]> git.ipfire.org Git - people/arne_f/kernel.git/blob - drivers/clocksource/arm_arch_timer.c
Merge branch 'linus' into locking/core, to pick up fixes
[people/arne_f/kernel.git] / drivers / clocksource / arm_arch_timer.c
1 /*
2 * linux/drivers/clocksource/arm_arch_timer.c
3 *
4 * Copyright (C) 2011 ARM Ltd.
5 * All Rights Reserved
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12 #define pr_fmt(fmt) "arm_arch_timer: " fmt
13
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/device.h>
17 #include <linux/smp.h>
18 #include <linux/cpu.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/clockchips.h>
21 #include <linux/clocksource.h>
22 #include <linux/interrupt.h>
23 #include <linux/of_irq.h>
24 #include <linux/of_address.h>
25 #include <linux/io.h>
26 #include <linux/slab.h>
27 #include <linux/sched/clock.h>
28 #include <linux/sched_clock.h>
29 #include <linux/acpi.h>
30
31 #include <asm/arch_timer.h>
32 #include <asm/virt.h>
33
34 #include <clocksource/arm_arch_timer.h>
35
36 #undef pr_fmt
37 #define pr_fmt(fmt) "arch_timer: " fmt
38
39 #define CNTTIDR 0x08
40 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
41
42 #define CNTACR(n) (0x40 + ((n) * 4))
43 #define CNTACR_RPCT BIT(0)
44 #define CNTACR_RVCT BIT(1)
45 #define CNTACR_RFRQ BIT(2)
46 #define CNTACR_RVOFF BIT(3)
47 #define CNTACR_RWVT BIT(4)
48 #define CNTACR_RWPT BIT(5)
49
50 #define CNTVCT_LO 0x08
51 #define CNTVCT_HI 0x0c
52 #define CNTFRQ 0x10
53 #define CNTP_TVAL 0x28
54 #define CNTP_CTL 0x2c
55 #define CNTV_TVAL 0x38
56 #define CNTV_CTL 0x3c
57
58 static unsigned arch_timers_present __initdata;
59
60 static void __iomem *arch_counter_base;
61
62 struct arch_timer {
63 void __iomem *base;
64 struct clock_event_device evt;
65 };
66
67 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
68
69 static u32 arch_timer_rate;
70 static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI];
71
72 static struct clock_event_device __percpu *arch_timer_evt;
73
74 static enum arch_timer_ppi_nr arch_timer_uses_ppi = ARCH_TIMER_VIRT_PPI;
75 static bool arch_timer_c3stop;
76 static bool arch_timer_mem_use_virtual;
77 static bool arch_counter_suspend_stop;
78 static bool vdso_default = true;
79
80 static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
81
82 static int __init early_evtstrm_cfg(char *buf)
83 {
84 return strtobool(buf, &evtstrm_enable);
85 }
86 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
87
88 /*
89 * Architected system timer support.
90 */
91
92 static __always_inline
93 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
94 struct clock_event_device *clk)
95 {
96 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
97 struct arch_timer *timer = to_arch_timer(clk);
98 switch (reg) {
99 case ARCH_TIMER_REG_CTRL:
100 writel_relaxed(val, timer->base + CNTP_CTL);
101 break;
102 case ARCH_TIMER_REG_TVAL:
103 writel_relaxed(val, timer->base + CNTP_TVAL);
104 break;
105 }
106 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
107 struct arch_timer *timer = to_arch_timer(clk);
108 switch (reg) {
109 case ARCH_TIMER_REG_CTRL:
110 writel_relaxed(val, timer->base + CNTV_CTL);
111 break;
112 case ARCH_TIMER_REG_TVAL:
113 writel_relaxed(val, timer->base + CNTV_TVAL);
114 break;
115 }
116 } else {
117 arch_timer_reg_write_cp15(access, reg, val);
118 }
119 }
120
121 static __always_inline
122 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
123 struct clock_event_device *clk)
124 {
125 u32 val;
126
127 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
128 struct arch_timer *timer = to_arch_timer(clk);
129 switch (reg) {
130 case ARCH_TIMER_REG_CTRL:
131 val = readl_relaxed(timer->base + CNTP_CTL);
132 break;
133 case ARCH_TIMER_REG_TVAL:
134 val = readl_relaxed(timer->base + CNTP_TVAL);
135 break;
136 }
137 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
138 struct arch_timer *timer = to_arch_timer(clk);
139 switch (reg) {
140 case ARCH_TIMER_REG_CTRL:
141 val = readl_relaxed(timer->base + CNTV_CTL);
142 break;
143 case ARCH_TIMER_REG_TVAL:
144 val = readl_relaxed(timer->base + CNTV_TVAL);
145 break;
146 }
147 } else {
148 val = arch_timer_reg_read_cp15(access, reg);
149 }
150
151 return val;
152 }
153
154 /*
155 * Default to cp15 based access because arm64 uses this function for
156 * sched_clock() before DT is probed and the cp15 method is guaranteed
157 * to exist on arm64. arm doesn't use this before DT is probed so even
158 * if we don't have the cp15 accessors we won't have a problem.
