]> git.ipfire.org Git - people/arne_f/kernel.git/blob - drivers/gpu/drm/i915/i915_gem_gtt.c
e2410eb5d96e01ce208f565fee182da9a99ee604
[people/arne_f/kernel.git] / drivers / gpu / drm / i915 / i915_gem_gtt.c
1 /*
2 * Copyright © 2010 Daniel Vetter
3 * Copyright © 2011-2014 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 */
25
26 #include <linux/slab.h> /* fault-inject.h is not standalone! */
27
28 #include <linux/fault-inject.h>
29 #include <linux/log2.h>
30 #include <linux/random.h>
31 #include <linux/seq_file.h>
32 #include <linux/stop_machine.h>
33
34 #include <asm/set_memory.h>
35
36 #include <drm/drmP.h>
37 #include <drm/i915_drm.h>
38
39 #include "i915_drv.h"
40 #include "i915_vgpu.h"
41 #include "i915_trace.h"
42 #include "intel_drv.h"
43 #include "intel_frontbuffer.h"
44
45 #define I915_GFP_DMA (GFP_KERNEL | __GFP_HIGHMEM)
46
47 /**
48 * DOC: Global GTT views
49 *
50 * Background and previous state
51 *
52 * Historically objects could exists (be bound) in global GTT space only as
53 * singular instances with a view representing all of the object's backing pages
54 * in a linear fashion. This view will be called a normal view.
55 *
56 * To support multiple views of the same object, where the number of mapped
57 * pages is not equal to the backing store, or where the layout of the pages
58 * is not linear, concept of a GGTT view was added.
59 *
60 * One example of an alternative view is a stereo display driven by a single
61 * image. In this case we would have a framebuffer looking like this
62 * (2x2 pages):
63 *
64 * 12
65 * 34
66 *
67 * Above would represent a normal GGTT view as normally mapped for GPU or CPU
68 * rendering. In contrast, fed to the display engine would be an alternative
69 * view which could look something like this:
70 *
71 * 1212
72 * 3434
73 *
74 * In this example both the size and layout of pages in the alternative view is
75 * different from the normal view.
76 *
77 * Implementation and usage
78 *
79 * GGTT views are implemented using VMAs and are distinguished via enum
80 * i915_ggtt_view_type and struct i915_ggtt_view.
81 *
82 * A new flavour of core GEM functions which work with GGTT bound objects were
83 * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
84 * renaming in large amounts of code. They take the struct i915_ggtt_view
85 * parameter encapsulating all metadata required to implement a view.
86 *
87 * As a helper for callers which are only interested in the normal view,
88 * globally const i915_ggtt_view_normal singleton instance exists. All old core
89 * GEM API functions, the ones not taking the view parameter, are operating on,
90 * or with the normal GGTT view.
91 *
92 * Code wanting to add or use a new GGTT view needs to:
93 *
94 * 1. Add a new enum with a suitable name.
95 * 2. Extend the metadata in the i915_ggtt_view structure if required.
96 * 3. Add support to i915_get_vma_pages().
97 *
98 * New views are required to build a scatter-gather table from within the
99 * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
100 * exists for the lifetime of an VMA.
101 *
102 * Core API is designed to have copy semantics which means that passed in
103 * struct i915_ggtt_view does not need to be persistent (left around after
104 * calling the core API functions).
105 *
106 */
107
108 static int
109 i915_get_ggtt_vma_pages(struct i915_vma *vma);
110
111 static void gen6_ggtt_invalidate(struct drm_i915_private *dev_priv)
112 {
113 /* Note that as an uncached mmio write, this should flush the
114 * WCB of the writes into the GGTT before it triggers the invalidate.
115 */
116 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
117 }
118
119 static void guc_ggtt_invalidate(struct drm_i915_private *dev_priv)
120 {
121 gen6_ggtt_invalidate(dev_priv);
122 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
123 }
124
125 static void gmch_ggtt_invalidate(struct drm_i915_private *dev_priv)
126 {
127 intel_gtt_chipset_flush();
128 }
129
130 static inline void i915_ggtt_invalidate(struct drm_i915_private *i915)
131 {
132 i915->ggtt.invalidate(i915);
133 }
134
135 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
136 int enable_ppgtt)
137 {
138 bool has_aliasing_ppgtt;
139 bool has_full_ppgtt;
140 bool has_full_48bit_ppgtt;
141
142 has_aliasing_ppgtt = dev_priv->info.has_aliasing_ppgtt;
143 has_full_ppgtt = dev_priv->info.has_full_ppgtt;
144 has_full_48bit_ppgtt = dev_priv->info.has_full_48bit_ppgtt;
145
146 if (intel_vgpu_active(dev_priv)) {
147 /* GVT-g has no support for 32bit ppgtt */
148 has_full_ppgtt = false;
149 has_full_48bit_ppgtt = intel_vgpu_has_full_48bit_ppgtt(dev_priv);
150 }
151
152 if (!has_aliasing_ppgtt)
153 return 0;
154
155 /*
156 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
157 * execlists, the sole mechanism available to submit work.
158 */
159 if (enable_ppgtt == 0 && INTEL_GEN(dev_priv) < 9)
160 return 0;
161
162 if (enable_ppgtt == 1)
163 return 1;
164
165 if (enable_ppgtt == 2 && has_full_ppgtt)
166 return 2;
167
168 if (enable_ppgtt == 3 && has_full_48bit_ppgtt)
169 return 3;
170
171 /* Disable ppgtt on SNB if VT-d is on. */
172 if (IS_GEN6(dev_priv) && intel_vtd_active()) {
173 DRM_INFO("Disabling PPGTT because VT-d is on\n");
174 return 0;
175 }
176
177 /* Early VLV doesn't have this */
178 if (IS_VALLEYVIEW(dev_priv) && dev_priv->drm.pdev->revision < 0xb) {
179 DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
180 return 0;
181 }
182
183 if (INTEL_GEN(dev_priv) >= 8 && i915.enable_execlists) {
184 if (has_full_48bit_ppgtt)
185 return 3;
186
187 if (has_full_ppgtt)
188 return 2;
189 }
190
191 return has_aliasing_ppgtt ? 1 : 0;
192 }
193
194 static int ppgtt_bind_vma(struct i915_vma *vma,
195 enum i915_cache_level cache_level,
196 u32 unused)
197 {
198 u32 pte_flags;
199 int ret;
200
201 if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
202 ret = vma->vm->allocate_va_range(vma->vm, vma->node.start,
203 vma->size);
204 if (ret)
205 return ret;
206 }
207
208 vma->pages = vma->obj->mm.pages;
209
210 /* Currently applicable only to VLV */
211 pte_flags = 0;
212 if (vma->obj->gt_ro)
213 pte_flags |= PTE_READ_ONLY;
214
215 vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
216
217 return 0;
218 }
219
220 static void ppgtt_unbind_vma(struct i915_vma *vma)
221 {
222 vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
223 }
224
225 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
226 enum i915_cache_level level)
227 {
228 gen8_pte_t pte = _PAGE_PRESENT | _PAGE_RW;
229 pte |= addr;
230
231 switch (level) {
232 case I915_CACHE_NONE:
233 pte |= PPAT_UNCACHED_INDEX;
234 break;
235 case I915_CACHE_WT:
236 pte |= PPAT_DISPLAY_ELLC_INDEX;
237 break;
238 default:
239 pte |= PPAT_CACHED_INDEX;
240 break;
241 }
242
243 return pte;
244 }
245
246 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
247 const enum i915_cache_level level)
248 {
249 gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
250 pde |= addr;
251 if (level != I915_CACHE_NONE)
252 pde |= PPAT_CACHED_PDE_INDEX;
253 else
254 pde |= PPAT_UNCACHED_INDEX;
255 return pde;
256 }
257
258 #define gen8_pdpe_encode gen8_pde_encode
259 #define gen8_pml4e_encode gen8_pde_encode
260
261 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
262 enum i915_cache_level level,
263 u32 unused)
264 {
265 gen6_pte_t pte = GEN6_PTE_VALID;
266 pte |= GEN6_PTE_ADDR_ENCODE(addr);
267
268 switch (level) {
269 case I915_CACHE_L3_LLC:
270 case I915_CACHE_LLC:
271 pte |= GEN6_PTE_CACHE_LLC;
272 break;
273 case I915_CACHE_NONE:
274 pte |= GEN6_PTE_UNCACHED;
275 break;
276 default:
277 MISSING_CASE(level);
278 }
279
280 return pte;
281 }
282
283 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
284 enum i915_cache_level level,
285 u32 unused)
286 {
287 gen6_pte_t pte = GEN6_PTE_VALID;
288 pte |= GEN6_PTE_ADDR_ENCODE(addr);
289
290 switch (level) {
291 case I915_CACHE_L3_LLC:
292 pte |= GEN7_PTE_CACHE_L3_LLC;
293 break;
294 case I915_CACHE_LLC:
295 pte |= GEN6_PTE_CACHE_LLC;
296 break;
297 case I915_CACHE_NONE:
298 pte |= GEN6_PTE_UNCACHED;
299 break;
300 default:
301 MISSING_CASE(level);
302 }
303
304 return pte;
305 }
306
307 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
308 enum i915_cache_level level,
309 u32 flags)
310 {
311 gen6_pte_t pte = GEN6_PTE_VALID;
312 pte |= GEN6_PTE_ADDR_ENCODE(addr);
313
314 if (!(flags & PTE_READ_ONLY))
315 pte |= BYT_PTE_WRITEABLE;
316
317 if (level != I915_CACHE_NONE)
318 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
319
320 return pte;
321 }
322
323 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
324 enum i915_cache_level level,
325 u32 unused)
326 {
327 gen6_pte_t pte = GEN6_PTE_VALID;
328 pte |= HSW_PTE_ADDR_ENCODE(addr);
329
330 if (level != I915_CACHE_NONE)
331 pte |= HSW_WB_LLC_AGE3;
332
333 return pte;
334 }
335
336 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
337 enum i915_cache_level level,
338 u32 unused)
339 {
340 gen6_pte_t pte = GEN6_PTE_VALID;
341 pte |= HSW_PTE_ADDR_ENCODE(addr);
342
343 switch (level) {
344 case I915_CACHE_NONE:
345 break;
346 case I915_CACHE_WT:
347 pte |= HSW_WT_ELLC_LLC_AGE3;
348 break;
349 default:
350 pte |= HSW_WB_ELLC_LLC_AGE3;
351 break;
352 }
353
354 return pte;
355 }
356
357 static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
358 {
359 struct page *page;
360
361 if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
362 i915_gem_shrink_all(vm->i915);
363
364 if (vm->free_pages.nr)
365 return vm->free_pages.pages[--vm->free_pages.nr];
366
367 page = alloc_page(gfp);
368 if (!page)
369 return NULL;
370
371 if (vm->pt_kmap_wc)
372 set_pages_array_wc(&page, 1);
373
374 return page;
375 }
376
377 static void vm_free_pages_release(struct i915_address_space *vm)
378 {
379 GEM_BUG_ON(!pagevec_count(&vm->free_pages));
380
381 if (vm->pt_kmap_wc)
382 set_pages_array_wb(vm->free_pages.pages,
383 pagevec_count(&vm->free_pages));
384
385 __pagevec_release(&vm->free_pages);
386 }
387
388 static void vm_free_page(struct i915_address_space *vm, struct page *page)
389 {
390 if (!pagevec_add(&vm->free_pages, page))
391 vm_free_pages_release(vm);
392 }
393
394 static int __setup_page_dma(struct i915_address_space *vm,
395 struct i915_page_dma *p,
396 gfp_t gfp)
397 {
398 p->page = vm_alloc_page(vm, gfp | __GFP_NOWARN | __GFP_NORETRY);
399 if (unlikely(!p->page))
400 return -ENOMEM;
401
402 p->daddr = dma_map_page(vm->dma, p->page, 0, PAGE_SIZE,
403 PCI_DMA_BIDIRECTIONAL);
404 if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
405 vm_free_page(vm, p->page);
406 return -ENOMEM;
407 }
408
409 return 0;
410 }
411
412 static int setup_page_dma(struct i915_address_space *vm,
413 struct i915_page_dma *p)
414 {
415 return __setup_page_dma(vm, p, I915_GFP_DMA);
416 }
417
418 static void cleanup_page_dma(struct i915_address_space *vm,
419 struct i915_page_dma *p)
420 {
421 dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
422 vm_free_page(vm, p->page);
423 }
424
425 #define kmap_atomic_px(px) kmap_atomic(px_base(px)->page)
426
427 #define setup_px(vm, px) setup_page_dma((vm), px_base(px))
428 #define cleanup_px(vm, px) cleanup_page_dma((vm), px_base(px))
429 #define fill_px(ppgtt, px, v) fill_page_dma((vm), px_base(px), (v))
430 #define fill32_px(ppgtt, px, v) fill_page_dma_32((vm), px_base(px), (v))
431
432 static void fill_page_dma(struct i915_address_space *vm,
433 struct i915_page_dma *p,
434 const u64 val)
435 {
436 u64 * const vaddr = kmap_atomic(p->page);
437 int i;
438
439 for (i = 0; i < 512; i++)
440 vaddr[i] = val;
441
442 kunmap_atomic(vaddr);
443 }
444
445 static void fill_page_dma_32(struct i915_address_space *vm,
446 struct i915_page_dma *p,
447 const u32 v)
448 {
449 fill_page_dma(vm, p, (u64)v << 32 | v);
450 }
451
452 static int
