]> git.ipfire.org Git - people/arne_f/kernel.git/blob - drivers/iio/light/ltr501.c
Merge tag 'v4.14.199' into v4.14.y-multi
[people/arne_f/kernel.git] / drivers / iio / light / ltr501.c
1 /*
2 * ltr501.c - Support for Lite-On LTR501 ambient light and proximity sensor
3 *
4 * Copyright 2014 Peter Meerwald <pmeerw@pmeerw.net>
5 *
6 * This file is subject to the terms and conditions of version 2 of
7 * the GNU General Public License. See the file COPYING in the main
8 * directory of this archive for more details.
9 *
10 * 7-bit I2C slave address 0x23
11 *
12 * TODO: IR LED characteristics
13 */
14
15 #include <linux/module.h>
16 #include <linux/i2c.h>
17 #include <linux/err.h>
18 #include <linux/delay.h>
19 #include <linux/regmap.h>
20 #include <linux/acpi.h>
21
22 #include <linux/iio/iio.h>
23 #include <linux/iio/events.h>
24 #include <linux/iio/sysfs.h>
25 #include <linux/iio/trigger_consumer.h>
26 #include <linux/iio/buffer.h>
27 #include <linux/iio/triggered_buffer.h>
28
29 #define LTR501_DRV_NAME "ltr501"
30
31 #define LTR501_ALS_CONTR 0x80 /* ALS operation mode, SW reset */
32 #define LTR501_PS_CONTR 0x81 /* PS operation mode */
33 #define LTR501_PS_MEAS_RATE 0x84 /* measurement rate*/
34 #define LTR501_ALS_MEAS_RATE 0x85 /* ALS integ time, measurement rate*/
35 #define LTR501_PART_ID 0x86
36 #define LTR501_MANUFAC_ID 0x87
37 #define LTR501_ALS_DATA1 0x88 /* 16-bit, little endian */
38 #define LTR501_ALS_DATA0 0x8a /* 16-bit, little endian */
39 #define LTR501_ALS_PS_STATUS 0x8c
40 #define LTR501_PS_DATA 0x8d /* 16-bit, little endian */
41 #define LTR501_INTR 0x8f /* output mode, polarity, mode */
42 #define LTR501_PS_THRESH_UP 0x90 /* 11 bit, ps upper threshold */
43 #define LTR501_PS_THRESH_LOW 0x92 /* 11 bit, ps lower threshold */
44 #define LTR501_ALS_THRESH_UP 0x97 /* 16 bit, ALS upper threshold */
45 #define LTR501_ALS_THRESH_LOW 0x99 /* 16 bit, ALS lower threshold */
46 #define LTR501_INTR_PRST 0x9e /* ps thresh, als thresh */
47 #define LTR501_MAX_REG 0x9f
48
49 #define LTR501_ALS_CONTR_SW_RESET BIT(2)
50 #define LTR501_CONTR_PS_GAIN_MASK (BIT(3) | BIT(2))
51 #define LTR501_CONTR_PS_GAIN_SHIFT 2
52 #define LTR501_CONTR_ALS_GAIN_MASK BIT(3)
53 #define LTR501_CONTR_ACTIVE BIT(1)
54
55 #define LTR501_STATUS_ALS_INTR BIT(3)
56 #define LTR501_STATUS_ALS_RDY BIT(2)
57 #define LTR501_STATUS_PS_INTR BIT(1)
58 #define LTR501_STATUS_PS_RDY BIT(0)
59
60 #define LTR501_PS_DATA_MASK 0x7ff
61 #define LTR501_PS_THRESH_MASK 0x7ff
62 #define LTR501_ALS_THRESH_MASK 0xffff
63
64 #define LTR501_ALS_DEF_PERIOD 500000
65 #define LTR501_PS_DEF_PERIOD 100000
66
67 #define LTR501_REGMAP_NAME "ltr501_regmap"
68
69 #define LTR501_LUX_CONV(vis_coeff, vis_data, ir_coeff, ir_data) \
70 ((vis_coeff * vis_data) - (ir_coeff * ir_data))
71
72 static const int int_time_mapping[] = {100000, 50000, 200000, 400000};
73
74 static const struct reg_field reg_field_it =
75 REG_FIELD(LTR501_ALS_MEAS_RATE, 3, 4);
76 static const struct reg_field reg_field_als_intr =
77 REG_FIELD(LTR501_INTR, 1, 1);
78 static const struct reg_field reg_field_ps_intr =
79 REG_FIELD(LTR501_INTR, 0, 0);
80 static const struct reg_field reg_field_als_rate =
81 REG_FIELD(LTR501_ALS_MEAS_RATE, 0, 2);
82 static const struct reg_field reg_field_ps_rate =
83 REG_FIELD(LTR501_PS_MEAS_RATE, 0, 3);
84 static const struct reg_field reg_field_als_prst =
85 REG_FIELD(LTR501_INTR_PRST, 0, 3);
86 static const struct reg_field reg_field_ps_prst =
87 REG_FIELD(LTR501_INTR_PRST, 4, 7);
88
89 struct ltr501_samp_table {
90 int freq_val; /* repetition frequency in micro HZ*/
91 int time_val; /* repetition rate in micro seconds */
92 };
93
94 #define LTR501_RESERVED_GAIN -1
95
96 enum {
97 ltr501 = 0,
98 ltr559,
99 ltr301,
100 };
101
102 struct ltr501_gain {
103 int scale;
104 int uscale;
105 };
106
107 static struct ltr501_gain ltr501_als_gain_tbl[] = {
108 {1, 0},
109 {0, 5000},
110 };
111
112 static struct ltr501_gain ltr559_als_gain_tbl[] = {
113 {1, 0},
114 {0, 500000},
115 {0, 250000},
116 {0, 125000},
117 {LTR501_RESERVED_GAIN, LTR501_RESERVED_GAIN},
118 {LTR501_RESERVED_GAIN, LTR501_RESERVED_GAIN},
119 {0, 20000},
120 {0, 10000},
121 };
122
123 static struct ltr501_gain ltr501_ps_gain_tbl[] = {
124 {1, 0},
125 {0, 250000},
126 {0, 125000},
127 {0, 62500},
128 };
129
130 static struct ltr501_gain ltr559_ps_gain_tbl[] = {
131 {0, 62500}, /* x16 gain */
132 {0, 31250}, /* x32 gain */
133 {0, 15625}, /* bits X1 are for x64 gain */
134 {0, 15624},
135 };
136
137 struct ltr501_chip_info {
138 u8 partid;
139 struct ltr501_gain *als_gain;
140 int als_gain_tbl_size;
141 struct ltr501_gain *ps_gain;
142 int ps_gain_tbl_size;
143 u8 als_mode_active;
144 u8 als_gain_mask;
145 u8 als_gain_shift;
146 struct iio_chan_spec const *channels;
147 const int no_channels;
148 const struct iio_info *info;
149 const struct iio_info *info_no_irq;
150 };
151
152 struct ltr501_data {
153 struct i2c_client *client;
154 struct mutex lock_als, lock_ps;
155 struct ltr501_chip_info *chip_info;
156 u8 als_contr, ps_contr;
157 int als_period, ps_period; /* period in micro seconds */
158 struct regmap *regmap;
159 struct regmap_field *reg_it;
160 struct regmap_field *reg_als_intr;
161 struct regmap_field *reg_ps_intr;
162 struct regmap_field *reg_als_rate;
163 struct regmap_field *reg_ps_rate;
164 struct regmap_field *reg_als_prst;
165 struct regmap_field *reg_ps_prst;
166 };
167
168 static const struct ltr501_samp_table ltr501_als_samp_table[] = {