159 */
160 u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
161
162 static u64 arch_counter_read(struct clocksource *cs)
163 {
164 return arch_timer_read_counter();
165 }
166
167 static u64 arch_counter_read_cc(const struct cyclecounter *cc)
168 {
169 return arch_timer_read_counter();
170 }
171
172 static struct clocksource clocksource_counter = {
173 .name = "arch_sys_counter",
174 .rating = 400,
175 .read = arch_counter_read,
176 .mask = CLOCKSOURCE_MASK(56),
177 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
178 };
179
180 static struct cyclecounter cyclecounter __ro_after_init = {
181 .read = arch_counter_read_cc,
182 .mask = CLOCKSOURCE_MASK(56),
183 };
184
185 struct ate_acpi_oem_info {
186 char oem_id[ACPI_OEM_ID_SIZE + 1];
187 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
188 u32 oem_revision;
189 };
190
191 #ifdef CONFIG_FSL_ERRATUM_A008585
192 /*
193 * The number of retries is an arbitrary value well beyond the highest number
194 * of iterations the loop has been observed to take.
195 */
196 #define __fsl_a008585_read_reg(reg) ({ \
197 u64 _old, _new; \
198 int _retries = 200; \
199 \
200 do { \
201 _old = read_sysreg(reg); \
202 _new = read_sysreg(reg); \
203 _retries--; \
204 } while (unlikely(_old != _new) && _retries); \
205 \
206 WARN_ON_ONCE(!_retries); \
207 _new; \
208 })
209
210 static u32 notrace fsl_a008585_read_cntp_tval_el0(void)
211 {
212 return __fsl_a008585_read_reg(cntp_tval_el0);
213 }
214
215 static u32 notrace fsl_a008585_read_cntv_tval_el0(void)
216 {
217 return __fsl_a008585_read_reg(cntv_tval_el0);
218 }
219
220 static u64 notrace fsl_a008585_read_cntvct_el0(void)
221 {
222 return __fsl_a008585_read_reg(cntvct_el0);
223 }
224 #endif
225
226 #ifdef CONFIG_HISILICON_ERRATUM_161010101
227 /*
228 * Verify whether the value of the second read is larger than the first by
229 * less than 32 is the only way to confirm the value is correct, so clear the
230 * lower 5 bits to check whether the difference is greater than 32 or not.
231 * Theoretically the erratum should not occur more than twice in succession
232 * when reading the system counter, but it is possible that some interrupts
233 * may lead to more than twice read errors, triggering the warning, so setting
234 * the number of retries far beyond the number of iterations the loop has been
235 * observed to take.
236 */
237 #define __hisi_161010101_read_reg(reg) ({ \
238 u64 _old, _new; \
239 int _retries = 50; \
240 \
241 do { \
242 _old = read_sysreg(reg); \
243 _new = read_sysreg(reg); \
244 _retries--; \
245 } while (unlikely((_new - _old) >> 5) && _retries); \
246 \
247 WARN_ON_ONCE(!_retries); \
248 _new; \
249 })
250
251 static u32 notrace hisi_161010101_read_cntp_tval_el0(void)
252 {
253 return __hisi_161010101_read_reg(cntp_tval_el0);
254 }
255
256 static u32 notrace hisi_161010101_read_cntv_tval_el0(void)
257 {
258 return __hisi_161010101_read_reg(cntv_tval_el0);
259 }
260
261 static u64 notrace hisi_161010101_read_cntvct_el0(void)
262 {
263 return __hisi_161010101_read_reg(cntvct_el0);
264 }
265
266 static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
267 /*
268 * Note that trailing spaces are required to properly match
269 * the OEM table information.
270 */
271 {
272 .oem_id = "HISI ",
273 .oem_table_id = "HIP05 ",
274 .oem_revision = 0,
275 },
276 {
277 .oem_id = "HISI ",
278 .oem_table_id = "HIP06 ",
279 .oem_revision = 0,
280 },
281 {
282 .oem_id = "HISI ",
283 .oem_table_id = "HIP07 ",
284 .oem_revision = 0,
285 },
286 { /* Sentinel indicating the end of the OEM array */ },
287 };
288 #endif
289
290 #ifdef CONFIG_ARM64_ERRATUM_858921
291 static u64 notrace arm64_858921_read_cntvct_el0(void)
292 {
293 u64 old, new;
294
295 old = read_sysreg(cntvct_el0);
296 new = read_sysreg(cntvct_el0);
297 return (((old ^ new) >> 32) & 1) ? old : new;
298 }
299 #endif
300
301 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
302 DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *,
303 timer_unstable_counter_workaround);
304 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
305
306 DEFINE_STATIC_KEY_FALSE(arch_timer_read_ool_enabled);
307 EXPORT_SYMBOL_GPL(arch_timer_read_ool_enabled);
308
309 static void erratum_set_next_event_tval_generic(const int access, unsigned long evt,
310 struct clock_event_device *clk)
311 {
312 unsigned long ctrl;
313 u64 cval = evt + arch_counter_get_cntvct();
314
315 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
316 ctrl |= ARCH_TIMER_CTRL_ENABLE;
317 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
318
319 if (access == ARCH_TIMER_PHYS_ACCESS)
320 write_sysreg(cval, cntp_cval_el0);
321 else
322 write_sysreg(cval, cntv_cval_el0);
323
324 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
325 }
326
327 static __maybe_unused int erratum_set_next_event_tval_virt(unsigned long evt,
328 struct clock_event_device *clk)
329 {
330 erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
331 return 0;
332 }
333
334 static __maybe_unused int erratum_set_next_event_tval_phys(unsigned long evt,
335 struct clock_event_device *clk)
336 {
337 erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
338 return 0;
339 }
340
341 static const struct arch_timer_erratum_workaround ool_workarounds[] = {
342 #ifdef CONFIG_FSL_ERRATUM_A008585
343 {
344 .match_type = ate_match_dt,
345 .id = "fsl,erratum-a008585",
346 .desc = "Freescale erratum a005858",
347 .read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0,
348 .read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0,
349 .read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
350 .set_next_event_phys = erratum_set_next_event_tval_phys,
351 .set_next_event_virt = erratum_set_next_event_tval_virt,
352 },
353 #endif
354 #ifdef CONFIG_HISILICON_ERRATUM_161010101
355 {
356 .match_type = ate_match_dt,
357 .id = "hisilicon,erratum-161010101",
358 .desc = "HiSilicon erratum 161010101",
359 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
360 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
361 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