453 setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
454 {
455 return __setup_page_dma(vm, &vm->scratch_page, gfp | __GFP_ZERO);
456 }
457
458 static void cleanup_scratch_page(struct i915_address_space *vm)
459 {
460 cleanup_page_dma(vm, &vm->scratch_page);
461 }
462
463 static struct i915_page_table *alloc_pt(struct i915_address_space *vm)
464 {
465 struct i915_page_table *pt;
466
467 pt = kmalloc(sizeof(*pt), GFP_KERNEL | __GFP_NOWARN);
468 if (unlikely(!pt))
469 return ERR_PTR(-ENOMEM);
470
471 if (unlikely(setup_px(vm, pt))) {
472 kfree(pt);
473 return ERR_PTR(-ENOMEM);
474 }
475
476 pt->used_ptes = 0;
477 return pt;
478 }
479
480 static void free_pt(struct i915_address_space *vm, struct i915_page_table *pt)
481 {
482 cleanup_px(vm, pt);
483 kfree(pt);
484 }
485
486 static void gen8_initialize_pt(struct i915_address_space *vm,
487 struct i915_page_table *pt)
488 {
489 fill_px(vm, pt,
490 gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC));
491 }
492
493 static void gen6_initialize_pt(struct i915_address_space *vm,
494 struct i915_page_table *pt)
495 {
496 fill32_px(vm, pt,
497 vm->pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0));
498 }
499
500 static struct i915_page_directory *alloc_pd(struct i915_address_space *vm)
501 {
502 struct i915_page_directory *pd;
503
504 pd = kzalloc(sizeof(*pd), GFP_KERNEL | __GFP_NOWARN);
505 if (unlikely(!pd))
506 return ERR_PTR(-ENOMEM);
507
508 if (unlikely(setup_px(vm, pd))) {
509 kfree(pd);
510 return ERR_PTR(-ENOMEM);
511 }
512
513 pd->used_pdes = 0;
514 return pd;
515 }
516
517 static void free_pd(struct i915_address_space *vm,
518 struct i915_page_directory *pd)
519 {
520 cleanup_px(vm, pd);
521 kfree(pd);
522 }
523
524 static void gen8_initialize_pd(struct i915_address_space *vm,
525 struct i915_page_directory *pd)
526 {
527 unsigned int i;
528
529 fill_px(vm, pd,
530 gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC));
531 for (i = 0; i < I915_PDES; i++)
532 pd->page_table[i] = vm->scratch_pt;
533 }
534
535 static int __pdp_init(struct i915_address_space *vm,
536 struct i915_page_directory_pointer *pdp)
537 {
538 const unsigned int pdpes = i915_pdpes_per_pdp(vm);
539 unsigned int i;
540
541 pdp->page_directory = kmalloc_array(pdpes, sizeof(*pdp->page_directory),
542 GFP_KERNEL | __GFP_NOWARN);
543 if (unlikely(!pdp->page_directory))
544 return -ENOMEM;
545
546 for (i = 0; i < pdpes; i++)
547 pdp->page_directory[i] = vm->scratch_pd;
548
549 return 0;
550 }
551
552 static void __pdp_fini(struct i915_page_directory_pointer *pdp)
553 {
554 kfree(pdp->page_directory);
555 pdp->page_directory = NULL;
556 }
557
558 static inline bool use_4lvl(const struct i915_address_space *vm)
559 {
560 return i915_vm_is_48bit(vm);
561 }
562
563 static struct i915_page_directory_pointer *
564 alloc_pdp(struct i915_address_space *vm)
565 {
566 struct i915_page_directory_pointer *pdp;
567 int ret = -ENOMEM;
568
569 WARN_ON(!use_4lvl(vm));
570
571 pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
572 if (!pdp)
573 return ERR_PTR(-ENOMEM);
574
575 ret = __pdp_init(vm, pdp);
576 if (ret)
577 goto fail_bitmap;
578
579 ret = setup_px(vm, pdp);
580 if (ret)
581 goto fail_page_m;
582
583 return pdp;
584
585 fail_page_m:
586 __pdp_fini(pdp);
587 fail_bitmap:
588 kfree(pdp);
589
590 return ERR_PTR(ret);
591 }
592
593 static void free_pdp(struct i915_address_space *vm,
594 struct i915_page_directory_pointer *pdp)
595 {
596 __pdp_fini(pdp);
597
598 if (!use_4lvl(vm))
599 return;
600
601 cleanup_px(vm, pdp);
602 kfree(pdp);
603 }
604
605 static void gen8_initialize_pdp(struct i915_address_space *vm,
606 struct i915_page_directory_pointer *pdp)
607 {
608 gen8_ppgtt_pdpe_t scratch_pdpe;
609
610 scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
611
612 fill_px(vm, pdp, scratch_pdpe);
613 }
614
615 static void gen8_initialize_pml4(struct i915_address_space *vm,
616 struct i915_pml4 *pml4)
617 {
618 unsigned int i;
619
620 fill_px(vm, pml4,
621 gen8_pml4e_encode(px_dma(vm->scratch_pdp), I915_CACHE_LLC));
622 for (i = 0; i < GEN8_PML4ES_PER_PML4; i++)
623 pml4->pdps[i] = vm->scratch_pdp;
624 }
625
626 /* Broadwell Page Directory Pointer Descriptors */
627 static int gen8_write_pdp(struct drm_i915_gem_request *req,
628 unsigned entry,
629 dma_addr_t addr)
630 {
631 struct intel_engine_cs *engine = req->engine;
632 u32 *cs;
633
634 BUG_ON(entry >= 4);
635
636 cs = intel_ring_begin(req, 6);
637 if (IS_ERR(cs))
638 return PTR_ERR(cs);
639
640 *cs++ = MI_LOAD_REGISTER_IMM(1);
641 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, entry));
642 *cs++ = upper_32_bits(addr);
643 *cs++ = MI_LOAD_REGISTER_IMM(1);
644 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, entry));
645 *cs++ = lower_32_bits(addr);
646 intel_ring_advance(req, cs);
647
648 return 0;
649 }
650
651 static int gen8_mm_switch_3lvl(struct i915_hw_ppgtt *ppgtt,
652 struct drm_i915_gem_request *req)
653 {
654 int i, ret;
655
656 for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
657 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
658
659 ret = gen8_write_pdp(req, i, pd_daddr);
660 if (ret)
661 return ret;
662 }
663
664 return 0;
665 }
666
667 static int gen8_mm_switch_4lvl(struct i915_hw_ppgtt *ppgtt,
668 struct drm_i915_gem_request *req)
669 {
670 return gen8_write_pdp(req, 0, px_dma(&ppgtt->pml4));
671 }
672
673 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
674 * the page table structures, we mark them dirty so that
675 * context switching/execlist queuing code takes extra steps
676 * to ensure that tlbs are flushed.
677 */
678 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
679 {
680 ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.i915)->ring_mask;
681 }
682
683 /* Removes entries from a single page table, releasing it if it's empty.
684 * Caller can use the return value to update higher-level entries.
685 */
686 static bool gen8_ppgtt_clear_pt(struct i915_address_space *vm,
687 struct i915_page_table *pt,
688 u64 start, u64 length)
689 {
690 unsigned int num_entries = gen8_pte_count(start, length);
691 unsigned int pte = gen8_pte_index(start);
692 unsigned int pte_end = pte + num_entries;
693 const gen8_pte_t scratch_pte =
694 gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC);
695 gen8_pte_t *vaddr;
696
697 GEM_BUG_ON(num_entries > pt->used_ptes);
698
699 pt->used_ptes -= num_entries;
700 if (!pt->used_ptes)
701 return true;
702
703 vaddr = kmap_atomic_px(pt);
704 while (pte < pte_end)
705 vaddr[pte++] = scratch_pte;
706 kunmap_atomic(vaddr);
707
708 return false;
709 }
710
711 static void gen8_ppgtt_set_pde(struct i915_address_space *vm,
712 struct i915_page_directory *pd,
713 struct i915_page_table *pt,
714 unsigned int pde)
715 {
716 gen8_pde_t *vaddr;
717
718 pd->page_table[pde] = pt;
719
720 vaddr = kmap_atomic_px(pd);
721 vaddr[pde] = gen8_pde_encode(px_dma(pt), I915_CACHE_LLC);
722 kunmap_atomic(vaddr);
723 }
724
725 static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm,
726 struct i915_page_directory *pd,
727 u64 start, u64 length)
728 {
729 struct i915_page_table *pt;
730 u32 pde;
731
732 gen8_for_each_pde(pt, pd, start, length, pde) {
733 GEM_BUG_ON(pt == vm->scratch_pt);
734
735 if (!gen8_ppgtt_clear_pt(vm, pt, start, length))
736 continue;
737
738 gen8_ppgtt_set_pde(vm, pd, vm->scratch_pt, pde);
739 GEM_BUG_ON(!pd->used_pdes);
740 pd->used_pdes--;
741
742 free_pt(vm, pt);
743 }
744
745 return !pd->used_pdes;
746 }
747
748 static void gen8_ppgtt_set_pdpe(struct i915_address_space *vm,
749 struct i915_page_directory_pointer *pdp,
750 struct i915_page_directory *pd,
751 unsigned int pdpe)
752 {
753 gen8_ppgtt_pdpe_t *vaddr;
754
755 pdp->page_directory[pdpe] = pd;
756 if (!use_4lvl(vm))
757 return;
758
759 vaddr = kmap_atomic_px(pdp);
760 vaddr[pdpe] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
761 kunmap_atomic(vaddr);
762 }
763
764 /* Removes entries from a single page dir pointer, releasing it if it's empty.
765 * Caller can use the return value to update higher-level entries
766 */
767 static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm,
768 struct i915_page_directory_pointer *pdp,
769 u64 start, u64 length)
770 {
771 struct i915_page_directory *pd;
772 unsigned int pdpe;
773
774 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
775 GEM_BUG_ON(pd == vm->scratch_pd);
776
777 if (!gen8_ppgtt_clear_pd(vm, pd, start, length))
778 continue;
779
780 gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
781 GEM_BUG_ON(!pdp->used_pdpes);
782 pdp->used_pdpes--;
783
784 free_pd(vm, pd);
785 }
786
787 return !pdp->used_pdpes;
788 }
789
790 static void gen8_ppgtt_clear_3lvl(struct i915_address_space *vm,
791 u64 start, u64 length)
792 {
793 gen8_ppgtt_clear_pdp(vm, &i915_vm_to_ppgtt(vm)->pdp, start, length);
794 }
795
796 static void gen8_ppgtt_set_pml4e(struct i915_pml4 *pml4,
797 struct i915_page_directory_pointer *pdp,
798 unsigned int pml4e)
799 {
800 gen8_ppgtt_pml4e_t *vaddr;
801
802 pml4->pdps[pml4e] = pdp;
803
804 vaddr = kmap_atomic_px(pml4);
805 vaddr[pml4e] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
806 kunmap_atomic(vaddr);
807 }
808
809 /* Removes entries from a single pml4.
810 * This is the top-level structure in 4-level page tables used on gen8+.
811 * Empty entries are always scratch pml4e.
812 */
813 static void gen8_ppgtt_clear_4lvl(struct i915_address_space *vm,
814 u64 start, u64 length)
815 {
816 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
817 struct i915_pml4 *pml4 = &ppgtt->pml4;
818 struct i915_page_directory_pointer *pdp;
819 unsigned int pml4e;
820
821 GEM_BUG_ON(!use_4lvl(vm));
822
823 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
824 GEM_BUG_ON(pdp == vm->scratch_pdp);
825
826 if (!gen8_ppgtt_clear_pdp(vm, pdp, start, length))
827 continue;
828
829 gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
830
831 free_pdp(vm, pdp);
832 }
833 }
834
835 struct sgt_dma {
836 struct scatterlist *sg;
837 dma_addr_t dma, max;
838 };
839
840 struct gen8_insert_pte {
841 u16 pml4e;
842 u16 pdpe;
843 u16 pde;
844 u16 pte;
845 };
846
847 static __always_inline struct gen8_insert_pte gen8_insert_pte(u64 start)
848 {
849 return (struct gen8_insert_pte) {
850 gen8_pml4e_index(start),
851 gen8_pdpe_index(start),
852 gen8_pde_index(start),
853 gen8_pte_index(start),
854 };
855 }
856
857 static __always_inline bool
858 gen8_ppgtt_insert_pte_entries(struct i915_hw_ppgtt *ppgtt,
859 struct i915_page_directory_pointer *pdp,
860 struct sgt_dma *iter,
861 struct gen8_insert_pte *idx,
862 enum i915_cache_level cache_level)
863 {
864 struct i915_page_directory *pd;
865 const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level);
866 gen8_pte_t *vaddr;
867 bool ret;
868
869 GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->base));
870 pd = pdp->page_directory[idx->pdpe];
871 vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
872 do {
873 vaddr[idx->pte] = pte_encode | iter->dma;
874
875 iter->dma += PAGE_SIZE;
876 if (iter->dma >= iter->max) {
877 iter->sg = __sg_next(iter->sg);
878 if (!iter->sg) {
879 ret = false;
880 break;
881 }
882
883 iter->dma = sg_dma_address(iter->sg);
884 iter->max = iter->dma + iter->sg->length;
885 }
886
887 if (++idx->pte == GEN8_PTES) {
888 idx->pte = 0;
889
890 if (++idx->pde == I915_PDES) {
891 idx->pde = 0;
892
893 /* Limited by sg length for 3lvl */
894 if (++idx->pdpe == GEN8_PML4ES_PER_PML4) {
895 idx->pdpe = 0;
896 ret = true;
897 break;
898 }
899
900 GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->base));
901 pd = pdp->page_directory[idx->pdpe];
902 }
903
904 kunmap_atomic(vaddr);
905 vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
906 }
907 } while (1);
908 kunmap_atomic(vaddr);
909
910 return ret;
911 }
912