169 {20000000, 50000}, {10000000, 100000},
170 {5000000, 200000}, {2000000, 500000},
171 {1000000, 1000000}, {500000, 2000000},
172 {500000, 2000000}, {500000, 2000000}
173 };
174
175 static const struct ltr501_samp_table ltr501_ps_samp_table[] = {
176 {20000000, 50000}, {14285714, 70000},
177 {10000000, 100000}, {5000000, 200000},
178 {2000000, 500000}, {1000000, 1000000},
179 {500000, 2000000}, {500000, 2000000},
180 {500000, 2000000}
181 };
182
183 static int ltr501_match_samp_freq(const struct ltr501_samp_table *tab,
184 int len, int val, int val2)
185 {
186 int i, freq;
187
188 freq = val * 1000000 + val2;
189
190 for (i = 0; i < len; i++) {
191 if (tab[i].freq_val == freq)
192 return i;
193 }
194
195 return -EINVAL;
196 }
197
198 static int ltr501_als_read_samp_freq(struct ltr501_data *data,
199 int *val, int *val2)
200 {
201 int ret, i;
202
203 ret = regmap_field_read(data->reg_als_rate, &i);
204 if (ret < 0)
205 return ret;
206
207 if (i < 0 || i >= ARRAY_SIZE(ltr501_als_samp_table))
208 return -EINVAL;
209
210 *val = ltr501_als_samp_table[i].freq_val / 1000000;
211 *val2 = ltr501_als_samp_table[i].freq_val % 1000000;
212
213 return IIO_VAL_INT_PLUS_MICRO;
214 }
215
216 static int ltr501_ps_read_samp_freq(struct ltr501_data *data,
217 int *val, int *val2)
218 {
219 int ret, i;
220
221 ret = regmap_field_read(data->reg_ps_rate, &i);
222 if (ret < 0)
223 return ret;
224
225 if (i < 0 || i >= ARRAY_SIZE(ltr501_ps_samp_table))
226 return -EINVAL;
227
228 *val = ltr501_ps_samp_table[i].freq_val / 1000000;
229 *val2 = ltr501_ps_samp_table[i].freq_val % 1000000;
230
231 return IIO_VAL_INT_PLUS_MICRO;
232 }
233
234 static int ltr501_als_write_samp_freq(struct ltr501_data *data,
235 int val, int val2)
236 {
237 int i, ret;
238
239 i = ltr501_match_samp_freq(ltr501_als_samp_table,
240 ARRAY_SIZE(ltr501_als_samp_table),
241 val, val2);
242
243 if (i < 0)
244 return i;
245
246 mutex_lock(&data->lock_als);
247 ret = regmap_field_write(data->reg_als_rate, i);
248 mutex_unlock(&data->lock_als);
249
250 return ret;
251 }
252
253 static int ltr501_ps_write_samp_freq(struct ltr501_data *data,
254 int val, int val2)
255 {
256 int i, ret;
257
258 i = ltr501_match_samp_freq(ltr501_ps_samp_table,
259 ARRAY_SIZE(ltr501_ps_samp_table),
260 val, val2);
261
262 if (i < 0)
263 return i;
264
265 mutex_lock(&data->lock_ps);
266 ret = regmap_field_write(data->reg_ps_rate, i);
267 mutex_unlock(&data->lock_ps);
268
269 return ret;
270 }
271
272 static int ltr501_als_read_samp_period(struct ltr501_data *data, int *val)
273 {
274 int ret, i;
275
276 ret = regmap_field_read(data->reg_als_rate, &i);
277 if (ret < 0)
278 return ret;
279
280 if (i < 0 || i >= ARRAY_SIZE(ltr501_als_samp_table))
281 return -EINVAL;
282
283 *val = ltr501_als_samp_table[i].time_val;
284
285 return IIO_VAL_INT;
286 }
287
288 static int ltr501_ps_read_samp_period(struct ltr501_data *data, int *val)
289 {
290 int ret, i;
291
292 ret = regmap_field_read(data->reg_ps_rate, &i);
293 if (ret < 0)
294 return ret;
295
296 if (i < 0 || i >= ARRAY_SIZE(ltr501_ps_samp_table))
297 return -EINVAL;
298
299 *val = ltr501_ps_samp_table[i].time_val;
300
301 return IIO_VAL_INT;
302 }
303
304 /* IR and visible spectrum coeff's are given in data sheet */
305 static unsigned long ltr501_calculate_lux(u16 vis_data, u16 ir_data)
306 {
307 unsigned long ratio, lux;
308
309 if (vis_data == 0)
310 return 0;
311
312 /* multiply numerator by 100 to avoid handling ratio < 1 */
313 ratio = DIV_ROUND_UP(ir_data * 100, ir_data + vis_data);
314
315 if (ratio < 45)
316 lux = LTR501_LUX_CONV(1774, vis_data, -1105, ir_data);
317 else if (ratio >= 45 && ratio < 64)
318 lux = LTR501_LUX_CONV(3772, vis_data, 1336, ir_data);
319 else if (ratio >= 64 && ratio < 85)
320 lux = LTR501_LUX_CONV(1690, vis_data, 169, ir_data);
321 else
322 lux = 0;
323
324 return lux / 1000;
325 }
326
327 static int ltr501_drdy(struct ltr501_data *data, u8 drdy_mask)
328 {
329 int tries = 100;
330 int ret, status;
331
332 while (tries--) {
333 ret = regmap_read(data->regmap, LTR501_ALS_PS_STATUS, &status);
334 if (ret < 0)
335 return ret;
336 if ((status & drdy_mask) == drdy_mask)
337 return 0;
338 msleep(25);
339 }
340
341 dev_err(&data->client->dev, "ltr501_drdy() failed, data not ready\n");
342 return -EIO;
343 }
344
345 static int ltr501_set_it_time(struct ltr501_data *data, int it)
346 {
347 int ret, i, index = -1, status;
348
349 for (i = 0; i < ARRAY_SIZE(int_time_mapping); i++) {
350 if (int_time_mapping[i] == it) {
351 index = i;
352 break;
353 }
354 }
355 /* Make sure integ time index is valid */
356 if (index < 0)
357 return -EINVAL;
358
359 ret = regmap_read(data->regmap, LTR501_ALS_CONTR, &status);
360 if (ret < 0)
361 return ret;
362
363 if (status & LTR501_CONTR_ALS_GAIN_MASK) {
364 /*
365 * 200 ms and 400 ms integ time can only be
366 * used in dynamic range 1
367 */
368 if (index > 1)
369 return -EINVAL;
370 } else
371 /* 50 ms integ time can only be used in dynamic range 2 */
372 if (index == 1)
373 return -EINVAL;
374
375 return regmap_field_write(data->reg_it, index);
376 }
377
378 /* read int time in micro seconds */
379 static int ltr501_read_it_time(struct ltr501_data *data, int *val, int *val2)
380 {
381 int ret, index;
382
383 ret = regmap_field_read(data->reg_it, &index);
384 if (ret < 0)
385 return ret;
386
387 /* Make sure integ time index is valid */
388 if (index < 0 || index >= ARRAY_SIZE(int_time_mapping))