362 .set_next_event_phys = erratum_set_next_event_tval_phys,
363 .set_next_event_virt = erratum_set_next_event_tval_virt,
364 },
365 {
366 .match_type = ate_match_acpi_oem_info,
367 .id = hisi_161010101_oem_info,
368 .desc = "HiSilicon erratum 161010101",
369 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
370 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
371 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
372 .set_next_event_phys = erratum_set_next_event_tval_phys,
373 .set_next_event_virt = erratum_set_next_event_tval_virt,
374 },
375 #endif
376 #ifdef CONFIG_ARM64_ERRATUM_858921
377 {
378 .match_type = ate_match_local_cap_id,
379 .id = (void *)ARM64_WORKAROUND_858921,
380 .desc = "ARM erratum 858921",
381 .read_cntvct_el0 = arm64_858921_read_cntvct_el0,
382 },
383 #endif
384 };
385
386 typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
387 const void *);
388
389 static
390 bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
391 const void *arg)
392 {
393 const struct device_node *np = arg;
394
395 return of_property_read_bool(np, wa->id);
396 }
397
398 static
399 bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
400 const void *arg)
401 {
402 return this_cpu_has_cap((uintptr_t)wa->id);
403 }
404
405
406 static
407 bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
408 const void *arg)
409 {
410 static const struct ate_acpi_oem_info empty_oem_info = {};
411 const struct ate_acpi_oem_info *info = wa->id;
412 const struct acpi_table_header *table = arg;
413
414 /* Iterate over the ACPI OEM info array, looking for a match */
415 while (memcmp(info, &empty_oem_info, sizeof(*info))) {
416 if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
417 !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
418 info->oem_revision == table->oem_revision)
419 return true;
420
421 info++;
422 }
423
424 return false;
425 }
426
427 static const struct arch_timer_erratum_workaround *
428 arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
429 ate_match_fn_t match_fn,
430 void *arg)
431 {
432 int i;
433
434 for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
435 if (ool_workarounds[i].match_type != type)
436 continue;
437
438 if (match_fn(&ool_workarounds[i], arg))
439 return &ool_workarounds[i];
440 }
441
442 return NULL;
443 }
444
445 static
446 void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
447 bool local)
448 {
449 int i;
450
451 if (local) {
452 __this_cpu_write(timer_unstable_counter_workaround, wa);
453 } else {
454 for_each_possible_cpu(i)
455 per_cpu(timer_unstable_counter_workaround, i) = wa;
456 }
457
458 /*
459 * Use the locked version, as we're called from the CPU
460 * hotplug framework. Otherwise, we end-up in deadlock-land.
461 */
462 static_branch_enable_cpuslocked(&arch_timer_read_ool_enabled);
463
464 /*
465 * Don't use the vdso fastpath if errata require using the
466 * out-of-line counter accessor. We may change our mind pretty
467 * late in the game (with a per-CPU erratum, for example), so
468 * change both the default value and the vdso itself.
469 */
470 if (wa->read_cntvct_el0) {
471 clocksource_counter.archdata.vdso_direct = false;
472 vdso_default = false;
473 }
474 }
475
476 static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
477 void *arg)
478 {
479 const struct arch_timer_erratum_workaround *wa;
480 ate_match_fn_t match_fn = NULL;
481 bool local = false;
482
483 switch (type) {
484 case ate_match_dt:
485 match_fn = arch_timer_check_dt_erratum;
486 break;
487 case ate_match_local_cap_id:
488 match_fn = arch_timer_check_local_cap_erratum;
489 local = true;
490 break;
491 case ate_match_acpi_oem_info:
492 match_fn = arch_timer_check_acpi_oem_erratum;
493 break;
494 default:
495 WARN_ON(1);
496 return;
497 }
498
499 wa = arch_timer_iterate_errata(type, match_fn, arg);
500 if (!wa)
501 return;
502
503 if (needs_unstable_timer_counter_workaround()) {
504 const struct arch_timer_erratum_workaround *__wa;
505 __wa = __this_cpu_read(timer_unstable_counter_workaround);
506 if (__wa && wa != __wa)
507 pr_warn("Can't enable workaround for %s (clashes with %s\n)",
508 wa->desc, __wa->desc);
509
510 if (__wa)
511 return;
512 }
513
514 arch_timer_enable_workaround(wa, local);
515 pr_info("Enabling %s workaround for %s\n",
516 local ? "local" : "global", wa->desc);
517 }
518
519 #define erratum_handler(fn, r, ...) \
520 ({ \
521 bool __val; \
522 if (needs_unstable_timer_counter_workaround()) { \
523 const struct arch_timer_erratum_workaround *__wa; \
524 __wa = __this_cpu_read(timer_unstable_counter_workaround); \
525 if (__wa && __wa->fn) { \
526 r = __wa->fn(__VA_ARGS__); \
527 __val = true; \
528 } else { \
529 __val = false; \
530 } \
531 } else { \
532 __val = false; \
533 } \
534 __val; \
535 })
536
537 static bool arch_timer_this_cpu_has_cntvct_wa(void)
538 {
539 const struct arch_timer_erratum_workaround *wa;
540
541 wa = __this_cpu_read(timer_unstable_counter_workaround);
542 return wa && wa->read_cntvct_el0;
543 }
544 #else
545 #define arch_timer_check_ool_workaround(t,a) do { } while(0)
546 #define erratum_set_next_event_tval_virt(...) ({BUG(); 0;})
547 #define erratum_set_next_event_tval_phys(...) ({BUG(); 0;})
548 #define erratum_handler(fn, r, ...) ({false;})
549 #define arch_timer_this_cpu_has_cntvct_wa() ({false;})
550 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
551
552 static __always_inline irqreturn_t timer_handler(const int access,
553 struct clock_event_device *evt)
554 {
555 unsigned long ctrl;
556
557 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
558 if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
559 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
560 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
561 evt->event_handler(evt);
562 return IRQ_HANDLED;
563 }
564
565 return IRQ_NONE;
566 }
567
568 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
569 {
570 struct clock_event_device *evt = dev_id;
571
572 return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
573 }
574
