]> git.ipfire.org Git - people/arne_f/kernel.git/blob - drivers/iommu/intel-iommu.c
86e349614e21a4fb8cefab62a66cfa39e56d21b1
[people/arne_f/kernel.git] / drivers / iommu / intel-iommu.c
1 /*
2 * Copyright © 2006-2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * Authors: David Woodhouse <dwmw2@infradead.org>,
14 * Ashok Raj <ashok.raj@intel.com>,
15 * Shaohua Li <shaohua.li@intel.com>,
16 * Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>,
17 * Fenghua Yu <fenghua.yu@intel.com>
18 * Joerg Roedel <jroedel@suse.de>
19 */
20
21 #define pr_fmt(fmt) "DMAR: " fmt
22
23 #include <linux/init.h>
24 #include <linux/bitmap.h>
25 #include <linux/debugfs.h>
26 #include <linux/export.h>
27 #include <linux/slab.h>
28 #include <linux/irq.h>
29 #include <linux/interrupt.h>
30 #include <linux/spinlock.h>
31 #include <linux/pci.h>
32 #include <linux/dmar.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/mempool.h>
35 #include <linux/memory.h>
36 #include <linux/cpu.h>
37 #include <linux/timer.h>
38 #include <linux/io.h>
39 #include <linux/iova.h>
40 #include <linux/iommu.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/syscore_ops.h>
43 #include <linux/tboot.h>
44 #include <linux/dmi.h>
45 #include <linux/pci-ats.h>
46 #include <linux/memblock.h>
47 #include <linux/dma-contiguous.h>
48 #include <linux/crash_dump.h>
49 #include <asm/irq_remapping.h>
50 #include <asm/cacheflush.h>
51 #include <asm/iommu.h>
52
53 #include "irq_remapping.h"
54
55 #define ROOT_SIZE VTD_PAGE_SIZE
56 #define CONTEXT_SIZE VTD_PAGE_SIZE
57
58 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
59 #define IS_USB_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB)
60 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
61 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
62
63 #define IOAPIC_RANGE_START (0xfee00000)
64 #define IOAPIC_RANGE_END (0xfeefffff)
65 #define IOVA_START_ADDR (0x1000)
66
67 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
68
69 #define MAX_AGAW_WIDTH 64
70 #define MAX_AGAW_PFN_WIDTH (MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
71
72 #define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
73 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
74
75 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
76 to match. That way, we can use 'unsigned long' for PFNs with impunity. */
77 #define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \
78 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
79 #define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
80
81 /* IO virtual address start page frame number */
82 #define IOVA_START_PFN (1)
83
84 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
85 #define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
86 #define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
87
88 /* page table handling */
89 #define LEVEL_STRIDE (9)
90 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
91
92 /*
93 * This bitmap is used to advertise the page sizes our hardware support
94 * to the IOMMU core, which will then use this information to split
95 * physically contiguous memory regions it is mapping into page sizes
96 * that we support.
97 *
98 * Traditionally the IOMMU core just handed us the mappings directly,
99 * after making sure the size is an order of a 4KiB page and that the
100 * mapping has natural alignment.
101 *
102 * To retain this behavior, we currently advertise that we support
103 * all page sizes that are an order of 4KiB.
104 *
105 * If at some point we'd like to utilize the IOMMU core's new behavior,
106 * we could change this to advertise the real page sizes we support.
107 */
108 #define INTEL_IOMMU_PGSIZES (~0xFFFUL)
109
110 static inline int agaw_to_level(int agaw)
111 {
112 return agaw + 2;
113 }
114
115 static inline int agaw_to_width(int agaw)
116 {
117 return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
118 }
119
120 static inline int width_to_agaw(int width)
121 {
122 return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
123 }
124
125 static inline unsigned int level_to_offset_bits(int level)
126 {
127 return (level - 1) * LEVEL_STRIDE;
128 }
129
130 static inline int pfn_level_offset(unsigned long pfn, int level)
131 {
132 return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
133 }
134
135 static inline unsigned long level_mask(int level)
136 {
137 return -1UL << level_to_offset_bits(level);
138 }
139
140 static inline unsigned long level_size(int level)
141 {
142 return 1UL << level_to_offset_bits(level);
143 }
144
145 static inline unsigned long align_to_level(unsigned long pfn, int level)
146 {
147 return (pfn + level_size(level) - 1) & level_mask(level);
148 }
149
150 static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
151 {
152 return 1 << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
153 }
154
155 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
156 are never going to work. */
157 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
158 {
159 return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
160 }
161
162 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
163 {
164 return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
165 }
166 static inline unsigned long page_to_dma_pfn(struct page *pg)
167 {
168 return mm_to_dma_pfn(page_to_pfn(pg));
169 }
170 static inline unsigned long virt_to_dma_pfn(void *p)
171 {
172 return page_to_dma_pfn(virt_to_page(p));
173 }
174
175 /* global iommu list, set NULL for ignored DMAR units */
176 static struct intel_iommu **g_iommus;
177
178 static void __init check_tylersburg_isoch(void);
179 static int rwbf_quirk;
180
181 /*
182 * set to 1 to panic kernel if can't successfully enable VT-d
183 * (used when kernel is launched w/ TXT)
184 */
185 static int force_on = 0;
186
187 /*
188 * 0: Present
189 * 1-11: Reserved
190 * 12-63: Context Ptr (12 - (haw-1))
191 * 64-127: Reserved
192 */
193 struct root_entry {
194 u64 lo;
195 u64 hi;
196 };
197 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
198
199 /*
200 * Take a root_entry and return the Lower Context Table Pointer (LCTP)
201 * if marked present.
202 */
203 static phys_addr_t root_entry_lctp(struct root_entry *re)
204 {
205 if (!(re->lo & 1))
206 return 0;
207
208 return re->lo & VTD_PAGE_MASK;
209 }
210
211 /*
212 * Take a root_entry and return the Upper Context Table Pointer (UCTP)
213 * if marked present.
214 */
215 static phys_addr_t root_entry_uctp(struct root_entry *re)
216 {
217 if (!(re->hi & 1))
218 return 0;
219
220 return re->hi & VTD_PAGE_MASK;
221 }
222 /*
223 * low 64 bits:
224 * 0: present
225 * 1: fault processing disable
226 * 2-3: translation type
227 * 12-63: address space root
228 * high 64 bits:
229 * 0-2: address width
230 * 3-6: aval
231 * 8-23: domain id
232 */
233 struct context_entry {
234 u64 lo;
235 u64 hi;
236 };
237
238 static inline void context_clear_pasid_enable(struct context_entry *context)
239 {
240 context->lo &= ~(1ULL << 11);
241 }
242
243 static inline bool context_pasid_enabled(struct context_entry *context)
244 {
245 return !!(context->lo & (1ULL << 11));
246 }
247
248 static inline void context_set_copied(struct context_entry *context)
249 {
250 context->hi |= (1ull << 3);
251 }
252
253 static inline bool context_copied(struct context_entry *context)
254 {
255 return !!(context->hi & (1ULL << 3));
256 }
257
258 static inline bool __context_present(struct context_entry *context)
259 {
260 return (context->lo & 1);
261 }
262
263 static inline bool context_present(struct context_entry *context)
264 {
265 return context_pasid_enabled(context) ?
266 __context_present(context) :
267 __context_present(context) && !context_copied(context);
268 }
269
270 static inline void context_set_present(struct context_entry *context)
271 {
272 context->lo |= 1;
273 }
274
275 static inline void context_set_fault_enable(struct context_entry *context)
276 {
277 context->lo &= (((u64)-1) << 2) | 1;
278 }
279
280 static inline void context_set_translation_type(struct context_entry *context,
281 unsigned long value)
282 {
283 context->lo &= (((u64)-1) << 4) | 3;
284 context->lo |= (value & 3) << 2;
285 }
286
287 static inline void context_set_address_root(struct context_entry *context,
288 unsigned long value)
289 {
290 context->lo &= ~VTD_PAGE_MASK;
291 context->lo |= value & VTD_PAGE_MASK;
292 }
293
294 static inline void context_set_address_width(struct context_entry *context,
295 unsigned long value)
296 {
297 context->hi |= value & 7;
298 }
299
300 static inline void context_set_domain_id(struct context_entry *context,
301 unsigned long value)
302 {
303 context->hi |= (value & ((1 << 16) - 1)) << 8;
304 }
305
306 static inline int context_domain_id(struct context_entry *c)
307 {
308 return((c->hi >> 8) & 0xffff);
309 }
310
311 static inline void context_clear_entry(struct context_entry *context)
312 {
313 context->lo = 0;
314 context->hi = 0;
315 }
316
317 /*
318 * 0: readable
319 * 1: writable
320 * 2-6: reserved
321 * 7: super page
322 * 8-10: available
323 * 11: snoop behavior
324 * 12-63: Host physcial address
325 */
326 struct dma_pte {
327 u64 val;
328 };
329
330 static inline void dma_clear_pte(struct dma_pte *pte)
331 {
332 pte->val = 0;
333 }
334
335 static inline u64 dma_pte_addr(struct dma_pte *pte)
336 {
337 #ifdef CONFIG_64BIT
338 return pte->val & VTD_PAGE_MASK;
339 #else
340 /* Must have a full atomic 64-bit read */
341 return __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK;
342 #endif
343 }
344
345 static inline bool dma_pte_present(struct dma_pte *pte)
346 {
347 return (pte->val & 3) != 0;
348 }
349
350 static inline bool dma_pte_superpage(struct dma_pte *pte)
351 {
352 return (pte->val & DMA_PTE_LARGE_PAGE);
353 }
354
355 static inline int first_pte_in_page(struct dma_pte *pte)
356 {
357 return !((unsigned long)pte & ~VTD_PAGE_MASK);
358 }
359
360 /*
361 * This domain is a statically identity mapping domain.
362 * 1. This domain creats a static 1:1 mapping to all usable memory.
363 * 2. It maps to each iommu if successful.
364 * 3. Each iommu mapps to this domain if successful.
365 */
366 static struct dmar_domain *si_domain;
367 static int hw_pass_through = 1;
368
369 /*
370 * Domain represents a virtual machine, more than one devices
371 * across iommus may be owned in one domain, e.g. kvm guest.
372 */
373 #define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 0)
374
375 /* si_domain contains mulitple devices */
376 #define DOMAIN_FLAG_STATIC_IDENTITY (1 << 1)
377
378 #define for_each_domain_iommu(idx, domain) \
379 for (idx = 0; idx < g_num_of_iommus; idx++) \
380 if (domain->iommu_refcnt[idx])
381
382 struct dmar_domain {
383 int nid; /* node id */
384
385 unsigned iommu_refcnt[DMAR_UNITS_SUPPORTED];
386 /* Refcount of devices per iommu */
387
388
389 u16 iommu_did[DMAR_UNITS_SUPPORTED];
390 /* Domain ids per IOMMU. Use u16 since
391 * domain ids are 16 bit wide according
392 * to VT-d spec, section 9.3 */
393
394 bool has_iotlb_device;
395 struct list_head devices; /* all devices' list */
396 struct iova_domain iovad; /* iova's that belong to this domain */
397
398 struct dma_pte *pgd; /* virtual address */
399 int gaw; /* max guest address width */
400
401 /* adjusted guest address width, 0 is level 2 30-bit */
402 int agaw;
403
404 int flags; /* flags to find out type of domain */
405
406 int iommu_coherency;/* indicate coherency of iommu access */
407 int iommu_snooping; /* indicate snooping control feature*/
408 int iommu_count; /* reference count of iommu */
409 int iommu_superpage;/* Level of superpages supported:
410 0 == 4KiB (no superpages), 1 == 2MiB,
411 2 == 1GiB, 3 == 512GiB, 4 == 1TiB */
412 u64 max_addr; /* maximum mapped address */
413
414 struct iommu_domain domain; /* generic domain data structure for
415 iommu core */
416 };
417
418 /* PCI domain-device relationship */
419 struct device_domain_info {
420 struct list_head link; /* link to domain siblings */
421 struct list_head global; /* link to global list */
422 u8 bus; /* PCI bus number */
423 u8 devfn; /* PCI devfn number */
424 u16 pfsid; /* SRIOV physical function source ID */
425 u8 pasid_supported:3;
426 u8 pasid_enabled:1;
427 u8 pri_supported:1;
428 u8 pri_enabled:1;
429 u8 ats_supported:1;
430 u8 ats_enabled:1;
431 u8 ats_qdep;
432 struct device *dev; /* it's NULL for PCIe-to-PCI bridge */
433 struct intel_iommu *iommu; /* IOMMU used by this device */
434 struct dmar_domain *domain; /* pointer to domain */
435 };
436
437 struct dmar_rmrr_unit {
438 struct list_head list; /* list of rmrr units */
439 struct acpi_dmar_header *hdr; /* ACPI header */
440 u64 base_address; /* reserved base address*/
441 u64 end_address; /* reserved end address */
442 struct dmar_dev_scope *devices; /* target devices */
443 int devices_cnt; /* target device count */
444 };
445
446 struct dmar_atsr_unit {
447 struct list_head list; /* list of ATSR units */
448 struct acpi_dmar_header *hdr; /* ACPI header */
449 struct dmar_dev_scope *devices; /* target devices */
450 int devices_cnt; /* target device count */
451 u8 include_all:1; /* include all ports */
452 };
453
454 static LIST_HEAD(dmar_atsr_units);
455 static LIST_HEAD(dmar_rmrr_units);
456
457 #define for_each_rmrr_units(rmrr) \
458 list_for_each_entry(rmrr, &dmar_rmrr_units, list)
459
460 static void flush_unmaps_timeout(unsigned long data);
461
462 struct deferred_flush_entry {
463 unsigned long iova_pfn;
464 unsigned long nrpages;
465 struct dmar_domain *domain;
466 struct page *freelist;
467 };
468
469 #define HIGH_WATER_MARK 250
470 struct deferred_flush_table {
471 int next;
472 struct deferred_flush_entry entries[HIGH_WATER_MARK];
473 };
474
475 struct deferred_flush_data {
476 spinlock_t lock;
477 int timer_on;
478 struct timer_list timer;
479 long size;
480 struct deferred_flush_table *tables;
481 };
482
483 DEFINE_PER_CPU(struct deferred_flush_data, deferred_flush);
484
485 /* bitmap for indexing intel_iommus */
486 static int g_num_of_iommus;
487
488 static void domain_exit(struct dmar_domain *domain);
489 static void domain_remove_dev_info(struct dmar_domain *domain);
490 static void dmar_remove_one_dev_info(struct dmar_domain *domain,
491 struct device *dev);
492 static void __dmar_remove_one_dev_info(struct device_domain_info *info);
493 static void domain_context_clear(struct intel_iommu *iommu,
494 struct device *dev);
495 static int domain_detach_iommu(struct dmar_domain *domain,
496 struct intel_iommu *iommu);
497
498 #ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
499 int dmar_disabled = 0;
500 #else
501 int dmar_disabled = 1;
502 #endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
503
504 int intel_iommu_enabled = 0;
505 EXPORT_SYMBOL_GPL(intel_iommu_enabled);
506
507 static int dmar_map_gfx = 1;
508 static int dmar_forcedac;
509 static int intel_iommu_strict;
510 static int intel_iommu_superpage = 1;
511 static int intel_iommu_ecs = 1;
512 static int intel_iommu_pasid28;
513 static int iommu_identity_mapping;
514
515 #define IDENTMAP_ALL 1
516 #define IDENTMAP_GFX 2
517 #define IDENTMAP_AZALIA 4
518
519 /* Broadwell and Skylake have broken ECS support — normal so-called "second
520 * level" translation of DMA requests-without-PASID doesn't actually happen
521 * unless you also set the NESTE bit in an extended context-entry. Which of
522 * course means that SVM doesn't work because it's trying to do nested
523 * translation of the physical addresses it finds in the process page tables,
524 * through the IOVA->phys mapping found in the "second level" page tables.
525 *
526 * The VT-d specification was retroactively changed to change the definition
527 * of the capability bits and pretend that Broadwell/Skylake never happened...
528 * but unfortunately the wrong bit was changed. It's ECS which is broken, but
529 * for some reason it was the PASID capability bit which was redefined (from
530 * bit 28 on BDW/SKL to bit 40 in future).
531 *
532 * So our test for ECS needs to eschew those implementations which set the old
533 * PASID capabiity bit 28, since those are the ones on which ECS is broken.
534 * Unless we are working around the 'pasid28' limitations, that is, by putting
535 * the device into passthrough mode for normal DMA and thus masking the bug.