913 static void gen8_ppgtt_insert_3lvl(struct i915_address_space *vm,
914 struct i915_vma *vma,
915 enum i915_cache_level cache_level,
916 u32 unused)
917 {
918 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
919 struct sgt_dma iter = {
920 .sg = vma->pages->sgl,
921 .dma = sg_dma_address(iter.sg),
922 .max = iter.dma + iter.sg->length,
923 };
924 struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
925
926 gen8_ppgtt_insert_pte_entries(ppgtt, &ppgtt->pdp, &iter, &idx,
927 cache_level);
928 }
929
930 static void gen8_ppgtt_insert_4lvl(struct i915_address_space *vm,
931 struct i915_vma *vma,
932 enum i915_cache_level cache_level,
933 u32 unused)
934 {
935 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
936 struct sgt_dma iter = {
937 .sg = vma->pages->sgl,
938 .dma = sg_dma_address(iter.sg),
939 .max = iter.dma + iter.sg->length,
940 };
941 struct i915_page_directory_pointer **pdps = ppgtt->pml4.pdps;
942 struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
943
944 while (gen8_ppgtt_insert_pte_entries(ppgtt, pdps[idx.pml4e++], &iter,
945 &idx, cache_level))
946 GEM_BUG_ON(idx.pml4e >= GEN8_PML4ES_PER_PML4);
947 }
948
949 static void gen8_free_page_tables(struct i915_address_space *vm,
950 struct i915_page_directory *pd)
951 {
952 int i;
953
954 if (!px_page(pd))
955 return;
956
957 for (i = 0; i < I915_PDES; i++) {
958 if (pd->page_table[i] != vm->scratch_pt)
959 free_pt(vm, pd->page_table[i]);
960 }
961 }
962
963 static int gen8_init_scratch(struct i915_address_space *vm)
964 {
965 int ret;
966
967 ret = setup_scratch_page(vm, I915_GFP_DMA);
968 if (ret)
969 return ret;
970
971 vm->scratch_pt = alloc_pt(vm);
972 if (IS_ERR(vm->scratch_pt)) {
973 ret = PTR_ERR(vm->scratch_pt);
974 goto free_scratch_page;
975 }
976
977 vm->scratch_pd = alloc_pd(vm);
978 if (IS_ERR(vm->scratch_pd)) {
979 ret = PTR_ERR(vm->scratch_pd);
980 goto free_pt;
981 }
982
983 if (use_4lvl(vm)) {
984 vm->scratch_pdp = alloc_pdp(vm);
985 if (IS_ERR(vm->scratch_pdp)) {
986 ret = PTR_ERR(vm->scratch_pdp);
987 goto free_pd;
988 }
989 }
990
991 gen8_initialize_pt(vm, vm->scratch_pt);
992 gen8_initialize_pd(vm, vm->scratch_pd);
993 if (use_4lvl(vm))
994 gen8_initialize_pdp(vm, vm->scratch_pdp);
995
996 return 0;
997
998 free_pd:
999 free_pd(vm, vm->scratch_pd);
1000 free_pt:
1001 free_pt(vm, vm->scratch_pt);
1002 free_scratch_page:
1003 cleanup_scratch_page(vm);
1004
1005 return ret;
1006 }
1007
1008 static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
1009 {
1010 struct i915_address_space *vm = &ppgtt->base;
1011 struct drm_i915_private *dev_priv = vm->i915;
1012 enum vgt_g2v_type msg;
1013 int i;
1014
1015 if (use_4lvl(vm)) {
1016 const u64 daddr = px_dma(&ppgtt->pml4);
1017
1018 I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
1019 I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
1020
1021 msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
1022 VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
1023 } else {
1024 for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1025 const u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
1026
1027 I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
1028 I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
1029 }
1030
1031 msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
1032 VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
1033 }
1034
1035 I915_WRITE(vgtif_reg(g2v_notify), msg);
1036
1037 return 0;
1038 }
1039
1040 static void gen8_free_scratch(struct i915_address_space *vm)
1041 {
1042 if (use_4lvl(vm))
1043 free_pdp(vm, vm->scratch_pdp);
1044 free_pd(vm, vm->scratch_pd);
1045 free_pt(vm, vm->scratch_pt);
1046 cleanup_scratch_page(vm);
1047 }
1048
1049 static void gen8_ppgtt_cleanup_3lvl(struct i915_address_space *vm,
1050 struct i915_page_directory_pointer *pdp)
1051 {
1052 const unsigned int pdpes = i915_pdpes_per_pdp(vm);
1053 int i;
1054
1055 for (i = 0; i < pdpes; i++) {
1056 if (pdp->page_directory[i] == vm->scratch_pd)
1057 continue;
1058
1059 gen8_free_page_tables(vm, pdp->page_directory[i]);
1060 free_pd(vm, pdp->page_directory[i]);
1061 }
1062
1063 free_pdp(vm, pdp);
1064 }
1065
1066 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
1067 {
1068 int i;
1069
1070 for (i = 0; i < GEN8_PML4ES_PER_PML4; i++) {
1071 if (ppgtt->pml4.pdps[i] == ppgtt->base.scratch_pdp)
1072 continue;
1073
1074 gen8_ppgtt_cleanup_3lvl(&ppgtt->base, ppgtt->pml4.pdps[i]);
1075 }
1076
1077 cleanup_px(&ppgtt->base, &ppgtt->pml4);
1078 }
1079
1080 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
1081 {
1082 struct drm_i915_private *dev_priv = vm->i915;
1083 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1084
1085 if (intel_vgpu_active(dev_priv))
1086 gen8_ppgtt_notify_vgt(ppgtt, false);
1087
1088 if (use_4lvl(vm))
1089 gen8_ppgtt_cleanup_4lvl(ppgtt);
1090 else
1091 gen8_ppgtt_cleanup_3lvl(&ppgtt->base, &ppgtt->pdp);
1092
1093 gen8_free_scratch(vm);
1094 }
1095
1096 static int gen8_ppgtt_alloc_pd(struct i915_address_space *vm,
1097 struct i915_page_directory *pd,
1098 u64 start, u64 length)
1099 {
1100 struct i915_page_table *pt;
1101 u64 from = start;
1102 unsigned int pde;
1103
1104 gen8_for_each_pde(pt, pd, start, length, pde) {
1105 if (pt == vm->scratch_pt) {
1106 pt = alloc_pt(vm);
1107 if (IS_ERR(pt))
1108 goto unwind;
1109
1110 gen8_initialize_pt(vm, pt);
1111
1112 gen8_ppgtt_set_pde(vm, pd, pt, pde);
1113 pd->used_pdes++;
1114 GEM_BUG_ON(pd->used_pdes > I915_PDES);
1115 }
1116
1117 pt->used_ptes += gen8_pte_count(start, length);
1118 }
1119 return 0;
1120
1121 unwind:
1122 gen8_ppgtt_clear_pd(vm, pd, from, start - from);
1123 return -ENOMEM;
1124 }
1125
1126 static int gen8_ppgtt_alloc_pdp(struct i915_address_space *vm,
1127 struct i915_page_directory_pointer *pdp,
1128 u64 start, u64 length)
1129 {
1130 struct i915_page_directory *pd;
1131 u64 from = start;
1132 unsigned int pdpe;
1133 int ret;
1134
1135 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1136 if (pd == vm->scratch_pd) {
1137 pd = alloc_pd(vm);
1138 if (IS_ERR(pd))
1139 goto unwind;
1140
1141 gen8_initialize_pd(vm, pd);
1142 gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1143 pdp->used_pdpes++;
1144 GEM_BUG_ON(pdp->used_pdpes > i915_pdpes_per_pdp(vm));
1145
1146 mark_tlbs_dirty(i915_vm_to_ppgtt(vm));
1147 }
1148
1149 ret = gen8_ppgtt_alloc_pd(vm, pd, start, length);
1150 if (unlikely(ret))
1151 goto unwind_pd;
1152 }
1153
1154 return 0;
1155
1156 unwind_pd:
1157 if (!pd->used_pdes) {
1158 gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
1159 GEM_BUG_ON(!pdp->used_pdpes);
1160 pdp->used_pdpes--;
1161 free_pd(vm, pd);
1162 }
1163 unwind:
1164 gen8_ppgtt_clear_pdp(vm, pdp, from, start - from);
1165 return -ENOMEM;
1166 }
1167
1168 static int gen8_ppgtt_alloc_3lvl(struct i915_address_space *vm,
1169 u64 start, u64 length)
1170 {
1171 return gen8_ppgtt_alloc_pdp(vm,
1172 &i915_vm_to_ppgtt(vm)->pdp, start, length);
1173 }
1174
1175 static int gen8_ppgtt_alloc_4lvl(struct i915_address_space *vm,
1176 u64 start, u64 length)
1177 {
1178 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1179 struct i915_pml4 *pml4 = &ppgtt->pml4;
1180 struct i915_page_directory_pointer *pdp;
1181 u64 from = start;
1182 u32 pml4e;
1183 int ret;
1184
1185 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1186 if (pml4->pdps[pml4e] == vm->scratch_pdp) {
1187 pdp = alloc_pdp(vm);
1188 if (IS_ERR(pdp))
1189 goto unwind;
1190
1191 gen8_initialize_pdp(vm, pdp);
1192 gen8_ppgtt_set_pml4e(pml4, pdp, pml4e);
1193 }
1194
1195 ret = gen8_ppgtt_alloc_pdp(vm, pdp, start, length);
1196 if (unlikely(ret))
1197 goto unwind_pdp;
1198 }
1199
1200 return 0;
1201
1202 unwind_pdp:
1203 if (!pdp->used_pdpes) {
1204 gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
1205 free_pdp(vm, pdp);
1206 }
1207 unwind:
1208 gen8_ppgtt_clear_4lvl(vm, from, start - from);
1209 return -ENOMEM;
1210 }
1211
1212 static void gen8_dump_pdp(struct i915_hw_ppgtt *ppgtt,
1213 struct i915_page_directory_pointer *pdp,
1214 u64 start, u64 length,
1215 gen8_pte_t scratch_pte,
1216 struct seq_file *m)
1217 {
1218 struct i915_address_space *vm = &ppgtt->base;
1219 struct i915_page_directory *pd;
1220 u32 pdpe;
1221
1222 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1223 struct i915_page_table *pt;
1224 u64 pd_len = length;
1225 u64 pd_start = start;
1226 u32 pde;
1227
1228 if (pdp->page_directory[pdpe] == ppgtt->base.scratch_pd)
1229 continue;
1230
1231 seq_printf(m, "\tPDPE #%d\n", pdpe);
1232 gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1233 u32 pte;
1234 gen8_pte_t *pt_vaddr;
1235
1236 if (pd->page_table[pde] == ppgtt->base.scratch_pt)
1237 continue;
1238
1239 pt_vaddr = kmap_atomic_px(pt);
1240 for (pte = 0; pte < GEN8_PTES; pte += 4) {
1241 u64 va = (pdpe << GEN8_PDPE_SHIFT |
1242 pde << GEN8_PDE_SHIFT |
1243 pte << GEN8_PTE_SHIFT);
1244 int i;
1245 bool found = false;
1246
1247 for (i = 0; i < 4; i++)
1248 if (pt_vaddr[pte + i] != scratch_pte)
1249 found = true;
1250 if (!found)
1251 continue;
1252
1253 seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
1254 for (i = 0; i < 4; i++) {
1255 if (pt_vaddr[pte + i] != scratch_pte)
1256 seq_printf(m, " %llx", pt_vaddr[pte + i]);
1257 else
1258 seq_puts(m, " SCRATCH ");
1259 }
1260 seq_puts(m, "\n");
1261 }
1262 kunmap_atomic(pt_vaddr);
1263 }
1264 }
1265 }
1266
1267 static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1268 {
1269 struct i915_address_space *vm = &ppgtt->base;
1270 const gen8_pte_t scratch_pte =
1271 gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC);
1272 u64 start = 0, length = ppgtt->base.total;
1273
1274 if (use_4lvl(vm)) {
1275 u64 pml4e;
1276 struct i915_pml4 *pml4 = &ppgtt->pml4;
1277 struct i915_page_directory_pointer *pdp;
1278
1279 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1280 if (pml4->pdps[pml4e] == ppgtt->base.scratch_pdp)
1281 continue;
1282
1283 seq_printf(m, " PML4E #%llu\n", pml4e);
1284 gen8_dump_pdp(ppgtt, pdp, start, length, scratch_pte, m);
1285 }
1286 } else {
1287 gen8_dump_pdp(ppgtt, &ppgtt->pdp, start, length, scratch_pte, m);
1288 }
1289 }
1290
1291 static int gen8_preallocate_top_level_pdp(struct i915_hw_ppgtt *ppgtt)
1292 {
1293 struct i915_address_space *vm = &ppgtt->base;
1294 struct i915_page_directory_pointer *pdp = &ppgtt->pdp;
1295 struct i915_page_directory *pd;
1296 u64 start = 0, length = ppgtt->base.total;
1297 u64 from = start;
1298 unsigned int pdpe;
1299
1300 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1301 pd = alloc_pd(vm);
1302 if (IS_ERR(pd))
1303 goto unwind;
1304
1305 gen8_initialize_pd(vm, pd);
1306 gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1307 pdp->used_pdpes++;
1308 }
1309
1310 pdp->used_pdpes++; /* never remove */
1311 return 0;
1312
1313 unwind:
1314 start -= from;
1315 gen8_for_each_pdpe(pd, pdp, from, start, pdpe) {
1316 gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
1317 free_pd(vm, pd);
1318 }
1319 pdp->used_pdpes = 0;
1320 return -ENOMEM;
1321 }
1322
1323 /*
1324 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1325 * with a net effect resembling a 2-level page table in normal x86 terms. Each
1326 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1327 * space.
1328 *
1329 */
1330 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1331 {
1332 struct i915_address_space *vm = &ppgtt->base;
1333 struct drm_i915_private *dev_priv = vm->i915;
1334 int ret;
1335
1336 ppgtt->base.total = USES_FULL_48BIT_PPGTT(dev_priv) ?
1337 1ULL << 48 :
1338 1ULL << 32;
1339
1340 ret = gen8_init_scratch(&ppgtt->base);
1341 if (ret) {
1342 ppgtt->base.total = 0;
1343 return ret;
1344 }
1345
1346 /* There are only few exceptions for gen >=6. chv and bxt.
1347 * And we are not sure about the latter so play safe for now.