389 return -EINVAL;
390
391 *val2 = int_time_mapping[index];
392 *val = 0;
393
394 return IIO_VAL_INT_PLUS_MICRO;
395 }
396
397 static int ltr501_read_als(struct ltr501_data *data, __le16 buf[2])
398 {
399 int ret;
400
401 ret = ltr501_drdy(data, LTR501_STATUS_ALS_RDY);
402 if (ret < 0)
403 return ret;
404 /* always read both ALS channels in given order */
405 return regmap_bulk_read(data->regmap, LTR501_ALS_DATA1,
406 buf, 2 * sizeof(__le16));
407 }
408
409 static int ltr501_read_ps(struct ltr501_data *data)
410 {
411 int ret, status;
412
413 ret = ltr501_drdy(data, LTR501_STATUS_PS_RDY);
414 if (ret < 0)
415 return ret;
416
417 ret = regmap_bulk_read(data->regmap, LTR501_PS_DATA,
418 &status, 2);
419 if (ret < 0)
420 return ret;
421
422 return status;
423 }
424
425 static int ltr501_read_intr_prst(struct ltr501_data *data,
426 enum iio_chan_type type,
427 int *val2)
428 {
429 int ret, samp_period, prst;
430
431 switch (type) {
432 case IIO_INTENSITY:
433 ret = regmap_field_read(data->reg_als_prst, &prst);
434 if (ret < 0)
435 return ret;
436
437 ret = ltr501_als_read_samp_period(data, &samp_period);
438
439 if (ret < 0)
440 return ret;
441 *val2 = samp_period * prst;
442 return IIO_VAL_INT_PLUS_MICRO;
443 case IIO_PROXIMITY:
444 ret = regmap_field_read(data->reg_ps_prst, &prst);
445 if (ret < 0)
446 return ret;
447
448 ret = ltr501_ps_read_samp_period(data, &samp_period);
449
450 if (ret < 0)
451 return ret;
452
453 *val2 = samp_period * prst;
454 return IIO_VAL_INT_PLUS_MICRO;
455 default:
456 return -EINVAL;
457 }
458
459 return -EINVAL;
460 }
461
462 static int ltr501_write_intr_prst(struct ltr501_data *data,
463 enum iio_chan_type type,
464 int val, int val2)
465 {
466 int ret, samp_period, new_val;
467 unsigned long period;
468
469 if (val < 0 || val2 < 0)
470 return -EINVAL;
471
472 /* period in microseconds */
473 period = ((val * 1000000) + val2);
474
475 switch (type) {
476 case IIO_INTENSITY:
477 ret = ltr501_als_read_samp_period(data, &samp_period);
478 if (ret < 0)
479 return ret;
480
481 /* period should be atleast equal to sampling period */
482 if (period < samp_period)
483 return -EINVAL;
484
485 new_val = DIV_ROUND_UP(period, samp_period);
486 if (new_val < 0 || new_val > 0x0f)
487 return -EINVAL;
488
489 mutex_lock(&data->lock_als);
490 ret = regmap_field_write(data->reg_als_prst, new_val);
491 mutex_unlock(&data->lock_als);
492 if (ret >= 0)
493 data->als_period = period;
494
495 return ret;
496 case IIO_PROXIMITY:
497 ret = ltr501_ps_read_samp_period(data, &samp_period);
498 if (ret < 0)
499 return ret;
500
501 /* period should be atleast equal to rate */
502 if (period < samp_period)
503 return -EINVAL;
504
505 new_val = DIV_ROUND_UP(period, samp_period);
506 if (new_val < 0 || new_val > 0x0f)
507 return -EINVAL;
508
509 mutex_lock(&data->lock_ps);
510 ret = regmap_field_write(data->reg_ps_prst, new_val);
511 mutex_unlock(&data->lock_ps);
512 if (ret >= 0)
513 data->ps_period = period;
514
515 return ret;
516 default:
517 return -EINVAL;
518 }
519
520 return -EINVAL;
521 }
522
523 static const struct iio_event_spec ltr501_als_event_spec[] = {
524 {
525 .type = IIO_EV_TYPE_THRESH,
526 .dir = IIO_EV_DIR_RISING,
527 .mask_separate = BIT(IIO_EV_INFO_VALUE),
528 }, {
529 .type = IIO_EV_TYPE_THRESH,
530 .dir = IIO_EV_DIR_FALLING,
531 .mask_separate = BIT(IIO_EV_INFO_VALUE),
532 }, {
533 .type = IIO_EV_TYPE_THRESH,
534 .dir = IIO_EV_DIR_EITHER,
535 .mask_separate = BIT(IIO_EV_INFO_ENABLE) |
536 BIT(IIO_EV_INFO_PERIOD),
537 },
538
539 };
540
541 static const struct iio_event_spec ltr501_pxs_event_spec[] = {
542 {
543 .type = IIO_EV_TYPE_THRESH,
544 .dir = IIO_EV_DIR_RISING,
545 .mask_separate = BIT(IIO_EV_INFO_VALUE),
546 }, {
547 .type = IIO_EV_TYPE_THRESH,
548 .dir = IIO_EV_DIR_FALLING,
549 .mask_separate = BIT(IIO_EV_INFO_VALUE),
550 }, {
551 .type = IIO_EV_TYPE_THRESH,
552 .dir = IIO_EV_DIR_EITHER,
553 .mask_separate = BIT(IIO_EV_INFO_ENABLE) |
554 BIT(IIO_EV_INFO_PERIOD),
555 },
556 };
557
558 #define LTR501_INTENSITY_CHANNEL(_idx, _addr, _mod, _shared, \
559 _evspec, _evsize) { \
560 .type = IIO_INTENSITY, \
561 .modified = 1, \
562 .address = (_addr), \
563 .channel2 = (_mod), \
564 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
565 .info_mask_shared_by_type = (_shared), \
566 .scan_index = (_idx), \
567 .scan_type = { \
568 .sign = 'u', \
569 .realbits = 16, \
570 .storagebits = 16, \
571 .endianness = IIO_CPU, \
572 }, \
573 .event_spec = _evspec,\
574 .num_event_specs = _evsize,\
575 }
576
577 #define LTR501_LIGHT_CHANNEL() { \
578 .type = IIO_LIGHT, \
579 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), \
580 .scan_index = -1, \
581 }
582
583 static const struct iio_chan_spec ltr501_channels[] = {
584 LTR501_LIGHT_CHANNEL(),
585 LTR501_INTENSITY_CHANNEL(0, LTR501_ALS_DATA0, IIO_MOD_LIGHT_BOTH, 0,
586 ltr501_als_event_spec,
587 ARRAY_SIZE(ltr501_als_event_spec)),
588 LTR501_INTENSITY_CHANNEL(1, LTR501_ALS_DATA1, IIO_MOD_LIGHT_IR,
589 BIT(IIO_CHAN_INFO_SCALE) |
590 BIT(IIO_CHAN_INFO_INT_TIME) |
591 BIT(IIO_CHAN_INFO_SAMP_FREQ),
592 NULL, 0),
593 {
594 .type = IIO_PROXIMITY,
595 .address = LTR501_PS_DATA,
596 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
597 BIT(IIO_CHAN_INFO_SCALE),
598 .scan_index = 2,
599 .scan_type = {
600 .sign = 'u',
601 .realbits = 11,
602 .storagebits = 16,
603 .endianness = IIO_CPU,
604 },
605 .event_spec = ltr501_pxs_event_spec,
606 .num_event_specs = ARRAY_SIZE(ltr501_pxs_event_spec),