536 */
537 #define ecs_enabled(iommu) (intel_iommu_ecs && ecap_ecs(iommu->ecap) && \
538 (intel_iommu_pasid28 || !ecap_broken_pasid(iommu->ecap)))
539 /* PASID support is thus enabled if ECS is enabled and *either* of the old
540 * or new capability bits are set. */
541 #define pasid_enabled(iommu) (ecs_enabled(iommu) && \
542 (ecap_pasid(iommu->ecap) || ecap_broken_pasid(iommu->ecap)))
543
544 int intel_iommu_gfx_mapped;
545 EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);
546
547 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
548 static DEFINE_SPINLOCK(device_domain_lock);
549 static LIST_HEAD(device_domain_list);
550
551 static const struct iommu_ops intel_iommu_ops;
552
553 static bool translation_pre_enabled(struct intel_iommu *iommu)
554 {
555 return (iommu->flags & VTD_FLAG_TRANS_PRE_ENABLED);
556 }
557
558 static void clear_translation_pre_enabled(struct intel_iommu *iommu)
559 {
560 iommu->flags &= ~VTD_FLAG_TRANS_PRE_ENABLED;
561 }
562
563 static void init_translation_status(struct intel_iommu *iommu)
564 {
565 u32 gsts;
566
567 gsts = readl(iommu->reg + DMAR_GSTS_REG);
568 if (gsts & DMA_GSTS_TES)
569 iommu->flags |= VTD_FLAG_TRANS_PRE_ENABLED;
570 }
571
572 /* Convert generic 'struct iommu_domain to private struct dmar_domain */
573 static struct dmar_domain *to_dmar_domain(struct iommu_domain *dom)
574 {
575 return container_of(dom, struct dmar_domain, domain);
576 }
577
578 static int __init intel_iommu_setup(char *str)
579 {
580 if (!str)
581 return -EINVAL;
582 while (*str) {
583 if (!strncmp(str, "on", 2)) {
584 dmar_disabled = 0;
585 pr_info("IOMMU enabled\n");
586 } else if (!strncmp(str, "off", 3)) {
587 dmar_disabled = 1;
588 pr_info("IOMMU disabled\n");
589 } else if (!strncmp(str, "igfx_off", 8)) {
590 dmar_map_gfx = 0;
591 pr_info("Disable GFX device mapping\n");
592 } else if (!strncmp(str, "forcedac", 8)) {
593 pr_info("Forcing DAC for PCI devices\n");
594 dmar_forcedac = 1;
595 } else if (!strncmp(str, "strict", 6)) {
596 pr_info("Disable batched IOTLB flush\n");
597 intel_iommu_strict = 1;
598 } else if (!strncmp(str, "sp_off", 6)) {
599 pr_info("Disable supported super page\n");
600 intel_iommu_superpage = 0;
601 } else if (!strncmp(str, "ecs_off", 7)) {
602 printk(KERN_INFO
603 "Intel-IOMMU: disable extended context table support\n");
604 intel_iommu_ecs = 0;
605 } else if (!strncmp(str, "pasid28", 7)) {
606 printk(KERN_INFO
607 "Intel-IOMMU: enable pre-production PASID support\n");
608 intel_iommu_pasid28 = 1;
609 iommu_identity_mapping |= IDENTMAP_GFX;
610 }
611
612 str += strcspn(str, ",");
613 while (*str == ',')
614 str++;
615 }
616 return 0;
617 }
618 __setup("intel_iommu=", intel_iommu_setup);
619
620 static struct kmem_cache *iommu_domain_cache;
621 static struct kmem_cache *iommu_devinfo_cache;
622
623 static struct dmar_domain* get_iommu_domain(struct intel_iommu *iommu, u16 did)
624 {
625 struct dmar_domain **domains;
626 int idx = did >> 8;
627
628 domains = iommu->domains[idx];
629 if (!domains)
630 return NULL;
631
632 return domains[did & 0xff];
633 }
634
635 static void set_iommu_domain(struct intel_iommu *iommu, u16 did,
636 struct dmar_domain *domain)
637 {
638 struct dmar_domain **domains;
639 int idx = did >> 8;
640
641 if (!iommu->domains[idx]) {
642 size_t size = 256 * sizeof(struct dmar_domain *);
643 iommu->domains[idx] = kzalloc(size, GFP_ATOMIC);
644 }
645
646 domains = iommu->domains[idx];
647 if (WARN_ON(!domains))
648 return;
649 else
650 domains[did & 0xff] = domain;
651 }
652
653 static inline void *alloc_pgtable_page(int node)
654 {
655 struct page *page;
656 void *vaddr = NULL;
657
658 page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
659 if (page)
660 vaddr = page_address(page);
661 return vaddr;
662 }
663
664 static inline void free_pgtable_page(void *vaddr)
665 {
666 free_page((unsigned long)vaddr);
667 }
668
669 static inline void *alloc_domain_mem(void)
670 {
671 return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
672 }
673
674 static void free_domain_mem(void *vaddr)
675 {
676 kmem_cache_free(iommu_domain_cache, vaddr);
677 }
678
679 static inline void * alloc_devinfo_mem(void)
680 {
681 return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
682 }
683
684 static inline void free_devinfo_mem(void *vaddr)
685 {
686 kmem_cache_free(iommu_devinfo_cache, vaddr);
687 }
688
689 static inline int domain_type_is_vm(struct dmar_domain *domain)
690 {
691 return domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE;
692 }
693
694 static inline int domain_type_is_si(struct dmar_domain *domain)
695 {
696 return domain->flags & DOMAIN_FLAG_STATIC_IDENTITY;
697 }
698
699 static inline int domain_type_is_vm_or_si(struct dmar_domain *domain)
700 {
701 return domain->flags & (DOMAIN_FLAG_VIRTUAL_MACHINE |
702 DOMAIN_FLAG_STATIC_IDENTITY);
703 }
704
705 static inline int domain_pfn_supported(struct dmar_domain *domain,
706 unsigned long pfn)
707 {
708 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
709
710 return !(addr_width < BITS_PER_LONG && pfn >> addr_width);
711 }
712
713 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
714 {
715 unsigned long sagaw;
716 int agaw = -1;
717
718 sagaw = cap_sagaw(iommu->cap);
719 for (agaw = width_to_agaw(max_gaw);
720 agaw >= 0; agaw--) {
721 if (test_bit(agaw, &sagaw))
722 break;
723 }
724
725 return agaw;
726 }
727
728 /*
729 * Calculate max SAGAW for each iommu.
730 */
731 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
732 {
733 return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
734 }
735
736 /*
737 * calculate agaw for each iommu.
738 * "SAGAW" may be different across iommus, use a default agaw, and
739 * get a supported less agaw for iommus that don't support the default agaw.
740 */
741 int iommu_calculate_agaw(struct intel_iommu *iommu)
742 {
743 return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
744 }
745
746 /* This functionin only returns single iommu in a domain */
747 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
748 {
749 int iommu_id;
750
751 /* si_domain and vm domain should not get here. */
752 BUG_ON(domain_type_is_vm_or_si(domain));
753 for_each_domain_iommu(iommu_id, domain)
754 break;
755
756 if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
757 return NULL;
758
759 return g_iommus[iommu_id];
760 }
761
762 static void domain_update_iommu_coherency(struct dmar_domain *domain)
763 {
764 struct dmar_drhd_unit *drhd;
765 struct intel_iommu *iommu;
766 bool found = false;
767 int i;
768
769 domain->iommu_coherency = 1;
770
771 for_each_domain_iommu(i, domain) {
772 found = true;
773 if (!ecap_coherent(g_iommus[i]->ecap)) {
774 domain->iommu_coherency = 0;
775 break;
776 }
777 }
778 if (found)
779 return;
780
781 /* No hardware attached; use lowest common denominator */
782 rcu_read_lock();
783 for_each_active_iommu(iommu, drhd) {
784 if (!ecap_coherent(iommu->ecap)) {
785 domain->iommu_coherency = 0;
786 break;
787 }
788 }
789 rcu_read_unlock();
790 }
791
792 static int domain_update_iommu_snooping(struct intel_iommu *skip)
793 {
794 struct dmar_drhd_unit *drhd;
795 struct intel_iommu *iommu;
796 int ret = 1;
797
798 rcu_read_lock();
799 for_each_active_iommu(iommu, drhd) {
800 if (iommu != skip) {
801 if (!ecap_sc_support(iommu->ecap)) {
802 ret = 0;
803 break;
804 }
805 }
806 }
807 rcu_read_unlock();
808
809 return ret;
810 }
811
812 static int domain_update_iommu_superpage(struct intel_iommu *skip)
813 {
814 struct dmar_drhd_unit *drhd;
815 struct intel_iommu *iommu;
816 int mask = 0xf;
817
818 if (!intel_iommu_superpage) {
819 return 0;
820 }
821
822 /* set iommu_superpage to the smallest common denominator */
823 rcu_read_lock();
824 for_each_active_iommu(iommu, drhd) {
825 if (iommu != skip) {
826 mask &= cap_super_page_val(iommu->cap);
827 if (!mask)
828 break;
829 }
830 }
831 rcu_read_unlock();
832
833 return fls(mask);
834 }
835
836 /* Some capabilities may be different across iommus */
837 static void domain_update_iommu_cap(struct dmar_domain *domain)
838 {
839 domain_update_iommu_coherency(domain);
840 domain->iommu_snooping = domain_update_iommu_snooping(NULL);
841 domain->iommu_superpage = domain_update_iommu_superpage(NULL);
842 }
843
844 static inline struct context_entry *iommu_context_addr(struct intel_iommu *iommu,
845 u8 bus, u8 devfn, int alloc)
846 {
847 struct root_entry *root = &iommu->root_entry[bus];
848 struct context_entry *context;
849 u64 *entry;
850
851 entry = &root->lo;
852 if (ecs_enabled(iommu)) {
853 if (devfn >= 0x80) {
854 devfn -= 0x80;
855 entry = &root->hi;
856 }
857 devfn *= 2;
858 }
859 if (*entry & 1)
860 context = phys_to_virt(*entry & VTD_PAGE_MASK);
861 else {
862 unsigned long phy_addr;
863 if (!alloc)
864 return NULL;
865
866 context = alloc_pgtable_page(iommu->node);
867 if (!context)
868 return NULL;
869
870 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
871 phy_addr = virt_to_phys((void *)context);
872 *entry = phy_addr | 1;
873 __iommu_flush_cache(iommu, entry, sizeof(*entry));
874 }
875 return &context[devfn];
876 }
877
878 static int iommu_dummy(struct device *dev)
879 {
880 return dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
881 }
882
883 static struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn)
884 {
885 struct dmar_drhd_unit *drhd = NULL;
886 struct intel_iommu *iommu;
887 struct device *tmp;
888 struct pci_dev *ptmp, *pdev = NULL;
889 u16 segment = 0;
890 int i;
891
892 if (iommu_dummy(dev))
893 return NULL;
894
895 if (dev_is_pci(dev)) {
896 struct pci_dev *pf_pdev;
897
898 pdev = to_pci_dev(dev);
899 /* VFs aren't listed in scope tables; we need to look up
900 * the PF instead to find the IOMMU. */
901 pf_pdev = pci_physfn(pdev);
902 dev = &pf_pdev->dev;
903 segment = pci_domain_nr(pdev->bus);
904 } else if (has_acpi_companion(dev))
905 dev = &ACPI_COMPANION(dev)->dev;
906
907 rcu_read_lock();
908 for_each_active_iommu(iommu, drhd) {
909 if (pdev && segment != drhd->segment)
910 continue;
911
912 for_each_active_dev_scope(drhd->devices,
913 drhd->devices_cnt, i, tmp) {
914 if (tmp == dev) {
915 /* For a VF use its original BDF# not that of the PF
916 * which we used for the IOMMU lookup. Strictly speaking
917 * we could do this for all PCI devices; we only need to
918 * get the BDF# from the scope table for ACPI matches. */
919 if (pdev && pdev->is_virtfn)
920 goto got_pdev;
921
922 *bus = drhd->devices[i].bus;
923 *devfn = drhd->devices[i].devfn;
924 goto out;
925 }
926
927 if (!pdev || !dev_is_pci(tmp))
928 continue;
929
930 ptmp = to_pci_dev(tmp);
931 if (ptmp->subordinate &&
932 ptmp->subordinate->number <= pdev->bus->number &&
933 ptmp->subordinate->busn_res.end >= pdev->bus->number)
934 goto got_pdev;
935 }
936
937 if (pdev && drhd->include_all) {
938 got_pdev:
939 *bus = pdev->bus->number;
940 *devfn = pdev->devfn;
941 goto out;
942 }
943 }
944 iommu = NULL;
945 out:
946 rcu_read_unlock();
947
948 return iommu;
949 }
950
951 static void domain_flush_cache(struct dmar_domain *domain,
952 void *addr, int size)
953 {
954 if (!domain->iommu_coherency)
955 clflush_cache_range(addr, size);
956 }
957
958 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
959 {
960 struct context_entry *context;
961 int ret = 0;
962 unsigned long flags;
963
964 spin_lock_irqsave(&iommu->lock, flags);
965 context = iommu_context_addr(iommu, bus, devfn, 0);
966 if (context)
967 ret = context_present(context);
968 spin_unlock_irqrestore(&iommu->lock, flags);
969 return ret;
970 }
971
972 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
973 {
974 struct context_entry *context;
975 unsigned long flags;
976
977 spin_lock_irqsave(&iommu->lock, flags);
978 context = iommu_context_addr(iommu, bus, devfn, 0);
979 if (context) {
980 context_clear_entry(context);
981 __iommu_flush_cache(iommu, context, sizeof(*context));
982 }
983 spin_unlock_irqrestore(&iommu->lock, flags);
984 }
985
986 static void free_context_table(struct intel_iommu *iommu)
987 {
988 int i;
989 unsigned long flags;
990 struct context_entry *context;
991
992 spin_lock_irqsave(&iommu->lock, flags);
993 if (!iommu->root_entry) {
994 goto out;
995 }
996 for (i = 0; i < ROOT_ENTRY_NR; i++) {
997 context = iommu_context_addr(iommu, i, 0, 0);
998 if (context)
999 free_pgtable_page(context);
1000
1001 if (!ecs_enabled(iommu))
1002 continue;
1003
1004 context = iommu_context_addr(iommu, i, 0x80, 0);
1005 if (context)
1006 free_pgtable_page(context);
1007
1008 }
1009 free_pgtable_page(iommu->root_entry);
1010 iommu->root_entry = NULL;
1011 out:
1012 spin_unlock_irqrestore(&iommu->lock, flags);
1013 }
1014
1015 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
1016 unsigned long pfn, int *target_level)
1017 {
1018 struct dma_pte *parent, *pte = NULL;
1019 int level = agaw_to_level(domain->agaw);
1020 int offset;
1021
1022 BUG_ON(!domain->pgd);
1023
1024 if (!domain_pfn_supported(domain, pfn))
1025 /* Address beyond IOMMU's addressing capabilities. */
1026 return NULL;
1027
1028 parent = domain->pgd;
1029
1030 while (1) {
1031 void *tmp_page;
1032
1033 offset = pfn_level_offset(pfn, level);
1034 pte = &parent[offset];
1035 if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
1036 break;
1037 if (level == *target_level)
1038 break;
1039
1040 if (!dma_pte_present(pte)) {
1041 uint64_t pteval;
1042
1043 tmp_page = alloc_pgtable_page(domain->nid);
1044
1045 if (!tmp_page)
1046 return NULL;
1047
1048 domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
1049 pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
1050 if (cmpxchg64(&pte->val, 0ULL, pteval))
1051 /* Someone else set it while we were thinking; use theirs. */
1052 free_pgtable_page(tmp_page);
1053 else
1054 domain_flush_cache(domain, pte, sizeof(*pte));
1055 }
1056 if (level == 1)
1057 break;
1058
1059 parent = phys_to_virt(dma_pte_addr(pte));
1060 level--;
1061 }
1062
1063 if (!*target_level)
1064 *target_level = level;
1065
1066 return pte;
1067 }
1068
1069
1070 /* return address's pte at specific level */
1071 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
1072 unsigned long pfn,
1073 int level, int *large_page)
1074 {
1075 struct dma_pte *parent, *pte = NULL;
1076 int total = agaw_to_level(domain->agaw);
1077 int offset;
1078
1079 parent = domain->pgd;
1080 while (level <= total) {
1081 offset = pfn_level_offset(pfn, total);
1082 pte = &parent[offset];
1083 if (level == total)
1084 return pte;
1085
1086 if (!dma_pte_present(pte)) {
1087 *large_page = total;
1088 break;
1089 }
1090
1091 if (dma_pte_superpage(pte)) {
1092 *large_page = total;
1093 return pte;
1094 }
1095
1096 parent = phys_to_virt(dma_pte_addr(pte));
1097 total--;
1098 }
1099 return NULL;
1100 }
1101
1102 /* clear last level pte, a tlb flush should be followed */
1103 static void dma_pte_clear_range(struct dmar_domain *domain,
1104 unsigned long start_pfn,
1105 unsigned long last_pfn)
1106 {
1107 unsigned int large_page = 1;
1108 struct dma_pte *first_pte, *pte;
1109
1110 BUG_ON(!domain_pfn_supported(domain, start_pfn));
1111 BUG_ON(!domain_pfn_supported(domain, last_pfn));
1112 BUG_ON(start_pfn > last_pfn);
1113
1114 /* we don't need lock here; nobody else touches the iova range */
1115 do {
1116 large_page = 1;
1117 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
1118 if (!pte) {
1119 start_pfn = align_to_level(start_pfn + 1, large_page + 1);
1120 continue;
1121 }
1122 do {
1123 dma_clear_pte(pte);
1124 start_pfn += lvl_to_nr_pages(large_page);
1125 pte++;
1126 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
1127
1128 domain_flush_cache(domain, first_pte,
1129 (void *)pte - (void *)first_pte);
1130
1131 } while (start_pfn && start_pfn <= last_pfn);
1132 }
1133
1134 static void dma_pte_free_level(struct dmar_domain *domain, int level,
1135 struct dma_pte *pte, unsigned long pfn,
1136 unsigned long start_pfn, unsigned long last_pfn)
1137 {
1138 pfn = max(start_pfn, pfn);
1139 pte = &pte[pfn_level_offset(pfn, level)];
1140
1141 do {
1142 unsigned long level_pfn;
1143 struct dma_pte *level_pte;
1144
1145 if (!dma_pte_present(pte) || dma_pte_superpage(pte))
1146 goto next;
1147
1148 level_pfn = pfn & level_mask(level);
1149 level_pte = phys_to_virt(dma_pte_addr(pte));
1150
1151 if (level > 2)
1152 dma_pte_free_level(domain, level - 1, level_pte,
1153 level_pfn, start_pfn, last_pfn);
1154
1155 /* If range covers entire pagetable, free it */
1156 if (!(start_pfn > level_pfn ||
1157 last_pfn < level_pfn + level_size(level) - 1)) {
1158 dma_clear_pte(pte);
1159 domain_flush_cache(domain, pte, sizeof(*pte));
1160 free_pgtable_page(level_pte);
1161 }
1162 next:
1163 pfn += level_size(level);
1164 } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1165 }
1166
1167 /* clear last level (leaf) ptes and free page table pages. */
1168 static void dma_pte_free_pagetable(struct dmar_domain *domain,
1169 unsigned long start_pfn,
1170 unsigned long last_pfn)
1171 {
1172 BUG_ON(!domain_pfn_supported(domain, start_pfn));
1173 BUG_ON(!domain_pfn_supported(domain, last_pfn));
1174 BUG_ON(start_pfn > last_pfn);
1175
1176 dma_pte_clear_range(domain, start_pfn, last_pfn);
1177
1178 /* We don't need lock here; nobody else touches the iova range */
1179 dma_pte_free_level(domain, agaw_to_level(domain->agaw),
1180 domain->pgd, 0, start_pfn, last_pfn);
1181
1182 /* free pgd */
1183 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1184 free_pgtable_page(domain->pgd);
1185 domain->pgd = NULL;
1186 }
1187 }
1188
1189 /* When a page at a given level is being unlinked from its parent, we don't
1190 need to *modify* it at all. All we need to do is make a list of all the
1191 pages which can be freed just as soon as we've flushed the IOTLB and we
1192 know the hardware page-walk will no longer touch them.