1348 */
1349 if (IS_CHERRYVIEW(dev_priv) || IS_BROXTON(dev_priv))
1350 ppgtt->base.pt_kmap_wc = true;
1351
1352 if (use_4lvl(vm)) {
1353 ret = setup_px(&ppgtt->base, &ppgtt->pml4);
1354 if (ret)
1355 goto free_scratch;
1356
1357 gen8_initialize_pml4(&ppgtt->base, &ppgtt->pml4);
1358
1359 ppgtt->switch_mm = gen8_mm_switch_4lvl;
1360 ppgtt->base.allocate_va_range = gen8_ppgtt_alloc_4lvl;
1361 ppgtt->base.insert_entries = gen8_ppgtt_insert_4lvl;
1362 ppgtt->base.clear_range = gen8_ppgtt_clear_4lvl;
1363 } else {
1364 ret = __pdp_init(&ppgtt->base, &ppgtt->pdp);
1365 if (ret)
1366 goto free_scratch;
1367
1368 if (intel_vgpu_active(dev_priv)) {
1369 ret = gen8_preallocate_top_level_pdp(ppgtt);
1370 if (ret) {
1371 __pdp_fini(&ppgtt->pdp);
1372 goto free_scratch;
1373 }
1374 }
1375
1376 ppgtt->switch_mm = gen8_mm_switch_3lvl;
1377 ppgtt->base.allocate_va_range = gen8_ppgtt_alloc_3lvl;
1378 ppgtt->base.insert_entries = gen8_ppgtt_insert_3lvl;
1379 ppgtt->base.clear_range = gen8_ppgtt_clear_3lvl;
1380 }
1381
1382 if (intel_vgpu_active(dev_priv))
1383 gen8_ppgtt_notify_vgt(ppgtt, true);
1384
1385 ppgtt->base.cleanup = gen8_ppgtt_cleanup;
1386 ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1387 ppgtt->base.bind_vma = ppgtt_bind_vma;
1388 ppgtt->debug_dump = gen8_dump_ppgtt;
1389
1390 return 0;
1391
1392 free_scratch:
1393 gen8_free_scratch(&ppgtt->base);
1394 return ret;
1395 }
1396
1397 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1398 {
1399 struct i915_address_space *vm = &ppgtt->base;
1400 struct i915_page_table *unused;
1401 gen6_pte_t scratch_pte;
1402 u32 pd_entry, pte, pde;
1403 u32 start = 0, length = ppgtt->base.total;
1404
1405 scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
1406 I915_CACHE_LLC, 0);
1407
1408 gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde) {
1409 u32 expected;
1410 gen6_pte_t *pt_vaddr;
1411 const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]);
1412 pd_entry = readl(ppgtt->pd_addr + pde);
1413 expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
1414
1415 if (pd_entry != expected)
1416 seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1417 pde,
1418 pd_entry,
1419 expected);
1420 seq_printf(m, "\tPDE: %x\n", pd_entry);
1421
1422 pt_vaddr = kmap_atomic_px(ppgtt->pd.page_table[pde]);
1423
1424 for (pte = 0; pte < GEN6_PTES; pte+=4) {
1425 unsigned long va =
1426 (pde * PAGE_SIZE * GEN6_PTES) +
1427 (pte * PAGE_SIZE);
1428 int i;
1429 bool found = false;
1430 for (i = 0; i < 4; i++)
1431 if (pt_vaddr[pte + i] != scratch_pte)
1432 found = true;
1433 if (!found)
1434 continue;
1435
1436 seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
1437 for (i = 0; i < 4; i++) {
1438 if (pt_vaddr[pte + i] != scratch_pte)
1439 seq_printf(m, " %08x", pt_vaddr[pte + i]);
1440 else
1441 seq_puts(m, " SCRATCH ");
1442 }
1443 seq_puts(m, "\n");
1444 }
1445 kunmap_atomic(pt_vaddr);
1446 }
1447 }
1448
1449 /* Write pde (index) from the page directory @pd to the page table @pt */
1450 static inline void gen6_write_pde(const struct i915_hw_ppgtt *ppgtt,
1451 const unsigned int pde,
1452 const struct i915_page_table *pt)
1453 {
1454 /* Caller needs to make sure the write completes if necessary */
1455 writel_relaxed(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID,
1456 ppgtt->pd_addr + pde);
1457 }
1458
1459 /* Write all the page tables found in the ppgtt structure to incrementing page
1460 * directories. */
1461 static void gen6_write_page_range(struct i915_hw_ppgtt *ppgtt,
1462 u32 start, u32 length)
1463 {
1464 struct i915_page_table *pt;
1465 unsigned int pde;
1466
1467 gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde)
1468 gen6_write_pde(ppgtt, pde, pt);
1469
1470 mark_tlbs_dirty(ppgtt);
1471 wmb();
1472 }
1473
1474 static inline u32 get_pd_offset(struct i915_hw_ppgtt *ppgtt)
1475 {
1476 GEM_BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f);
1477 return ppgtt->pd.base.ggtt_offset << 10;
1478 }
1479
1480 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
1481 struct drm_i915_gem_request *req)
1482 {
1483 struct intel_engine_cs *engine = req->engine;
1484 u32 *cs;
1485
1486 /* NB: TLBs must be flushed and invalidated before a switch */
1487 cs = intel_ring_begin(req, 6);
1488 if (IS_ERR(cs))
1489 return PTR_ERR(cs);
1490
1491 *cs++ = MI_LOAD_REGISTER_IMM(2);
1492 *cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine));
1493 *cs++ = PP_DIR_DCLV_2G;
1494 *cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine));
1495 *cs++ = get_pd_offset(ppgtt);
1496 *cs++ = MI_NOOP;
1497 intel_ring_advance(req, cs);
1498
1499 return 0;
1500 }
1501
1502 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
1503 struct drm_i915_gem_request *req)
1504 {
1505 struct intel_engine_cs *engine = req->engine;
1506 u32 *cs;
1507
1508 /* NB: TLBs must be flushed and invalidated before a switch */
1509 cs = intel_ring_begin(req, 6);
1510 if (IS_ERR(cs))
1511 return PTR_ERR(cs);
1512
1513 *cs++ = MI_LOAD_REGISTER_IMM(2);
1514 *cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine));
1515 *cs++ = PP_DIR_DCLV_2G;
1516 *cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine));
1517 *cs++ = get_pd_offset(ppgtt);
1518 *cs++ = MI_NOOP;
1519 intel_ring_advance(req, cs);
1520
1521 return 0;
1522 }
1523
1524 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1525 struct drm_i915_gem_request *req)
1526 {
1527 struct intel_engine_cs *engine = req->engine;
1528 struct drm_i915_private *dev_priv = req->i915;
1529
1530 I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
1531 I915_WRITE(RING_PP_DIR_BASE(engine), get_pd_offset(ppgtt));
1532 return 0;
1533 }
1534
1535 static void gen8_ppgtt_enable(struct drm_i915_private *dev_priv)
1536 {
1537 struct intel_engine_cs *engine;
1538 enum intel_engine_id id;
1539
1540 for_each_engine(engine, dev_priv, id) {
1541 u32 four_level = USES_FULL_48BIT_PPGTT(dev_priv) ?
1542 GEN8_GFX_PPGTT_48B : 0;
1543 I915_WRITE(RING_MODE_GEN7(engine),
1544 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
1545 }
1546 }
1547
1548 static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv)
1549 {
1550 struct intel_engine_cs *engine;
1551 u32 ecochk, ecobits;
1552 enum intel_engine_id id;
1553
1554 ecobits = I915_READ(GAC_ECO_BITS);
1555 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1556
1557 ecochk = I915_READ(GAM_ECOCHK);
1558 if (IS_HASWELL(dev_priv)) {
1559 ecochk |= ECOCHK_PPGTT_WB_HSW;
1560 } else {
1561 ecochk |= ECOCHK_PPGTT_LLC_IVB;
1562 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1563 }
1564 I915_WRITE(GAM_ECOCHK, ecochk);
1565
1566 for_each_engine(engine, dev_priv, id) {
1567 /* GFX_MODE is per-ring on gen7+ */
1568 I915_WRITE(RING_MODE_GEN7(engine),
1569 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1570 }
1571 }
1572
1573 static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv)
1574 {
1575 u32 ecochk, gab_ctl, ecobits;
1576
1577 ecobits = I915_READ(GAC_ECO_BITS);
1578 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1579 ECOBITS_PPGTT_CACHE64B);
1580
1581 gab_ctl = I915_READ(GAB_CTL);
1582 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1583
1584 ecochk = I915_READ(GAM_ECOCHK);
1585 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1586
1587 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1588 }
1589
1590 /* PPGTT support for Sandybdrige/Gen6 and later */
1591 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1592 u64 start, u64 length)
1593 {
1594 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1595 unsigned int first_entry = start >> PAGE_SHIFT;
1596 unsigned int pde = first_entry / GEN6_PTES;
1597 unsigned int pte = first_entry % GEN6_PTES;
1598 unsigned int num_entries = length >> PAGE_SHIFT;
1599 gen6_pte_t scratch_pte =
1600 vm->pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0);
1601
1602 while (num_entries) {
1603 struct i915_page_table *pt = ppgtt->pd.page_table[pde++];
1604 unsigned int end = min(pte + num_entries, GEN6_PTES);
1605 gen6_pte_t *vaddr;
1606
1607 num_entries -= end - pte;
1608
1609 /* Note that the hw doesn't support removing PDE on the fly
1610 * (they are cached inside the context with no means to
1611 * invalidate the cache), so we can only reset the PTE
1612 * entries back to scratch.
1613 */
1614
1615 vaddr = kmap_atomic_px(pt);
1616 do {
1617 vaddr[pte++] = scratch_pte;
1618 } while (pte < end);
1619 kunmap_atomic(vaddr);
1620
1621 pte = 0;
1622 }
1623 }
1624
1625 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1626 struct i915_vma *vma,
1627 enum i915_cache_level cache_level,
1628 u32 flags)
1629 {
1630 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1631 unsigned first_entry = vma->node.start >> PAGE_SHIFT;
1632 unsigned act_pt = first_entry / GEN6_PTES;
1633 unsigned act_pte = first_entry % GEN6_PTES;
1634 const u32 pte_encode = vm->pte_encode(0, cache_level, flags);
1635 struct sgt_dma iter;
1636 gen6_pte_t *vaddr;
1637
1638 vaddr = kmap_atomic_px(ppgtt->pd.page_table[act_pt]);
1639 iter.sg = vma->pages->sgl;
1640 iter.dma = sg_dma_address(iter.sg);
1641 iter.max = iter.dma + iter.sg->length;
1642 do {
1643 vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma);
1644
1645 iter.dma += PAGE_SIZE;
1646 if (iter.dma == iter.max) {
1647 iter.sg = __sg_next(iter.sg);
1648 if (!iter.sg)
1649 break;
1650
1651 iter.dma = sg_dma_address(iter.sg);
1652 iter.max = iter.dma + iter.sg->length;
1653 }
1654
1655 if (++act_pte == GEN6_PTES) {
1656 kunmap_atomic(vaddr);
1657 vaddr = kmap_atomic_px(ppgtt->pd.page_table[++act_pt]);
1658 act_pte = 0;
1659 }
1660 } while (1);
1661 kunmap_atomic(vaddr);
1662 }
1663
1664 static int gen6_alloc_va_range(struct i915_address_space *vm,
1665 u64 start, u64 length)
1666 {
1667 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1668 struct i915_page_table *pt;
1669 u64 from = start;
1670 unsigned int pde;
1671 bool flush = false;
1672
1673 gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) {
1674 if (pt == vm->scratch_pt) {
1675 pt = alloc_pt(vm);
1676 if (IS_ERR(pt))
1677 goto unwind_out;
1678
1679 gen6_initialize_pt(vm, pt);
1680 ppgtt->pd.page_table[pde] = pt;
1681 gen6_write_pde(ppgtt, pde, pt);
1682 flush = true;
1683 }
1684 }
1685
1686 if (flush) {
1687 mark_tlbs_dirty(ppgtt);
1688 wmb();
1689 }
1690
1691 return 0;
1692
1693 unwind_out:
1694 gen6_ppgtt_clear_range(vm, from, start);
1695 return -ENOMEM;
1696 }
1697
1698 static int gen6_init_scratch(struct i915_address_space *vm)
1699 {
1700 int ret;
1701
1702 ret = setup_scratch_page(vm, I915_GFP_DMA);
1703 if (ret)
1704 return ret;
1705
1706 vm->scratch_pt = alloc_pt(vm);
1707 if (IS_ERR(vm->scratch_pt)) {
1708 cleanup_scratch_page(vm);
1709 return PTR_ERR(vm->scratch_pt);
1710 }
1711
1712 gen6_initialize_pt(vm, vm->scratch_pt);
1713
1714 return 0;
1715 }
1716
1717 static void gen6_free_scratch(struct i915_address_space *vm)
1718 {
1719 free_pt(vm, vm->scratch_pt);
1720 cleanup_scratch_page(vm);
1721 }
1722
1723 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1724 {
1725 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1726 struct i915_page_directory *pd = &ppgtt->pd;
1727 struct i915_page_table *pt;
1728 u32 pde;
1729
1730 drm_mm_remove_node(&ppgtt->node);
1731
1732 gen6_for_all_pdes(pt, pd, pde)
1733 if (pt != vm->scratch_pt)
1734 free_pt(vm, pt);
1735
1736 gen6_free_scratch(vm);
1737 }
1738
1739 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1740 {
1741 struct i915_address_space *vm = &ppgtt->base;
1742 struct drm_i915_private *dev_priv = ppgtt->base.i915;
1743 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1744 int ret;
1745
1746 /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
1747 * allocator works in address space sizes, so it's multiplied by page
1748 * size. We allocate at the top of the GTT to avoid fragmentation.
1749 */
1750 BUG_ON(!drm_mm_initialized(&ggtt->base.mm));
1751
1752 ret = gen6_init_scratch(vm);
1753 if (ret)
1754 return ret;
1755
1756 ret = i915_gem_gtt_insert(&ggtt->base, &ppgtt->node,
1757 GEN6_PD_SIZE, GEN6_PD_ALIGN,
1758 I915_COLOR_UNEVICTABLE,
1759 0, ggtt->base.total,
1760 PIN_HIGH);
1761 if (ret)
1762 goto err_out;
1763
1764 if (ppgtt->node.start < ggtt->mappable_end)
1765 DRM_DEBUG("Forced to use aperture for PDEs\n");
1766
1767 ppgtt->pd.base.ggtt_offset =
1768 ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
1769
1770 ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm +
1771 ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
1772
1773 return 0;
1774
1775 err_out:
1776 gen6_free_scratch(vm);
1777 return ret;
1778 }
1779
1780 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
1781 {
1782 return gen6_ppgtt_allocate_page_directories(ppgtt);
1783 }
1784
1785 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
1786 u64 start, u64 length)
1787 {
1788 struct i915_page_table *unused;
1789 u32 pde;
1790
1791 gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde)
1792 ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt;
1793 }
1794
1795 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1796 {
1797 struct drm_i915_private *dev_priv = ppgtt->base.i915;
1798 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1799 int ret;
1800
1801 ppgtt->base.pte_encode = ggtt->base.pte_encode;
1802 if (intel_vgpu_active(dev_priv) || IS_GEN6(dev_priv))
1803 ppgtt->switch_mm = gen6_mm_switch;
1804 else if (IS_HASWELL(dev_priv))
1805 ppgtt->switch_mm = hsw_mm_switch;
1806 else if (IS_GEN7(dev_priv))
1807 ppgtt->switch_mm = gen7_mm_switch;
1808 else
1809 BUG();
1810
1811 ret = gen6_ppgtt_alloc(ppgtt);
1812 if (ret)
1813 return ret;
1814
1815 ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
1816
1817 gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
1818 gen6_write_page_range(ppgtt, 0, ppgtt->base.total);
1819
1820 ret = gen6_alloc_va_range(&ppgtt->base, 0, ppgtt->base.total);
1821 if (ret) {
1822 gen6_ppgtt_cleanup(&ppgtt->base);
1823 return ret;
1824 }
1825
1826 ppgtt->base.clear_range = gen6_ppgtt_clear_range;
1827 ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
1828 ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1829 ppgtt->base.bind_vma = ppgtt_bind_vma;
1830 ppgtt->base.cleanup = gen6_ppgtt_cleanup;
1831 ppgtt->debug_dump = gen6_dump_ppgtt;
1832
1833 DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
1834 ppgtt->node.size >> 20,
1835 ppgtt->node.start / PAGE_SIZE);
1836
1837 DRM_DEBUG_DRIVER("Adding PPGTT at offset %x\n",
1838 ppgtt->pd.base.ggtt_offset << 10);
1839
1840 return 0;
1841 }
1842
1843 static int __hw_ppgtt_init(struct i915_hw_ppgtt *ppgtt,
1844 struct drm_i915_private *dev_priv)
1845 {
1846 ppgtt->base.i915 = dev_priv;
1847 ppgtt->base.dma = &dev_priv->drm.pdev->dev;
1848
1849 if (INTEL_INFO(dev_priv)->gen < 8)
1850 return gen6_ppgtt_init(ppgtt);
1851 else
1852 return gen8_ppgtt_init(ppgtt);
1853 }
1854
1855 static void i915_address_space_init(struct i915_address_space *vm,
1856 struct drm_i915_private *dev_priv,
1857 const char *name)
1858 {
1859 i915_gem_timeline_init(dev_priv, &vm->timeline, name);
1860
1861 drm_mm_init(&vm->mm, 0, vm->total);
1862 vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;
1863
1864 INIT_LIST_HEAD(&vm->active_list);
1865 INIT_LIST_HEAD(&vm->inactive_list);
1866 INIT_LIST_HEAD(&vm->unbound_list);
1867
1868 list_add_tail(&vm->global_link, &dev_priv->vm_list);
1869 pagevec_init(&vm->free_pages, false);
1870 }
1871
1872 static void i915_address_space_fini(struct i915_address_space *vm)
1873 {
1874 if (pagevec_count(&vm->free_pages))
1875 vm_free_pages_release(vm);
1876
1877 i915_gem_timeline_fini(&vm->timeline);
1878 drm_mm_takedown(&vm->mm);
1879 list_del(&vm->global_link);
1880 }
1881
1882 static void gtt_write_workarounds(struct drm_i915_private *dev_priv)
1883 {
1884 /* This function is for gtt related workarounds. This function is
1885 * called on driver load and after a GPU reset, so you can place
1886 * workarounds here even if they get overwritten by GPU reset.