607 },
608 IIO_CHAN_SOFT_TIMESTAMP(3),
609 };
610
611 static const struct iio_chan_spec ltr301_channels[] = {
612 LTR501_LIGHT_CHANNEL(),
613 LTR501_INTENSITY_CHANNEL(0, LTR501_ALS_DATA0, IIO_MOD_LIGHT_BOTH, 0,
614 ltr501_als_event_spec,
615 ARRAY_SIZE(ltr501_als_event_spec)),
616 LTR501_INTENSITY_CHANNEL(1, LTR501_ALS_DATA1, IIO_MOD_LIGHT_IR,
617 BIT(IIO_CHAN_INFO_SCALE) |
618 BIT(IIO_CHAN_INFO_INT_TIME) |
619 BIT(IIO_CHAN_INFO_SAMP_FREQ),
620 NULL, 0),
621 IIO_CHAN_SOFT_TIMESTAMP(2),
622 };
623
624 static int ltr501_read_raw(struct iio_dev *indio_dev,
625 struct iio_chan_spec const *chan,
626 int *val, int *val2, long mask)
627 {
628 struct ltr501_data *data = iio_priv(indio_dev);
629 __le16 buf[2];
630 int ret, i;
631
632 switch (mask) {
633 case IIO_CHAN_INFO_PROCESSED:
634 switch (chan->type) {
635 case IIO_LIGHT:
636 ret = iio_device_claim_direct_mode(indio_dev);
637 if (ret)
638 return ret;
639
640 mutex_lock(&data->lock_als);
641 ret = ltr501_read_als(data, buf);
642 mutex_unlock(&data->lock_als);
643 iio_device_release_direct_mode(indio_dev);
644 if (ret < 0)
645 return ret;
646 *val = ltr501_calculate_lux(le16_to_cpu(buf[1]),
647 le16_to_cpu(buf[0]));
648 return IIO_VAL_INT;
649 default:
650 return -EINVAL;
651 }
652 case IIO_CHAN_INFO_RAW:
653 ret = iio_device_claim_direct_mode(indio_dev);
654 if (ret)
655 return ret;
656
657 switch (chan->type) {
658 case IIO_INTENSITY:
659 mutex_lock(&data->lock_als);
660 ret = ltr501_read_als(data, buf);
661 mutex_unlock(&data->lock_als);
662 if (ret < 0)
663 break;
664 *val = le16_to_cpu(chan->address == LTR501_ALS_DATA1 ?
665 buf[0] : buf[1]);
666 ret = IIO_VAL_INT;
667 break;
668 case IIO_PROXIMITY:
669 mutex_lock(&data->lock_ps);
670 ret = ltr501_read_ps(data);
671 mutex_unlock(&data->lock_ps);
672 if (ret < 0)
673 break;
674 *val = ret & LTR501_PS_DATA_MASK;
675 ret = IIO_VAL_INT;
676 break;
677 default:
678 ret = -EINVAL;
679 break;
680 }
681
682 iio_device_release_direct_mode(indio_dev);
683 return ret;
684
685 case IIO_CHAN_INFO_SCALE:
686 switch (chan->type) {
687 case IIO_INTENSITY:
688 i = (data->als_contr & data->chip_info->als_gain_mask)
689 >> data->chip_info->als_gain_shift;
690 *val = data->chip_info->als_gain[i].scale;
691 *val2 = data->chip_info->als_gain[i].uscale;
692 return IIO_VAL_INT_PLUS_MICRO;
693 case IIO_PROXIMITY:
694 i = (data->ps_contr & LTR501_CONTR_PS_GAIN_MASK) >>
695 LTR501_CONTR_PS_GAIN_SHIFT;
696 *val = data->chip_info->ps_gain[i].scale;
697 *val2 = data->chip_info->ps_gain[i].uscale;
698 return IIO_VAL_INT_PLUS_MICRO;
699 default:
700 return -EINVAL;
701 }
702 case IIO_CHAN_INFO_INT_TIME:
703 switch (chan->type) {
704 case IIO_INTENSITY:
705 return ltr501_read_it_time(data, val, val2);
706 default:
707 return -EINVAL;
708 }
709 case IIO_CHAN_INFO_SAMP_FREQ:
710 switch (chan->type) {
711 case IIO_INTENSITY:
712 return ltr501_als_read_samp_freq(data, val, val2);
713 case IIO_PROXIMITY:
714 return ltr501_ps_read_samp_freq(data, val, val2);
715 default:
716 return -EINVAL;
717 }
718 }
719 return -EINVAL;
720 }
721
722 static int ltr501_get_gain_index(struct ltr501_gain *gain, int size,
723 int val, int val2)
724 {
725 int i;
726
727 for (i = 0; i < size; i++)
728 if (val == gain[i].scale && val2 == gain[i].uscale)
729 return i;
730
731 return -1;
732 }
733
734 static int ltr501_write_raw(struct iio_dev *indio_dev,
735 struct iio_chan_spec const *chan,
736 int val, int val2, long mask)
737 {
738 struct ltr501_data *data = iio_priv(indio_dev);
739 int i, ret, freq_val, freq_val2;
740 struct ltr501_chip_info *info = data->chip_info;
741
742 ret = iio_device_claim_direct_mode(indio_dev);
743 if (ret)
744 return ret;
745
746 switch (mask) {
747 case IIO_CHAN_INFO_SCALE:
748 switch (chan->type) {
749 case IIO_INTENSITY:
750 i = ltr501_get_gain_index(info->als_gain,
751 info->als_gain_tbl_size,
752 val, val2);
753 if (i < 0) {
754 ret = -EINVAL;
755 break;
756 }
757
758 data->als_contr &= ~info->als_gain_mask;
759 data->als_contr |= i << info->als_gain_shift;
760
761 ret = regmap_write(data->regmap, LTR501_ALS_CONTR,
762 data->als_contr);
763 break;
764 case IIO_PROXIMITY:
765 i = ltr501_get_gain_index(info->ps_gain,
766 info->ps_gain_tbl_size,
767 val, val2);
768 if (i < 0) {
769 ret = -EINVAL;
770 break;
771 }
772 data->ps_contr &= ~LTR501_CONTR_PS_GAIN_MASK;
773 data->ps_contr |= i << LTR501_CONTR_PS_GAIN_SHIFT;
774
775 ret = regmap_write(data->regmap, LTR501_PS_CONTR,
776 data->ps_contr);
777 break;
778 default:
779 ret = -EINVAL;
780 break;
781 }
782 break;
783
784 case IIO_CHAN_INFO_INT_TIME:
785 switch (chan->type) {
786 case IIO_INTENSITY:
787 if (val != 0) {
788 ret = -EINVAL;
789 break;
790 }
791 mutex_lock(&data->lock_als);
792 ret = ltr501_set_it_time(data, val2);
793 mutex_unlock(&data->lock_als);
794 break;
795 default:
796 ret = -EINVAL;
797 break;
798 }
799 break;
800
801 case IIO_CHAN_INFO_SAMP_FREQ:
802 switch (chan->type) {
803 case IIO_INTENSITY:
804 ret = ltr501_als_read_samp_freq(data, &freq_val,
805 &freq_val2);
806 if (ret < 0)
807 break;
808
809 ret = ltr501_als_write_samp_freq(data, val, val2);
810 if (ret < 0)
811 break;
812
813 /* update persistence count when changing frequency */
814 ret = ltr501_write_intr_prst(data, chan->type,
815 0, data->als_period);
816
817 if (ret < 0)
818 ret = ltr501_als_write_samp_freq(data, freq_val,
819 freq_val2);
820 break;
821 case IIO_PROXIMITY:
822 ret = ltr501_ps_read_samp_freq(data, &freq_val,