1193 The 'pte' argument is the *parent* PTE, pointing to the page that is to
1194 be freed. */
1195 static struct page *dma_pte_list_pagetables(struct dmar_domain *domain,
1196 int level, struct dma_pte *pte,
1197 struct page *freelist)
1198 {
1199 struct page *pg;
1200
1201 pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT);
1202 pg->freelist = freelist;
1203 freelist = pg;
1204
1205 if (level == 1)
1206 return freelist;
1207
1208 pte = page_address(pg);
1209 do {
1210 if (dma_pte_present(pte) && !dma_pte_superpage(pte))
1211 freelist = dma_pte_list_pagetables(domain, level - 1,
1212 pte, freelist);
1213 pte++;
1214 } while (!first_pte_in_page(pte));
1215
1216 return freelist;
1217 }
1218
1219 static struct page *dma_pte_clear_level(struct dmar_domain *domain, int level,
1220 struct dma_pte *pte, unsigned long pfn,
1221 unsigned long start_pfn,
1222 unsigned long last_pfn,
1223 struct page *freelist)
1224 {
1225 struct dma_pte *first_pte = NULL, *last_pte = NULL;
1226
1227 pfn = max(start_pfn, pfn);
1228 pte = &pte[pfn_level_offset(pfn, level)];
1229
1230 do {
1231 unsigned long level_pfn;
1232
1233 if (!dma_pte_present(pte))
1234 goto next;
1235
1236 level_pfn = pfn & level_mask(level);
1237
1238 /* If range covers entire pagetable, free it */
1239 if (start_pfn <= level_pfn &&
1240 last_pfn >= level_pfn + level_size(level) - 1) {
1241 /* These suborbinate page tables are going away entirely. Don't
1242 bother to clear them; we're just going to *free* them. */
1243 if (level > 1 && !dma_pte_superpage(pte))
1244 freelist = dma_pte_list_pagetables(domain, level - 1, pte, freelist);
1245
1246 dma_clear_pte(pte);
1247 if (!first_pte)
1248 first_pte = pte;
1249 last_pte = pte;
1250 } else if (level > 1) {
1251 /* Recurse down into a level that isn't *entirely* obsolete */
1252 freelist = dma_pte_clear_level(domain, level - 1,
1253 phys_to_virt(dma_pte_addr(pte)),
1254 level_pfn, start_pfn, last_pfn,
1255 freelist);
1256 }
1257 next:
1258 pfn += level_size(level);
1259 } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1260
1261 if (first_pte)
1262 domain_flush_cache(domain, first_pte,
1263 (void *)++last_pte - (void *)first_pte);
1264
1265 return freelist;
1266 }
1267
1268 /* We can't just free the pages because the IOMMU may still be walking
1269 the page tables, and may have cached the intermediate levels. The
1270 pages can only be freed after the IOTLB flush has been done. */
1271 static struct page *domain_unmap(struct dmar_domain *domain,
1272 unsigned long start_pfn,
1273 unsigned long last_pfn)
1274 {
1275 struct page *freelist = NULL;
1276
1277 BUG_ON(!domain_pfn_supported(domain, start_pfn));
1278 BUG_ON(!domain_pfn_supported(domain, last_pfn));
1279 BUG_ON(start_pfn > last_pfn);
1280
1281 /* we don't need lock here; nobody else touches the iova range */
1282 freelist = dma_pte_clear_level(domain, agaw_to_level(domain->agaw),
1283 domain->pgd, 0, start_pfn, last_pfn, NULL);
1284
1285 /* free pgd */
1286 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1287 struct page *pgd_page = virt_to_page(domain->pgd);
1288 pgd_page->freelist = freelist;
1289 freelist = pgd_page;
1290
1291 domain->pgd = NULL;
1292 }
1293
1294 return freelist;
1295 }
1296
1297 static void dma_free_pagelist(struct page *freelist)
1298 {
1299 struct page *pg;
1300
1301 while ((pg = freelist)) {
1302 freelist = pg->freelist;
1303 free_pgtable_page(page_address(pg));
1304 }
1305 }
1306
1307 /* iommu handling */
1308 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
1309 {
1310 struct root_entry *root;
1311 unsigned long flags;
1312
1313 root = (struct root_entry *)alloc_pgtable_page(iommu->node);
1314 if (!root) {
1315 pr_err("Allocating root entry for %s failed\n",
1316 iommu->name);
1317 return -ENOMEM;
1318 }
1319
1320 __iommu_flush_cache(iommu, root, ROOT_SIZE);
1321
1322 spin_lock_irqsave(&iommu->lock, flags);
1323 iommu->root_entry = root;
1324 spin_unlock_irqrestore(&iommu->lock, flags);
1325
1326 return 0;
1327 }
1328
1329 static void iommu_set_root_entry(struct intel_iommu *iommu)
1330 {
1331 u64 addr;
1332 u32 sts;
1333 unsigned long flag;
1334
1335 addr = virt_to_phys(iommu->root_entry);
1336 if (ecs_enabled(iommu))
1337 addr |= DMA_RTADDR_RTT;
1338
1339 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1340 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, addr);
1341
1342 writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
1343
1344 /* Make sure hardware complete it */
1345 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1346 readl, (sts & DMA_GSTS_RTPS), sts);
1347
1348 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1349 }
1350
1351 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
1352 {
1353 u32 val;
1354 unsigned long flag;
1355
1356 if (!rwbf_quirk && !cap_rwbf(iommu->cap))
1357 return;
1358
1359 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1360 writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
1361
1362 /* Make sure hardware complete it */
1363 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1364 readl, (!(val & DMA_GSTS_WBFS)), val);
1365
1366 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1367 }
1368
1369 /* return value determine if we need a write buffer flush */
1370 static void __iommu_flush_context(struct intel_iommu *iommu,
1371 u16 did, u16 source_id, u8 function_mask,
1372 u64 type)
1373 {
1374 u64 val = 0;
1375 unsigned long flag;
1376
1377 switch (type) {
1378 case DMA_CCMD_GLOBAL_INVL:
1379 val = DMA_CCMD_GLOBAL_INVL;
1380 break;
1381 case DMA_CCMD_DOMAIN_INVL:
1382 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
1383 break;
1384 case DMA_CCMD_DEVICE_INVL:
1385 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
1386 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
1387 break;
1388 default:
1389 BUG();
1390 }
1391 val |= DMA_CCMD_ICC;
1392
1393 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1394 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
1395
1396 /* Make sure hardware complete it */
1397 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
1398 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
1399
1400 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1401 }
1402
1403 /* return value determine if we need a write buffer flush */
1404 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
1405 u64 addr, unsigned int size_order, u64 type)
1406 {
1407 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
1408 u64 val = 0, val_iva = 0;
1409 unsigned long flag;
1410
1411 switch (type) {
1412 case DMA_TLB_GLOBAL_FLUSH:
1413 /* global flush doesn't need set IVA_REG */
1414 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
1415 break;
1416 case DMA_TLB_DSI_FLUSH:
1417 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1418 break;
1419 case DMA_TLB_PSI_FLUSH:
1420 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1421 /* IH bit is passed in as part of address */
1422 val_iva = size_order | addr;
1423 break;
1424 default:
1425 BUG();
1426 }
1427 /* Note: set drain read/write */
1428 #if 0
1429 /*
1430 * This is probably to be super secure.. Looks like we can
1431 * ignore it without any impact.
1432 */
1433 if (cap_read_drain(iommu->cap))
1434 val |= DMA_TLB_READ_DRAIN;
1435 #endif
1436 if (cap_write_drain(iommu->cap))
1437 val |= DMA_TLB_WRITE_DRAIN;
1438
1439 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1440 /* Note: Only uses first TLB reg currently */
1441 if (val_iva)
1442 dmar_writeq(iommu->reg + tlb_offset, val_iva);
1443 dmar_writeq(iommu->reg + tlb_offset + 8, val);
1444
1445 /* Make sure hardware complete it */
1446 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1447 dmar_readq, (!(val & DMA_TLB_IVT)), val);
1448
1449 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1450
1451 /* check IOTLB invalidation granularity */
1452 if (DMA_TLB_IAIG(val) == 0)
1453 pr_err("Flush IOTLB failed\n");
1454 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
1455 pr_debug("TLB flush request %Lx, actual %Lx\n",
1456 (unsigned long long)DMA_TLB_IIRG(type),
1457 (unsigned long long)DMA_TLB_IAIG(val));
1458 }
1459
1460 static struct device_domain_info *
1461 iommu_support_dev_iotlb (struct dmar_domain *domain, struct intel_iommu *iommu,
1462 u8 bus, u8 devfn)
1463 {
1464 struct device_domain_info *info;
1465
1466 assert_spin_locked(&device_domain_lock);
1467
1468 if (!iommu->qi)
1469 return NULL;
1470
1471 list_for_each_entry(info, &domain->devices, link)
1472 if (info->iommu == iommu && info->bus == bus &&
1473 info->devfn == devfn) {
1474 if (info->ats_supported && info->dev)
1475 return info;
1476 break;
1477 }
1478
1479 return NULL;
1480 }
1481
1482 static void domain_update_iotlb(struct dmar_domain *domain)
1483 {
1484 struct device_domain_info *info;
1485 bool has_iotlb_device = false;
1486
1487 assert_spin_locked(&device_domain_lock);
1488
1489 list_for_each_entry(info, &domain->devices, link) {
1490 struct pci_dev *pdev;
1491
1492 if (!info->dev || !dev_is_pci(info->dev))
1493 continue;
1494
1495 pdev = to_pci_dev(info->dev);
1496 if (pdev->ats_enabled) {
1497 has_iotlb_device = true;
1498 break;
1499 }
1500 }
1501
1502 domain->has_iotlb_device = has_iotlb_device;
1503 }
1504
1505 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1506 {
1507 struct pci_dev *pdev;
1508
1509 assert_spin_locked(&device_domain_lock);
1510
1511 if (!info || !dev_is_pci(info->dev))
1512 return;
1513
1514 pdev = to_pci_dev(info->dev);
1515 /* For IOMMU that supports device IOTLB throttling (DIT), we assign
1516 * PFSID to the invalidation desc of a VF such that IOMMU HW can gauge
1517 * queue depth at PF level. If DIT is not set, PFSID will be treated as
1518 * reserved, which should be set to 0.
1519 */
1520 if (!ecap_dit(info->iommu->ecap))
1521 info->pfsid = 0;
1522 else {
1523 struct pci_dev *pf_pdev;
1524
1525 /* pdev will be returned if device is not a vf */
1526 pf_pdev = pci_physfn(pdev);
1527 info->pfsid = PCI_DEVID(pf_pdev->bus->number, pf_pdev->devfn);
1528 }
1529
1530 #ifdef CONFIG_INTEL_IOMMU_SVM
1531 /* The PCIe spec, in its wisdom, declares that the behaviour of
1532 the device if you enable PASID support after ATS support is
1533 undefined. So always enable PASID support on devices which
1534 have it, even if we can't yet know if we're ever going to
1535 use it. */
1536 if (info->pasid_supported && !pci_enable_pasid(pdev, info->pasid_supported & ~1))
1537 info->pasid_enabled = 1;
1538
1539 if (info->pri_supported && !pci_reset_pri(pdev) && !pci_enable_pri(pdev, 32))
1540 info->pri_enabled = 1;
1541 #endif
1542 if (info->ats_supported && !pci_enable_ats(pdev, VTD_PAGE_SHIFT)) {
1543 info->ats_enabled = 1;
1544 domain_update_iotlb(info->domain);
1545 info->ats_qdep = pci_ats_queue_depth(pdev);
1546 }
1547 }
1548
1549 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1550 {
1551 struct pci_dev *pdev;
1552
1553 assert_spin_locked(&device_domain_lock);
1554
1555 if (!dev_is_pci(info->dev))
1556 return;
1557
1558 pdev = to_pci_dev(info->dev);
1559
1560 if (info->ats_enabled) {
1561 pci_disable_ats(pdev);
1562 info->ats_enabled = 0;
1563 domain_update_iotlb(info->domain);
1564 }
1565 #ifdef CONFIG_INTEL_IOMMU_SVM
1566 if (info->pri_enabled) {
1567 pci_disable_pri(pdev);
1568 info->pri_enabled = 0;
1569 }
1570 if (info->pasid_enabled) {
1571 pci_disable_pasid(pdev);
1572 info->pasid_enabled = 0;
1573 }
1574 #endif
1575 }
1576
1577 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1578 u64 addr, unsigned mask)
1579 {
1580 u16 sid, qdep;
1581 unsigned long flags;
1582 struct device_domain_info *info;
1583
1584 if (!domain->has_iotlb_device)
1585 return;
1586
1587 spin_lock_irqsave(&device_domain_lock, flags);
1588 list_for_each_entry(info, &domain->devices, link) {
1589 if (!info->ats_enabled)
1590 continue;
1591
1592 sid = info->bus << 8 | info->devfn;
1593 qdep = info->ats_qdep;
1594 qi_flush_dev_iotlb(info->iommu, sid, info->pfsid,
1595 qdep, addr, mask);
1596 }
1597 spin_unlock_irqrestore(&device_domain_lock, flags);
1598 }
1599
1600 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu,
1601 struct dmar_domain *domain,
1602 unsigned long pfn, unsigned int pages,
1603 int ih, int map)
1604 {
1605 unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1606 uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1607 u16 did = domain->iommu_did[iommu->seq_id];
1608
1609 BUG_ON(pages == 0);
1610
1611 if (ih)
1612 ih = 1 << 6;
1613 /*
1614 * Fallback to domain selective flush if no PSI support or the size is
1615 * too big.
1616 * PSI requires page size to be 2 ^ x, and the base address is naturally
1617 * aligned to the size
1618 */
1619 if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1620 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1621 DMA_TLB_DSI_FLUSH);
1622 else
1623 iommu->flush.flush_iotlb(iommu, did, addr | ih, mask,
1624 DMA_TLB_PSI_FLUSH);
1625
1626 /*
1627 * In caching mode, changes of pages from non-present to present require
1628 * flush. However, device IOTLB doesn't need to be flushed in this case.