575 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
576 {
577 struct clock_event_device *evt = dev_id;
578
579 return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
580 }
581
582 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
583 {
584 struct clock_event_device *evt = dev_id;
585
586 return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
587 }
588
589 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
590 {
591 struct clock_event_device *evt = dev_id;
592
593 return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
594 }
595
596 static __always_inline int timer_shutdown(const int access,
597 struct clock_event_device *clk)
598 {
599 unsigned long ctrl;
600
601 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
602 ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
603 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
604
605 return 0;
606 }
607
608 static int arch_timer_shutdown_virt(struct clock_event_device *clk)
609 {
610 return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
611 }
612
613 static int arch_timer_shutdown_phys(struct clock_event_device *clk)
614 {
615 return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
616 }
617
618 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
619 {
620 return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
621 }
622
623 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
624 {
625 return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
626 }
627
628 static __always_inline void set_next_event(const int access, unsigned long evt,
629 struct clock_event_device *clk)
630 {
631 unsigned long ctrl;
632 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
633 ctrl |= ARCH_TIMER_CTRL_ENABLE;
634 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
635 arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
636 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
637 }
638
639 static int arch_timer_set_next_event_virt(unsigned long evt,
640 struct clock_event_device *clk)
641 {
642 int ret;
643
644 if (erratum_handler(set_next_event_virt, ret, evt, clk))
645 return ret;
646
647 set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
648 return 0;
649 }
650
651 static int arch_timer_set_next_event_phys(unsigned long evt,
652 struct clock_event_device *clk)
653 {
654 int ret;
655
656 if (erratum_handler(set_next_event_phys, ret, evt, clk))
657 return ret;
658
659 set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
660 return 0;
661 }
662
663 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
664 struct clock_event_device *clk)
665 {
666 set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
667 return 0;
668 }
669
670 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
671 struct clock_event_device *clk)
672 {
673 set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
674 return 0;
675 }
676
677 static void __arch_timer_setup(unsigned type,
678 struct clock_event_device *clk)
679 {
680 clk->features = CLOCK_EVT_FEAT_ONESHOT;
681
682 if (type == ARCH_TIMER_TYPE_CP15) {
683 if (arch_timer_c3stop)
684 clk->features |= CLOCK_EVT_FEAT_C3STOP;
685 clk->name = "arch_sys_timer";
686 clk->rating = 450;
687 clk->cpumask = cpumask_of(smp_processor_id());
688 clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
689 switch (arch_timer_uses_ppi) {
690 case ARCH_TIMER_VIRT_PPI:
691 clk->set_state_shutdown = arch_timer_shutdown_virt;
692 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
693 clk->set_next_event = arch_timer_set_next_event_virt;
694 break;
695 case ARCH_TIMER_PHYS_SECURE_PPI:
696 case ARCH_TIMER_PHYS_NONSECURE_PPI:
697 case ARCH_TIMER_HYP_PPI:
698 clk->set_state_shutdown = arch_timer_shutdown_phys;
699 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
700 clk->set_next_event = arch_timer_set_next_event_phys;
701 break;
702 default:
703 BUG();
704 }
705
706 arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
707 } else {
708 clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
709 clk->name = "arch_mem_timer";
710 clk->rating = 400;
711 clk->cpumask = cpu_all_mask;
712 if (arch_timer_mem_use_virtual) {
713 clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
714 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
715 clk->set_next_event =
716 arch_timer_set_next_event_virt_mem;
717 } else {
718 clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
719 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
720 clk->set_next_event =
721 arch_timer_set_next_event_phys_mem;
722 }
723 }
724
725 clk->set_state_shutdown(clk);
726
727 clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
728 }
729
730 static void arch_timer_evtstrm_enable(int divider)
731 {
732 u32 cntkctl = arch_timer_get_cntkctl();
733
734 cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
735 /* Set the divider and enable virtual event stream */
736 cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
737 | ARCH_TIMER_VIRT_EVT_EN;
738 arch_timer_set_cntkctl(cntkctl);
739 elf_hwcap |= HWCAP_EVTSTRM;
740 #ifdef CONFIG_COMPAT
741 compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM;
742 #endif
743 }
744
745 static void arch_timer_configure_evtstream(void)
746 {
747 int evt_stream_div, pos;
748
749 /* Find the closest power of two to the divisor */
750 evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
751 pos = fls(evt_stream_div);
752 if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
753 pos--;
754 /* enable event stream */
755 arch_timer_evtstrm_enable(min(pos, 15));
756 }
757
758 static void arch_counter_set_user_access(void)
759 {
760 u32 cntkctl = arch_timer_get_cntkctl();
761
762 /* Disable user access to the timers and both counters */
763 /* Also disable virtual event stream */
764 cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
765 | ARCH_TIMER_USR_VT_ACCESS_EN
766 | ARCH_TIMER_USR_VCT_ACCESS_EN
767 | ARCH_TIMER_VIRT_EVT_EN
768 | ARCH_TIMER_USR_PCT_ACCESS_EN);
769
770 /*
771 * Enable user access to the virtual counter if it doesn't
772 * need to be workaround. The vdso may have been already
773 * disabled though.