823 &freq_val2);
824 if (ret < 0)
825 break;
826
827 ret = ltr501_ps_write_samp_freq(data, val, val2);
828 if (ret < 0)
829 break;
830
831 /* update persistence count when changing frequency */
832 ret = ltr501_write_intr_prst(data, chan->type,
833 0, data->ps_period);
834
835 if (ret < 0)
836 ret = ltr501_ps_write_samp_freq(data, freq_val,
837 freq_val2);
838 break;
839 default:
840 ret = -EINVAL;
841 break;
842 }
843 break;
844
845 default:
846 ret = -EINVAL;
847 break;
848 }
849
850 iio_device_release_direct_mode(indio_dev);
851 return ret;
852 }
853
854 static int ltr501_read_thresh(struct iio_dev *indio_dev,
855 const struct iio_chan_spec *chan,
856 enum iio_event_type type,
857 enum iio_event_direction dir,
858 enum iio_event_info info,
859 int *val, int *val2)
860 {
861 struct ltr501_data *data = iio_priv(indio_dev);
862 int ret, thresh_data;
863
864 switch (chan->type) {
865 case IIO_INTENSITY:
866 switch (dir) {
867 case IIO_EV_DIR_RISING:
868 ret = regmap_bulk_read(data->regmap,
869 LTR501_ALS_THRESH_UP,
870 &thresh_data, 2);
871 if (ret < 0)
872 return ret;
873 *val = thresh_data & LTR501_ALS_THRESH_MASK;
874 return IIO_VAL_INT;
875 case IIO_EV_DIR_FALLING:
876 ret = regmap_bulk_read(data->regmap,
877 LTR501_ALS_THRESH_LOW,
878 &thresh_data, 2);
879 if (ret < 0)
880 return ret;
881 *val = thresh_data & LTR501_ALS_THRESH_MASK;
882 return IIO_VAL_INT;
883 default:
884 return -EINVAL;
885 }
886 case IIO_PROXIMITY:
887 switch (dir) {
888 case IIO_EV_DIR_RISING:
889 ret = regmap_bulk_read(data->regmap,
890 LTR501_PS_THRESH_UP,
891 &thresh_data, 2);
892 if (ret < 0)
893 return ret;
894 *val = thresh_data & LTR501_PS_THRESH_MASK;
895 return IIO_VAL_INT;
896 case IIO_EV_DIR_FALLING:
897 ret = regmap_bulk_read(data->regmap,
898 LTR501_PS_THRESH_LOW,
899 &thresh_data, 2);
900 if (ret < 0)
901 return ret;
902 *val = thresh_data & LTR501_PS_THRESH_MASK;
903 return IIO_VAL_INT;
904 default:
905 return -EINVAL;
906 }
907 default:
908 return -EINVAL;
909 }
910
911 return -EINVAL;
912 }
913
914 static int ltr501_write_thresh(struct iio_dev *indio_dev,
915 const struct iio_chan_spec *chan,
916 enum iio_event_type type,
917 enum iio_event_direction dir,
918 enum iio_event_info info,
919 int val, int val2)
920 {
921 struct ltr501_data *data = iio_priv(indio_dev);
922 int ret;
923
924 if (val < 0)
925 return -EINVAL;
926
927 switch (chan->type) {
928 case IIO_INTENSITY:
929 if (val > LTR501_ALS_THRESH_MASK)
930 return -EINVAL;
931 switch (dir) {
932 case IIO_EV_DIR_RISING:
933 mutex_lock(&data->lock_als);
934 ret = regmap_bulk_write(data->regmap,
935 LTR501_ALS_THRESH_UP,
936 &val, 2);
937 mutex_unlock(&data->lock_als);
938 return ret;
939 case IIO_EV_DIR_FALLING:
940 mutex_lock(&data->lock_als);
941 ret = regmap_bulk_write(data->regmap,
942 LTR501_ALS_THRESH_LOW,
943 &val, 2);
944 mutex_unlock(&data->lock_als);
945 return ret;
946 default:
947 return -EINVAL;
948 }
949 case IIO_PROXIMITY:
950 if (val > LTR501_PS_THRESH_MASK)
951 return -EINVAL;
952 switch (dir) {
953 case IIO_EV_DIR_RISING:
954 mutex_lock(&data->lock_ps);
955 ret = regmap_bulk_write(data->regmap,
956 LTR501_PS_THRESH_UP,
957 &val, 2);
958 mutex_unlock(&data->lock_ps);
959 return ret;
960 case IIO_EV_DIR_FALLING:
961 mutex_lock(&data->lock_ps);
962 ret = regmap_bulk_write(data->regmap,
963 LTR501_PS_THRESH_LOW,
964 &val, 2);
965 mutex_unlock(&data->lock_ps);
966 return ret;
967 default:
968 return -EINVAL;
969 }
970 default:
971 return -EINVAL;
972 }
973
974 return -EINVAL;
975 }
976
977 static int ltr501_read_event(struct iio_dev *indio_dev,
978 const struct iio_chan_spec *chan,
979 enum iio_event_type type,
980 enum iio_event_direction dir,
981 enum iio_event_info info,
982 int *val, int *val2)
983 {
984 int ret;
985
986 switch (info) {
987 case IIO_EV_INFO_VALUE:
988 return ltr501_read_thresh(indio_dev, chan, type, dir,
989 info, val, val2);
990 case IIO_EV_INFO_PERIOD:
991 ret = ltr501_read_intr_prst(iio_priv(indio_dev),
992 chan->type, val2);
993 *val = *val2 / 1000000;
994 *val2 = *val2 % 1000000;
995 return ret;
996 default:
997 return -EINVAL;
998 }
999
1000 return -EINVAL;
1001 }
1002
1003 static int ltr501_write_event(struct iio_dev *indio_dev,
1004 const struct iio_chan_spec *chan,
1005 enum iio_event_type type,
1006 enum iio_event_direction dir,
1007 enum iio_event_info info,
1008 int val, int val2)
1009 {
1010 switch (info) {
1011 case IIO_EV_INFO_VALUE:
1012 if (val2 != 0)
1013 return -EINVAL;
1014 return ltr501_write_thresh(indio_dev, chan, type, dir,
1015 info, val, val2);
1016 case IIO_EV_INFO_PERIOD:
1017 return ltr501_write_intr_prst(iio_priv(indio_dev), chan->type,
1018 val, val2);
1019 default:
1020 return -EINVAL;
1021 }
1022
1023 return -EINVAL;
1024 }
1025
1026 static int ltr501_read_event_config(struct iio_dev *indio_dev,
1027 const struct iio_chan_spec *chan,
1028 enum iio_event_type type,
1029 enum iio_event_direction dir)
1030 {
1031 struct ltr501_data *data = iio_priv(indio_dev);
1032 int ret, status;
1033
1034 switch (chan->type) {
1035 case IIO_INTENSITY:
1036 ret = regmap_field_read(data->reg_als_intr, &status);
1037 if (ret < 0)
1038 return ret;
1039 return status;
1040 case IIO_PROXIMITY:
1041 ret = regmap_field_read(data->reg_ps_intr, &status);
1042 if (ret < 0)
1043 return ret;
1044 return status;
1045 default:
1046 return -EINVAL;
1047 }
1048
1049 return -EINVAL;
1050 }
1051
1052 static int ltr501_write_event_config(struct iio_dev *indio_dev,