1629 */
1630 if (!cap_caching_mode(iommu->cap) || !map)
1631 iommu_flush_dev_iotlb(domain, addr, mask);
1632 }
1633
1634 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1635 {
1636 u32 pmen;
1637 unsigned long flags;
1638
1639 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1640 pmen = readl(iommu->reg + DMAR_PMEN_REG);
1641 pmen &= ~DMA_PMEN_EPM;
1642 writel(pmen, iommu->reg + DMAR_PMEN_REG);
1643
1644 /* wait for the protected region status bit to clear */
1645 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1646 readl, !(pmen & DMA_PMEN_PRS), pmen);
1647
1648 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1649 }
1650
1651 static void iommu_enable_translation(struct intel_iommu *iommu)
1652 {
1653 u32 sts;
1654 unsigned long flags;
1655
1656 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1657 iommu->gcmd |= DMA_GCMD_TE;
1658 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1659
1660 /* Make sure hardware complete it */
1661 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1662 readl, (sts & DMA_GSTS_TES), sts);
1663
1664 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1665 }
1666
1667 static void iommu_disable_translation(struct intel_iommu *iommu)
1668 {
1669 u32 sts;
1670 unsigned long flag;
1671
1672 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1673 iommu->gcmd &= ~DMA_GCMD_TE;
1674 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1675
1676 /* Make sure hardware complete it */
1677 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1678 readl, (!(sts & DMA_GSTS_TES)), sts);
1679
1680 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1681 }
1682
1683
1684 static int iommu_init_domains(struct intel_iommu *iommu)
1685 {
1686 u32 ndomains, nlongs;
1687 size_t size;
1688
1689 ndomains = cap_ndoms(iommu->cap);
1690 pr_debug("%s: Number of Domains supported <%d>\n",
1691 iommu->name, ndomains);
1692 nlongs = BITS_TO_LONGS(ndomains);
1693
1694 spin_lock_init(&iommu->lock);
1695
1696 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1697 if (!iommu->domain_ids) {
1698 pr_err("%s: Allocating domain id array failed\n",
1699 iommu->name);
1700 return -ENOMEM;
1701 }
1702
1703 size = (ALIGN(ndomains, 256) >> 8) * sizeof(struct dmar_domain **);
1704 iommu->domains = kzalloc(size, GFP_KERNEL);
1705
1706 if (iommu->domains) {
1707 size = 256 * sizeof(struct dmar_domain *);
1708 iommu->domains[0] = kzalloc(size, GFP_KERNEL);
1709 }
1710
1711 if (!iommu->domains || !iommu->domains[0]) {
1712 pr_err("%s: Allocating domain array failed\n",
1713 iommu->name);
1714 kfree(iommu->domain_ids);
1715 kfree(iommu->domains);
1716 iommu->domain_ids = NULL;
1717 iommu->domains = NULL;
1718 return -ENOMEM;
1719 }
1720
1721
1722
1723 /*
1724 * If Caching mode is set, then invalid translations are tagged
1725 * with domain-id 0, hence we need to pre-allocate it. We also
1726 * use domain-id 0 as a marker for non-allocated domain-id, so
1727 * make sure it is not used for a real domain.
1728 */
1729 set_bit(0, iommu->domain_ids);
1730
1731 return 0;
1732 }
1733
1734 static void disable_dmar_iommu(struct intel_iommu *iommu)
1735 {
1736 struct device_domain_info *info, *tmp;
1737 unsigned long flags;
1738
1739 if (!iommu->domains || !iommu->domain_ids)
1740 return;
1741
1742 again:
1743 spin_lock_irqsave(&device_domain_lock, flags);
1744 list_for_each_entry_safe(info, tmp, &device_domain_list, global) {
1745 struct dmar_domain *domain;
1746
1747 if (info->iommu != iommu)
1748 continue;
1749
1750 if (!info->dev || !info->domain)
1751 continue;
1752
1753 domain = info->domain;
1754
1755 __dmar_remove_one_dev_info(info);
1756
1757 if (!domain_type_is_vm_or_si(domain)) {
1758 /*
1759 * The domain_exit() function can't be called under
1760 * device_domain_lock, as it takes this lock itself.
1761 * So release the lock here and re-run the loop
1762 * afterwards.
1763 */
1764 spin_unlock_irqrestore(&device_domain_lock, flags);
1765 domain_exit(domain);
1766 goto again;
1767 }
1768 }
1769 spin_unlock_irqrestore(&device_domain_lock, flags);
1770
1771 if (iommu->gcmd & DMA_GCMD_TE)
1772 iommu_disable_translation(iommu);
1773 }
1774
1775 static void free_dmar_iommu(struct intel_iommu *iommu)
1776 {
1777 if ((iommu->domains) && (iommu->domain_ids)) {
1778 int elems = ALIGN(cap_ndoms(iommu->cap), 256) >> 8;
1779 int i;
1780
1781 for (i = 0; i < elems; i++)
1782 kfree(iommu->domains[i]);
1783 kfree(iommu->domains);
1784 kfree(iommu->domain_ids);
1785 iommu->domains = NULL;
1786 iommu->domain_ids = NULL;
1787 }
1788
1789 g_iommus[iommu->seq_id] = NULL;
1790
1791 /* free context mapping */
1792 free_context_table(iommu);
1793
1794 #ifdef CONFIG_INTEL_IOMMU_SVM
1795 if (pasid_enabled(iommu)) {
1796 if (ecap_prs(iommu->ecap))
1797 intel_svm_finish_prq(iommu);
1798 intel_svm_free_pasid_tables(iommu);
1799 }
1800 #endif
1801 }
1802
1803 static struct dmar_domain *alloc_domain(int flags)
1804 {
1805 struct dmar_domain *domain;
1806
1807 domain = alloc_domain_mem();
1808 if (!domain)
1809 return NULL;
1810
1811 memset(domain, 0, sizeof(*domain));
1812 domain->nid = -1;
1813 domain->flags = flags;
1814 domain->has_iotlb_device = false;
1815 INIT_LIST_HEAD(&domain->devices);
1816
1817 return domain;
1818 }
1819
1820 /* Must be called with iommu->lock */
1821 static int domain_attach_iommu(struct dmar_domain *domain,
1822 struct intel_iommu *iommu)
1823 {
1824 unsigned long ndomains;
1825 int num;
1826
1827 assert_spin_locked(&device_domain_lock);
1828 assert_spin_locked(&iommu->lock);
1829
1830 domain->iommu_refcnt[iommu->seq_id] += 1;
1831 domain->iommu_count += 1;
1832 if (domain->iommu_refcnt[iommu->seq_id] == 1) {
1833 ndomains = cap_ndoms(iommu->cap);
1834 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1835
1836 if (num >= ndomains) {
1837 pr_err("%s: No free domain ids\n", iommu->name);
1838 domain->iommu_refcnt[iommu->seq_id] -= 1;
1839 domain->iommu_count -= 1;
1840 return -ENOSPC;
1841 }
1842
1843 set_bit(num, iommu->domain_ids);
1844 set_iommu_domain(iommu, num, domain);
1845
1846 domain->iommu_did[iommu->seq_id] = num;
1847 domain->nid = iommu->node;
1848
1849 domain_update_iommu_cap(domain);
1850 }
1851
1852 return 0;
1853 }
1854
1855 static int domain_detach_iommu(struct dmar_domain *domain,
1856 struct intel_iommu *iommu)
1857 {
1858 int num, count = INT_MAX;
1859
1860 assert_spin_locked(&device_domain_lock);
1861 assert_spin_locked(&iommu->lock);
1862
1863 domain->iommu_refcnt[iommu->seq_id] -= 1;
1864 count = --domain->iommu_count;
1865 if (domain->iommu_refcnt[iommu->seq_id] == 0) {
1866 num = domain->iommu_did[iommu->seq_id];
1867 clear_bit(num, iommu->domain_ids);
1868 set_iommu_domain(iommu, num, NULL);
1869
1870 domain_update_iommu_cap(domain);
1871 domain->iommu_did[iommu->seq_id] = 0;
1872 }
1873
1874 return count;
1875 }
1876
1877 static struct iova_domain reserved_iova_list;
1878 static struct lock_class_key reserved_rbtree_key;
1879
1880 static int dmar_init_reserved_ranges(void)
1881 {
1882 struct pci_dev *pdev = NULL;
1883 struct iova *iova;
1884 int i;
1885
1886 init_iova_domain(&reserved_iova_list, VTD_PAGE_SIZE, IOVA_START_PFN,
1887 DMA_32BIT_PFN);
1888
1889 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1890 &reserved_rbtree_key);
1891
1892 /* IOAPIC ranges shouldn't be accessed by DMA */
1893 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1894 IOVA_PFN(IOAPIC_RANGE_END));
1895 if (!iova) {
1896 pr_err("Reserve IOAPIC range failed\n");
1897 return -ENODEV;
1898 }
1899
1900 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1901 for_each_pci_dev(pdev) {
1902 struct resource *r;
1903
1904 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1905 r = &pdev->resource[i];
1906 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1907 continue;
1908 iova = reserve_iova(&reserved_iova_list,
1909 IOVA_PFN(r->start),
1910 IOVA_PFN(r->end));
1911 if (!iova) {
1912 pr_err("Reserve iova failed\n");
1913 return -ENODEV;
1914 }
1915 }
1916 }
1917 return 0;
1918 }
1919
1920 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1921 {
1922 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1923 }
1924
1925 static inline int guestwidth_to_adjustwidth(int gaw)
1926 {
1927 int agaw;
1928 int r = (gaw - 12) % 9;
1929
1930 if (r == 0)
1931 agaw = gaw;
1932 else
1933 agaw = gaw + 9 - r;
1934 if (agaw > 64)
1935 agaw = 64;
1936 return agaw;
1937 }
1938
1939 static int domain_init(struct dmar_domain *domain, struct intel_iommu *iommu,
1940 int guest_width)
1941 {
1942 int adjust_width, agaw;
1943 unsigned long sagaw;
1944
1945 init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN,
1946 DMA_32BIT_PFN);
1947 domain_reserve_special_ranges(domain);
1948
1949 /* calculate AGAW */
1950 if (guest_width > cap_mgaw(iommu->cap))
1951 guest_width = cap_mgaw(iommu->cap);
1952 domain->gaw = guest_width;
1953 adjust_width = guestwidth_to_adjustwidth(guest_width);
1954 agaw = width_to_agaw(adjust_width);
1955 sagaw = cap_sagaw(iommu->cap);
1956 if (!test_bit(agaw, &sagaw)) {
1957 /* hardware doesn't support it, choose a bigger one */
1958 pr_debug("Hardware doesn't support agaw %d\n", agaw);
1959 agaw = find_next_bit(&sagaw, 5, agaw);
1960 if (agaw >= 5)
1961 return -ENODEV;
1962 }
1963 domain->agaw = agaw;
1964
1965 if (ecap_coherent(iommu->ecap))
1966 domain->iommu_coherency = 1;
1967 else
1968 domain->iommu_coherency = 0;
1969
1970 if (ecap_sc_support(iommu->ecap))
1971 domain->iommu_snooping = 1;
1972 else
1973 domain->iommu_snooping = 0;
1974
1975 if (intel_iommu_superpage)
1976 domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
1977 else
1978 domain->iommu_superpage = 0;
1979
1980 domain->nid = iommu->node;
1981
1982 /* always allocate the top pgd */
1983 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
1984 if (!domain->pgd)
1985 return -ENOMEM;
1986 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1987 return 0;
1988 }
1989
1990 static void domain_exit(struct dmar_domain *domain)
1991 {
1992 struct page *freelist = NULL;
1993
1994 /* Domain 0 is reserved, so dont process it */
1995 if (!domain)
1996 return;
1997
1998 /* Flush any lazy unmaps that may reference this domain */
1999 if (!intel_iommu_strict) {
2000 int cpu;
2001
2002 for_each_possible_cpu(cpu)
2003 flush_unmaps_timeout(cpu);
2004 }
2005
2006 /* Remove associated devices and clear attached or cached domains */
2007 rcu_read_lock();
2008 domain_remove_dev_info(domain);
2009 rcu_read_unlock();
2010
2011 /* destroy iovas */
2012 put_iova_domain(&domain->iovad);
2013
2014 freelist = domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
2015
2016 dma_free_pagelist(freelist);
2017
2018 free_domain_mem(domain);
2019 }
2020
2021 static int domain_context_mapping_one(struct dmar_domain *domain,
2022 struct intel_iommu *iommu,
2023 u8 bus, u8 devfn)
2024 {
2025 u16 did = domain->iommu_did[iommu->seq_id];
2026 int translation = CONTEXT_TT_MULTI_LEVEL;
2027 struct device_domain_info *info = NULL;
2028 struct context_entry *context;
2029 unsigned long flags;
2030 struct dma_pte *pgd;
2031 int ret, agaw;
2032
2033 WARN_ON(did == 0);
2034
2035 if (hw_pass_through && domain_type_is_si(domain))
2036 translation = CONTEXT_TT_PASS_THROUGH;
2037
2038 pr_debug("Set context mapping for %02x:%02x.%d\n",
2039 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
2040
2041 BUG_ON(!domain->pgd);
2042
2043 spin_lock_irqsave(&device_domain_lock, flags);
2044 spin_lock(&iommu->lock);
2045
2046 ret = -ENOMEM;
2047 context = iommu_context_addr(iommu, bus, devfn, 1);
2048 if (!context)
2049 goto out_unlock;
2050
2051 ret = 0;
2052 if (context_present(context))
2053 goto out_unlock;
2054
2055 /*
2056 * For kdump cases, old valid entries may be cached due to the
2057 * in-flight DMA and copied pgtable, but there is no unmapping
2058 * behaviour for them, thus we need an explicit cache flush for
2059 * the newly-mapped device. For kdump, at this point, the device
2060 * is supposed to finish reset at its driver probe stage, so no
2061 * in-flight DMA will exist, and we don't need to worry anymore
2062 * hereafter.
2063 */
2064 if (context_copied(context)) {
2065 u16 did_old = context_domain_id(context);
2066
2067 if (did_old >= 0 && did_old < cap_ndoms(iommu->cap)) {
2068 iommu->flush.flush_context(iommu, did_old,
2069 (((u16)bus) << 8) | devfn,
2070 DMA_CCMD_MASK_NOBIT,
2071 DMA_CCMD_DEVICE_INVL);
2072 iommu->flush.flush_iotlb(iommu, did_old, 0, 0,
2073 DMA_TLB_DSI_FLUSH);
2074 }
2075 }
2076
2077 pgd = domain->pgd;
2078
2079 context_clear_entry(context);
2080 context_set_domain_id(context, did);
2081
2082 /*
2083 * Skip top levels of page tables for iommu which has less agaw
2084 * than default. Unnecessary for PT mode.
2085 */
2086 if (translation != CONTEXT_TT_PASS_THROUGH) {
2087 for (agaw = domain->agaw; agaw > iommu->agaw; agaw--) {
2088 ret = -ENOMEM;
2089 pgd = phys_to_virt(dma_pte_addr(pgd));
2090 if (!dma_pte_present(pgd))
2091 goto out_unlock;
2092 }
2093
2094 info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
2095 if (info && info->ats_supported)
2096 translation = CONTEXT_TT_DEV_IOTLB;
2097 else
2098 translation = CONTEXT_TT_MULTI_LEVEL;
2099
2100 context_set_address_root(context, virt_to_phys(pgd));
2101 context_set_address_width(context, agaw);
2102 } else {
2103 /*
2104 * In pass through mode, AW must be programmed to
2105 * indicate the largest AGAW value supported by
2106 * hardware. And ASR is ignored by hardware.