1887 */
1888 /* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl */
1889 if (IS_BROADWELL(dev_priv))
1890 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
1891 else if (IS_CHERRYVIEW(dev_priv))
1892 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
1893 else if (IS_GEN9_BC(dev_priv))
1894 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
1895 else if (IS_GEN9_LP(dev_priv))
1896 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
1897 }
1898
1899 int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv)
1900 {
1901 gtt_write_workarounds(dev_priv);
1902
1903 /* In the case of execlists, PPGTT is enabled by the context descriptor
1904 * and the PDPs are contained within the context itself. We don't
1905 * need to do anything here. */
1906 if (i915.enable_execlists)
1907 return 0;
1908
1909 if (!USES_PPGTT(dev_priv))
1910 return 0;
1911
1912 if (IS_GEN6(dev_priv))
1913 gen6_ppgtt_enable(dev_priv);
1914 else if (IS_GEN7(dev_priv))
1915 gen7_ppgtt_enable(dev_priv);
1916 else if (INTEL_GEN(dev_priv) >= 8)
1917 gen8_ppgtt_enable(dev_priv);
1918 else
1919 MISSING_CASE(INTEL_GEN(dev_priv));
1920
1921 return 0;
1922 }
1923
1924 struct i915_hw_ppgtt *
1925 i915_ppgtt_create(struct drm_i915_private *dev_priv,
1926 struct drm_i915_file_private *fpriv,
1927 const char *name)
1928 {
1929 struct i915_hw_ppgtt *ppgtt;
1930 int ret;
1931
1932 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
1933 if (!ppgtt)
1934 return ERR_PTR(-ENOMEM);
1935
1936 ret = __hw_ppgtt_init(ppgtt, dev_priv);
1937 if (ret) {
1938 kfree(ppgtt);
1939 return ERR_PTR(ret);
1940 }
1941
1942 kref_init(&ppgtt->ref);
1943 i915_address_space_init(&ppgtt->base, dev_priv, name);
1944 ppgtt->base.file = fpriv;
1945
1946 trace_i915_ppgtt_create(&ppgtt->base);
1947
1948 return ppgtt;
1949 }
1950
1951 void i915_ppgtt_close(struct i915_address_space *vm)
1952 {
1953 struct list_head *phases[] = {
1954 &vm->active_list,
1955 &vm->inactive_list,
1956 &vm->unbound_list,
1957 NULL,
1958 }, **phase;
1959
1960 GEM_BUG_ON(vm->closed);
1961 vm->closed = true;
1962
1963 for (phase = phases; *phase; phase++) {
1964 struct i915_vma *vma, *vn;
1965
1966 list_for_each_entry_safe(vma, vn, *phase, vm_link)
1967 if (!i915_vma_is_closed(vma))
1968 i915_vma_close(vma);
1969 }
1970 }
1971
1972 void i915_ppgtt_release(struct kref *kref)
1973 {
1974 struct i915_hw_ppgtt *ppgtt =
1975 container_of(kref, struct i915_hw_ppgtt, ref);
1976
1977 trace_i915_ppgtt_release(&ppgtt->base);
1978
1979 /* vmas should already be unbound and destroyed */
1980 WARN_ON(!list_empty(&ppgtt->base.active_list));
1981 WARN_ON(!list_empty(&ppgtt->base.inactive_list));
1982 WARN_ON(!list_empty(&ppgtt->base.unbound_list));
1983
1984 ppgtt->base.cleanup(&ppgtt->base);
1985 i915_address_space_fini(&ppgtt->base);
1986 kfree(ppgtt);
1987 }
1988
1989 /* Certain Gen5 chipsets require require idling the GPU before
1990 * unmapping anything from the GTT when VT-d is enabled.
1991 */
1992 static bool needs_idle_maps(struct drm_i915_private *dev_priv)
1993 {
1994 /* Query intel_iommu to see if we need the workaround. Presumably that
1995 * was loaded first.
1996 */
1997 return IS_GEN5(dev_priv) && IS_MOBILE(dev_priv) && intel_vtd_active();
1998 }
1999
2000 void i915_check_and_clear_faults(struct drm_i915_private *dev_priv)
2001 {
2002 struct intel_engine_cs *engine;
2003 enum intel_engine_id id;
2004
2005 if (INTEL_INFO(dev_priv)->gen < 6)
2006 return;
2007
2008 for_each_engine(engine, dev_priv, id) {
2009 u32 fault_reg;
2010 fault_reg = I915_READ(RING_FAULT_REG(engine));
2011 if (fault_reg & RING_FAULT_VALID) {
2012 DRM_DEBUG_DRIVER("Unexpected fault\n"
2013 "\tAddr: 0x%08lx\n"
2014 "\tAddress space: %s\n"
2015 "\tSource ID: %d\n"
2016 "\tType: %d\n",
2017 fault_reg & PAGE_MASK,
2018 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
2019 RING_FAULT_SRCID(fault_reg),
2020 RING_FAULT_FAULT_TYPE(fault_reg));
2021 I915_WRITE(RING_FAULT_REG(engine),
2022 fault_reg & ~RING_FAULT_VALID);
2023 }
2024 }
2025
2026 /* Engine specific init may not have been done till this point. */
2027 if (dev_priv->engine[RCS])
2028 POSTING_READ(RING_FAULT_REG(dev_priv->engine[RCS]));
2029 }
2030
2031 void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv)
2032 {
2033 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2034
2035 /* Don't bother messing with faults pre GEN6 as we have little
2036 * documentation supporting that it's a good idea.
2037 */
2038 if (INTEL_GEN(dev_priv) < 6)
2039 return;
2040
2041 i915_check_and_clear_faults(dev_priv);
2042
2043 ggtt->base.clear_range(&ggtt->base, 0, ggtt->base.total);
2044
2045 i915_ggtt_invalidate(dev_priv);
2046 }
2047
2048 int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
2049 struct sg_table *pages)
2050 {
2051 do {
2052 if (dma_map_sg(&obj->base.dev->pdev->dev,
2053 pages->sgl, pages->nents,
2054 PCI_DMA_BIDIRECTIONAL))
2055 return 0;
2056
2057 /* If the DMA remap fails, one cause can be that we have
2058 * too many objects pinned in a small remapping table,
2059 * such as swiotlb. Incrementally purge all other objects and
2060 * try again - if there are no more pages to remove from
2061 * the DMA remapper, i915_gem_shrink will return 0.
2062 */
2063 GEM_BUG_ON(obj->mm.pages == pages);
2064 } while (i915_gem_shrink(to_i915(obj->base.dev),
2065 obj->base.size >> PAGE_SHIFT, NULL,
2066 I915_SHRINK_BOUND |
2067 I915_SHRINK_UNBOUND |
2068 I915_SHRINK_ACTIVE));
2069
2070 return -ENOSPC;
2071 }
2072
2073 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2074 {
2075 writeq(pte, addr);
2076 }
2077
2078 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
2079 dma_addr_t addr,
2080 u64 offset,
2081 enum i915_cache_level level,
2082 u32 unused)
2083 {
2084 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2085 gen8_pte_t __iomem *pte =
2086 (gen8_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT);
2087
2088 gen8_set_pte(pte, gen8_pte_encode(addr, level));
2089
2090 ggtt->invalidate(vm->i915);
2091 }
2092
2093 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2094 struct i915_vma *vma,
2095 enum i915_cache_level level,
2096 u32 unused)
2097 {
2098 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2099 struct sgt_iter sgt_iter;
2100 gen8_pte_t __iomem *gtt_entries;
2101 const gen8_pte_t pte_encode = gen8_pte_encode(0, level);
2102 dma_addr_t addr;
2103
2104 gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
2105 gtt_entries += vma->node.start >> PAGE_SHIFT;
2106 for_each_sgt_dma(addr, sgt_iter, vma->pages)
2107 gen8_set_pte(gtt_entries++, pte_encode | addr);
2108
2109 wmb();
2110
2111 /* This next bit makes the above posting read even more important. We
2112 * want to flush the TLBs only after we're certain all the PTE updates
2113 * have finished.
2114 */
2115 ggtt->invalidate(vm->i915);
2116 }
2117
2118 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
2119 dma_addr_t addr,
2120 u64 offset,
2121 enum i915_cache_level level,
2122 u32 flags)
2123 {
2124 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2125 gen6_pte_t __iomem *pte =
2126 (gen6_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT);
2127
2128 iowrite32(vm->pte_encode(addr, level, flags), pte);
2129
2130 ggtt->invalidate(vm->i915);
2131 }
2132
2133 /*
2134 * Binds an object into the global gtt with the specified cache level. The object
2135 * will be accessible to the GPU via commands whose operands reference offsets
2136 * within the global GTT as well as accessible by the GPU through the GMADR
2137 * mapped BAR (dev_priv->mm.gtt->gtt).
2138 */
2139 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2140 struct i915_vma *vma,
2141 enum i915_cache_level level,
2142 u32 flags)
2143 {
2144 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2145 gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
2146 unsigned int i = vma->node.start >> PAGE_SHIFT;
2147 struct sgt_iter iter;
2148 dma_addr_t addr;
2149 for_each_sgt_dma(addr, iter, vma->pages)
2150 iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
2151 wmb();
2152
2153 /* This next bit makes the above posting read even more important. We
2154 * want to flush the TLBs only after we're certain all the PTE updates
2155 * have finished.
2156 */
2157 ggtt->invalidate(vm->i915);
2158 }
2159
2160 static void nop_clear_range(struct i915_address_space *vm,
2161 u64 start, u64 length)
2162 {
2163 }
2164
2165 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2166 u64 start, u64 length)
2167 {
2168 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2169 unsigned first_entry = start >> PAGE_SHIFT;
2170 unsigned num_entries = length >> PAGE_SHIFT;
2171 const gen8_pte_t scratch_pte =
2172 gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC);
2173 gen8_pte_t __iomem *gtt_base =
2174 (gen8_pte_t __iomem *)ggtt->gsm + first_entry;
2175 const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2176 int i;
2177
2178 if (WARN(num_entries > max_entries,
2179 "First entry = %d; Num entries = %d (max=%d)\n",
2180 first_entry, num_entries, max_entries))
2181 num_entries = max_entries;
2182
2183 for (i = 0; i < num_entries; i++)
2184 gen8_set_pte(&gtt_base[i], scratch_pte);
2185 }
2186
2187 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
2188 {
2189 struct drm_i915_private *dev_priv = vm->i915;
2190
2191 /*
2192 * Make sure the internal GAM fifo has been cleared of all GTT
2193 * writes before exiting stop_machine(). This guarantees that
2194 * any aperture accesses waiting to start in another process
2195 * cannot back up behind the GTT writes causing a hang.
2196 * The register can be any arbitrary GAM register.
2197 */
2198 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2199 }
2200
2201 struct insert_page {
2202 struct i915_address_space *vm;
2203 dma_addr_t addr;
2204 u64 offset;
2205 enum i915_cache_level level;
2206 };
2207
2208 static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
2209 {
2210 struct insert_page *arg = _arg;
2211
2212 gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
2213 bxt_vtd_ggtt_wa(arg->vm);
2214
2215 return 0;
2216 }
2217
2218 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
2219 dma_addr_t addr,
2220 u64 offset,
2221 enum i915_cache_level level,
2222 u32 unused)
2223 {
2224 struct insert_page arg = { vm, addr, offset, level };
2225
2226 stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
2227 }
2228
2229 struct insert_entries {
2230 struct i915_address_space *vm;
2231 struct i915_vma *vma;
2232 enum i915_cache_level level;
2233 };
2234
2235 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
2236 {
2237 struct insert_entries *arg = _arg;
2238
2239 gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, 0);
2240 bxt_vtd_ggtt_wa(arg->vm);
2241
2242 return 0;
2243 }
2244
2245 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2246 struct i915_vma *vma,
2247 enum i915_cache_level level,
2248 u32 unused)
2249 {
2250 struct insert_entries arg = { vm, vma, level };
2251
2252 stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
2253 }
2254
2255 struct clear_range {
2256 struct i915_address_space *vm;
2257 u64 start;
2258 u64 length;
2259 };
2260
2261 static int bxt_vtd_ggtt_clear_range__cb(void *_arg)
2262 {
2263 struct clear_range *arg = _arg;
2264
2265 gen8_ggtt_clear_range(arg->vm, arg->start, arg->length);
2266 bxt_vtd_ggtt_wa(arg->vm);
2267
2268 return 0;
2269 }
2270
2271 static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm,
2272 u64 start,
2273 u64 length)
2274 {
2275 struct clear_range arg = { vm, start, length };
2276
2277 stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL);
2278 }
2279
2280 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2281 u64 start, u64 length)
2282 {
2283 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2284 unsigned first_entry = start >> PAGE_SHIFT;
2285 unsigned num_entries = length >> PAGE_SHIFT;
2286 gen6_pte_t scratch_pte, __iomem *gtt_base =
2287 (gen6_pte_t __iomem *)ggtt->gsm + first_entry;
2288 const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2289 int i;
2290
2291 if (WARN(num_entries > max_entries,
2292 "First entry = %d; Num entries = %d (max=%d)\n",
2293 first_entry, num_entries, max_entries))
2294 num_entries = max_entries;
2295
2296 scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
2297 I915_CACHE_LLC, 0);
2298
2299 for (i = 0; i < num_entries; i++)
2300 iowrite32(scratch_pte, &gtt_base[i]);
2301 }
2302
2303 static void i915_ggtt_insert_page(struct i915_address_space *vm,
2304 dma_addr_t addr,
2305 u64 offset,
2306 enum i915_cache_level cache_level,
2307 u32 unused)
2308 {
2309 unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2310 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2311
2312 intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
2313 }
2314
2315 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2316 struct i915_vma *vma,
2317 enum i915_cache_level cache_level,
2318 u32 unused)
2319 {
2320 unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2321 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2322
2323 intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT,
2324 flags);
2325 }
2326
2327 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2328 u64 start, u64 length)
2329 {
2330 intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
2331 }
2332
2333 static int ggtt_bind_vma(struct i915_vma *vma,
2334 enum i915_cache_level cache_level,
2335 u32 flags)
2336 {
2337 struct drm_i915_private *i915 = vma->vm->i915;
2338 struct drm_i915_gem_object *obj = vma->obj;
2339 u32 pte_flags;
2340
2341 if (unlikely(!vma->pages)) {
2342 int ret = i915_get_ggtt_vma_pages(vma);
2343 if (ret)
2344 return ret;
2345 }
2346
2347 /* Currently applicable only to VLV */
2348 pte_flags = 0;
2349 if (obj->gt_ro)
2350 pte_flags |= PTE_READ_ONLY;
2351
2352 intel_runtime_pm_get(i915);
2353 vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2354 intel_runtime_pm_put(i915);
2355
2356 /*
2357 * Without aliasing PPGTT there's no difference between
2358 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2359 * upgrade to both bound if we bind either to avoid double-binding.