1053 const struct iio_chan_spec *chan,
1054 enum iio_event_type type,
1055 enum iio_event_direction dir, int state)
1056 {
1057 struct ltr501_data *data = iio_priv(indio_dev);
1058 int ret;
1059
1060 /* only 1 and 0 are valid inputs */
1061 if (state != 1 && state != 0)
1062 return -EINVAL;
1063
1064 switch (chan->type) {
1065 case IIO_INTENSITY:
1066 mutex_lock(&data->lock_als);
1067 ret = regmap_field_write(data->reg_als_intr, state);
1068 mutex_unlock(&data->lock_als);
1069 return ret;
1070 case IIO_PROXIMITY:
1071 mutex_lock(&data->lock_ps);
1072 ret = regmap_field_write(data->reg_ps_intr, state);
1073 mutex_unlock(&data->lock_ps);
1074 return ret;
1075 default:
1076 return -EINVAL;
1077 }
1078
1079 return -EINVAL;
1080 }
1081
1082 static ssize_t ltr501_show_proximity_scale_avail(struct device *dev,
1083 struct device_attribute *attr,
1084 char *buf)
1085 {
1086 struct ltr501_data *data = iio_priv(dev_to_iio_dev(dev));
1087 struct ltr501_chip_info *info = data->chip_info;
1088 ssize_t len = 0;
1089 int i;
1090
1091 for (i = 0; i < info->ps_gain_tbl_size; i++) {
1092 if (info->ps_gain[i].scale == LTR501_RESERVED_GAIN)
1093 continue;
1094 len += scnprintf(buf + len, PAGE_SIZE - len, "%d.%06d ",
1095 info->ps_gain[i].scale,
1096 info->ps_gain[i].uscale);
1097 }
1098
1099 buf[len - 1] = '\n';
1100
1101 return len;
1102 }
1103
1104 static ssize_t ltr501_show_intensity_scale_avail(struct device *dev,
1105 struct device_attribute *attr,
1106 char *buf)
1107 {
1108 struct ltr501_data *data = iio_priv(dev_to_iio_dev(dev));
1109 struct ltr501_chip_info *info = data->chip_info;
1110 ssize_t len = 0;
1111 int i;
1112
1113 for (i = 0; i < info->als_gain_tbl_size; i++) {
1114 if (info->als_gain[i].scale == LTR501_RESERVED_GAIN)
1115 continue;
1116 len += scnprintf(buf + len, PAGE_SIZE - len, "%d.%06d ",
1117 info->als_gain[i].scale,
1118 info->als_gain[i].uscale);
1119 }
1120
1121 buf[len - 1] = '\n';
1122
1123 return len;
1124 }
1125
1126 static IIO_CONST_ATTR_INT_TIME_AVAIL("0.05 0.1 0.2 0.4");
1127 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("20 10 5 2 1 0.5");
1128
1129 static IIO_DEVICE_ATTR(in_proximity_scale_available, S_IRUGO,
1130 ltr501_show_proximity_scale_avail, NULL, 0);
1131 static IIO_DEVICE_ATTR(in_intensity_scale_available, S_IRUGO,
1132 ltr501_show_intensity_scale_avail, NULL, 0);
1133
1134 static struct attribute *ltr501_attributes[] = {
1135 &iio_dev_attr_in_proximity_scale_available.dev_attr.attr,
1136 &iio_dev_attr_in_intensity_scale_available.dev_attr.attr,
1137 &iio_const_attr_integration_time_available.dev_attr.attr,
1138 &iio_const_attr_sampling_frequency_available.dev_attr.attr,
1139 NULL
1140 };
1141
1142 static struct attribute *ltr301_attributes[] = {
1143 &iio_dev_attr_in_intensity_scale_available.dev_attr.attr,
1144 &iio_const_attr_integration_time_available.dev_attr.attr,
1145 &iio_const_attr_sampling_frequency_available.dev_attr.attr,
1146 NULL
1147 };
1148
1149 static const struct attribute_group ltr501_attribute_group = {
1150 .attrs = ltr501_attributes,
1151 };
1152
1153 static const struct attribute_group ltr301_attribute_group = {
1154 .attrs = ltr301_attributes,
1155 };
1156
1157 static const struct iio_info ltr501_info_no_irq = {
1158 .read_raw = ltr501_read_raw,
1159 .write_raw = ltr501_write_raw,
1160 .attrs = &ltr501_attribute_group,
1161 .driver_module = THIS_MODULE,
1162 };
1163
1164 static const struct iio_info ltr501_info = {
1165 .read_raw = ltr501_read_raw,
1166 .write_raw = ltr501_write_raw,
1167 .attrs = &ltr501_attribute_group,
1168 .read_event_value = &ltr501_read_event,
1169 .write_event_value = &ltr501_write_event,
1170 .read_event_config = &ltr501_read_event_config,
1171 .write_event_config = &ltr501_write_event_config,
1172 .driver_module = THIS_MODULE,
1173 };
1174
1175 static const struct iio_info ltr301_info_no_irq = {
1176 .read_raw = ltr501_read_raw,
1177 .write_raw = ltr501_write_raw,
1178 .attrs = &ltr301_attribute_group,
1179 .driver_module = THIS_MODULE,
1180 };
1181
1182 static const struct iio_info ltr301_info = {
1183 .read_raw = ltr501_read_raw,
1184 .write_raw = ltr501_write_raw,
1185 .attrs = &ltr301_attribute_group,
1186 .read_event_value = &ltr501_read_event,
1187 .write_event_value = &ltr501_write_event,
1188 .read_event_config = &ltr501_read_event_config,
1189 .write_event_config = &ltr501_write_event_config,
1190 .driver_module = THIS_MODULE,
1191 };
1192
1193 static struct ltr501_chip_info ltr501_chip_info_tbl[] = {
1194 [ltr501] = {
1195 .partid = 0x08,
1196 .als_gain = ltr501_als_gain_tbl,
1197 .als_gain_tbl_size = ARRAY_SIZE(ltr501_als_gain_tbl),
1198 .ps_gain = ltr501_ps_gain_tbl,
1199 .ps_gain_tbl_size = ARRAY_SIZE(ltr501_ps_gain_tbl),
1200 .als_mode_active = BIT(0) | BIT(1),
1201 .als_gain_mask = BIT(3),
1202 .als_gain_shift = 3,
1203 .info = &ltr501_info,
1204 .info_no_irq = &ltr501_info_no_irq,
1205 .channels = ltr501_channels,
1206 .no_channels = ARRAY_SIZE(ltr501_channels),
1207 },
1208 [ltr559] = {
1209 .partid = 0x09,
1210 .als_gain = ltr559_als_gain_tbl,
1211 .als_gain_tbl_size = ARRAY_SIZE(ltr559_als_gain_tbl),
1212 .ps_gain = ltr559_ps_gain_tbl,
1213 .ps_gain_tbl_size = ARRAY_SIZE(ltr559_ps_gain_tbl),
1214 .als_mode_active = BIT(1),
1215 .als_gain_mask = BIT(2) | BIT(3) | BIT(4),
1216 .als_gain_shift = 2,
1217 .info = &ltr501_info,
1218 .info_no_irq = &ltr501_info_no_irq,
1219 .channels = ltr501_channels,