2107 */
2108 context_set_address_width(context, iommu->msagaw);
2109 }
2110
2111 context_set_translation_type(context, translation);
2112 context_set_fault_enable(context);
2113 context_set_present(context);
2114 domain_flush_cache(domain, context, sizeof(*context));
2115
2116 /*
2117 * It's a non-present to present mapping. If hardware doesn't cache
2118 * non-present entry we only need to flush the write-buffer. If the
2119 * _does_ cache non-present entries, then it does so in the special
2120 * domain #0, which we have to flush:
2121 */
2122 if (cap_caching_mode(iommu->cap)) {
2123 iommu->flush.flush_context(iommu, 0,
2124 (((u16)bus) << 8) | devfn,
2125 DMA_CCMD_MASK_NOBIT,
2126 DMA_CCMD_DEVICE_INVL);
2127 iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);
2128 } else {
2129 iommu_flush_write_buffer(iommu);
2130 }
2131 iommu_enable_dev_iotlb(info);
2132
2133 ret = 0;
2134
2135 out_unlock:
2136 spin_unlock(&iommu->lock);
2137 spin_unlock_irqrestore(&device_domain_lock, flags);
2138
2139 return ret;
2140 }
2141
2142 struct domain_context_mapping_data {
2143 struct dmar_domain *domain;
2144 struct intel_iommu *iommu;
2145 };
2146
2147 static int domain_context_mapping_cb(struct pci_dev *pdev,
2148 u16 alias, void *opaque)
2149 {
2150 struct domain_context_mapping_data *data = opaque;
2151
2152 return domain_context_mapping_one(data->domain, data->iommu,
2153 PCI_BUS_NUM(alias), alias & 0xff);
2154 }
2155
2156 static int
2157 domain_context_mapping(struct dmar_domain *domain, struct device *dev)
2158 {
2159 struct intel_iommu *iommu;
2160 u8 bus, devfn;
2161 struct domain_context_mapping_data data;
2162
2163 iommu = device_to_iommu(dev, &bus, &devfn);
2164 if (!iommu)
2165 return -ENODEV;
2166
2167 if (!dev_is_pci(dev))
2168 return domain_context_mapping_one(domain, iommu, bus, devfn);
2169
2170 data.domain = domain;
2171 data.iommu = iommu;
2172
2173 return pci_for_each_dma_alias(to_pci_dev(dev),
2174 &domain_context_mapping_cb, &data);
2175 }
2176
2177 static int domain_context_mapped_cb(struct pci_dev *pdev,
2178 u16 alias, void *opaque)
2179 {
2180 struct intel_iommu *iommu = opaque;
2181
2182 return !device_context_mapped(iommu, PCI_BUS_NUM(alias), alias & 0xff);
2183 }
2184
2185 static int domain_context_mapped(struct device *dev)
2186 {
2187 struct intel_iommu *iommu;
2188 u8 bus, devfn;
2189
2190 iommu = device_to_iommu(dev, &bus, &devfn);
2191 if (!iommu)
2192 return -ENODEV;
2193
2194 if (!dev_is_pci(dev))
2195 return device_context_mapped(iommu, bus, devfn);
2196
2197 return !pci_for_each_dma_alias(to_pci_dev(dev),
2198 domain_context_mapped_cb, iommu);
2199 }
2200
2201 /* Returns a number of VTD pages, but aligned to MM page size */
2202 static inline unsigned long aligned_nrpages(unsigned long host_addr,
2203 size_t size)
2204 {
2205 host_addr &= ~PAGE_MASK;
2206 return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
2207 }
2208
2209 /* Return largest possible superpage level for a given mapping */
2210 static inline int hardware_largepage_caps(struct dmar_domain *domain,
2211 unsigned long iov_pfn,
2212 unsigned long phy_pfn,
2213 unsigned long pages)
2214 {
2215 int support, level = 1;
2216 unsigned long pfnmerge;
2217
2218 support = domain->iommu_superpage;
2219
2220 /* To use a large page, the virtual *and* physical addresses
2221 must be aligned to 2MiB/1GiB/etc. Lower bits set in either
2222 of them will mean we have to use smaller pages. So just
2223 merge them and check both at once. */
2224 pfnmerge = iov_pfn | phy_pfn;
2225
2226 while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
2227 pages >>= VTD_STRIDE_SHIFT;
2228 if (!pages)
2229 break;
2230 pfnmerge >>= VTD_STRIDE_SHIFT;
2231 level++;
2232 support--;
2233 }
2234 return level;
2235 }
2236
2237 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2238 struct scatterlist *sg, unsigned long phys_pfn,
2239 unsigned long nr_pages, int prot)
2240 {
2241 struct dma_pte *first_pte = NULL, *pte = NULL;
2242 phys_addr_t uninitialized_var(pteval);
2243 unsigned long sg_res = 0;
2244 unsigned int largepage_lvl = 0;
2245 unsigned long lvl_pages = 0;
2246
2247 BUG_ON(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1));
2248
2249 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
2250 return -EINVAL;
2251
2252 prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
2253
2254 if (!sg) {
2255 sg_res = nr_pages;
2256 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
2257 }
2258
2259 while (nr_pages > 0) {
2260 uint64_t tmp;
2261
2262 if (!sg_res) {
2263 unsigned int pgoff = sg->offset & ~PAGE_MASK;
2264
2265 sg_res = aligned_nrpages(sg->offset, sg->length);
2266 sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + pgoff;
2267 sg->dma_length = sg->length;
2268 pteval = (sg_phys(sg) - pgoff) | prot;
2269 phys_pfn = pteval >> VTD_PAGE_SHIFT;
2270 }
2271
2272 if (!pte) {
2273 largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);
2274
2275 first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl);
2276 if (!pte)
2277 return -ENOMEM;
2278 /* It is large page*/
2279 if (largepage_lvl > 1) {
2280 unsigned long nr_superpages, end_pfn;
2281
2282 pteval |= DMA_PTE_LARGE_PAGE;
2283 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2284
2285 nr_superpages = sg_res / lvl_pages;
2286 end_pfn = iov_pfn + nr_superpages * lvl_pages - 1;
2287
2288 /*
2289 * Ensure that old small page tables are
2290 * removed to make room for superpage(s).
2291 */
2292 dma_pte_free_pagetable(domain, iov_pfn, end_pfn);
2293 } else {
2294 pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
2295 }
2296
2297 }
2298 /* We don't need lock here, nobody else
2299 * touches the iova range
2300 */
2301 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
2302 if (tmp) {
2303 static int dumps = 5;
2304 pr_crit("ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
2305 iov_pfn, tmp, (unsigned long long)pteval);
2306 if (dumps) {
2307 dumps--;
2308 debug_dma_dump_mappings(NULL);
2309 }
2310 WARN_ON(1);
2311 }
2312
2313 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2314
2315 BUG_ON(nr_pages < lvl_pages);
2316 BUG_ON(sg_res < lvl_pages);
2317
2318 nr_pages -= lvl_pages;
2319 iov_pfn += lvl_pages;
2320 phys_pfn += lvl_pages;
2321 pteval += lvl_pages * VTD_PAGE_SIZE;
2322 sg_res -= lvl_pages;
2323
2324 /* If the next PTE would be the first in a new page, then we
2325 need to flush the cache on the entries we've just written.
2326 And then we'll need to recalculate 'pte', so clear it and
2327 let it get set again in the if (!pte) block above.
2328
2329 If we're done (!nr_pages) we need to flush the cache too.
2330
2331 Also if we've been setting superpages, we may need to
2332 recalculate 'pte' and switch back to smaller pages for the
2333 end of the mapping, if the trailing size is not enough to
2334 use another superpage (i.e. sg_res < lvl_pages). */
2335 pte++;
2336 if (!nr_pages || first_pte_in_page(pte) ||
2337 (largepage_lvl > 1 && sg_res < lvl_pages)) {
2338 domain_flush_cache(domain, first_pte,
2339 (void *)pte - (void *)first_pte);
2340 pte = NULL;
2341 }
2342
2343 if (!sg_res && nr_pages)
2344 sg = sg_next(sg);
2345 }
2346 return 0;
2347 }
2348
2349 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2350 struct scatterlist *sg, unsigned long nr_pages,
2351 int prot)
2352 {
2353 return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
2354 }
2355
2356 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2357 unsigned long phys_pfn, unsigned long nr_pages,
2358 int prot)
2359 {
2360 return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
2361 }
2362
2363 static void domain_context_clear_one(struct intel_iommu *iommu, u8 bus, u8 devfn)
2364 {
2365 if (!iommu)
2366 return;
2367
2368 clear_context_table(iommu, bus, devfn);
2369 iommu->flush.flush_context(iommu, 0, 0, 0,
2370 DMA_CCMD_GLOBAL_INVL);
2371 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2372 }
2373
2374 static inline void unlink_domain_info(struct device_domain_info *info)
2375 {
2376 assert_spin_locked(&device_domain_lock);
2377 list_del(&info->link);
2378 list_del(&info->global);
2379 if (info->dev)
2380 info->dev->archdata.iommu = NULL;
2381 }
2382
2383 static void domain_remove_dev_info(struct dmar_domain *domain)
2384 {
2385 struct device_domain_info *info, *tmp;
2386 unsigned long flags;
2387
2388 spin_lock_irqsave(&device_domain_lock, flags);
2389 list_for_each_entry_safe(info, tmp, &domain->devices, link)
2390 __dmar_remove_one_dev_info(info);
2391 spin_unlock_irqrestore(&device_domain_lock, flags);
2392 }
2393
2394 /*
2395 * find_domain
2396 * Note: we use struct device->archdata.iommu stores the info
2397 */
2398 static struct dmar_domain *find_domain(struct device *dev)
2399 {
2400 struct device_domain_info *info;
2401
2402 /* No lock here, assumes no domain exit in normal case */
2403 info = dev->archdata.iommu;
2404 if (info)
2405 return info->domain;
2406 return NULL;
2407 }
2408
2409 static inline struct device_domain_info *
2410 dmar_search_domain_by_dev_info(int segment, int bus, int devfn)
2411 {
2412 struct device_domain_info *info;
2413
2414 list_for_each_entry(info, &device_domain_list, global)
2415 if (info->iommu->segment == segment && info->bus == bus &&
2416 info->devfn == devfn)
2417 return info;
2418
2419 return NULL;
2420 }
2421
2422 static struct dmar_domain *dmar_insert_one_dev_info(struct intel_iommu *iommu,
2423 int bus, int devfn,
2424 struct device *dev,
2425 struct dmar_domain *domain)
2426 {
2427 struct dmar_domain *found = NULL;
2428 struct device_domain_info *info;
2429 unsigned long flags;
2430 int ret;
2431
2432 info = alloc_devinfo_mem();
2433 if (!info)
2434 return NULL;
2435
2436 info->bus = bus;
2437 info->devfn = devfn;
2438 info->ats_supported = info->pasid_supported = info->pri_supported = 0;
2439 info->ats_enabled = info->pasid_enabled = info->pri_enabled = 0;
2440 info->ats_qdep = 0;
2441 info->dev = dev;
2442 info->domain = domain;
2443 info->iommu = iommu;
2444
2445 if (dev && dev_is_pci(dev)) {
2446 struct pci_dev *pdev = to_pci_dev(info->dev);
2447
2448 if (ecap_dev_iotlb_support(iommu->ecap) &&
2449 pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS) &&
2450 dmar_find_matched_atsr_unit(pdev))
2451 info->ats_supported = 1;
2452
2453 if (ecs_enabled(iommu)) {
2454 if (pasid_enabled(iommu)) {
2455 int features = pci_pasid_features(pdev);
2456 if (features >= 0)
2457 info->pasid_supported = features | 1;
2458 }
2459
2460 if (info->ats_supported && ecap_prs(iommu->ecap) &&
2461 pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI))
2462 info->pri_supported = 1;
2463 }
2464 }
2465
2466 spin_lock_irqsave(&device_domain_lock, flags);
2467 if (dev)
2468 found = find_domain(dev);
2469
2470 if (!found) {
2471 struct device_domain_info *info2;
2472 info2 = dmar_search_domain_by_dev_info(iommu->segment, bus, devfn);
2473 if (info2) {
2474 found = info2->domain;
2475 info2->dev = dev;
2476 }
2477 }
2478
2479 if (found) {
2480 spin_unlock_irqrestore(&device_domain_lock, flags);
2481 free_devinfo_mem(info);
2482 /* Caller must free the original domain */
2483 return found;
2484 }
2485
2486 spin_lock(&iommu->lock);
2487 ret = domain_attach_iommu(domain, iommu);
2488 spin_unlock(&iommu->lock);
2489
2490 if (ret) {
2491 spin_unlock_irqrestore(&device_domain_lock, flags);
2492 free_devinfo_mem(info);
2493 return NULL;
2494 }
2495
2496 list_add(&info->link, &domain->devices);
2497 list_add(&info->global, &device_domain_list);
2498 if (dev)
2499 dev->archdata.iommu = info;
2500 spin_unlock_irqrestore(&device_domain_lock, flags);
2501
2502 if (dev && domain_context_mapping(domain, dev)) {
2503 pr_err("Domain context map for %s failed\n", dev_name(dev));
2504 dmar_remove_one_dev_info(domain, dev);
2505 return NULL;
2506 }
2507
2508 return domain;
2509 }
2510
2511 static int get_last_alias(struct pci_dev *pdev, u16 alias, void *opaque)
2512 {
2513 *(u16 *)opaque = alias;
2514 return 0;
2515 }
2516
2517 static struct dmar_domain *find_or_alloc_domain(struct device *dev, int gaw)
2518 {
2519 struct device_domain_info *info = NULL;
2520 struct dmar_domain *domain = NULL;
2521 struct intel_iommu *iommu;
2522 u16 req_id, dma_alias;
2523 unsigned long flags;
2524 u8 bus, devfn;
2525
2526 iommu = device_to_iommu(dev, &bus, &devfn);
2527 if (!iommu)
2528 return NULL;
2529
2530 req_id = ((u16)bus << 8) | devfn;
2531
2532 if (dev_is_pci(dev)) {
2533 struct pci_dev *pdev = to_pci_dev(dev);
2534
2535 pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);
2536
2537 spin_lock_irqsave(&device_domain_lock, flags);
2538 info = dmar_search_domain_by_dev_info(pci_domain_nr(pdev->bus),
2539 PCI_BUS_NUM(dma_alias),
2540 dma_alias & 0xff);
2541 if (info) {
2542 iommu = info->iommu;
2543 domain = info->domain;
2544 }
2545 spin_unlock_irqrestore(&device_domain_lock, flags);
2546
2547 /* DMA alias already has a domain, use it */
2548 if (info)
2549 goto out;
2550 }
2551
2552 /* Allocate and initialize new domain for the device */
2553 domain = alloc_domain(0);
2554 if (!domain)
2555 return NULL;
2556 if (domain_init(domain, iommu, gaw)) {
2557 domain_exit(domain);
2558 return NULL;
2559 }
2560
2561 out:
2562
2563 return domain;
2564 }
2565
2566 static struct dmar_domain *set_domain_for_dev(struct device *dev,
2567 struct dmar_domain *domain)
2568 {
2569 struct intel_iommu *iommu;
2570 struct dmar_domain *tmp;
2571 u16 req_id, dma_alias;
2572 u8 bus, devfn;
2573
2574 iommu = device_to_iommu(dev, &bus, &devfn);
2575 if (!iommu)
2576 return NULL;
2577
2578 req_id = ((u16)bus << 8) | devfn;
2579
2580 if (dev_is_pci(dev)) {
2581 struct pci_dev *pdev = to_pci_dev(dev);
2582
2583 pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);
2584
2585 /* register PCI DMA alias device */
2586 if (req_id != dma_alias) {
2587 tmp = dmar_insert_one_dev_info(iommu, PCI_BUS_NUM(dma_alias),
2588 dma_alias & 0xff, NULL, domain);
2589
2590 if (!tmp || tmp != domain)
2591 return tmp;
2592 }
2593 }
2594
2595 tmp = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2596 if (!tmp || tmp != domain)
2597 return tmp;
2598
2599 return domain;
2600 }
2601
2602 static struct dmar_domain *get_domain_for_dev(struct device *dev, int gaw)
2603 {
2604 struct dmar_domain *domain, *tmp;
2605
2606 domain = find_domain(dev);
2607 if (domain)
2608 goto out;
2609
2610 domain = find_or_alloc_domain(dev, gaw);
2611 if (!domain)
2612 goto out;
2613
2614 tmp = set_domain_for_dev(dev, domain);
2615 if (!tmp || domain != tmp) {
2616 domain_exit(domain);
2617 domain = tmp;
2618 }
2619
2620 out:
2621
2622 return domain;
2623 }
2624
2625 static int iommu_domain_identity_map(struct dmar_domain *domain,
2626 unsigned long long start,
2627 unsigned long long end)
2628 {
2629 unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
2630 unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
2631
2632 if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
2633 dma_to_mm_pfn(last_vpfn))) {
2634 pr_err("Reserving iova failed\n");
2635 return -ENOMEM;
2636 }
2637
2638 pr_debug("Mapping reserved region %llx-%llx\n", start, end);
2639 /*
2640 * RMRR range might have overlap with physical memory range,
2641 * clear it first
2642 */
2643 dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2644
2645 return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
2646 last_vpfn - first_vpfn + 1,
2647 DMA_PTE_READ|DMA_PTE_WRITE);
2648 }
2649
2650 static int domain_prepare_identity_map(struct device *dev,
2651 struct dmar_domain *domain,
2652 unsigned long long start,
2653 unsigned long long end)
2654 {
2655 /* For _hardware_ passthrough, don't bother. But for software
2656 passthrough, we do it anyway -- it may indicate a memory
2657 range which is reserved in E820, so which didn't get set
2658 up to start with in si_domain */
2659 if (domain == si_domain && hw_pass_through) {
2660 pr_warn("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
2661 dev_name(dev), start, end);
2662 return 0;
2663 }
2664
2665 pr_info("Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
2666 dev_name(dev), start, end);
2667
2668 if (end < start) {
2669 WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
2670 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2671 dmi_get_system_info(DMI_BIOS_VENDOR),
2672 dmi_get_system_info(DMI_BIOS_VERSION),
2673 dmi_get_system_info(DMI_PRODUCT_VERSION));
2674 return -EIO;
2675 }
2676
2677 if (end >> agaw_to_width(domain->agaw)) {
2678 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
2679 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2680 agaw_to_width(domain->agaw),
2681 dmi_get_system_info(DMI_BIOS_VENDOR),
2682 dmi_get_system_info(DMI_BIOS_VERSION),
2683 dmi_get_system_info(DMI_PRODUCT_VERSION));
2684 return -EIO;
2685 }
2686
2687 return iommu_domain_identity_map(domain, start, end);
2688 }
2689
2690 static int iommu_prepare_identity_map(struct device *dev,
2691 unsigned long long start,
2692 unsigned long long end)
2693 {
2694 struct dmar_domain *domain;
2695 int ret;
2696
2697 domain = get_domain_for_dev(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2698 if (!domain)
2699 return -ENOMEM;
2700
2701 ret = domain_prepare_identity_map(dev, domain, start, end);
2702 if (ret)
2703 domain_exit(domain);
2704
2705 return ret;
2706 }
2707
2708 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
2709 struct device *dev)
2710 {
2711 if (dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2712 return 0;
2713 return iommu_prepare_identity_map(dev, rmrr->base_address,
2714 rmrr->end_address);
2715 }
2716
2717 #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
2718 static inline void iommu_prepare_isa(void)
2719 {
2720 struct pci_dev *pdev;
2721 int ret;
2722
2723 pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
2724 if (!pdev)
2725 return;
2726
2727 pr_info("Prepare 0-16MiB unity mapping for LPC\n");
2728 ret = iommu_prepare_identity_map(&pdev->dev, 0, 16*1024*1024 - 1);
2729
2730 if (ret)
2731 pr_err("Failed to create 0-16MiB identity map - floppy might not work\n");
2732
2733 pci_dev_put(pdev);
2734 }
2735 #else
2736 static inline void iommu_prepare_isa(void)
2737 {
2738 return;
2739 }
2740 #endif /* !CONFIG_INTEL_IOMMU_FLPY_WA */
2741
2742 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2743
2744 static int __init si_domain_init(int hw)
2745 {
2746 int nid, ret = 0;
2747
2748 si_domain = alloc_domain(DOMAIN_FLAG_STATIC_IDENTITY);
2749 if (!si_domain)
2750 return -EFAULT;
2751
2752 if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2753 domain_exit(si_domain);
2754 return -EFAULT;
2755 }
2756
2757 pr_debug("Identity mapping domain allocated\n");
2758
2759 if (hw)
2760 return 0;
2761
2762 for_each_online_node(nid) {
2763 unsigned long start_pfn, end_pfn;
2764 int i;
2765
2766 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2767 ret = iommu_domain_identity_map(si_domain,
2768 PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
2769 if (ret)
2770 return ret;
2771 }
2772 }
2773
2774 return 0;
2775 }
2776
2777 static int identity_mapping(struct device *dev)
2778 {
2779 struct device_domain_info *info;
2780
2781 if (likely(!iommu_identity_mapping))
2782 return 0;
2783
2784 info = dev->archdata.iommu;
2785 if (info && info != DUMMY_DEVICE_DOMAIN_INFO)
2786 return (info->domain == si_domain);
2787
2788 return 0;
2789 }
2790
2791 static int domain_add_dev_info(struct dmar_domain *domain, struct device *dev)
2792 {
2793 struct dmar_domain *ndomain;
2794 struct intel_iommu *iommu;
2795 u8 bus, devfn;
2796
2797 iommu = device_to_iommu(dev, &bus, &devfn);
2798 if (!iommu)
2799 return -ENODEV;
2800
2801 ndomain = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2802 if (ndomain != domain)
2803 return -EBUSY;
2804
2805 return 0;
2806 }
2807
2808 static bool device_has_rmrr(struct device *dev)
2809 {
2810 struct dmar_rmrr_unit *rmrr;
2811 struct device *tmp;
2812 int i;
2813
2814 rcu_read_lock();
2815 for_each_rmrr_units(rmrr) {
2816 /*
2817 * Return TRUE if this RMRR contains the device that
2818 * is passed in.
