev, FP_CTU(fp->offset), 0);
1564
1565 func_exit ();
1566 }
1567
1568
1569
1570 static irqreturn_t fs_irq (int irq, void *dev_id)
1571 {
1572 int i;
1573 u32 status;
1574 struct fs_dev *dev = dev_id;
1575
1576 status = read_fs (dev, ISR);
1577 if (!status)
1578 return IRQ_NONE;
1579
1580 func_enter ();
1581
1582 #ifdef IRQ_RATE_LIMIT
1583 /* Aaargh! I'm ashamed. This costs more lines-of-code than the actual
1584 interrupt routine!. (Well, used to when I wrote that comment) -- REW */
1585 {
1586 static int lastjif;
1587 static int nintr=0;
1588
1589 if (lastjif == jiffies) {
1590 if (++nintr > IRQ_RATE_LIMIT) {
1591 free_irq (dev->irq, dev_id);
1592 printk (KERN_ERR "fs: Too many interrupts. Turning off interrupt %d.\n",
1593 dev->irq);
1594 }
1595 } else {
1596 lastjif = jiffies;
1597 nintr = 0;
1598 }
1599 }
1600 #endif
1601 fs_dprintk (FS_DEBUG_QUEUE, "in intr: txq %d txrq %d\n",
1602 read_fs (dev, Q_EA (dev->hp_txq.offset)) -
1603 read_fs (dev, Q_SA (dev->hp_txq.offset)),
1604 read_fs (dev, Q_EA (dev->tx_relq.offset)) -
1605 read_fs (dev, Q_SA (dev->tx_relq.offset)));
1606
1607 /* print the bits in the ISR register. */
1608 if (fs_debug & FS_DEBUG_IRQ) {
1609 /* The FS_DEBUG things are unnecessary here. But this way it is
1610 clear for grep that these are debug prints. */
1611 fs_dprintk (FS_DEBUG_IRQ, "IRQ status:");
1612 for (i=0;i<27;i++)
1613 if (status & (1 << i))
1614 fs_dprintk (FS_DEBUG_IRQ, " %s", irq_bitname[i]);
1615 fs_dprintk (FS_DEBUG_IRQ, "\n");
1616 }
1617
1618 if (status & ISR_RBRQ0_W) {
1619 fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (0)!!!!\n");
1620 process_incoming (dev, &dev->rx_rq[0]);
1621 /* items mentioned on RBRQ0 are from FP 0 or 1. */
1622 top_off_fp (dev, &dev->rx_fp[0], GFP_ATOMIC);
1623 top_off_fp (dev, &dev->rx_fp[1], GFP_ATOMIC);
1624 }
1625
1626 if (status & ISR_RBRQ1_W) {
1627 fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (1)!!!!\n");
1628 process_incoming (dev, &dev->rx_rq[1]);
1629 top_off_fp (dev, &dev->rx_fp[2], GFP_ATOMIC);
1630 top_off_fp (dev, &dev->rx_fp[3], GFP_ATOMIC);
1631 }
1632
1633 if (status & ISR_RBRQ2_W) {
1634 fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (2)!!!!\n");
1635 process_incoming (dev, &dev->rx_rq[2]);
1636 top_off_fp (dev, &dev->rx_fp[4], GFP_ATOMIC);
1637 top_off_fp (dev, &dev->rx_fp[5], GFP_ATOMIC);
1638 }
1639
1640 if (status & ISR_RBRQ3_W) {
1641 fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (3)!!!!\n");
1642 process_incoming (dev, &dev->rx_rq[3]);
1643 top_off_fp (dev, &dev->rx_fp[6], GFP_ATOMIC);
1644 top_off_fp (dev, &dev->rx_fp[7], GFP_ATOMIC);
1645 }
1646
1647 if (status & ISR_CSQ_W) {
1648 fs_dprintk (FS_DEBUG_IRQ, "Command executed ok!\n");
1649 process_return_queue (dev, &dev->st_q);
1650 }
1651
1652 if (status & ISR_TBRQ_W) {
1653 fs_dprintk (FS_DEBUG_IRQ, "Data tramsitted!\n");
1654 process_txdone_queue (dev, &dev->tx_relq);
1655 }
1656
1657 func_exit ();
1658 return IRQ_HANDLED;
1659 }
1660
1661
1662 #ifdef FS_POLL_FREQ
1663 static void fs_poll (unsigned long data)
1664 {
1665 struct fs_dev *dev = (struct fs_dev *) data;