774 */
775 if (arch_timer_this_cpu_has_cntvct_wa())
776 pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
777 else
778 cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
779
780 arch_timer_set_cntkctl(cntkctl);
781 }
782
783 static bool arch_timer_has_nonsecure_ppi(void)
784 {
785 return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
786 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
787 }
788
789 static u32 check_ppi_trigger(int irq)
790 {
791 u32 flags = irq_get_trigger_type(irq);
792
793 if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
794 pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
795 pr_warn("WARNING: Please fix your firmware\n");
796 flags = IRQF_TRIGGER_LOW;
797 }
798
799 return flags;
800 }
801
802 static int arch_timer_starting_cpu(unsigned int cpu)
803 {
804 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
805 u32 flags;
806
807 __arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
808
809 flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
810 enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
811
812 if (arch_timer_has_nonsecure_ppi()) {
813 flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
814 enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
815 flags);
816 }
817
818 arch_counter_set_user_access();
819 if (evtstrm_enable)
820 arch_timer_configure_evtstream();
821
822 return 0;
823 }
824
825 /*
826 * For historical reasons, when probing with DT we use whichever (non-zero)
827 * rate was probed first, and don't verify that others match. If the first node
828 * probed has a clock-frequency property, this overrides the HW register.
829 */
830 static void arch_timer_of_configure_rate(u32 rate, struct device_node *np)
831 {
832 /* Who has more than one independent system counter? */
833 if (arch_timer_rate)
834 return;
835
836 if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
837 arch_timer_rate = rate;
838
839 /* Check the timer frequency. */
840 if (arch_timer_rate == 0)
841 pr_warn("frequency not available\n");
842 }
843
844 static void arch_timer_banner(unsigned type)
845 {
846 pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
847 type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
848 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
849 " and " : "",
850 type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
851 (unsigned long)arch_timer_rate / 1000000,
852 (unsigned long)(arch_timer_rate / 10000) % 100,
853 type & ARCH_TIMER_TYPE_CP15 ?
854 (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
855 "",
856 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
857 type & ARCH_TIMER_TYPE_MEM ?
858 arch_timer_mem_use_virtual ? "virt" : "phys" :
859 "");
860 }
861
862 u32 arch_timer_get_rate(void)
863 {
864 return arch_timer_rate;
865 }
866
867 static u64 arch_counter_get_cntvct_mem(void)
868 {
869 u32 vct_lo, vct_hi, tmp_hi;
870
871 do {
872 vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
873 vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
874 tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
875 } while (vct_hi != tmp_hi);
876
877 return ((u64) vct_hi << 32) | vct_lo;
878 }
879
880 static struct arch_timer_kvm_info arch_timer_kvm_info;
881
882 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
883 {
884 return &arch_timer_kvm_info;
885 }
886
887 static void __init arch_counter_register(unsigned type)
888 {
889 u64 start_count;
890
891 /* Register the CP15 based counter if we have one */
892 if (type & ARCH_TIMER_TYPE_CP15) {
893 if (IS_ENABLED(CONFIG_ARM64) ||
894 arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI)
895 arch_timer_read_counter = arch_counter_get_cntvct;
896 else
897 arch_timer_read_counter = arch_counter_get_cntpct;
898
899 clocksource_counter.archdata.vdso_direct = vdso_default;
900 } else {
901 arch_timer_read_counter = arch_counter_get_cntvct_mem;
902 }
903
904 if (!arch_counter_suspend_stop)
905 clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
906 start_count = arch_timer_read_counter();
907 clocksource_register_hz(&clocksource_counter, arch_timer_rate);
908 cyclecounter.mult = clocksource_counter.mult;
909 cyclecounter.shift = clocksource_counter.shift;
910 timecounter_init(&arch_timer_kvm_info.timecounter,
911 &cyclecounter, start_count);
912
913 /* 56 bits minimum, so we assume worst case rollover */
914 sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
915 }
916
917 static void arch_timer_stop(struct clock_event_device *clk)
918 {
919 pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
920
921 disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
922 if (arch_timer_has_nonsecure_ppi())
923 disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
924
925 clk->set_state_shutdown(clk);
926 }
927
928 static int arch_timer_dying_cpu(unsigned int cpu)
929 {
930 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
931
932 arch_timer_stop(clk);
933 return 0;
934 }
935
936 #ifdef CONFIG_CPU_PM
937 static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
938 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
939 unsigned long action, void *hcpu)
940 {
941 if (action == CPU_PM_ENTER)
942 __this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
943 else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT)