2819 */
2820 for_each_active_dev_scope(rmrr->devices,
2821 rmrr->devices_cnt, i, tmp)
2822 if (tmp == dev) {
2823 rcu_read_unlock();
2824 return true;
2825 }
2826 }
2827 rcu_read_unlock();
2828 return false;
2829 }
2830
2831 /*
2832 * There are a couple cases where we need to restrict the functionality of
2833 * devices associated with RMRRs. The first is when evaluating a device for
2834 * identity mapping because problems exist when devices are moved in and out
2835 * of domains and their respective RMRR information is lost. This means that
2836 * a device with associated RMRRs will never be in a "passthrough" domain.
2837 * The second is use of the device through the IOMMU API. This interface
2838 * expects to have full control of the IOVA space for the device. We cannot
2839 * satisfy both the requirement that RMRR access is maintained and have an
2840 * unencumbered IOVA space. We also have no ability to quiesce the device's
2841 * use of the RMRR space or even inform the IOMMU API user of the restriction.
2842 * We therefore prevent devices associated with an RMRR from participating in
2843 * the IOMMU API, which eliminates them from device assignment.
2844 *
2845 * In both cases we assume that PCI USB devices with RMRRs have them largely
2846 * for historical reasons and that the RMRR space is not actively used post
2847 * boot. This exclusion may change if vendors begin to abuse it.
2848 *
2849 * The same exception is made for graphics devices, with the requirement that
2850 * any use of the RMRR regions will be torn down before assigning the device
2851 * to a guest.
2852 */
2853 static bool device_is_rmrr_locked(struct device *dev)
2854 {
2855 if (!device_has_rmrr(dev))
2856 return false;
2857
2858 if (dev_is_pci(dev)) {
2859 struct pci_dev *pdev = to_pci_dev(dev);
2860
2861 if (IS_USB_DEVICE(pdev) || IS_GFX_DEVICE(pdev))
2862 return false;
2863 }
2864
2865 return true;
2866 }
2867
2868 static int iommu_should_identity_map(struct device *dev, int startup)
2869 {
2870
2871 if (dev_is_pci(dev)) {
2872 struct pci_dev *pdev = to_pci_dev(dev);
2873
2874 if (device_is_rmrr_locked(dev))
2875 return 0;
2876
2877 if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2878 return 1;
2879
2880 if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2881 return 1;
2882
2883 if (!(iommu_identity_mapping & IDENTMAP_ALL))
2884 return 0;
2885
2886 /*
2887 * We want to start off with all devices in the 1:1 domain, and
2888 * take them out later if we find they can't access all of memory.
2889 *
2890 * However, we can't do this for PCI devices behind bridges,
2891 * because all PCI devices behind the same bridge will end up
2892 * with the same source-id on their transactions.
2893 *
2894 * Practically speaking, we can't change things around for these
2895 * devices at run-time, because we can't be sure there'll be no
2896 * DMA transactions in flight for any of their siblings.
2897 *
2898 * So PCI devices (unless they're on the root bus) as well as
2899 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2900 * the 1:1 domain, just in _case_ one of their siblings turns out
2901 * not to be able to map all of memory.
2902 */
2903 if (!pci_is_pcie(pdev)) {
2904 if (!pci_is_root_bus(pdev->bus))
2905 return 0;
2906 if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2907 return 0;
2908 } else if (pci_pcie_type(pdev) == PCI_EXP_TYPE_PCI_BRIDGE)
2909 return 0;
2910 } else {
2911 if (device_has_rmrr(dev))
2912 return 0;
2913 }
2914
2915 /*
2916 * At boot time, we don't yet know if devices will be 64-bit capable.
2917 * Assume that they will — if they turn out not to be, then we can
2918 * take them out of the 1:1 domain later.
2919 */
2920 if (!startup) {
2921 /*
2922 * If the device's dma_mask is less than the system's memory
2923 * size then this is not a candidate for identity mapping.
2924 */
2925 u64 dma_mask = *dev->dma_mask;
2926
2927 if (dev->coherent_dma_mask &&
2928 dev->coherent_dma_mask < dma_mask)
2929 dma_mask = dev->coherent_dma_mask;
2930
2931 return dma_mask >= dma_get_required_mask(dev);
2932 }
2933
2934 return 1;
2935 }
2936
2937 static int __init dev_prepare_static_identity_mapping(struct device *dev, int hw)
2938 {
2939 int ret;
2940
2941 if (!iommu_should_identity_map(dev, 1))
2942 return 0;
2943
2944 ret = domain_add_dev_info(si_domain, dev);
2945 if (!ret)
2946 pr_info("%s identity mapping for device %s\n",
2947 hw ? "Hardware" : "Software", dev_name(dev));
2948 else if (ret == -ENODEV)
2949 /* device not associated with an iommu */
2950 ret = 0;
2951
2952 return ret;
2953 }
2954
2955
2956 static int __init iommu_prepare_static_identity_mapping(int hw)
2957 {
2958 struct pci_dev *pdev = NULL;
2959 struct dmar_drhd_unit *drhd;
2960 struct intel_iommu *iommu;
2961 struct device *dev;
2962 int i;
2963 int ret = 0;
2964
2965 for_each_pci_dev(pdev) {
2966 ret = dev_prepare_static_identity_mapping(&pdev->dev, hw);
2967 if (ret)
2968 return ret;
2969 }
2970
2971 for_each_active_iommu(iommu, drhd)
2972 for_each_active_dev_scope(drhd->devices, drhd->devices_cnt, i, dev) {
2973 struct acpi_device_physical_node *pn;
2974 struct acpi_device *adev;
2975
2976 if (dev->bus != &acpi_bus_type)
2977 continue;
2978
2979 adev= to_acpi_device(dev);
2980 mutex_lock(&adev->physical_node_lock);
2981 list_for_each_entry(pn, &adev->physical_node_list, node) {
2982 ret = dev_prepare_static_identity_mapping(pn->dev, hw);
2983 if (ret)
2984 break;
2985 }
2986 mutex_unlock(&adev->physical_node_lock);
2987 if (ret)
2988 return ret;
2989 }
2990
2991 return 0;
2992 }
2993
2994 static void intel_iommu_init_qi(struct intel_iommu *iommu)
2995 {
2996 /*
2997 * Start from the sane iommu hardware state.
2998 * If the queued invalidation is already initialized by us
2999 * (for example, while enabling interrupt-remapping) then
3000 * we got the things already rolling from a sane state.
3001 */
3002 if (!iommu->qi) {
3003 /*
3004 * Clear any previous faults.
3005 */
3006 dmar_fault(-1, iommu);
3007 /*
3008 * Disable queued invalidation if supported and already enabled
3009 * before OS handover.
3010 */
3011 dmar_disable_qi(iommu);
3012 }
3013
3014 if (dmar_enable_qi(iommu)) {
3015 /*
3016 * Queued Invalidate not enabled, use Register Based Invalidate
3017 */
3018 iommu->flush.flush_context = __iommu_flush_context;
3019 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
3020 pr_info("%s: Using Register based invalidation\n",
3021 iommu->name);
3022 } else {
3023 iommu->flush.flush_context = qi_flush_context;
3024 iommu->flush.flush_iotlb = qi_flush_iotlb;
3025 pr_info("%s: Using Queued invalidation\n", iommu->name);
3026 }
3027 }
3028
3029 static int copy_context_table(struct intel_iommu *iommu,
3030 struct root_entry *old_re,
3031 struct context_entry **tbl,
3032 int bus, bool ext)
3033 {
3034 int tbl_idx, pos = 0, idx, devfn, ret = 0, did;
3035 struct context_entry *new_ce = NULL, ce;
3036 struct context_entry *old_ce = NULL;
3037 struct root_entry re;
3038 phys_addr_t old_ce_phys;
3039
3040 tbl_idx = ext ? bus * 2 : bus;
3041 memcpy(&re, old_re, sizeof(re));
3042
3043 for (devfn = 0; devfn < 256; devfn++) {
3044 /* First calculate the correct index */
3045 idx = (ext ? devfn * 2 : devfn) % 256;
3046
3047 if (idx == 0) {
3048 /* First save what we may have and clean up */
3049 if (new_ce) {
3050 tbl[tbl_idx] = new_ce;
3051 __iommu_flush_cache(iommu, new_ce,
3052 VTD_PAGE_SIZE);
3053 pos = 1;
3054 }
3055
3056 if (old_ce)
3057 memunmap(old_ce);
3058
3059 ret = 0;
3060 if (devfn < 0x80)
3061 old_ce_phys = root_entry_lctp(&re);
3062 else
3063 old_ce_phys = root_entry_uctp(&re);
3064
3065 if (!old_ce_phys) {
3066 if (ext && devfn == 0) {
3067 /* No LCTP, try UCTP */
3068 devfn = 0x7f;
3069 continue;
3070 } else {
3071 goto out;
3072 }
3073 }
3074
3075 ret = -ENOMEM;
3076 old_ce = memremap(old_ce_phys, PAGE_SIZE,
3077 MEMREMAP_WB);
3078 if (!old_ce)
3079 goto out;
3080
3081 new_ce = alloc_pgtable_page(iommu->node);
3082 if (!new_ce)
3083 goto out_unmap;
3084
3085 ret = 0;
3086 }
3087
3088 /* Now copy the context entry */
3089 memcpy(&ce, old_ce + idx, sizeof(ce));
3090
3091 if (!__context_present(&ce))
3092 continue;
3093
3094 did = context_domain_id(&ce);
3095 if (did >= 0 && did < cap_ndoms(iommu->cap))
3096 set_bit(did, iommu->domain_ids);
3097
3098 /*
3099 * We need a marker for copied context entries. This
3100 * marker needs to work for the old format as well as
3101 * for extended context entries.
3102 *
3103 * Bit 67 of the context entry is used. In the old
3104 * format this bit is available to software, in the
3105 * extended format it is the PGE bit, but PGE is ignored
3106 * by HW if PASIDs are disabled (and thus still
3107 * available).
3108 *
3109 * So disable PASIDs first and then mark the entry
3110 * copied. This means that we don't copy PASID
3111 * translations from the old kernel, but this is fine as
3112 * faults there are not fatal.
3113 */
3114 context_clear_pasid_enable(&ce);
3115 context_set_copied(&ce);
3116
3117 new_ce[idx] = ce;
3118 }
3119
3120 tbl[tbl_idx + pos] = new_ce;
3121
3122 __iommu_flush_cache(iommu, new_ce, VTD_PAGE_SIZE);
3123
3124 out_unmap:
3125 memunmap(old_ce);
3126
3127 out:
3128 return ret;
3129 }
3130
3131 static int copy_translation_tables(struct intel_iommu *iommu)
3132 {
3133 struct context_entry **ctxt_tbls;
3134 struct root_entry *old_rt;
3135 phys_addr_t old_rt_phys;
3136 int ctxt_table_entries;
3137 unsigned long flags;
3138 u64 rtaddr_reg;
3139 int bus, ret;
3140 bool new_ext, ext;
3141
3142 rtaddr_reg = dmar_readq(iommu->reg + DMAR_RTADDR_REG);
3143 ext = !!(rtaddr_reg & DMA_RTADDR_RTT);
3144 new_ext = !!ecap_ecs(iommu->ecap);
3145
3146 /*
3147 * The RTT bit can only be changed when translation is disabled,
3148 * but disabling translation means to open a window for data
3149 * corruption. So bail out and don't copy anything if we would
3150 * have to change the bit.
3151 */
3152 if (new_ext != ext)
3153 return -EINVAL;
3154
3155 old_rt_phys = rtaddr_reg & VTD_PAGE_MASK;
3156 if (!old_rt_phys)
3157 return -EINVAL;
3158
3159 old_rt = memremap(old_rt_phys, PAGE_SIZE, MEMREMAP_WB);
3160 if (!old_rt)
3161 return -ENOMEM;
3162
3163 /* This is too big for the stack - allocate it from slab */
3164 ctxt_table_entries = ext ? 512 : 256;
3165 ret = -ENOMEM;
3166 ctxt_tbls = kzalloc(ctxt_table_entries * sizeof(void *), GFP_KERNEL);
3167 if (!ctxt_tbls)
3168 goto out_unmap;
3169
3170 for (bus = 0; bus < 256; bus++) {
3171 ret = copy_context_table(iommu, &old_rt[bus],
3172 ctxt_tbls, bus, ext);
3173 if (ret) {
3174 pr_err("%s: Failed to copy context table for bus %d\n",
3175 iommu->name, bus);
3176 continue;
3177 }
3178 }
3179
3180 spin_lock_irqsave(&iommu->lock, flags);
3181
3182 /* Context tables are copied, now write them to the root_entry table */
3183 for (bus = 0; bus < 256; bus++) {
3184 int idx = ext ? bus * 2 : bus;
3185 u64 val;
3186
3187 if (ctxt_tbls[idx]) {
3188 val = virt_to_phys(ctxt_tbls[idx]) | 1;
3189 iommu->root_entry[bus].lo = val;
3190 }
3191
3192 if (!ext || !ctxt_tbls[idx + 1])
3193 continue;
3194
3195 val = virt_to_phys(ctxt_tbls[idx + 1]) | 1;
3196 iommu->root_entry[bus].hi = val;
3197 }
3198
3199 spin_unlock_irqrestore(&iommu->lock, flags);
3200
3201 kfree(ctxt_tbls);
3202
3203 __iommu_flush_cache(iommu, iommu->root_entry, PAGE_SIZE);
3204
3205 ret = 0;
3206
3207 out_unmap:
3208 memunmap(old_rt);
3209
3210 return ret;
3211 }
3212
3213 static int __init init_dmars(void)
3214 {
3215 struct dmar_drhd_unit *drhd;
3216 struct dmar_rmrr_unit *rmrr;
3217 bool copied_tables = false;
3218 struct device *dev;
3219 struct intel_iommu *iommu;
3220 int i, ret, cpu;
3221
3222 /*
3223 * for each drhd
3224 * allocate root
3225 * initialize and program root entry to not present
3226 * endfor
3227 */
3228 for_each_drhd_unit(drhd) {
3229 /*
3230 * lock not needed as this is only incremented in the single
3231 * threaded kernel __init code path all other access are read
3232 * only
3233 */
3234 if (g_num_of_iommus < DMAR_UNITS_SUPPORTED) {
3235 g_num_of_iommus++;
3236 continue;
3237 }
3238 pr_err_once("Exceeded %d IOMMUs\n", DMAR_UNITS_SUPPORTED);
3239 }
3240
3241 /* Preallocate enough resources for IOMMU hot-addition */
3242 if (g_num_of_iommus < DMAR_UNITS_SUPPORTED)
3243 g_num_of_iommus = DMAR_UNITS_SUPPORTED;
3244
3245 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
3246 GFP_KERNEL);
3247 if (!g_iommus) {
3248 pr_err("Allocating global iommu array failed\n");
3249 ret = -ENOMEM;
3250 goto error;
3251 }
3252
3253 for_each_possible_cpu(cpu) {
3254 struct deferred_flush_data *dfd = per_cpu_ptr(&deferred_flush,
3255 cpu);
3256
3257 dfd->tables = kzalloc(g_num_of_iommus *
3258 sizeof(struct deferred_flush_table),
3259 GFP_KERNEL);
3260 if (!dfd->tables) {
3261 ret = -ENOMEM;
3262 goto free_g_iommus;
3263 }
3264
3265 spin_lock_init(&dfd->lock);
3266 setup_timer(&dfd->timer, flush_unmaps_timeout, cpu);
3267 }
3268
3269 for_each_active_iommu(iommu, drhd) {
3270 g_iommus[iommu->seq_id] = iommu;
3271
3272 intel_iommu_init_qi(iommu);
3273
3274 ret = iommu_init_domains(iommu);
3275 if (ret)
3276 goto free_iommu;
3277
3278 init_translation_status(iommu);
3279
3280 if (translation_pre_enabled(iommu) && !is_kdump_kernel()) {
3281 iommu_disable_translation(iommu);
3282 clear_translation_pre_enabled(iommu);
3283 pr_warn("Translation was enabled for %s but we are not in kdump mode\n",
3284 iommu->name);
3285 }
3286
3287 /*
3288 * TBD:
3289 * we could share the same root & context tables
3290 * among all IOMMU's. Need to Split it later.