1666
1667 fs_irq (0, dev);
1668 dev->timer.expires = jiffies + FS_POLL_FREQ;
1669 add_timer (&dev->timer);
1670 }
1671 #endif
1672
1673 static int fs_init(struct fs_dev *dev)
1674 {
1675 struct pci_dev *pci_dev;
1676 int isr, to;
1677 int i;
1678
1679 func_enter ();
1680 pci_dev = dev->pci_dev;
1681
1682 printk (KERN_INFO "found a FireStream %d card, base %16llx, irq%d.\n",
1683 IS_FS50(dev)?50:155,
1684 (unsigned long long)pci_resource_start(pci_dev, 0),
1685 dev->pci_dev->irq);
1686
1687 if (fs_debug & FS_DEBUG_INIT)
1688 my_hd ((unsigned char *) dev, sizeof (*dev));
1689
1690 undocumented_pci_fix (pci_dev);
1691
1692 dev->hw_base = pci_resource_start(pci_dev, 0);
1693
1694 dev->base = ioremap(dev->hw_base, 0x1000);
1695
1696 reset_chip (dev);
1697
1698 write_fs (dev, SARMODE0, 0
1699 | (0 * SARMODE0_SHADEN) /* We don't use shadow registers. */
1700 | (1 * SARMODE0_INTMODE_READCLEAR)
1701 | (1 * SARMODE0_CWRE)
1702 | (IS_FS50(dev) ? SARMODE0_PRPWT_FS50_5:
1703 SARMODE0_PRPWT_FS155_3)
1704 | (1 * SARMODE0_CALSUP_1)
1705 | (IS_FS50(dev) ? (0
1706 | SARMODE0_RXVCS_32
1707 | SARMODE0_ABRVCS_32
1708 | SARMODE0_TXVCS_32):
1709 (0
1710 | SARMODE0_RXVCS_1k
1711 | SARMODE0_ABRVCS_1k
1712 | SARMODE0_TXVCS_1k)));
1713
1714 /* 10ms * 100 is 1 second. That should be enough, as AN3:9 says it takes
1715 1ms. */
1716 to = 100;
1717 while (--to) {
1718 isr = read_fs (dev, ISR);
1719
1720 /* This bit is documented as "RESERVED" */
1721 if (isr & ISR_INIT_ERR) {
1722 printk (KERN_ERR "Error initializing the FS... \n");
1723 goto unmap;
1724 }
1725 if (isr & ISR_INIT) {
1726 fs_dprintk (FS_DEBUG_INIT, "Ha! Initialized OK!\n");
1727 break;
1728 }
1729
1730 /* Try again after 10ms. */
1731 msleep(10);
1732 }
1733
1734 if (!to) {
1735 printk (KERN_ERR "timeout initializing the FS... \n");
1736 goto unmap;
1737 }
1738
1739 /* XXX fix for fs155 */
1740 dev->channel_mask = 0x1f;
1741 dev->channo = 0;
1742
1743 /* AN3: 10 */
1744 write_fs (dev, SARMODE1, 0
1745 | (fs_keystream * SARMODE1_DEFHEC) /* XXX PHY */
1746 | ((loopback == 1) * SARMODE1_TSTLP) /* XXX Loopback mode enable... */
1747 | (1 * SARMODE1_DCRM)
1748 | (1 * SARMODE1_DCOAM)
1749 | (0 * SARMODE1_OAMCRC)
1750 | (0 * SARMODE1_DUMPE)
1751 | (0 * SARMODE1_GPLEN)
1752 | (0 * SARMODE1_GNAM)
1753 | (0 * SARMODE1_GVAS)
1754 | (0 * SARMODE1_GPAS)
1755 | (1 * SARMODE1_GPRI)
1756 | (0 * SARMODE1_PMS)
1757 | (0 * SARMODE1_GFCR)
1758 | (1 * SARMODE1_HECM2)
1759 | (1 * SARMODE1_HECM1)
1760 | (1 * SARMODE1_HECM0)
1761 | (1 << 12) /* That's what hang's driver does. Program to 0 */
1762 | (0 * 0xff) /* XXX FS155 */);
1763
1764
1765 /* Cal prescale etc */
1766
1767 /* AN3: 11 */
1768 write_fs (dev, TMCONF, 0x0000000f);
1769 write_fs (dev, CALPRESCALE, 0x01010101 * num);
1770 write_fs (dev, 0x80, 0x000F00E4);
1771
1772 /* AN3: 12 */
1773 write_fs (dev, CELLOSCONF, 0
1774 | ( 0 * CELLOSCONF_CEN)
1775 | ( CELLOSCONF_SC1)
1776 | (0x80 * CELLOSCONF_COBS)
1777 | (num * CELLOSCONF_COPK) /* Changed from 0xff to 0x5a */
1778 | (num * CELLOSCONF_COST));/* after a hint from Hang.