944 arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
945 return NOTIFY_OK;
946 }
947
948 static struct notifier_block arch_timer_cpu_pm_notifier = {
949 .notifier_call = arch_timer_cpu_pm_notify,
950 };
951
952 static int __init arch_timer_cpu_pm_init(void)
953 {
954 return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
955 }
956
957 static void __init arch_timer_cpu_pm_deinit(void)
958 {
959 WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
960 }
961
962 #else
963 static int __init arch_timer_cpu_pm_init(void)
964 {
965 return 0;
966 }
967
968 static void __init arch_timer_cpu_pm_deinit(void)
969 {
970 }
971 #endif
972
973 static int __init arch_timer_register(void)
974 {
975 int err;
976 int ppi;
977
978 arch_timer_evt = alloc_percpu(struct clock_event_device);
979 if (!arch_timer_evt) {
980 err = -ENOMEM;
981 goto out;
982 }
983
984 ppi = arch_timer_ppi[arch_timer_uses_ppi];
985 switch (arch_timer_uses_ppi) {
986 case ARCH_TIMER_VIRT_PPI:
987 err = request_percpu_irq(ppi, arch_timer_handler_virt,
988 "arch_timer", arch_timer_evt);
989 break;
990 case ARCH_TIMER_PHYS_SECURE_PPI:
991 case ARCH_TIMER_PHYS_NONSECURE_PPI:
992 err = request_percpu_irq(ppi, arch_timer_handler_phys,
993 "arch_timer", arch_timer_evt);
994 if (!err && arch_timer_has_nonsecure_ppi()) {
995 ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
996 err = request_percpu_irq(ppi, arch_timer_handler_phys,
997 "arch_timer", arch_timer_evt);
998 if (err)
999 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
1000 arch_timer_evt);
1001 }
1002 break;
1003 case ARCH_TIMER_HYP_PPI:
1004 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1005 "arch_timer", arch_timer_evt);
1006 break;
1007 default:
1008 BUG();
1009 }
1010
1011 if (err) {
1012 pr_err("can't register interrupt %d (%d)\n", ppi, err);
1013 goto out_free;
1014 }
1015
1016 err = arch_timer_cpu_pm_init();
1017 if (err)
1018 goto out_unreg_notify;
1019
1020
1021 /* Register and immediately configure the timer on the boot CPU */
1022 err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
1023 "clockevents/arm/arch_timer:starting",
1024 arch_timer_starting_cpu, arch_timer_dying_cpu);
1025 if (err)
1026 goto out_unreg_cpupm;
1027 return 0;
1028
1029 out_unreg_cpupm:
1030 arch_timer_cpu_pm_deinit();
1031
1032 out_unreg_notify:
1033 free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
1034 if (arch_timer_has_nonsecure_ppi())
1035 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1036 arch_timer_evt);
1037
1038 out_free:
1039 free_percpu(arch_timer_evt);
1040 out:
1041 return err;
1042 }
1043
1044 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
1045 {
1046 int ret;
1047 irq_handler_t func;
1048 struct arch_timer *t;
1049
1050 t = kzalloc(sizeof(*t), GFP_KERNEL);
1051 if (!t)
1052 return -ENOMEM;
1053
1054 t->base = base;
1055 t->evt.irq = irq;
1056 __arch_timer_setup(ARCH_TIMER_TYPE_MEM, &t->evt);
1057
1058 if (arch_timer_mem_use_virtual)
1059 func = arch_timer_handler_virt_mem;
1060 else
1061 func = arch_timer_handler_phys_mem;
1062
1063 ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
1064 if (ret) {
1065 pr_err("Failed to request mem timer irq\n");
1066 kfree(t);
1067 }
1068
1069 return ret;
1070 }
1071
1072 static const struct of_device_id arch_timer_of_match[] __initconst = {
1073 { .compatible = "arm,armv7-timer", },
1074 { .compatible = "arm,armv8-timer", },
1075 {},
1076 };
1077
1078 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
1079 { .compatible = "arm,armv7-timer-mem", },
1080 {},
1081 };
1082
1083 static bool __init arch_timer_needs_of_probing(void)
1084 {
1085 struct device_node *dn;
1086 bool needs_probing = false;
1087 unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
1088
1089 /* We have two timers, and both device-tree nodes are probed. */
1090 if ((arch_timers_present & mask) == mask)
1091 return false;
1092
1093 /*
1094 * Only one type of timer is probed,
1095 * check if we have another type of timer node in device-tree.
1096 */
1097 if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
1098 dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
1099 else
1100 dn = of_find_matching_node(NULL, arch_timer_of_match);
1101
1102 if (dn && of_device_is_available(dn))
1103 needs_probing = true;
1104
1105 of_node_put(dn);
1106
1107 return needs_probing;
1108 }
1109
1110 static int __init arch_timer_common_init(void)
1111 {
1112 arch_timer_banner(arch_timers_present);
1113 arch_counter_register(arch_timers_present);
1114 return arch_timer_arch_init();
1115 }
1116
1117 /**
1118 * arch_timer_select_ppi() - Select suitable PPI for the current system.
1119 *
1120 * If HYP mode is available, we know that the physical timer
1121 * has been configured to be accessible from PL1. Use it, so
1122 * that a guest can use the virtual timer instead.
1123 *
1124 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1125 * accesses to CNTP_*_EL1 registers are silently redirected to
1126 * their CNTHP_*_EL2 counterparts, and use a different PPI
1127 * number.
1128 *
1129 * If no interrupt provided for virtual timer, we'll have to
1130 * stick to the physical timer. It'd better be accessible...
1131 * For arm64 we never use the secure interrupt.
1132 *
1133 * Return: a suitable PPI type for the current system.