3291 */
3292 ret = iommu_alloc_root_entry(iommu);
3293 if (ret)
3294 goto free_iommu;
3295
3296 if (translation_pre_enabled(iommu)) {
3297 pr_info("Translation already enabled - trying to copy translation structures\n");
3298
3299 ret = copy_translation_tables(iommu);
3300 if (ret) {
3301 /*
3302 * We found the IOMMU with translation
3303 * enabled - but failed to copy over the
3304 * old root-entry table. Try to proceed
3305 * by disabling translation now and
3306 * allocating a clean root-entry table.
3307 * This might cause DMAR faults, but
3308 * probably the dump will still succeed.
3309 */
3310 pr_err("Failed to copy translation tables from previous kernel for %s\n",
3311 iommu->name);
3312 iommu_disable_translation(iommu);
3313 clear_translation_pre_enabled(iommu);
3314 } else {
3315 pr_info("Copied translation tables from previous kernel for %s\n",
3316 iommu->name);
3317 copied_tables = true;
3318 }
3319 }
3320
3321 if (!ecap_pass_through(iommu->ecap))
3322 hw_pass_through = 0;
3323 #ifdef CONFIG_INTEL_IOMMU_SVM
3324 if (pasid_enabled(iommu))
3325 intel_svm_alloc_pasid_tables(iommu);
3326 #endif
3327 }
3328
3329 /*
3330 * Now that qi is enabled on all iommus, set the root entry and flush
3331 * caches. This is required on some Intel X58 chipsets, otherwise the
3332 * flush_context function will loop forever and the boot hangs.
3333 */
3334 for_each_active_iommu(iommu, drhd) {
3335 iommu_flush_write_buffer(iommu);
3336 iommu_set_root_entry(iommu);
3337 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
3338 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
3339 }
3340
3341 if (iommu_pass_through)
3342 iommu_identity_mapping |= IDENTMAP_ALL;
3343
3344 #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
3345 iommu_identity_mapping |= IDENTMAP_GFX;
3346 #endif
3347
3348 check_tylersburg_isoch();
3349
3350 if (iommu_identity_mapping) {
3351 ret = si_domain_init(hw_pass_through);
3352 if (ret)
3353 goto free_iommu;
3354 }
3355
3356
3357 /*
3358 * If we copied translations from a previous kernel in the kdump
3359 * case, we can not assign the devices to domains now, as that
3360 * would eliminate the old mappings. So skip this part and defer
3361 * the assignment to device driver initialization time.
3362 */
3363 if (copied_tables)
3364 goto domains_done;
3365
3366 /*
3367 * If pass through is not set or not enabled, setup context entries for
3368 * identity mappings for rmrr, gfx, and isa and may fall back to static
3369 * identity mapping if iommu_identity_mapping is set.
3370 */
3371 if (iommu_identity_mapping) {
3372 ret = iommu_prepare_static_identity_mapping(hw_pass_through);
3373 if (ret) {
3374 pr_crit("Failed to setup IOMMU pass-through\n");
3375 goto free_iommu;
3376 }
3377 }
3378 /*
3379 * For each rmrr
3380 * for each dev attached to rmrr
3381 * do
3382 * locate drhd for dev, alloc domain for dev
3383 * allocate free domain
3384 * allocate page table entries for rmrr
3385 * if context not allocated for bus
3386 * allocate and init context
3387 * set present in root table for this bus
3388 * init context with domain, translation etc
3389 * endfor
3390 * endfor
3391 */
3392 pr_info("Setting RMRR:\n");
3393 for_each_rmrr_units(rmrr) {
3394 /* some BIOS lists non-exist devices in DMAR table. */
3395 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
3396 i, dev) {
3397 ret = iommu_prepare_rmrr_dev(rmrr, dev);
3398 if (ret)
3399 pr_err("Mapping reserved region failed\n");
3400 }
3401 }
3402
3403 iommu_prepare_isa();
3404
3405 domains_done:
3406
3407 /*
3408 * for each drhd
3409 * enable fault log
3410 * global invalidate context cache
3411 * global invalidate iotlb
3412 * enable translation
3413 */
3414 for_each_iommu(iommu, drhd) {
3415 if (drhd->ignored) {
3416 /*
3417 * we always have to disable PMRs or DMA may fail on
3418 * this device
3419 */
3420 if (force_on)
3421 iommu_disable_protect_mem_regions(iommu);
3422 continue;
3423 }
3424
3425 iommu_flush_write_buffer(iommu);
3426
3427 #ifdef CONFIG_INTEL_IOMMU_SVM
3428 if (pasid_enabled(iommu) && ecap_prs(iommu->ecap)) {
3429 ret = intel_svm_enable_prq(iommu);
3430 if (ret)
3431 goto free_iommu;
3432 }
3433 #endif
3434 ret = dmar_set_interrupt(iommu);
3435 if (ret)
3436 goto free_iommu;
3437
3438 if (!translation_pre_enabled(iommu))
3439 iommu_enable_translation(iommu);
3440
3441 iommu_disable_protect_mem_regions(iommu);
3442 }
3443
3444 return 0;
3445
3446 free_iommu:
3447 for_each_active_iommu(iommu, drhd) {
3448 disable_dmar_iommu(iommu);
3449 free_dmar_iommu(iommu);
3450 }
3451 free_g_iommus:
3452 for_each_possible_cpu(cpu)
3453 kfree(per_cpu_ptr(&deferred_flush, cpu)->tables);
3454 kfree(g_iommus);
3455 error:
3456 return ret;
3457 }
3458
3459 /* This takes a number of _MM_ pages, not VTD pages */
3460 static unsigned long intel_alloc_iova(struct device *dev,
3461 struct dmar_domain *domain,
3462 unsigned long nrpages, uint64_t dma_mask)
3463 {
3464 unsigned long iova_pfn = 0;
3465
3466 /* Restrict dma_mask to the width that the iommu can handle */
3467 dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
3468 /* Ensure we reserve the whole size-aligned region */
3469 nrpages = __roundup_pow_of_two(nrpages);
3470
3471 if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
3472 /*
3473 * First try to allocate an io virtual address in
3474 * DMA_BIT_MASK(32) and if that fails then try allocating
3475 * from higher range
3476 */
3477 iova_pfn = alloc_iova_fast(&domain->iovad, nrpages,
3478 IOVA_PFN(DMA_BIT_MASK(32)));
3479 if (iova_pfn)
3480 return iova_pfn;
3481 }
3482 iova_pfn = alloc_iova_fast(&domain->iovad, nrpages, IOVA_PFN(dma_mask));
3483 if (unlikely(!iova_pfn)) {
3484 pr_err("Allocating %ld-page iova for %s failed",
3485 nrpages, dev_name(dev));
3486 return 0;
3487 }
3488
3489 return iova_pfn;
3490 }
3491
3492 static struct dmar_domain *__get_valid_domain_for_dev(struct device *dev)
3493 {
3494 struct dmar_domain *domain, *tmp;
3495 struct dmar_rmrr_unit *rmrr;
3496 struct device *i_dev;
3497 int i, ret;
3498
3499 domain = find_domain(dev);
3500 if (domain)
3501 goto out;
3502
3503 domain = find_or_alloc_domain(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
3504 if (!domain)
3505 goto out;
3506
3507 /* We have a new domain - setup possible RMRRs for the device */
3508 rcu_read_lock();
3509 for_each_rmrr_units(rmrr) {
3510 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
3511 i, i_dev) {
3512 if (i_dev != dev)
3513 continue;
3514
3515 ret = domain_prepare_identity_map(dev, domain,
3516 rmrr->base_address,
3517 rmrr->end_address);
3518 if (ret)
3519 dev_err(dev, "Mapping reserved region failed\n");
3520 }
3521 }
3522 rcu_read_unlock();
3523
3524 tmp = set_domain_for_dev(dev, domain);
3525 if (!tmp || domain != tmp) {
3526 domain_exit(domain);
3527 domain = tmp;
3528 }
3529
3530 out:
3531
3532 if (!domain)
3533 pr_err("Allocating domain for %s failed\n", dev_name(dev));
3534
3535
3536 return domain;
3537 }
3538
3539 static inline struct dmar_domain *get_valid_domain_for_dev(struct device *dev)
3540 {
3541 struct device_domain_info *info;
3542
3543 /* No lock here, assumes no domain exit in normal case */
3544 info = dev->archdata.iommu;
3545 if (likely(info))
3546 return info->domain;
3547
3548 return __get_valid_domain_for_dev(dev);
3549 }
3550
3551 /* Check if the dev needs to go through non-identity map and unmap process.*/
3552 static int iommu_no_mapping(struct device *dev)
3553 {
3554 int found;
3555
3556 if (iommu_dummy(dev))
3557 return 1;
3558
3559 if (!iommu_identity_mapping)
3560 return 0;
3561
3562 found = identity_mapping(dev);
3563 if (found) {
3564 if (iommu_should_identity_map(dev, 0))
3565 return 1;
3566 else {
3567 /*
3568 * 32 bit DMA is removed from si_domain and fall back
3569 * to non-identity mapping.
3570 */
3571 dmar_remove_one_dev_info(si_domain, dev);
3572 pr_info("32bit %s uses non-identity mapping\n",
3573 dev_name(dev));
3574 return 0;
3575 }
3576 } else {
3577 /*
3578 * In case of a detached 64 bit DMA device from vm, the device
3579 * is put into si_domain for identity mapping.
3580 */
3581 if (iommu_should_identity_map(dev, 0)) {
3582 int ret;
3583 ret = domain_add_dev_info(si_domain, dev);
3584 if (!ret) {
3585 pr_info("64bit %s uses identity mapping\n",
3586 dev_name(dev));
3587 return 1;
3588 }
3589 }
3590 }
3591
3592 return 0;
3593 }
3594
3595 static dma_addr_t __intel_map_single(struct device *dev, phys_addr_t paddr,
3596 size_t size, int dir, u64 dma_mask)
3597 {
3598 struct dmar_domain *domain;
3599 phys_addr_t start_paddr;
3600 unsigned long iova_pfn;
3601 int prot = 0;
3602 int ret;
3603 struct intel_iommu *iommu;
3604 unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
3605
3606 BUG_ON(dir == DMA_NONE);
3607
3608 if (iommu_no_mapping(dev))
3609 return paddr;
3610
3611 domain = get_valid_domain_for_dev(dev);
3612 if (!domain)
3613 return 0;
3614
3615 iommu = domain_get_iommu(domain);
3616 size = aligned_nrpages(paddr, size);
3617
3618 iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size), dma_mask);
3619 if (!iova_pfn)
3620 goto error;
3621
3622 /*
3623 * Check if DMAR supports zero-length reads on write only
3624 * mappings..
3625 */
3626 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3627 !cap_zlr(iommu->cap))
3628 prot |= DMA_PTE_READ;
3629 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3630 prot |= DMA_PTE_WRITE;
3631 /*
3632 * paddr - (paddr + size) might be partial page, we should map the whole
3633 * page. Note: if two part of one page are separately mapped, we
3634 * might have two guest_addr mapping to the same host paddr, but this
3635 * is not a big problem
3636 */
3637 ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova_pfn),
3638 mm_to_dma_pfn(paddr_pfn), size, prot);
3639 if (ret)
3640 goto error;
3641
3642 /* it's a non-present to present mapping. Only flush if caching mode */
3643 if (cap_caching_mode(iommu->cap))
3644 iommu_flush_iotlb_psi(iommu, domain,
3645 mm_to_dma_pfn(iova_pfn),
3646 size, 0, 1);
3647 else
3648 iommu_flush_write_buffer(iommu);
3649
3650 start_paddr = (phys_addr_t)iova_pfn << PAGE_SHIFT;
3651 start_paddr += paddr & ~PAGE_MASK;
3652 return start_paddr;
3653
3654 error:
3655 if (iova_pfn)
3656 free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
3657 pr_err("Device %s request: %zx@%llx dir %d --- failed\n",
3658 dev_name(dev), size, (unsigned long long)paddr, dir);
3659 return 0;
3660 }
3661
3662 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
3663 unsigned long offset, size_t size,
3664 enum dma_data_direction dir,
3665 unsigned long attrs)
3666 {
3667 return __intel_map_single(dev, page_to_phys(page) + offset, size,
3668 dir, *dev->dma_mask);
3669 }
3670
3671 static void flush_unmaps(struct deferred_flush_data *flush_data)
3672 {
3673 int i, j;
3674
3675 flush_data->timer_on = 0;
3676
3677 /* just flush them all */
3678 for (i = 0; i < g_num_of_iommus; i++) {
3679 struct intel_iommu *iommu = g_iommus[i];
3680 struct deferred_flush_table *flush_table =
3681 &flush_data->tables[i];
3682 if (!iommu)
3683 continue;
3684
3685 if (!flush_table->next)
3686 continue;
3687
3688 /* In caching mode, global flushes turn emulation expensive */
3689 if (!cap_caching_mode(iommu->cap))
3690 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3691 DMA_TLB_GLOBAL_FLUSH);
3692 for (j = 0; j < flush_table->next; j++) {
3693 unsigned long mask;
3694 struct deferred_flush_entry *entry =
3695 &flush_table->entries[j];
3696 unsigned long iova_pfn = entry->iova_pfn;
3697 unsigned long nrpages = entry->nrpages;
3698 struct dmar_domain *domain = entry->domain;
3699 struct page *freelist = entry->freelist;
3700
3701 /* On real hardware multiple invalidations are expensive */
3702 if (cap_caching_mode(iommu->cap))
3703 iommu_flush_iotlb_psi(iommu, domain,
3704 mm_to_dma_pfn(iova_pfn),
3705 nrpages, !freelist, 0);
3706 else {
3707 mask = ilog2(nrpages);
3708 iommu_flush_dev_iotlb(domain,
3709 (uint64_t)iova_pfn << PAGE_SHIFT, mask);
3710 }
3711 free_iova_fast(&domain->iovad, iova_pfn, nrpages);
3712 if (freelist)
3713 dma_free_pagelist(freelist);
3714 }
3715 flush_table->next = 0;
3716 }
3717
3718 flush_data->size = 0;
3719 }
3720
3721 static void flush_unmaps_timeout(unsigned long cpuid)
3722 {
3723 struct deferred_flush_data *flush_data = per_cpu_ptr(&deferred_flush, cpuid);
3724 unsigned long flags;
3725
3726 spin_lock_irqsave(&flush_data->lock, flags);
3727 flush_unmaps(flush_data);
3728 spin_unlock_irqrestore(&flush_data->lock, flags);
3729 }
3730
3731 static void add_unmap(struct dmar_domain *dom, unsigned long iova_pfn,
3732 unsigned long nrpages, struct page *freelist)
3733 {
3734 unsigned long flags;
3735 int entry_id, iommu_id;
3736 struct intel_iommu *iommu;
3737 struct deferred_flush_entry *entry;
3738 struct deferred_flush_data *flush_data;
3739 unsigned int cpuid;
3740
3741 cpuid = get_cpu();
3742 flush_data = per_cpu_ptr(&deferred_flush, cpuid);
3743
3744 /* Flush all CPUs' entries to avoid deferring too much. If
3745 * this becomes a bottleneck, can just flush us, and rely on
3746 * flush timer for the rest.