1779 * performance jumped 50->70... */
1780
1781 /* Magic value by Hang */
1782 write_fs (dev, CELLOSCONF_COST, 0x0B809191);
1783
1784 if (IS_FS50 (dev)) {
1785 write_fs (dev, RAS0, RAS0_DCD_XHLT);
1786 dev->atm_dev->ci_range.vpi_bits = 12;
1787 dev->atm_dev->ci_range.vci_bits = 16;
1788 dev->nchannels = FS50_NR_CHANNELS;
1789 } else {
1790 write_fs (dev, RAS0, RAS0_DCD_XHLT
1791 | (((1 << FS155_VPI_BITS) - 1) * RAS0_VPSEL)
1792 | (((1 << FS155_VCI_BITS) - 1) * RAS0_VCSEL));
1793 /* We can chose the split arbitrarily. We might be able to
1794 support more. Whatever. This should do for now. */
1795 dev->atm_dev->ci_range.vpi_bits = FS155_VPI_BITS;
1796 dev->atm_dev->ci_range.vci_bits = FS155_VCI_BITS;
1797
1798 /* Address bits we can't use should be compared to 0. */
1799 write_fs (dev, RAC, 0);
1800
1801 /* Manual (AN9, page 6) says ASF1=0 means compare Utopia address
1802 * too. I can't find ASF1 anywhere. Anyway, we AND with just the
1803 * other bits, then compare with 0, which is exactly what we
1804 * want. */
1805 write_fs (dev, RAM, (1 << (28 - FS155_VPI_BITS - FS155_VCI_BITS)) - 1);
1806 dev->nchannels = FS155_NR_CHANNELS;
1807 }
1808 dev->atm_vccs = kcalloc (dev->nchannels, sizeof (struct atm_vcc *),
1809 GFP_KERNEL);
1810 fs_dprintk (FS_DEBUG_ALLOC, "Alloc atmvccs: %p(%zd)\n",
1811 dev->atm_vccs, dev->nchannels * sizeof (struct atm_vcc *));
1812
1813 if (!dev->atm_vccs) {
1814 printk (KERN_WARNING "Couldn't allocate memory for VCC buffers. Woops!\n");
1815 /* XXX Clean up..... */
1816 goto unmap;
1817 }
1818
1819 dev->tx_inuse = kzalloc (dev->nchannels / 8 /* bits/byte */ , GFP_KERNEL);
1820 fs_dprintk (FS_DEBUG_ALLOC, "Alloc tx_inuse: %p(%d)\n",
1821 dev->atm_vccs, dev->nchannels / 8);
1822
1823 if (!dev->tx_inuse) {
1824 printk (KERN_WARNING "Couldn't allocate memory for tx_inuse bits!\n");
1825 /* XXX Clean up..... */
1826 goto unmap;
1827 }
1828 /* -- RAS1 : FS155 and 50 differ. Default (0) should be OK for both */
1829 /* -- RAS2 : FS50 only: Default is OK. */
1830
1831 /* DMAMODE, default should be OK. -- REW */
1832 write_fs (dev, DMAMR, DMAMR_TX_MODE_FULL);
1833
1834 init_q (dev, &dev->hp_txq, TX_PQ(TXQ_HP), TXQ_NENTRIES, 0);
1835 init_q (dev, &dev->lp_txq, TX_PQ(TXQ_LP), TXQ_NENTRIES, 0);
1836 init_q (dev, &dev->tx_relq, TXB_RQ, TXQ_NENTRIES, 1);
1837 init_q (dev, &dev->st_q, ST_Q, TXQ_NENTRIES, 1);
1838
1839 for (i=0;i < FS_NR_FREE_POOLS;i++) {
1840 init_fp (dev, &dev->rx_fp[i], RXB_FP(i),
1841 rx_buf_sizes[i], rx_pool_sizes[i]);
1842 top_off_fp (dev, &dev->rx_fp[i], GFP_KERNEL);
1843 }
1844
1845
1846 for (i=0;i < FS_NR_RX_QUEUES;i++)
1847 init_q (dev, &dev->rx_rq[i], RXB_RQ(i), RXRQ_NENTRIES, 1);
1848
1849 dev->irq = pci_dev->irq;
1850 if (request_irq (dev->irq, fs_irq, IRQF_SHARED, "firestream", dev)) {
1851 printk (KERN_WARNING "couldn't get irq %d for firestream.\n", pci_dev->irq);
1852 /* XXX undo all previous stuff... */
1853 goto unmap;
1854 }
1855 fs_dprintk (FS_DEBUG_INIT, "Grabbed irq %d for dev at %p.\n", dev->irq, dev);