2360 */
2361 vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
2362
2363 return 0;
2364 }
2365
2366 static void ggtt_unbind_vma(struct i915_vma *vma)
2367 {
2368 struct drm_i915_private *i915 = vma->vm->i915;
2369
2370 intel_runtime_pm_get(i915);
2371 vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2372 intel_runtime_pm_put(i915);
2373 }
2374
2375 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2376 enum i915_cache_level cache_level,
2377 u32 flags)
2378 {
2379 struct drm_i915_private *i915 = vma->vm->i915;
2380 u32 pte_flags;
2381 int ret;
2382
2383 if (unlikely(!vma->pages)) {
2384 ret = i915_get_ggtt_vma_pages(vma);
2385 if (ret)
2386 return ret;
2387 }
2388
2389 /* Currently applicable only to VLV */
2390 pte_flags = 0;
2391 if (vma->obj->gt_ro)
2392 pte_flags |= PTE_READ_ONLY;
2393
2394 if (flags & I915_VMA_LOCAL_BIND) {
2395 struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt;
2396
2397 if (!(vma->flags & I915_VMA_LOCAL_BIND) &&
2398 appgtt->base.allocate_va_range) {
2399 ret = appgtt->base.allocate_va_range(&appgtt->base,
2400 vma->node.start,
2401 vma->size);
2402 if (ret)
2403 goto err_pages;
2404 }
2405
2406 appgtt->base.insert_entries(&appgtt->base, vma, cache_level,
2407 pte_flags);
2408 }
2409
2410 if (flags & I915_VMA_GLOBAL_BIND) {
2411 intel_runtime_pm_get(i915);
2412 vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2413 intel_runtime_pm_put(i915);
2414 }
2415
2416 return 0;
2417
2418 err_pages:
2419 if (!(vma->flags & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND))) {
2420 if (vma->pages != vma->obj->mm.pages) {
2421 GEM_BUG_ON(!vma->pages);
2422 sg_free_table(vma->pages);
2423 kfree(vma->pages);
2424 }
2425 vma->pages = NULL;
2426 }
2427 return ret;
2428 }
2429
2430 static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
2431 {
2432 struct drm_i915_private *i915 = vma->vm->i915;
2433
2434 if (vma->flags & I915_VMA_GLOBAL_BIND) {
2435 intel_runtime_pm_get(i915);
2436 vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2437 intel_runtime_pm_put(i915);
2438 }
2439
2440 if (vma->flags & I915_VMA_LOCAL_BIND) {
2441 struct i915_address_space *vm = &i915->mm.aliasing_ppgtt->base;
2442
2443 vm->clear_range(vm, vma->node.start, vma->size);
2444 }
2445 }
2446
2447 void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
2448 struct sg_table *pages)
2449 {
2450 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2451 struct device *kdev = &dev_priv->drm.pdev->dev;
2452 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2453
2454 if (unlikely(ggtt->do_idle_maps)) {
2455 if (i915_gem_wait_for_idle(dev_priv, 0)) {
2456 DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
2457 /* Wait a bit, in hopes it avoids the hang */
2458 udelay(10);
2459 }
2460 }
2461
2462 dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
2463 }
2464
2465 static void i915_gtt_color_adjust(const struct drm_mm_node *node,
2466 unsigned long color,
2467 u64 *start,
2468 u64 *end)
2469 {
2470 if (node->allocated && node->color != color)
2471 *start += I915_GTT_PAGE_SIZE;
2472
2473 /* Also leave a space between the unallocated reserved node after the
2474 * GTT and any objects within the GTT, i.e. we use the color adjustment
2475 * to insert a guard page to prevent prefetches crossing over the
2476 * GTT boundary.
2477 */
2478 node = list_next_entry(node, node_list);
2479 if (node->color != color)
2480 *end -= I915_GTT_PAGE_SIZE;
2481 }
2482
2483 int i915_gem_init_aliasing_ppgtt(struct drm_i915_private *i915)
2484 {
2485 struct i915_ggtt *ggtt = &i915->ggtt;
2486 struct i915_hw_ppgtt *ppgtt;
2487 int err;
2488
2489 ppgtt = i915_ppgtt_create(i915, ERR_PTR(-EPERM), "[alias]");
2490 if (IS_ERR(ppgtt))
2491 return PTR_ERR(ppgtt);
2492
2493 if (WARN_ON(ppgtt->base.total < ggtt->base.total)) {
2494 err = -ENODEV;
2495 goto err_ppgtt;
2496 }
2497
2498 if (ppgtt->base.allocate_va_range) {
2499 /* Note we only pre-allocate as far as the end of the global
2500 * GTT. On 48b / 4-level page-tables, the difference is very,
2501 * very significant! We have to preallocate as GVT/vgpu does
2502 * not like the page directory disappearing.
2503 */
2504 err = ppgtt->base.allocate_va_range(&ppgtt->base,
2505 0, ggtt->base.total);
2506 if (err)
2507 goto err_ppgtt;
2508 }
2509
2510 i915->mm.aliasing_ppgtt = ppgtt;
2511
2512 WARN_ON(ggtt->base.bind_vma != ggtt_bind_vma);
2513 ggtt->base.bind_vma = aliasing_gtt_bind_vma;
2514
2515 WARN_ON(ggtt->base.unbind_vma != ggtt_unbind_vma);
2516 ggtt->base.unbind_vma = aliasing_gtt_unbind_vma;
2517
2518 return 0;
2519
2520 err_ppgtt:
2521 i915_ppgtt_put(ppgtt);
2522 return err;
2523 }
2524
2525 void i915_gem_fini_aliasing_ppgtt(struct drm_i915_private *i915)
2526 {
2527 struct i915_ggtt *ggtt = &i915->ggtt;
2528 struct i915_hw_ppgtt *ppgtt;
2529
2530 ppgtt = fetch_and_zero(&i915->mm.aliasing_ppgtt);
2531 if (!ppgtt)
2532 return;
2533
2534 i915_ppgtt_put(ppgtt);
2535
2536 ggtt->base.bind_vma = ggtt_bind_vma;
2537 ggtt->base.unbind_vma = ggtt_unbind_vma;
2538 }
2539
2540 int i915_gem_init_ggtt(struct drm_i915_private *dev_priv)
2541 {
2542 /* Let GEM Manage all of the aperture.
2543 *
2544 * However, leave one page at the end still bound to the scratch page.
2545 * There are a number of places where the hardware apparently prefetches
2546 * past the end of the object, and we've seen multiple hangs with the
2547 * GPU head pointer stuck in a batchbuffer bound at the last page of the
2548 * aperture. One page should be enough to keep any prefetching inside
2549 * of the aperture.
2550 */
2551 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2552 unsigned long hole_start, hole_end;
2553 struct drm_mm_node *entry;
2554 int ret;
2555
2556 ret = intel_vgt_balloon(dev_priv);
2557 if (ret)
2558 return ret;
2559
2560 /* Reserve a mappable slot for our lockless error capture */
2561 ret = drm_mm_insert_node_in_range(&ggtt->base.mm, &ggtt->error_capture,
2562 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
2563 0, ggtt->mappable_end,
2564 DRM_MM_INSERT_LOW);
2565 if (ret)
2566 return ret;
2567
2568 /* Clear any non-preallocated blocks */
2569 drm_mm_for_each_hole(entry, &ggtt->base.mm, hole_start, hole_end) {
2570 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2571 hole_start, hole_end);
2572 ggtt->base.clear_range(&ggtt->base, hole_start,
2573 hole_end - hole_start);
2574 }
2575
2576 /* And finally clear the reserved guard page */
2577 ggtt->base.clear_range(&ggtt->base,
2578 ggtt->base.total - PAGE_SIZE, PAGE_SIZE);
2579
2580 if (USES_PPGTT(dev_priv) && !USES_FULL_PPGTT(dev_priv)) {
2581 ret = i915_gem_init_aliasing_ppgtt(dev_priv);
2582 if (ret)
2583 goto err;
2584 }
2585
2586 return 0;
2587
2588 err:
2589 drm_mm_remove_node(&ggtt->error_capture);
2590 return ret;
2591 }
2592
2593 /**
2594 * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2595 * @dev_priv: i915 device
2596 */
2597 void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv)
2598 {
2599 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2600 struct i915_vma *vma, *vn;
2601
2602 ggtt->base.closed = true;
2603
2604 mutex_lock(&dev_priv->drm.struct_mutex);
2605 WARN_ON(!list_empty(&ggtt->base.active_list));
2606 list_for_each_entry_safe(vma, vn, &ggtt->base.inactive_list, vm_link)
2607 WARN_ON(i915_vma_unbind(vma));
2608 mutex_unlock(&dev_priv->drm.struct_mutex);
2609
2610 i915_gem_cleanup_stolen(&dev_priv->drm);
2611
2612 mutex_lock(&dev_priv->drm.struct_mutex);
2613 i915_gem_fini_aliasing_ppgtt(dev_priv);
2614
2615 if (drm_mm_node_allocated(&ggtt->error_capture))
2616 drm_mm_remove_node(&ggtt->error_capture);
2617
2618 if (drm_mm_initialized(&ggtt->base.mm)) {
2619 intel_vgt_deballoon(dev_priv);
2620 i915_address_space_fini(&ggtt->base);
2621 }
2622
2623 ggtt->base.cleanup(&ggtt->base);
2624 mutex_unlock(&dev_priv->drm.struct_mutex);
2625
2626 arch_phys_wc_del(ggtt->mtrr);
2627 io_mapping_fini(&ggtt->mappable);
2628 }
2629
2630 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2631 {
2632 snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2633 snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2634 return snb_gmch_ctl << 20;
2635 }
2636
2637 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2638 {
2639 bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2640 bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2641 if (bdw_gmch_ctl)
2642 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2643
2644 #ifdef CONFIG_X86_32
2645 /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2646 if (bdw_gmch_ctl > 4)
2647 bdw_gmch_ctl = 4;
2648 #endif
2649
2650 return bdw_gmch_ctl << 20;
2651 }
2652
2653 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2654 {
2655 gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2656 gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2657
2658 if (gmch_ctrl)
2659 return 1 << (20 + gmch_ctrl);
2660
2661 return 0;
2662 }
2663
2664 static size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
2665 {
2666 snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
2667 snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
2668 return (size_t)snb_gmch_ctl << 25; /* 32 MB units */
2669 }
2670
2671 static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
2672 {
2673 bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2674 bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
2675 return (size_t)bdw_gmch_ctl << 25; /* 32 MB units */
2676 }
2677
2678 static size_t chv_get_stolen_size(u16 gmch_ctrl)
2679 {
2680 gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
2681 gmch_ctrl &= SNB_GMCH_GMS_MASK;
2682
2683 /*
2684 * 0x0 to 0x10: 32MB increments starting at 0MB
2685 * 0x11 to 0x16: 4MB increments starting at 8MB
2686 * 0x17 to 0x1d: 4MB increments start at 36MB
2687 */
2688 if (gmch_ctrl < 0x11)
2689 return (size_t)gmch_ctrl << 25;
2690 else if (gmch_ctrl < 0x17)
2691 return (size_t)(gmch_ctrl - 0x11 + 2) << 22;
2692 else
2693 return (size_t)(gmch_ctrl - 0x17 + 9) << 22;
2694 }
2695
2696 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
2697 {
2698 gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2699 gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
2700
2701 if (gen9_gmch_ctl < 0xf0)
2702 return (size_t)gen9_gmch_ctl << 25; /* 32 MB units */
2703 else
2704 /* 4MB increments starting at 0xf0 for 4MB */
2705 return (size_t)(gen9_gmch_ctl - 0xf0 + 1) << 22;
2706 }
2707
2708 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
2709 {
2710 struct drm_i915_private *dev_priv = ggtt->base.i915;
2711 struct pci_dev *pdev = dev_priv->drm.pdev;
2712 phys_addr_t phys_addr;
2713 int ret;
2714
2715 /* For Modern GENs the PTEs and register space are split in the BAR */
2716 phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
2717
2718 /*
2719 * On BXT writes larger than 64 bit to the GTT pagetable range will be
2720 * dropped. For WC mappings in general we have 64 byte burst writes
2721 * when the WC buffer is flushed, so we can't use it, but have to
2722 * resort to an uncached mapping. The WC issue is easily caught by the
2723 * readback check when writing GTT PTE entries.
2724 */
2725 if (IS_GEN9_LP(dev_priv))
2726 ggtt->gsm = ioremap_nocache(phys_addr, size);
2727 else
2728 ggtt->gsm = ioremap_wc(phys_addr, size);
2729 if (!ggtt->gsm) {
2730 DRM_ERROR("Failed to map the ggtt page table\n");
2731 return -ENOMEM;
2732 }
2733
2734 ret = setup_scratch_page(&ggtt->base, GFP_DMA32);
2735 if (ret) {
2736 DRM_ERROR("Scratch setup failed\n");
2737 /* iounmap will also get called at remove, but meh */
2738 iounmap(ggtt->gsm);
2739 return ret;
2740 }
2741
2742 return 0;
2743 }
2744
2745 static void cnl_setup_private_ppat(struct drm_i915_private *dev_priv)
2746 {
2747 /* XXX: spec is unclear if this is still needed for CNL+ */
2748 if (!USES_PPGTT(dev_priv)) {
2749 I915_WRITE(GEN10_PAT_INDEX(0), GEN8_PPAT_UC);
2750 return;
2751 }
2752
2753 I915_WRITE(GEN10_PAT_INDEX(0), GEN8_PPAT_WB | GEN8_PPAT_LLC);
2754 I915_WRITE(GEN10_PAT_INDEX(1), GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
2755 I915_WRITE(GEN10_PAT_INDEX(2), GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
2756 I915_WRITE(GEN10_PAT_INDEX(3), GEN8_PPAT_UC);
2757 I915_WRITE(GEN10_PAT_INDEX(4), GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
2758 I915_WRITE(GEN10_PAT_INDEX(5), GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
2759 I915_WRITE(GEN10_PAT_INDEX(6), GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
2760 I915_WRITE(GEN10_PAT_INDEX(7), GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2761 }
2762
2763 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
2764 * bits. When using advanced contexts each context stores its own PAT, but
2765 * writing this data shouldn't be harmful even in those cases. */
2766 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
2767 {
2768 u64 pat;
2769
2770 pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */
2771 GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
2772 GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
2773 GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */
2774 GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
2775 GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
2776 GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
2777 GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2778
2779 if (!USES_PPGTT(dev_priv))
2780 /* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
2781 * so RTL will always use the value corresponding to
2782 * pat_sel = 000".