1220 .no_channels = ARRAY_SIZE(ltr501_channels),
1221 },
1222 [ltr301] = {
1223 .partid = 0x08,
1224 .als_gain = ltr501_als_gain_tbl,
1225 .als_gain_tbl_size = ARRAY_SIZE(ltr501_als_gain_tbl),
1226 .als_mode_active = BIT(0) | BIT(1),
1227 .als_gain_mask = BIT(3),
1228 .als_gain_shift = 3,
1229 .info = &ltr301_info,
1230 .info_no_irq = &ltr301_info_no_irq,
1231 .channels = ltr301_channels,
1232 .no_channels = ARRAY_SIZE(ltr301_channels),
1233 },
1234 };
1235
1236 static int ltr501_write_contr(struct ltr501_data *data, u8 als_val, u8 ps_val)
1237 {
1238 int ret;
1239
1240 ret = regmap_write(data->regmap, LTR501_ALS_CONTR, als_val);
1241 if (ret < 0)
1242 return ret;
1243
1244 return regmap_write(data->regmap, LTR501_PS_CONTR, ps_val);
1245 }
1246
1247 static irqreturn_t ltr501_trigger_handler(int irq, void *p)
1248 {
1249 struct iio_poll_func *pf = p;
1250 struct iio_dev *indio_dev = pf->indio_dev;
1251 struct ltr501_data *data = iio_priv(indio_dev);
1252 struct {
1253 u16 channels[3];
1254 s64 ts __aligned(8);
1255 } scan;
1256 __le16 als_buf[2];
1257 u8 mask = 0;
1258 int j = 0;
1259 int ret, psdata;
1260
1261 memset(&scan, 0, sizeof(scan));
1262
1263 /* figure out which data needs to be ready */
1264 if (test_bit(0, indio_dev->active_scan_mask) ||
1265 test_bit(1, indio_dev->active_scan_mask))
1266 mask |= LTR501_STATUS_ALS_RDY;
1267 if (test_bit(2, indio_dev->active_scan_mask))
1268 mask |= LTR501_STATUS_PS_RDY;
1269
1270 ret = ltr501_drdy(data, mask);
1271 if (ret < 0)
1272 goto done;
1273
1274 if (mask & LTR501_STATUS_ALS_RDY) {
1275 ret = regmap_bulk_read(data->regmap, LTR501_ALS_DATA1,
1276 (u8 *)als_buf, sizeof(als_buf));
1277 if (ret < 0)
1278 return ret;
1279 if (test_bit(0, indio_dev->active_scan_mask))
1280 scan.channels[j++] = le16_to_cpu(als_buf[1]);
1281 if (test_bit(1, indio_dev->active_scan_mask))
1282 scan.channels[j++] = le16_to_cpu(als_buf[0]);
1283 }
1284
1285 if (mask & LTR501_STATUS_PS_RDY) {
1286 ret = regmap_bulk_read(data->regmap, LTR501_PS_DATA,
1287 &psdata, 2);
1288 if (ret < 0)
1289 goto done;
1290 scan.channels[j++] = psdata & LTR501_PS_DATA_MASK;
1291 }
1292
1293 iio_push_to_buffers_with_timestamp(indio_dev, &scan,
1294 iio_get_time_ns(indio_dev));
1295
1296 done:
1297 iio_trigger_notify_done(indio_dev->trig);
1298
1299 return IRQ_HANDLED;
1300 }
1301
1302 static irqreturn_t ltr501_interrupt_handler(int irq, void *private)
1303 {
1304 struct iio_dev *indio_dev = private;
1305 struct ltr501_data *data = iio_priv(indio_dev);
1306 int ret, status;
1307
1308 ret = regmap_read(data->regmap, LTR501_ALS_PS_STATUS, &status);
1309 if (ret < 0) {
1310 dev_err(&data->client->dev,
1311 "irq read int reg failed\n");
1312 return IRQ_HANDLED;
1313 }
1314
1315 if (status & LTR501_STATUS_ALS_INTR)
1316 iio_push_event(indio_dev,
1317 IIO_UNMOD_EVENT_CODE(IIO_INTENSITY, 0,
1318 IIO_EV_TYPE_THRESH,
1319 IIO_EV_DIR_EITHER),
1320 iio_get_time_ns(indio_dev));
1321
1322 if (status & LTR501_STATUS_PS_INTR)
1323 iio_push_event(indio_dev,
1324 IIO_UNMOD_EVENT_CODE(IIO_PROXIMITY, 0,
1325 IIO_EV_TYPE_THRESH,
1326 IIO_EV_DIR_EITHER),
1327 iio_get_time_ns(indio_dev));
1328
1329 return IRQ_HANDLED;
1330 }
1331
1332 static int ltr501_init(struct ltr501_data *data)
1333 {
1334 int ret, status;
1335
1336 ret = regmap_read(data->regmap, LTR501_ALS_CONTR, &status);
1337 if (ret < 0)
1338 return ret;
1339
1340 data->als_contr = status | data->chip_info->als_mode_active;
1341
1342 ret = regmap_read(data->regmap, LTR501_PS_CONTR, &status);
1343 if (ret < 0)
1344 return ret;
1345
1346 data->ps_contr = status | LTR501_CONTR_ACTIVE;
1347
1348 ret = ltr501_read_intr_prst(data, IIO_INTENSITY, &data->als_period);
1349 if (ret < 0)
1350 return ret;
1351
1352 ret = ltr501_read_intr_prst(data, IIO_PROXIMITY, &data->ps_period);
1353 if (ret < 0)
1354 return ret;
1355
1356 return ltr501_write_contr(data, data->als_contr, data->ps_contr);
1357 }
1358
1359 static bool ltr501_is_volatile_reg(struct device *dev, unsigned int reg)
1360 {
1361 switch (reg) {
1362 case LTR501_ALS_DATA1:
1363 case LTR501_ALS_DATA0:
1364 case LTR501_ALS_PS_STATUS:
1365 case LTR501_PS_DATA:
1366 return true;
1367 default:
1368 return false;
1369 }
1370 }
1371
1372 static struct regmap_config ltr501_regmap_config = {
1373 .name = LTR501_REGMAP_NAME,
1374 .reg_bits = 8,
1375 .val_bits = 8,
1376 .max_register = LTR501_MAX_REG,
1377 .cache_type = REGCACHE_RBTREE,
1378 .volatile_reg = ltr501_is_volatile_reg,
1379 };
1380
1381 static int ltr501_powerdown(struct ltr501_data *data)
1382 {
1383 return ltr501_write_contr(data, data->als_contr &
1384 ~data->chip_info->als_mode_active,
1385 data->ps_contr & ~LTR501_CONTR_ACTIVE);
1386 }
1387
1388 static const char *ltr501_match_acpi_device(struct device *dev, int *chip_idx)
1389 {
1390 const struct acpi_device_id *id;
1391
1392 id = acpi_match_device(dev->driver->acpi_match_table, dev);
1393 if (!id)
1394 return NULL;
1395 *chip_idx = id->driver_data;
1396 return dev_name(dev);
1397 }
1398
1399 static int ltr501_probe(struct i2c_client *client,
1400 const struct i2c_device_id *id)
1401 {
1402 struct ltr501_data *data;
1403 struct iio_dev *indio_dev;
1404 struct regmap *regmap;
1405 int ret, partid, chip_idx = 0;
1406 const char *name = NULL;
1407
1408 indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
1409 if (!indio_dev)
1410 return -ENOMEM;
1411
1412 regmap = devm_regmap_init_i2c(client, &ltr501_regmap_config);
1413 if (IS_ERR(regmap)) {