1856
1857 /* We want to be notified of most things. Just the statistics count
1858 overflows are not interesting */
1859 write_fs (dev, IMR, 0
1860 | ISR_RBRQ0_W
1861 | ISR_RBRQ1_W
1862 | ISR_RBRQ2_W
1863 | ISR_RBRQ3_W
1864 | ISR_TBRQ_W
1865 | ISR_CSQ_W);
1866
1867 write_fs (dev, SARMODE0, 0
1868 | (0 * SARMODE0_SHADEN) /* We don't use shadow registers. */
1869 | (1 * SARMODE0_GINT)
1870 | (1 * SARMODE0_INTMODE_READCLEAR)
1871 | (0 * SARMODE0_CWRE)
1872 | (IS_FS50(dev)?SARMODE0_PRPWT_FS50_5:
1873 SARMODE0_PRPWT_FS155_3)
1874 | (1 * SARMODE0_CALSUP_1)
1875 | (IS_FS50 (dev)?(0
1876 | SARMODE0_RXVCS_32
1877 | SARMODE0_ABRVCS_32
1878 | SARMODE0_TXVCS_32):
1879 (0
1880 | SARMODE0_RXVCS_1k
1881 | SARMODE0_ABRVCS_1k
1882 | SARMODE0_TXVCS_1k))
1883 | (1 * SARMODE0_RUN));
1884
1885 init_phy (dev, PHY_NTC_INIT);
1886
1887 if (loopback == 2) {
1888 write_phy (dev, 0x39, 0x000e);
1889 }
1890
1891 #ifdef FS_POLL_FREQ
1892 init_timer (&dev->timer);
1893 dev->timer.data = (unsigned long) dev;
1894 dev->timer.function = fs_poll;
1895 dev->timer.expires = jiffies + FS_POLL_FREQ;
1896 add_timer (&dev->timer);
1897 #endif
1898
1899 dev->atm_dev->dev_data = dev;
1900
1901 func_exit ();
1902 return 0;
1903 unmap:
1904 iounmap(dev->base);
1905 return 1;
1906 }
1907
1908 static int firestream_init_one(struct pci_dev *pci_dev,
1909 const struct pci_device_id *ent)
1910 {
1911 struct atm_dev *atm_dev;
1912 struct fs_dev *fs_dev;
1913
1914 if (pci_enable_device(pci_dev))
1915 goto err_out;
1916
1917 fs_dev = kzalloc (sizeof (struct fs_dev), GFP_KERNEL);
1918 fs_dprintk (FS_DEBUG_ALLOC, "Alloc fs-dev: %p(%zd)\n",
1919 fs_dev, sizeof (struct fs_dev));
1920 if (!fs_dev)
1921 goto err_out;
1922 atm_dev = atm_dev_register("fs", &pci_dev->dev, &ops, -1, NULL);
1923 if (!atm_dev)
1924 goto err_out_free_fs_dev;
1925
1926 fs_dev->pci_dev = pci_dev;
1927 fs_dev->atm_dev = atm_dev;
1928 fs_dev->flags = ent->driver_data;
1929
1930 if (fs_init(fs_dev))
1931 goto err_out_free_atm_dev;
1932
1933 fs_dev->next = fs_boards;
1934 fs_boards = fs_dev;
1935 return 0;
1936
1937 err_out_free_atm_dev:
1938 atm_dev_deregister(atm_dev);
1939 err_out_free_fs_dev:
1940 kfree(fs_dev);
1941 err_out:
1942 return -ENODEV;
1943 }
1944
1945 static void firestream_remove_one(struct pci_dev *pdev)
1946 {
1947 int i;
1948 struct fs_dev *dev, *nxtdev;
1949 struct fs_vcc *vcc;
1950 struct FS_BPENTRY *fp, *nxt;
1951
1952 func_enter ();
1953
1954 #if 0
1955 printk ("hptxq:\n");
1956 for (i=0;i<60;i++) {
1957 printk ("%d: %08x %08x %08x %08x \n",
1958 i, pq[qp].cmd, pq[qp].p0, pq[qp].p1, pq[qp].p2);
1959 qp++;
1960 if (qp >= 60) qp = 0;
1961 }
1962
1963 printk ("descriptors:\n");
1964 for (i=0;i<60;i++) {
1965 printk ("%d: %p: %08x %08x %p %p\n",
1966 i, da[qd], dq[qd].flags, dq[qd].bsa, dq[qd].skb, dq[qd].dev);
1967 qd++;
1968 if (qd >= 60) qd = 0;
1969 }
1970 #endif
1971
1972 for (dev = fs_boards;dev != NULL;dev=nxtdev) {