2783 * So let's disable cache for GGTT to avoid screen corruptions.
2784 * MOCS still can be used though.
2785 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
2786 * before this patch, i.e. the same uncached + snooping access
2787 * like on gen6/7 seems to be in effect.
2788 * - So this just fixes blitter/render access. Again it looks
2789 * like it's not just uncached access, but uncached + snooping.
2790 * So we can still hold onto all our assumptions wrt cpu
2791 * clflushing on LLC machines.
2792 */
2793 pat = GEN8_PPAT(0, GEN8_PPAT_UC);
2794
2795 /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
2796 * write would work. */
2797 I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
2798 I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
2799 }
2800
2801 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
2802 {
2803 u64 pat;
2804
2805 /*
2806 * Map WB on BDW to snooped on CHV.
2807 *
2808 * Only the snoop bit has meaning for CHV, the rest is
2809 * ignored.
2810 *
2811 * The hardware will never snoop for certain types of accesses:
2812 * - CPU GTT (GMADR->GGTT->no snoop->memory)
2813 * - PPGTT page tables
2814 * - some other special cycles
2815 *
2816 * As with BDW, we also need to consider the following for GT accesses:
2817 * "For GGTT, there is NO pat_sel[2:0] from the entry,
2818 * so RTL will always use the value corresponding to
2819 * pat_sel = 000".
2820 * Which means we must set the snoop bit in PAT entry 0
2821 * in order to keep the global status page working.
2822 */
2823 pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
2824 GEN8_PPAT(1, 0) |
2825 GEN8_PPAT(2, 0) |
2826 GEN8_PPAT(3, 0) |
2827 GEN8_PPAT(4, CHV_PPAT_SNOOP) |
2828 GEN8_PPAT(5, CHV_PPAT_SNOOP) |
2829 GEN8_PPAT(6, CHV_PPAT_SNOOP) |
2830 GEN8_PPAT(7, CHV_PPAT_SNOOP);
2831
2832 I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
2833 I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
2834 }
2835
2836 static void gen6_gmch_remove(struct i915_address_space *vm)
2837 {
2838 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2839
2840 iounmap(ggtt->gsm);
2841 cleanup_scratch_page(vm);
2842 }
2843
2844 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
2845 {
2846 struct drm_i915_private *dev_priv = ggtt->base.i915;
2847 struct pci_dev *pdev = dev_priv->drm.pdev;
2848 unsigned int size;
2849 u16 snb_gmch_ctl;
2850 int err;
2851
2852 /* TODO: We're not aware of mappable constraints on gen8 yet */
2853 ggtt->mappable_base = pci_resource_start(pdev, 2);
2854 ggtt->mappable_end = pci_resource_len(pdev, 2);
2855
2856 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39));
2857 if (!err)
2858 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
2859 if (err)
2860 DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
2861
2862 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2863
2864 if (INTEL_GEN(dev_priv) >= 9) {
2865 ggtt->stolen_size = gen9_get_stolen_size(snb_gmch_ctl);
2866 size = gen8_get_total_gtt_size(snb_gmch_ctl);
2867 } else if (IS_CHERRYVIEW(dev_priv)) {
2868 ggtt->stolen_size = chv_get_stolen_size(snb_gmch_ctl);
2869 size = chv_get_total_gtt_size(snb_gmch_ctl);
2870 } else {
2871 ggtt->stolen_size = gen8_get_stolen_size(snb_gmch_ctl);
2872 size = gen8_get_total_gtt_size(snb_gmch_ctl);
2873 }
2874
2875 ggtt->base.total = (size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
2876
2877 if (INTEL_GEN(dev_priv) >= 10)
2878 cnl_setup_private_ppat(dev_priv);
2879 else if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
2880 chv_setup_private_ppat(dev_priv);
2881 else
2882 bdw_setup_private_ppat(dev_priv);
2883
2884 ggtt->base.cleanup = gen6_gmch_remove;
2885 ggtt->base.bind_vma = ggtt_bind_vma;
2886 ggtt->base.unbind_vma = ggtt_unbind_vma;
2887 ggtt->base.insert_page = gen8_ggtt_insert_page;
2888 ggtt->base.clear_range = nop_clear_range;
2889 if (!USES_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
2890 ggtt->base.clear_range = gen8_ggtt_clear_range;
2891
2892 ggtt->base.insert_entries = gen8_ggtt_insert_entries;
2893
2894 /* Serialize GTT updates with aperture access on BXT if VT-d is on. */
2895 if (intel_ggtt_update_needs_vtd_wa(dev_priv)) {
2896 ggtt->base.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
2897 ggtt->base.insert_page = bxt_vtd_ggtt_insert_page__BKL;
2898 if (ggtt->base.clear_range != nop_clear_range)
2899 ggtt->base.clear_range = bxt_vtd_ggtt_clear_range__BKL;
2900 }
2901
2902 ggtt->invalidate = gen6_ggtt_invalidate;
2903
2904 return ggtt_probe_common(ggtt, size);
2905 }
2906
2907 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
2908 {
2909 struct drm_i915_private *dev_priv = ggtt->base.i915;
2910 struct pci_dev *pdev = dev_priv->drm.pdev;
2911 unsigned int size;
2912 u16 snb_gmch_ctl;
2913 int err;
2914
2915 ggtt->mappable_base = pci_resource_start(pdev, 2);
2916 ggtt->mappable_end = pci_resource_len(pdev, 2);
2917
2918 /* 64/512MB is the current min/max we actually know of, but this is just
2919 * a coarse sanity check.
2920 */
2921 if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
2922 DRM_ERROR("Unknown GMADR size (%llx)\n", ggtt->mappable_end);
2923 return -ENXIO;
2924 }
2925
2926 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
2927 if (!err)
2928 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
2929 if (err)
2930 DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
2931 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2932
2933 ggtt->stolen_size = gen6_get_stolen_size(snb_gmch_ctl);
2934
2935 size = gen6_get_total_gtt_size(snb_gmch_ctl);
2936 ggtt->base.total = (size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
2937
2938 ggtt->base.clear_range = gen6_ggtt_clear_range;
2939 ggtt->base.insert_page = gen6_ggtt_insert_page;
2940 ggtt->base.insert_entries = gen6_ggtt_insert_entries;
2941 ggtt->base.bind_vma = ggtt_bind_vma;
2942 ggtt->base.unbind_vma = ggtt_unbind_vma;
2943 ggtt->base.cleanup = gen6_gmch_remove;
2944
2945 ggtt->invalidate = gen6_ggtt_invalidate;
2946
2947 if (HAS_EDRAM(dev_priv))
2948 ggtt->base.pte_encode = iris_pte_encode;
2949 else if (IS_HASWELL(dev_priv))
2950 ggtt->base.pte_encode = hsw_pte_encode;
2951 else if (IS_VALLEYVIEW(dev_priv))
2952 ggtt->base.pte_encode = byt_pte_encode;
2953 else if (INTEL_GEN(dev_priv) >= 7)
2954 ggtt->base.pte_encode = ivb_pte_encode;
2955 else
2956 ggtt->base.pte_encode = snb_pte_encode;
2957
2958 return ggtt_probe_common(ggtt, size);
2959 }
2960
2961 static void i915_gmch_remove(struct i915_address_space *vm)
2962 {
2963 intel_gmch_remove();
2964 }
2965
2966 static int i915_gmch_probe(struct i915_ggtt *ggtt)
2967 {
2968 struct drm_i915_private *dev_priv = ggtt->base.i915;
2969 int ret;
2970
2971 ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
2972 if (!ret) {
2973 DRM_ERROR("failed to set up gmch\n");
2974 return -EIO;
2975 }
2976
2977 intel_gtt_get(&ggtt->base.total,
2978 &ggtt->stolen_size,
2979 &ggtt->mappable_base,
2980 &ggtt->mappable_end);
2981
2982 ggtt->do_idle_maps = needs_idle_maps(dev_priv);
2983 ggtt->base.insert_page = i915_ggtt_insert_page;
2984 ggtt->base.insert_entries = i915_ggtt_insert_entries;
2985 ggtt->base.clear_range = i915_ggtt_clear_range;
2986 ggtt->base.bind_vma = ggtt_bind_vma;
2987 ggtt->base.unbind_vma = ggtt_unbind_vma;
2988 ggtt->base.cleanup = i915_gmch_remove;
2989
2990 ggtt->invalidate = gmch_ggtt_invalidate;
2991
2992 if (unlikely(ggtt->do_idle_maps))
2993 DRM_INFO("applying Ironlake quirks for intel_iommu\n");
2994
2995 return 0;
2996 }
2997
2998 /**
2999 * i915_ggtt_probe_hw - Probe GGTT hardware location
3000 * @dev_priv: i915 device
3001 */
3002 int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv)
3003 {
3004 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3005 int ret;
3006
3007 ggtt->base.i915 = dev_priv;
3008 ggtt->base.dma = &dev_priv->drm.pdev->dev;
3009
3010 if (INTEL_GEN(dev_priv) <= 5)
3011 ret = i915_gmch_probe(ggtt);
3012 else if (INTEL_GEN(dev_priv) < 8)
3013 ret = gen6_gmch_probe(ggtt);
3014 else
3015 ret = gen8_gmch_probe(ggtt);
3016 if (ret)
3017 return ret;
3018
3019 /* Trim the GGTT to fit the GuC mappable upper range (when enabled).
3020 * This is easier than doing range restriction on the fly, as we
3021 * currently don't have any bits spare to pass in this upper
3022 * restriction!
3023 */
3024 if (HAS_GUC(dev_priv) && i915.enable_guc_loading) {
3025 ggtt->base.total = min_t(u64, ggtt->base.total, GUC_GGTT_TOP);
3026 ggtt->mappable_end = min(ggtt->mappable_end, ggtt->base.total);
3027 }
3028
3029 if ((ggtt->base.total - 1) >> 32) {
3030 DRM_ERROR("We never expected a Global GTT with more than 32bits"
3031 " of address space! Found %lldM!\n",
3032 ggtt->base.total >> 20);
3033 ggtt->base.total = 1ULL << 32;
3034 ggtt->mappable_end = min(ggtt->mappable_end, ggtt->base.total);
3035 }
3036
3037 if (ggtt->mappable_end > ggtt->base.total) {
3038 DRM_ERROR("mappable aperture extends past end of GGTT,"
3039 " aperture=%llx, total=%llx\n",
3040 ggtt->mappable_end, ggtt->base.total);
3041 ggtt->mappable_end = ggtt->base.total;
3042 }
3043
3044 /* GMADR is the PCI mmio aperture into the global GTT. */
3045 DRM_INFO("Memory usable by graphics device = %lluM\n",
3046 ggtt->base.total >> 20);
3047 DRM_DEBUG_DRIVER("GMADR size = %lldM\n", ggtt->mappable_end >> 20);
3048 DRM_DEBUG_DRIVER("GTT stolen size = %uM\n", ggtt->stolen_size >> 20);
3049 if (intel_vtd_active())
3050 DRM_INFO("VT-d active for gfx access\n");
3051
3052 return 0;
3053 }
3054
3055 /**
3056 * i915_ggtt_init_hw - Initialize GGTT hardware
3057 * @dev_priv: i915 device
3058 */
3059 int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
3060 {
3061 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3062 int ret;
3063
3064 INIT_LIST_HEAD(&dev_priv->vm_list);
3065
3066 /* Note that we use page colouring to enforce a guard page at the
3067 * end of the address space. This is required as the CS may prefetch
3068 * beyond the end of the batch buffer, across the page boundary,
3069 * and beyond the end of the GTT if we do not provide a guard.
3070 */
3071 mutex_lock(&dev_priv->drm.struct_mutex);
3072 i915_address_space_init(&ggtt->base, dev_priv, "[global]");
3073 if (!HAS_LLC(dev_priv) && !USES_PPGTT(dev_priv))
3074 ggtt->base.mm.color_adjust = i915_gtt_color_adjust;
3075 mutex_unlock(&dev_priv->drm.struct_mutex);
3076
3077 if (!io_mapping_init_wc(&dev_priv->ggtt.mappable,
3078 dev_priv->ggtt.mappable_base,
3079 dev_priv->ggtt.mappable_end)) {
3080 ret = -EIO;
3081 goto out_gtt_cleanup;
3082 }
3083
3084 ggtt->mtrr = arch_phys_wc_add(ggtt->mappable_base, ggtt->mappable_end);
3085
3086 /*
3087 * Initialise stolen early so that we may reserve preallocated
3088 * objects for the BIOS to KMS transition.
3089 */
3090 ret = i915_gem_init_stolen(dev_priv);
3091 if (ret)
3092 goto out_gtt_cleanup;
3093
3094 return 0;
3095
3096 out_gtt_cleanup:
3097 ggtt->base.cleanup(&ggtt->base);
3098 return ret;
3099 }
3100
3101 int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3102 {
3103 if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3104 return -EIO;
3105
3106 return 0;
3107 }
3108
3109 void i915_ggtt_enable_guc(struct drm_i915_private *i915)
3110 {
3111 GEM_BUG_ON(i915->ggtt.invalidate != gen6_ggtt_invalidate);
3112
3113 i915->ggtt.invalidate = guc_ggtt_invalidate;
3114 }
3115
3116 void i915_ggtt_disable_guc(struct drm_i915_private *i915)
3117 {
3118 /* We should only be called after i915_ggtt_enable_guc() */
3119 GEM_BUG_ON(i915->ggtt.invalidate != guc_ggtt_invalidate);
3120
3121 i915->ggtt.invalidate = gen6_ggtt_invalidate;
3122 }
3123
3124 void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv)
3125 {
3126 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3127 struct drm_i915_gem_object *obj, *on;
3128
3129 i915_check_and_clear_faults(dev_priv);
3130
3131 /* First fill our portion of the GTT with scratch pages */
3132 ggtt->base.clear_range(&ggtt->base, 0, ggtt->base.total);
3133
3134 ggtt->base.closed = true; /* skip rewriting PTE on VMA unbind */
3135
3136 /* clflush objects bound into the GGTT and rebind them. */
3137 list_for_each_entry_safe(obj, on,
3138 &dev_priv->mm.bound_list, global_link) {
3139 bool ggtt_bound = false;
3140 struct i915_vma *vma;
3141
3142 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3143 if (vma->vm != &ggtt->base)
3144 continue;
3145
3146 if (!i915_vma_unbind(vma))
3147 continue;
3148
3149 WARN_ON(i915_vma_bind(vma, obj->cache_level,
3150 PIN_UPDATE));
3151 ggtt_bound = true;
3152 }
3153
3154 if (ggtt_bound)
3155 WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3156 }
3157
3158 ggtt->base.closed = false;
3159
3160 if (INTEL_GEN(dev_priv) >= 8) {
3161 if (INTEL_GEN(dev_priv) >= 10)
3162 cnl_setup_private_ppat(dev_priv);
3163 else if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
3164 chv_setup_private_ppat(dev_priv);
3165 else
3166 bdw_setup_private_ppat(dev_priv);
3167
3168 return;
3169 }
3170
3171 if (USES_PPGTT(dev_priv)) {
3172 struct i915_address_space *vm;
3173
3174 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
3175 struct i915_hw_ppgtt *ppgtt;
3176
3177 if (i915_is_ggtt(vm))
3178 ppgtt = dev_priv->mm.aliasing_ppgtt;
3179 else
3180 ppgtt = i915_vm_to_ppgtt(vm);
3181
3182 gen6_write_page_range(ppgtt, 0, ppgtt->base.total);
3183 }
3184 }
3185
3186 i915_ggtt_invalidate(dev_priv);
3187 }
3188
3189 static struct scatterlist *
3190 rotate_pages(const dma_addr_t *in, unsigned int offset,
3191 unsigned int width, unsigned int height,
3192 unsigned int stride,
3193 struct sg_table *st, struct scatterlist *sg)
3194 {
3195 unsigned int column, row;
3196 unsigned int src_idx;
3197
3198 for (column = 0; column < width; column++) {
3199 src_idx = stride * (height - 1) + column;
3200 for (row = 0; row < height; row++) {
3201 st->nents++;
3202 /* We don't need the pages, but need to initialize
3203 * the entries so the sg list can be happily traversed.