1134 */
1135 static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1136 {
1137 if (is_kernel_in_hyp_mode())
1138 return ARCH_TIMER_HYP_PPI;
1139
1140 if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
1141 return ARCH_TIMER_VIRT_PPI;
1142
1143 if (IS_ENABLED(CONFIG_ARM64))
1144 return ARCH_TIMER_PHYS_NONSECURE_PPI;
1145
1146 return ARCH_TIMER_PHYS_SECURE_PPI;
1147 }
1148
1149 static int __init arch_timer_of_init(struct device_node *np)
1150 {
1151 int i, ret;
1152 u32 rate;
1153
1154 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1155 pr_warn("multiple nodes in dt, skipping\n");
1156 return 0;
1157 }
1158
1159 arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1160 for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++)
1161 arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
1162
1163 arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1164
1165 rate = arch_timer_get_cntfrq();
1166 arch_timer_of_configure_rate(rate, np);
1167
1168 arch_timer_c3stop = !of_property_read_bool(np, "always-on");
1169
1170 /* Check for globally applicable workarounds */
1171 arch_timer_check_ool_workaround(ate_match_dt, np);
1172
1173 /*
1174 * If we cannot rely on firmware initializing the timer registers then
1175 * we should use the physical timers instead.
1176 */
1177 if (IS_ENABLED(CONFIG_ARM) &&
1178 of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1179 arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1180 else
1181 arch_timer_uses_ppi = arch_timer_select_ppi();
1182
1183 if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1184 pr_err("No interrupt available, giving up\n");
1185 return -EINVAL;
1186 }
1187
1188 /* On some systems, the counter stops ticking when in suspend. */
1189 arch_counter_suspend_stop = of_property_read_bool(np,
1190 "arm,no-tick-in-suspend");
1191
1192 ret = arch_timer_register();
1193 if (ret)
1194 return ret;
1195
1196 if (arch_timer_needs_of_probing())
1197 return 0;
1198
1199 return arch_timer_common_init();
1200 }
1201 TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
1202 TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1203
1204 static u32 __init
1205 arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
1206 {
1207 void __iomem *base;
1208 u32 rate;
1209
1210 base = ioremap(frame->cntbase, frame->size);
1211 if (!base) {
1212 pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
1213 return 0;
1214 }
1215
1216 rate = readl_relaxed(base + CNTFRQ);
1217
1218 iounmap(base);
1219
1220 return rate;
1221 }
1222
1223 static struct arch_timer_mem_frame * __init
1224 arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
1225 {
1226 struct arch_timer_mem_frame *frame, *best_frame = NULL;
1227 void __iomem *cntctlbase;
1228 u32 cnttidr;
1229 int i;
1230
1231 cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
1232 if (!cntctlbase) {
1233 pr_err("Can't map CNTCTLBase @ %pa\n",
1234 &timer_mem->cntctlbase);
1235 return NULL;
1236 }
1237
1238 cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
1239
1240 /*
1241 * Try to find a virtual capable frame. Otherwise fall back to a
1242 * physical capable frame.
1243 */
1244 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1245 u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1246 CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1247
1248 frame = &timer_mem->frame[i];
1249 if (!frame->valid)
1250 continue;
1251
1252 /* Try enabling everything, and see what sticks */
1253 writel_relaxed(cntacr, cntctlbase + CNTACR(i));
1254 cntacr = readl_relaxed(cntctlbase + CNTACR(i));
1255
1256 if ((cnttidr & CNTTIDR_VIRT(i)) &&
1257 !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1258 best_frame = frame;
1259 arch_timer_mem_use_virtual = true;
1260 break;
1261 }
1262
1263 if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1264 continue;
1265
1266 best_frame = frame;
1267 }
1268
1269 iounmap(cntctlbase);
1270
1271 if (!best_frame)
1272 pr_err("Unable to find a suitable frame in timer @ %pa\n",
1273 &timer_mem->cntctlbase);
1274
1275 return best_frame;
1276 }
1277
1278 static int __init
1279 arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
1280 {
1281 void __iomem *base;
1282 int ret, irq = 0;
1283
1284 if (arch_timer_mem_use_virtual)
1285 irq = frame->virt_irq;
1286 else
1287 irq = frame->phys_irq;
1288
1289 if (!irq) {
1290 pr_err("Frame missing %s irq.\n",
1291 arch_timer_mem_use_virtual ? "virt" : "phys");
1292 return -EINVAL;
1293 }
1294
1295 if (!request_mem_region(frame->cntbase, frame->size,
1296 "arch_mem_timer"))
1297 return -EBUSY;
1298
1299 base = ioremap(frame->cntbase, frame->size);
1300 if (!base) {
1301 pr_err("Can't map frame's registers\n");
1302 return -ENXIO;
1303 }
1304
1305 ret = arch_timer_mem_register(base, irq);
1306 if (ret) {
1307 iounmap(base);
1308 return ret;
1309 }
1310
1311 arch_counter_base = base;
1312 arch_timers_present |= ARCH_TIMER_TYPE_MEM;
1313
1314 return 0;
1315 }
1316
1317 static int __init arch_timer_mem_of_init(struct device_node *np)
1318 {
1319 struct arch_timer_mem *timer_mem;
1320 struct arch_timer_mem_frame *frame;
1321 struct device_node *frame_node;
1322 struct resource res;
1323 int ret = -EINVAL;
1324 u32 rate;
1325
1326 timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
1327 if (!timer_mem)
1328 return -ENOMEM;
1329
1330 if (of_address_to_resource(np, 0, &res))
1331 goto out;
1332 timer_mem->cntctlbase = res.start;