1973 fs_dprintk (FS_DEBUG_CLEANUP, "Releasing resources for dev at %p.\n", dev);
1974
1975 /* XXX Hit all the tx channels too! */
1976
1977 for (i=0;i < dev->nchannels;i++) {
1978 if (dev->atm_vccs[i]) {
1979 vcc = FS_VCC (dev->atm_vccs[i]);
1980 submit_command (dev, &dev->hp_txq,
1981 QE_CMD_TX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1982 submit_command (dev, &dev->hp_txq,
1983 QE_CMD_RX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1984
1985 }
1986 }
1987
1988 /* XXX Wait a while for the chip to release all buffers. */
1989
1990 for (i=0;i < FS_NR_FREE_POOLS;i++) {
1991 for (fp=bus_to_virt (read_fs (dev, FP_SA(dev->rx_fp[i].offset)));
1992 !(fp->flags & FP_FLAGS_EPI);fp = nxt) {
1993 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", fp->skb);
1994 dev_kfree_skb_any (fp->skb);
1995 nxt = bus_to_virt (fp->next);
1996 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", fp);
1997 kfree (fp);
1998 }
1999 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", fp->skb);
2000 dev_kfree_skb_any (fp->skb);
2001 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", fp);
2002 kfree (fp);
2003 }
2004
2005 /* Hang the chip in "reset", prevent it clobbering memory that is
2006 no longer ours. */
2007 reset_chip (dev);
2008
2009 fs_dprintk (FS_DEBUG_CLEANUP, "Freeing irq%d.\n", dev->irq);
2010 free_irq (dev->irq, dev);
2011 del_timer_sync (&dev->timer);
2012
2013 atm_dev_deregister(dev->atm_dev);
2014 free_queue (dev, &dev->hp_txq);
2015 free_queue (dev, &dev->lp_txq);
2016 free_queue (dev, &dev->tx_relq);
2017 free_queue (dev, &dev->st_q);
2018
2019 fs_dprintk (FS_DEBUG_ALLOC, "Free atmvccs: %p\n", dev->atm_vccs);
2020 kfree (dev->atm_vccs);
2021
2022 for (i=0;i< FS_NR_FREE_POOLS;i++)
2023 free_freepool (dev, &dev->rx_fp[i]);
2024
2025 for (i=0;i < FS_NR_RX_QUEUES;i++)
2026 free_queue (dev, &dev->rx_rq[i]);
2027
2028 iounmap(dev->base);
2029 fs_dprintk (FS_DEBUG_ALLOC, "Free fs-dev: %p\n", dev);
2030 nxtdev = dev->next;
2031 kfree (dev);
2032 }
2033
2034 func_exit ();
2035 }
2036
2037 static const struct pci_device_id firestream_pci_tbl[] = {
2038 { PCI_VDEVICE(FUJITSU_ME, PCI_DEVICE_ID_FUJITSU_FS50), FS_IS50},
2039 { PCI_VDEVICE(FUJITSU_ME, PCI_DEVICE_ID_FUJITSU_FS155), FS_IS155},
2040 { 0, }
2041 };
2042
2043 MODULE_DEVICE_TABLE(pci, firestream_pci_tbl);
2044
2045 static struct pci_driver firestream_driver = {
2046 .name = "firestream",
2047 .id_table = firestream_pci_tbl,
2048 .probe = firestream_init_one,
2049 .remove = firestream_remove_one,
2050 };
2051
2052 static int __init firestream_init_module (void)
2053 {
2054 int error;
2055
2056 func_enter ();
2057 error = pci_register_driver(&firestream_driver);
2058 func_exit ();
2059 return error;
2060 }
2061
2062 static void __exit firestream_cleanup_module(void)
2063 {
2064 pci_unregister_driver(&firestream_driver);
2065 }
2066
2067 module_init(firestream_init_module);
2068 module_exit(firestream_cleanup_module);
2069
2070 MODULE_LICENSE("GPL");
2071
2072
2073