3204 * The only thing we need are DMA addresses.
3205 */
3206 sg_set_page(sg, NULL, PAGE_SIZE, 0);
3207 sg_dma_address(sg) = in[offset + src_idx];
3208 sg_dma_len(sg) = PAGE_SIZE;
3209 sg = sg_next(sg);
3210 src_idx -= stride;
3211 }
3212 }
3213
3214 return sg;
3215 }
3216
3217 static noinline struct sg_table *
3218 intel_rotate_pages(struct intel_rotation_info *rot_info,
3219 struct drm_i915_gem_object *obj)
3220 {
3221 const unsigned long n_pages = obj->base.size / PAGE_SIZE;
3222 unsigned int size = intel_rotation_info_size(rot_info);
3223 struct sgt_iter sgt_iter;
3224 dma_addr_t dma_addr;
3225 unsigned long i;
3226 dma_addr_t *page_addr_list;
3227 struct sg_table *st;
3228 struct scatterlist *sg;
3229 int ret = -ENOMEM;
3230
3231 /* Allocate a temporary list of source pages for random access. */
3232 page_addr_list = kvmalloc_array(n_pages,
3233 sizeof(dma_addr_t),
3234 GFP_KERNEL);
3235 if (!page_addr_list)
3236 return ERR_PTR(ret);
3237
3238 /* Allocate target SG list. */
3239 st = kmalloc(sizeof(*st), GFP_KERNEL);
3240 if (!st)
3241 goto err_st_alloc;
3242
3243 ret = sg_alloc_table(st, size, GFP_KERNEL);
3244 if (ret)
3245 goto err_sg_alloc;
3246
3247 /* Populate source page list from the object. */
3248 i = 0;
3249 for_each_sgt_dma(dma_addr, sgt_iter, obj->mm.pages)
3250 page_addr_list[i++] = dma_addr;
3251
3252 GEM_BUG_ON(i != n_pages);
3253 st->nents = 0;
3254 sg = st->sgl;
3255
3256 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
3257 sg = rotate_pages(page_addr_list, rot_info->plane[i].offset,
3258 rot_info->plane[i].width, rot_info->plane[i].height,
3259 rot_info->plane[i].stride, st, sg);
3260 }
3261
3262 DRM_DEBUG_KMS("Created rotated page mapping for object size %zu (%ux%u tiles, %u pages)\n",
3263 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3264
3265 kvfree(page_addr_list);
3266
3267 return st;
3268
3269 err_sg_alloc:
3270 kfree(st);
3271 err_st_alloc:
3272 kvfree(page_addr_list);
3273
3274 DRM_DEBUG_KMS("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
3275 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3276
3277 return ERR_PTR(ret);
3278 }
3279
3280 static noinline struct sg_table *
3281 intel_partial_pages(const struct i915_ggtt_view *view,
3282 struct drm_i915_gem_object *obj)
3283 {
3284 struct sg_table *st;
3285 struct scatterlist *sg, *iter;
3286 unsigned int count = view->partial.size;
3287 unsigned int offset;
3288 int ret = -ENOMEM;
3289
3290 st = kmalloc(sizeof(*st), GFP_KERNEL);
3291 if (!st)
3292 goto err_st_alloc;
3293
3294 ret = sg_alloc_table(st, count, GFP_KERNEL);
3295 if (ret)
3296 goto err_sg_alloc;
3297
3298 iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
3299 GEM_BUG_ON(!iter);
3300
3301 sg = st->sgl;
3302 st->nents = 0;
3303 do {
3304 unsigned int len;
3305
3306 len = min(iter->length - (offset << PAGE_SHIFT),
3307 count << PAGE_SHIFT);
3308 sg_set_page(sg, NULL, len, 0);
3309 sg_dma_address(sg) =
3310 sg_dma_address(iter) + (offset << PAGE_SHIFT);
3311 sg_dma_len(sg) = len;
3312
3313 st->nents++;
3314 count -= len >> PAGE_SHIFT;
3315 if (count == 0) {
3316 sg_mark_end(sg);
3317 return st;
3318 }
3319
3320 sg = __sg_next(sg);
3321 iter = __sg_next(iter);
3322 offset = 0;
3323 } while (1);
3324
3325 err_sg_alloc:
3326 kfree(st);
3327 err_st_alloc:
3328 return ERR_PTR(ret);
3329 }
3330
3331 static int
3332 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3333 {
3334 int ret;
3335
3336 /* The vma->pages are only valid within the lifespan of the borrowed
3337 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
3338 * must be the vma->pages. A simple rule is that vma->pages must only
3339 * be accessed when the obj->mm.pages are pinned.
3340 */
3341 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
3342
3343 switch (vma->ggtt_view.type) {
3344 case I915_GGTT_VIEW_NORMAL:
3345 vma->pages = vma->obj->mm.pages;
3346 return 0;
3347
3348 case I915_GGTT_VIEW_ROTATED:
3349 vma->pages =
3350 intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
3351 break;
3352
3353 case I915_GGTT_VIEW_PARTIAL:
3354 vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3355 break;
3356
3357 default:
3358 WARN_ONCE(1, "GGTT view %u not implemented!\n",
3359 vma->ggtt_view.type);
3360 return -EINVAL;
3361 }
3362
3363 ret = 0;
3364 if (unlikely(IS_ERR(vma->pages))) {
3365 ret = PTR_ERR(vma->pages);
3366 vma->pages = NULL;
3367 DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3368 vma->ggtt_view.type, ret);
3369 }
3370 return ret;
3371 }
3372
3373 /**
3374 * i915_gem_gtt_reserve - reserve a node in an address_space (GTT)
3375 * @vm: the &struct i915_address_space
3376 * @node: the &struct drm_mm_node (typically i915_vma.mode)
3377 * @size: how much space to allocate inside the GTT,
3378 * must be #I915_GTT_PAGE_SIZE aligned
3379 * @offset: where to insert inside the GTT,
3380 * must be #I915_GTT_MIN_ALIGNMENT aligned, and the node
3381 * (@offset + @size) must fit within the address space
3382 * @color: color to apply to node, if this node is not from a VMA,
3383 * color must be #I915_COLOR_UNEVICTABLE
3384 * @flags: control search and eviction behaviour
3385 *
3386 * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside
3387 * the address space (using @size and @color). If the @node does not fit, it
3388 * tries to evict any overlapping nodes from the GTT, including any
3389 * neighbouring nodes if the colors do not match (to ensure guard pages between
3390 * differing domains). See i915_gem_evict_for_node() for the gory details
3391 * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on
3392 * evicting active overlapping objects, and any overlapping node that is pinned
3393 * or marked as unevictable will also result in failure.
3394 *
3395 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
3396 * asked to wait for eviction and interrupted.
3397 */
3398 int i915_gem_gtt_reserve(struct i915_address_space *vm,
3399 struct drm_mm_node *node,
3400 u64 size, u64 offset, unsigned long color,
3401 unsigned int flags)
3402 {
3403 int err;
3404
3405 GEM_BUG_ON(!size);
3406 GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
3407 GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT));
3408 GEM_BUG_ON(range_overflows(offset, size, vm->total));
3409 GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->base);
3410 GEM_BUG_ON(drm_mm_node_allocated(node));
3411
3412 node->size = size;
3413 node->start = offset;
3414 node->color = color;
3415
3416 err = drm_mm_reserve_node(&vm->mm, node);
3417 if (err != -ENOSPC)
3418 return err;
3419
3420 if (flags & PIN_NOEVICT)
3421 return -ENOSPC;
3422
3423 err = i915_gem_evict_for_node(vm, node, flags);
3424 if (err == 0)
3425 err = drm_mm_reserve_node(&vm->mm, node);
3426
3427 return err;
3428 }
3429
3430 static u64 random_offset(u64 start, u64 end, u64 len, u64 align)
3431 {
3432 u64 range, addr;
3433
3434 GEM_BUG_ON(range_overflows(start, len, end));
3435 GEM_BUG_ON(round_up(start, align) > round_down(end - len, align));
3436
3437 range = round_down(end - len, align) - round_up(start, align);
3438 if (range) {
3439 if (sizeof(unsigned long) == sizeof(u64)) {
3440 addr = get_random_long();
3441 } else {
3442 addr = get_random_int();
3443 if (range > U32_MAX) {
3444 addr <<= 32;
3445 addr |= get_random_int();
3446 }
3447 }
3448 div64_u64_rem(addr, range, &addr);
3449 start += addr;
3450 }
3451
3452 return round_up(start, align);
3453 }
3454
3455 /**
3456 * i915_gem_gtt_insert - insert a node into an address_space (GTT)
3457 * @vm: the &struct i915_address_space
3458 * @node: the &struct drm_mm_node (typically i915_vma.node)
3459 * @size: how much space to allocate inside the GTT,
3460 * must be #I915_GTT_PAGE_SIZE aligned
3461 * @alignment: required alignment of starting offset, may be 0 but
3462 * if specified, this must be a power-of-two and at least
3463 * #I915_GTT_MIN_ALIGNMENT
3464 * @color: color to apply to node
3465 * @start: start of any range restriction inside GTT (0 for all),
3466 * must be #I915_GTT_PAGE_SIZE aligned
3467 * @end: end of any range restriction inside GTT (U64_MAX for all),
3468 * must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX
3469 * @flags: control search and eviction behaviour
3470 *
3471 * i915_gem_gtt_insert() first searches for an available hole into which
3472 * is can insert the node. The hole address is aligned to @alignment and
3473 * its @size must then fit entirely within the [@start, @end] bounds. The
3474 * nodes on either side of the hole must match @color, or else a guard page
3475 * will be inserted between the two nodes (or the node evicted). If no
3476 * suitable hole is found, first a victim is randomly selected and tested
3477 * for eviction, otherwise then the LRU list of objects within the GTT
3478 * is scanned to find the first set of replacement nodes to create the hole.
3479 * Those old overlapping nodes are evicted from the GTT (and so must be
3480 * rebound before any future use). Any node that is currently pinned cannot
3481 * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently
3482 * active and #PIN_NONBLOCK is specified, that node is also skipped when
3483 * searching for an eviction candidate. See i915_gem_evict_something() for
3484 * the gory details on the eviction algorithm.
3485 *
3486 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
3487 * asked to wait for eviction and interrupted.
3488 */
3489 int i915_gem_gtt_insert(struct i915_address_space *vm,
3490 struct drm_mm_node *node,
3491 u64 size, u64 alignment, unsigned long color,
3492 u64 start, u64 end, unsigned int flags)
3493 {
3494 enum drm_mm_insert_mode mode;
3495 u64 offset;
3496 int err;
3497
3498 lockdep_assert_held(&vm->i915->drm.struct_mutex);
3499 GEM_BUG_ON(!size);
3500 GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
3501 GEM_BUG_ON(alignment && !is_power_of_2(alignment));
3502 GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
3503 GEM_BUG_ON(start >= end);
3504 GEM_BUG_ON(start > 0 && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
3505 GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
3506 GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->base);
3507 GEM_BUG_ON(drm_mm_node_allocated(node));
3508
3509 if (unlikely(range_overflows(start, size, end)))
3510 return -ENOSPC;
3511
3512 if (unlikely(round_up(start, alignment) > round_down(end - size, alignment)))
3513 return -ENOSPC;
3514
3515 mode = DRM_MM_INSERT_BEST;
3516 if (flags & PIN_HIGH)
3517 mode = DRM_MM_INSERT_HIGH;
3518 if (flags & PIN_MAPPABLE)
3519 mode = DRM_MM_INSERT_LOW;
3520
3521 /* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
3522 * so we know that we always have a minimum alignment of 4096.
3523 * The drm_mm range manager is optimised to return results
3524 * with zero alignment, so where possible use the optimal
3525 * path.
3526 */
3527 BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE);
3528 if (alignment <= I915_GTT_MIN_ALIGNMENT)
3529 alignment = 0;
3530
3531 err = drm_mm_insert_node_in_range(&vm->mm, node,
3532 size, alignment, color,
3533 start, end, mode);
3534 if (err != -ENOSPC)
3535 return err;
3536
3537 if (flags & PIN_NOEVICT)
3538 return -ENOSPC;
3539
3540 /* No free space, pick a slot at random.
3541 *
3542 * There is a pathological case here using a GTT shared between
3543 * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt):
3544 *
3545 * |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->|
3546 * (64k objects) (448k objects)
3547 *
3548 * Now imagine that the eviction LRU is ordered top-down (just because
3549 * pathology meets real life), and that we need to evict an object to
3550 * make room inside the aperture. The eviction scan then has to walk
3551 * the 448k list before it finds one within range. And now imagine that
3552 * it has to search for a new hole between every byte inside the memcpy,
3553 * for several simultaneous clients.
3554 *
3555 * On a full-ppgtt system, if we have run out of available space, there
3556 * will be lots and lots of objects in the eviction list! Again,
3557 * searching that LRU list may be slow if we are also applying any
3558 * range restrictions (e.g. restriction to low 4GiB) and so, for
3559 * simplicity and similarilty between different GTT, try the single
3560 * random replacement first.
3561 */
3562 offset = random_offset(start, end,
3563 size, alignment ?: I915_GTT_MIN_ALIGNMENT);
3564 err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags);
3565 if (err != -ENOSPC)
3566 return err;
3567
3568 /* Randomly selected placement is pinned, do a search */
3569 err = i915_gem_evict_something(vm, size, alignment, color,
3570 start, end, flags);
3571 if (err)
3572 return err;
3573
3574 return drm_mm_insert_node_in_range(&vm->mm, node,
3575 size, alignment, color,
3576 start, end, DRM_MM_INSERT_EVICT);
3577 }
3578
3579 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3580 #include "selftests/mock_gtt.c"
3581 #include "selftests/i915_gem_gtt.c"
3582 #endif