1414 dev_err(&client->dev, "Regmap initialization failed.\n");
1415 return PTR_ERR(regmap);
1416 }
1417
1418 data = iio_priv(indio_dev);
1419 i2c_set_clientdata(client, indio_dev);
1420 data->client = client;
1421 data->regmap = regmap;
1422 mutex_init(&data->lock_als);
1423 mutex_init(&data->lock_ps);
1424
1425 data->reg_it = devm_regmap_field_alloc(&client->dev, regmap,
1426 reg_field_it);
1427 if (IS_ERR(data->reg_it)) {
1428 dev_err(&client->dev, "Integ time reg field init failed.\n");
1429 return PTR_ERR(data->reg_it);
1430 }
1431
1432 data->reg_als_intr = devm_regmap_field_alloc(&client->dev, regmap,
1433 reg_field_als_intr);
1434 if (IS_ERR(data->reg_als_intr)) {
1435 dev_err(&client->dev, "ALS intr mode reg field init failed\n");
1436 return PTR_ERR(data->reg_als_intr);
1437 }
1438
1439 data->reg_ps_intr = devm_regmap_field_alloc(&client->dev, regmap,
1440 reg_field_ps_intr);
1441 if (IS_ERR(data->reg_ps_intr)) {
1442 dev_err(&client->dev, "PS intr mode reg field init failed.\n");
1443 return PTR_ERR(data->reg_ps_intr);
1444 }
1445
1446 data->reg_als_rate = devm_regmap_field_alloc(&client->dev, regmap,
1447 reg_field_als_rate);
1448 if (IS_ERR(data->reg_als_rate)) {
1449 dev_err(&client->dev, "ALS samp rate field init failed.\n");
1450 return PTR_ERR(data->reg_als_rate);
1451 }
1452
1453 data->reg_ps_rate = devm_regmap_field_alloc(&client->dev, regmap,
1454 reg_field_ps_rate);
1455 if (IS_ERR(data->reg_ps_rate)) {
1456 dev_err(&client->dev, "PS samp rate field init failed.\n");
1457 return PTR_ERR(data->reg_ps_rate);
1458 }
1459
1460 data->reg_als_prst = devm_regmap_field_alloc(&client->dev, regmap,
1461 reg_field_als_prst);
1462 if (IS_ERR(data->reg_als_prst)) {
1463 dev_err(&client->dev, "ALS prst reg field init failed\n");
1464 return PTR_ERR(data->reg_als_prst);
1465 }
1466
1467 data->reg_ps_prst = devm_regmap_field_alloc(&client->dev, regmap,
1468 reg_field_ps_prst);
1469 if (IS_ERR(data->reg_ps_prst)) {
1470 dev_err(&client->dev, "PS prst reg field init failed.\n");
1471 return PTR_ERR(data->reg_ps_prst);
1472 }
1473
1474 ret = regmap_read(data->regmap, LTR501_PART_ID, &partid);
1475 if (ret < 0)
1476 return ret;
1477
1478 if (id) {
1479 name = id->name;
1480 chip_idx = id->driver_data;
1481 } else if (ACPI_HANDLE(&client->dev)) {
1482 name = ltr501_match_acpi_device(&client->dev, &chip_idx);
1483 } else {
1484 return -ENODEV;
1485 }
1486
1487 data->chip_info = &ltr501_chip_info_tbl[chip_idx];
1488
1489 if ((partid >> 4) != data->chip_info->partid)
1490 return -ENODEV;
1491
1492 indio_dev->dev.parent = &client->dev;
1493 indio_dev->info = data->chip_info->info;
1494 indio_dev->channels = data->chip_info->channels;
1495 indio_dev->num_channels = data->chip_info->no_channels;
1496 indio_dev->name = name;
1497 indio_dev->modes = INDIO_DIRECT_MODE;
1498
1499 ret = ltr501_init(data);
1500 if (ret < 0)
1501 return ret;
1502
1503 if (client->irq > 0) {
1504 ret = devm_request_threaded_irq(&client->dev, client->irq,
1505 NULL, ltr501_interrupt_handler,
1506 IRQF_TRIGGER_FALLING |
1507 IRQF_ONESHOT,
1508 "ltr501_thresh_event",
1509 indio_dev);
1510 if (ret) {
1511 dev_err(&client->dev, "request irq (%d) failed\n",
1512 client->irq);
1513 return ret;
1514 }
1515 } else {
1516 indio_dev->info = data->chip_info->info_no_irq;
1517 }
1518
1519 ret = iio_triggered_buffer_setup(indio_dev, NULL,
1520 ltr501_trigger_handler, NULL);
1521 if (ret)
1522 goto powerdown_on_error;
1523
1524 ret = iio_device_register(indio_dev);
1525 if (ret)
1526 goto error_unreg_buffer;
1527
1528 return 0;
1529
1530 error_unreg_buffer:
1531 iio_triggered_buffer_cleanup(indio_dev);
1532 powerdown_on_error:
1533 ltr501_powerdown(data);
1534 return ret;
1535 }
1536
1537 static int ltr501_remove(struct i2c_client *client)
1538 {
1539 struct iio_dev *indio_dev = i2c_get_clientdata(client);
1540
1541 iio_device_unregister(indio_dev);
1542 iio_triggered_buffer_cleanup(indio_dev);
1543 ltr501_powerdown(iio_priv(indio_dev));
1544
1545 return 0;
1546 }
1547
1548 #ifdef CONFIG_PM_SLEEP
1549 static int ltr501_suspend(struct device *dev)
1550 {
1551 struct ltr501_data *data = iio_priv(i2c_get_clientdata(
1552 to_i2c_client(dev)));
1553 return ltr501_powerdown(data);
1554 }
1555
1556 static int ltr501_resume(struct device *dev)
1557 {
1558 struct ltr501_data *data = iio_priv(i2c_get_clientdata(
1559 to_i2c_client(dev)));
1560
1561 return ltr501_write_contr(data, data->als_contr,
1562 data->ps_contr);
1563 }
1564 #endif
1565
1566 static SIMPLE_DEV_PM_OPS(ltr501_pm_ops, ltr501_suspend, ltr501_resume);
1567
1568 static const struct acpi_device_id ltr_acpi_match[] = {
1569 {"LTER0501", ltr501},
1570 {"LTER0559", ltr559},
1571 {"LTER0301", ltr301},
1572 { },
1573 };
1574 MODULE_DEVICE_TABLE(acpi, ltr_acpi_match);
1575
1576 static const struct i2c_device_id ltr501_id[] = {
1577 { "ltr501", ltr501},
1578 { "ltr559", ltr559},
1579 { "ltr301", ltr301},
1580 { }
1581 };
1582 MODULE_DEVICE_TABLE(i2c, ltr501_id);
1583
1584 static struct i2c_driver ltr501_driver = {
1585 .driver = {
1586 .name = LTR501_DRV_NAME,
1587 .pm = &ltr501_pm_ops,
1588 .acpi_match_table = ACPI_PTR(ltr_acpi_match),
1589 },
1590 .probe = ltr501_probe,
1591 .remove = ltr501_remove,
1592 .id_table = ltr501_id,
1593 };
1594
1595 module_i2c_driver(ltr501_driver);
1596
1597 MODULE_AUTHOR("Peter Meerwald <pmeerw@pmeerw.net>");
1598 MODULE_DESCRIPTION("Lite-On LTR501 ambient light and proximity sensor driver");
1599 MODULE_LICENSE("GPL");