1333 timer_mem->size = resource_size(&res);
1334
1335 for_each_available_child_of_node(np, frame_node) {
1336 u32 n;
1337 struct arch_timer_mem_frame *frame;
1338
1339 if (of_property_read_u32(frame_node, "frame-number", &n)) {
1340 pr_err(FW_BUG "Missing frame-number.\n");
1341 of_node_put(frame_node);
1342 goto out;
1343 }
1344 if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
1345 pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
1346 ARCH_TIMER_MEM_MAX_FRAMES - 1);
1347 of_node_put(frame_node);
1348 goto out;
1349 }
1350 frame = &timer_mem->frame[n];
1351
1352 if (frame->valid) {
1353 pr_err(FW_BUG "Duplicated frame-number.\n");
1354 of_node_put(frame_node);
1355 goto out;
1356 }
1357
1358 if (of_address_to_resource(frame_node, 0, &res)) {
1359 of_node_put(frame_node);
1360 goto out;
1361 }
1362 frame->cntbase = res.start;
1363 frame->size = resource_size(&res);
1364
1365 frame->virt_irq = irq_of_parse_and_map(frame_node,
1366 ARCH_TIMER_VIRT_SPI);
1367 frame->phys_irq = irq_of_parse_and_map(frame_node,
1368 ARCH_TIMER_PHYS_SPI);
1369
1370 frame->valid = true;
1371 }
1372
1373 frame = arch_timer_mem_find_best_frame(timer_mem);
1374 if (!frame) {
1375 ret = -EINVAL;
1376 goto out;
1377 }
1378
1379 rate = arch_timer_mem_frame_get_cntfrq(frame);
1380 arch_timer_of_configure_rate(rate, np);
1381
1382 ret = arch_timer_mem_frame_register(frame);
1383 if (!ret && !arch_timer_needs_of_probing())
1384 ret = arch_timer_common_init();
1385 out:
1386 kfree(timer_mem);
1387 return ret;
1388 }
1389 TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1390 arch_timer_mem_of_init);
1391
1392 #ifdef CONFIG_ACPI_GTDT
1393 static int __init
1394 arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
1395 {
1396 struct arch_timer_mem_frame *frame;
1397 u32 rate;
1398 int i;
1399
1400 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1401 frame = &timer_mem->frame[i];
1402
1403 if (!frame->valid)
1404 continue;
1405
1406 rate = arch_timer_mem_frame_get_cntfrq(frame);
1407 if (rate == arch_timer_rate)
1408 continue;
1409
1410 pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
1411 &frame->cntbase,
1412 (unsigned long)rate, (unsigned long)arch_timer_rate);
1413
1414 return -EINVAL;
1415 }
1416
1417 return 0;
1418 }
1419
1420 static int __init arch_timer_mem_acpi_init(int platform_timer_count)
1421 {
1422 struct arch_timer_mem *timers, *timer;
1423 struct arch_timer_mem_frame *frame;
1424 int timer_count, i, ret = 0;
1425
1426 timers = kcalloc(platform_timer_count, sizeof(*timers),
1427 GFP_KERNEL);
1428 if (!timers)
1429 return -ENOMEM;
1430
1431 ret = acpi_arch_timer_mem_init(timers, &timer_count);
1432 if (ret || !timer_count)
1433 goto out;
1434
1435 for (i = 0; i < timer_count; i++) {
1436 ret = arch_timer_mem_verify_cntfrq(&timers[i]);
1437 if (ret) {
1438 pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
1439 goto out;
1440 }
1441 }
1442
1443 /*
1444 * While unlikely, it's theoretically possible that none of the frames
1445 * in a timer expose the combination of feature we want.
1446 */
1447 for (i = 0; i < timer_count; i++) {
1448 timer = &timers[i];
1449
1450 frame = arch_timer_mem_find_best_frame(timer);
1451 if (frame)
1452 break;
1453 }
1454
1455 if (frame)
1456 ret = arch_timer_mem_frame_register(frame);
1457 out:
1458 kfree(timers);
1459 return ret;
1460 }
1461
1462 /* Initialize per-processor generic timer and memory-mapped timer(if present) */
1463 static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1464 {
1465 int ret, platform_timer_count;
1466
1467 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1468 pr_warn("already initialized, skipping\n");
1469 return -EINVAL;
1470 }
1471
1472 arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1473
1474 ret = acpi_gtdt_init(table, &platform_timer_count);
1475 if (ret) {
1476 pr_err("Failed to init GTDT table.\n");
1477 return ret;
1478 }
1479
1480 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1481 acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1482
1483 arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1484 acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1485
1486 arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1487 acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1488
1489 arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1490
1491 /*
1492 * When probing via ACPI, we have no mechanism to override the sysreg
1493 * CNTFRQ value. This *must* be correct.
1494 */
1495 arch_timer_rate = arch_timer_get_cntfrq();
1496 if (!arch_timer_rate) {
1497 pr_err(FW_BUG "frequency not available.\n");
1498 return -EINVAL;
1499 }
1500
1501 arch_timer_uses_ppi = arch_timer_select_ppi();
1502 if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1503 pr_err("No interrupt available, giving up\n");
1504 return -EINVAL;
1505 }
1506
1507 /* Always-on capability */
1508 arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1509
1510 /* Check for globally applicable workarounds */
1511 arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
1512
1513 ret = arch_timer_register();
1514 if (ret)
1515 return ret;
1516
1517 if (platform_timer_count &&
1518 arch_timer_mem_acpi_init(platform_timer_count))
1519 pr_err("Failed to initialize memory-mapped timer.\n");
1520
1521 return arch_timer_common_init();
1522 }
1523 TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1524 #endif