3747 */
3748 if (flush_data->size == HIGH_WATER_MARK) {
3749 int cpu;
3750
3751 for_each_online_cpu(cpu)
3752 flush_unmaps_timeout(cpu);
3753 }
3754
3755 spin_lock_irqsave(&flush_data->lock, flags);
3756
3757 iommu = domain_get_iommu(dom);
3758 iommu_id = iommu->seq_id;
3759
3760 entry_id = flush_data->tables[iommu_id].next;
3761 ++(flush_data->tables[iommu_id].next);
3762
3763 entry = &flush_data->tables[iommu_id].entries[entry_id];
3764 entry->domain = dom;
3765 entry->iova_pfn = iova_pfn;
3766 entry->nrpages = nrpages;
3767 entry->freelist = freelist;
3768
3769 if (!flush_data->timer_on) {
3770 mod_timer(&flush_data->timer, jiffies + msecs_to_jiffies(10));
3771 flush_data->timer_on = 1;
3772 }
3773 flush_data->size++;
3774 spin_unlock_irqrestore(&flush_data->lock, flags);
3775
3776 put_cpu();
3777 }
3778
3779 static void intel_unmap(struct device *dev, dma_addr_t dev_addr, size_t size)
3780 {
3781 struct dmar_domain *domain;
3782 unsigned long start_pfn, last_pfn;
3783 unsigned long nrpages;
3784 unsigned long iova_pfn;
3785 struct intel_iommu *iommu;
3786 struct page *freelist;
3787
3788 if (iommu_no_mapping(dev))
3789 return;
3790
3791 domain = find_domain(dev);
3792 BUG_ON(!domain);
3793
3794 iommu = domain_get_iommu(domain);
3795
3796 iova_pfn = IOVA_PFN(dev_addr);
3797
3798 nrpages = aligned_nrpages(dev_addr, size);
3799 start_pfn = mm_to_dma_pfn(iova_pfn);
3800 last_pfn = start_pfn + nrpages - 1;
3801
3802 pr_debug("Device %s unmapping: pfn %lx-%lx\n",
3803 dev_name(dev), start_pfn, last_pfn);
3804
3805 freelist = domain_unmap(domain, start_pfn, last_pfn);
3806
3807 if (intel_iommu_strict) {
3808 iommu_flush_iotlb_psi(iommu, domain, start_pfn,
3809 nrpages, !freelist, 0);
3810 /* free iova */
3811 free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(nrpages));
3812 dma_free_pagelist(freelist);
3813 } else {
3814 add_unmap(domain, iova_pfn, nrpages, freelist);
3815 /*
3816 * queue up the release of the unmap to save the 1/6th of the
3817 * cpu used up by the iotlb flush operation...
3818 */
3819 }
3820 }
3821
3822 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
3823 size_t size, enum dma_data_direction dir,
3824 unsigned long attrs)
3825 {
3826 intel_unmap(dev, dev_addr, size);
3827 }
3828
3829 static void *intel_alloc_coherent(struct device *dev, size_t size,
3830 dma_addr_t *dma_handle, gfp_t flags,
3831 unsigned long attrs)
3832 {
3833 struct page *page = NULL;
3834 int order;
3835
3836 size = PAGE_ALIGN(size);
3837 order = get_order(size);
3838
3839 if (!iommu_no_mapping(dev))
3840 flags &= ~(GFP_DMA | GFP_DMA32);
3841 else if (dev->coherent_dma_mask < dma_get_required_mask(dev)) {
3842 if (dev->coherent_dma_mask < DMA_BIT_MASK(32))
3843 flags |= GFP_DMA;
3844 else
3845 flags |= GFP_DMA32;
3846 }
3847
3848 if (gfpflags_allow_blocking(flags)) {
3849 unsigned int count = size >> PAGE_SHIFT;
3850
3851 page = dma_alloc_from_contiguous(dev, count, order);
3852 if (page && iommu_no_mapping(dev) &&
3853 page_to_phys(page) + size > dev->coherent_dma_mask) {
3854 dma_release_from_contiguous(dev, page, count);
3855 page = NULL;
3856 }
3857 }
3858
3859 if (!page)
3860 page = alloc_pages(flags, order);
3861 if (!page)
3862 return NULL;
3863 memset(page_address(page), 0, size);
3864
3865 *dma_handle = __intel_map_single(dev, page_to_phys(page), size,
3866 DMA_BIDIRECTIONAL,
3867 dev->coherent_dma_mask);
3868 if (*dma_handle)
3869 return page_address(page);
3870 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3871 __free_pages(page, order);
3872
3873 return NULL;
3874 }
3875
3876 static void intel_free_coherent(struct device *dev, size_t size, void *vaddr,
3877 dma_addr_t dma_handle, unsigned long attrs)
3878 {
3879 int order;
3880 struct page *page = virt_to_page(vaddr);
3881
3882 size = PAGE_ALIGN(size);
3883 order = get_order(size);
3884
3885 intel_unmap(dev, dma_handle, size);
3886 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3887 __free_pages(page, order);
3888 }
3889
3890 static void intel_unmap_sg(struct device *dev, struct scatterlist *sglist,
3891 int nelems, enum dma_data_direction dir,
3892 unsigned long attrs)
3893 {
3894 dma_addr_t startaddr = sg_dma_address(sglist) & PAGE_MASK;
3895 unsigned long nrpages = 0;
3896 struct scatterlist *sg;
3897 int i;
3898
3899 for_each_sg(sglist, sg, nelems, i) {
3900 nrpages += aligned_nrpages(sg_dma_address(sg), sg_dma_len(sg));
3901 }
3902
3903 intel_unmap(dev, startaddr, nrpages << VTD_PAGE_SHIFT);
3904 }
3905
3906 static int intel_nontranslate_map_sg(struct device *hddev,
3907 struct scatterlist *sglist, int nelems, int dir)
3908 {
3909 int i;
3910 struct scatterlist *sg;
3911
3912 for_each_sg(sglist, sg, nelems, i) {
3913 BUG_ON(!sg_page(sg));
3914 sg->dma_address = sg_phys(sg);
3915 sg->dma_length = sg->length;
3916 }
3917 return nelems;
3918 }
3919
3920 static int intel_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
3921 enum dma_data_direction dir, unsigned long attrs)
3922 {
3923 int i;
3924 struct dmar_domain *domain;
3925 size_t size = 0;
3926 int prot = 0;
3927 unsigned long iova_pfn;
3928 int ret;
3929 struct scatterlist *sg;
3930 unsigned long start_vpfn;
3931 struct intel_iommu *iommu;
3932
3933 BUG_ON(dir == DMA_NONE);
3934 if (iommu_no_mapping(dev))
3935 return intel_nontranslate_map_sg(dev, sglist, nelems, dir);
3936
3937 domain = get_valid_domain_for_dev(dev);
3938 if (!domain)
3939 return 0;
3940
3941 iommu = domain_get_iommu(domain);
3942
3943 for_each_sg(sglist, sg, nelems, i)
3944 size += aligned_nrpages(sg->offset, sg->length);
3945
3946 iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size),
3947 *dev->dma_mask);
3948 if (!iova_pfn) {
3949 sglist->dma_length = 0;
3950 return 0;
3951 }
3952
3953 /*
3954 * Check if DMAR supports zero-length reads on write only
3955 * mappings..
3956 */
3957 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3958 !cap_zlr(iommu->cap))
3959 prot |= DMA_PTE_READ;
3960 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3961 prot |= DMA_PTE_WRITE;
3962
3963 start_vpfn = mm_to_dma_pfn(iova_pfn);
3964
3965 ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3966 if (unlikely(ret)) {
3967 dma_pte_free_pagetable(domain, start_vpfn,
3968 start_vpfn + size - 1);
3969 free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
3970 return 0;
3971 }
3972
3973 /* it's a non-present to present mapping. Only flush if caching mode */
3974 if (cap_caching_mode(iommu->cap))
3975 iommu_flush_iotlb_psi(iommu, domain, start_vpfn, size, 0, 1);
3976 else
3977 iommu_flush_write_buffer(iommu);
3978
3979 return nelems;
3980 }
3981
3982 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
3983 {
3984 return !dma_addr;
3985 }
3986
3987 struct dma_map_ops intel_dma_ops = {
3988 .alloc = intel_alloc_coherent,
3989 .free = intel_free_coherent,
3990 .map_sg = intel_map_sg,
3991 .unmap_sg = intel_unmap_sg,
3992 .map_page = intel_map_page,
3993 .unmap_page = intel_unmap_page,
3994 .mapping_error = intel_mapping_error,
3995 };
3996
3997 static inline int iommu_domain_cache_init(void)
3998 {
3999 int ret = 0;
4000
4001 iommu_domain_cache = kmem_cache_create("iommu_domain",
4002 sizeof(struct dmar_domain),
4003 0,
4004 SLAB_HWCACHE_ALIGN,
4005
4006 NULL);
4007 if (!iommu_domain_cache) {
4008 pr_err("Couldn't create iommu_domain cache\n");
4009 ret = -ENOMEM;
4010 }
4011
4012 return ret;
4013 }
4014
4015 static inline int iommu_devinfo_cache_init(void)
4016 {
4017 int ret = 0;
4018
4019 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
4020 sizeof(struct device_domain_info),
4021 0,
4022 SLAB_HWCACHE_ALIGN,
4023 NULL);
4024 if (!iommu_devinfo_cache) {
4025 pr_err("Couldn't create devinfo cache\n");
4026 ret = -ENOMEM;
4027 }
4028
4029 return ret;
4030 }
4031
4032 static int __init iommu_init_mempool(void)
4033 {
4034 int ret;
4035 ret = iova_cache_get();
4036 if (ret)
4037 return ret;
4038
4039 ret = iommu_domain_cache_init();
4040 if (ret)
4041 goto domain_error;
4042
4043 ret = iommu_devinfo_cache_init();
4044 if (!ret)
4045 return ret;
4046
4047 kmem_cache_destroy(iommu_domain_cache);
4048 domain_error:
4049 iova_cache_put();
4050
4051 return -ENOMEM;
4052 }
4053
4054 static void __init iommu_exit_mempool(void)
4055 {
4056 kmem_cache_destroy(iommu_devinfo_cache);
4057 kmem_cache_destroy(iommu_domain_cache);
4058 iova_cache_put();
4059 }
4060
4061 static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
4062 {
4063 struct dmar_drhd_unit *drhd;
4064 u32 vtbar;
4065 int rc;
4066
4067 /* We know that this device on this chipset has its own IOMMU.
4068 * If we find it under a different IOMMU, then the BIOS is lying
4069 * to us. Hope that the IOMMU for this device is actually
4070 * disabled, and it needs no translation...
4071 */
4072 rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
4073 if (rc) {
4074 /* "can't" happen */
4075 dev_info(&pdev->dev, "failed to run vt-d quirk\n");
4076 return;
4077 }
4078 vtbar &= 0xffff0000;
4079
4080 /* we know that the this iommu should be at offset 0xa000 from vtbar */
4081 drhd = dmar_find_matched_drhd_unit(pdev);
4082 if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
4083 TAINT_FIRMWARE_WORKAROUND,
4084 "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
4085 pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
4086 }
4087 DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);
4088
4089 static void __init init_no_remapping_devices(void)
4090 {
4091 struct dmar_drhd_unit *drhd;
4092 struct device *dev;
4093 int i;
4094
4095 for_each_drhd_unit(drhd) {
4096 if (!drhd->include_all) {
4097 for_each_active_dev_scope(drhd->devices,
4098 drhd->devices_cnt, i, dev)
4099 break;
4100 /* ignore DMAR unit if no devices exist */
4101 if (i == drhd->devices_cnt)
4102 drhd->ignored = 1;
4103 }
4104 }
4105
4106 for_each_active_drhd_unit(drhd) {
4107 if (drhd->include_all)
4108 continue;
4109
4110 for_each_active_dev_scope(drhd->devices,
4111 drhd->devices_cnt, i, dev)
4112 if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev)))
4113 break;
4114 if (i < drhd->devices_cnt)
4115 continue;
4116
4117 /* This IOMMU has *only* gfx devices. Either bypass it or
4118 set the gfx_mapped flag, as appropriate */
4119 if (dmar_map_gfx) {
4120 intel_iommu_gfx_mapped = 1;
4121 } else {
4122 drhd->ignored = 1;
4123 for_each_active_dev_scope(drhd->devices,
4124 drhd->devices_cnt, i, dev)
4125 dev->archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
4126 }
4127 }
4128 }
4129
4130 #ifdef CONFIG_SUSPEND
4131 static int init_iommu_hw(void)
4132 {
4133 struct dmar_drhd_unit *drhd;
4134 struct intel_iommu *iommu = NULL;
4135
4136 for_each_active_iommu(iommu, drhd)
4137 if (iommu->qi)
4138 dmar_reenable_qi(iommu);
4139
4140 for_each_iommu(iommu, drhd) {
4141 if (drhd->ignored) {
4142 /*
4143 * we always have to disable PMRs or DMA may fail on
4144 * this device
4145 */
4146 if (force_on)
4147 iommu_disable_protect_mem_regions(iommu);
4148 continue;
4149 }
4150
4151 iommu_flush_write_buffer(iommu);
4152
4153 iommu_set_root_entry(iommu);
4154
4155 iommu->flush.flush_context(iommu, 0, 0, 0,
4156 DMA_CCMD_GLOBAL_INVL);
4157 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
4158 iommu_enable_translation(iommu);
4159 iommu_disable_protect_mem_regions(iommu);
4160 }
4161
4162 return 0;
4163 }
4164
4165 static void iommu_flush_all(void)
4166 {
4167 struct dmar_drhd_unit *drhd;
4168 struct intel_iommu *iommu;
4169
4170 for_each_active_iommu(iommu, drhd) {
4171 iommu->flush.flush_context(iommu, 0, 0, 0,
4172 DMA_CCMD_GLOBAL_INVL);
4173 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
4174 DMA_TLB_GLOBAL_FLUSH);
4175 }
4176 }
4177
4178 static int iommu_suspend(void)
4179 {
4180 struct dmar_drhd_unit *drhd;
4181 struct intel_iommu *iommu = NULL;
4182 unsigned long flag;
4183
4184 for_each_active_iommu(iommu, drhd) {
4185 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
4186 GFP_ATOMIC);
4187 if (!iommu->iommu_state)
4188 goto nomem;
4189 }
4190
4191 iommu_flush_all();
4192
4193 for_each_active_iommu(iommu, drhd) {
4194 iommu_disable_translation(iommu);
4195
4196 raw_spin_lock_irqsave(&iommu->register_lock, flag);
4197
4198 iommu->iommu_state[SR_DMAR_FECTL_REG] =
4199 readl(iommu->reg + DMAR_FECTL_REG);
4200 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
4201 readl(iommu->reg + DMAR_FEDATA_REG);
4202 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
4203 readl(iommu->reg + DMAR_FEADDR_REG);
4204 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
4205 readl(iommu->reg + DMAR_FEUADDR_REG);
4206
4207 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
4208 }
4209 return 0;
4210
4211 nomem:
4212 for_each_active_iommu(iommu, drhd)
4213 kfree(iommu->iommu_state);
4214
4215 return -ENOMEM;
4216 }
4217
4218 static void iommu_resume(void)
4219 {
4220 struct dmar_drhd_unit *drhd;
4221 struct intel_iommu *iommu = NULL;
4222 unsigned long flag;
4223
4224 if (init_iommu_hw()) {
4225 if (force_on)
4226 panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
4227 else
4228 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
4229 return;
4230 }
4231
4232 for_each_active_iommu(iommu, drhd) {
4233
4234 raw_spin_lock_irqsave(&iommu->register_lock, flag);
4235
4236 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
4237 iommu->reg + DMAR_FECTL_REG);
4238 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
4239 iommu->reg + DMAR_FEDATA_REG);
4240 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
4241 iommu->reg + DMAR_FEADDR_REG);
4242 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
4243 iommu->reg + DMAR_FEUADDR_REG);
4244
4245 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
4246 }
4247
4248 for_each_active_iommu(iommu, drhd)
4249 kfree(iommu->iommu_state);
4250 }
4251
4252 static struct syscore_ops iommu_syscore_ops = {
4253 .resume = iommu_resume,
4254 .suspend = iommu_suspend,
4255 };
4256
4257 static void __init init_iommu_pm_ops(void)
4258 {
4259 register_syscore_ops(&iommu_syscore_ops);
4260 }
4261
4262 #else
4263 static inline void init_iommu_pm_ops(void) {}
4264 #endif /* CONFIG_PM */
4265
4266
4267 int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg)
4268 {
4269 struct acpi_dmar_reserved_memory *rmrr;
4270 struct dmar_rmrr_unit *rmrru;
4271
4272 rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
4273 if (!rmrru)
4274 return -ENOMEM;
4275
4276 rmrru->hdr = header;
4277 rmrr = (struct acpi_dmar_reserved_memory *)header;
4278 rmrru->base_address = rmrr->base_address;
4279 rmrru->end_address = rmrr->end_address;
4280 rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1),
4281 ((void *)rmrr) + rmrr->header.length,
4282 &rmrru->devices_cnt);
4283 if (rmrru->devices_cnt && rmrru->devices == NULL) {
4284 kfree(rmrru);
4285 return -ENOMEM;
4286 }
4287
4288 list_add(&rmrru->list, &dmar_rmrr_units);
4289
4290 return 0;
4291 }
4292
4293 static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr)
4294 {
4295 struct dmar_atsr_unit *atsru;
4296 struct acpi_dmar_atsr *tmp;
4297
4298 list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
4299 tmp = (struct acpi_dmar_atsr *)atsru->hdr;
4300 if (atsr->segment != tmp->segment)
4301 continue;
4302 if (atsr->header.length != tmp->header.length)
4303 continue;
4304 if (memcmp(atsr, tmp, atsr->header.length) == 0)
4305 return atsru;
4306 }
4307
4308 return NULL;
4309 }
4310
4311 int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4312 {
4313 struct acpi_dmar_atsr *atsr;
4314 struct dmar_atsr_unit *atsru;
4315
4316 if (system_state != SYSTEM_BOOTING && !intel_iommu_enabled)
4317 return 0;
4318
4319 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4320 atsru = dmar_find_atsr(atsr);
4321 if (atsru)
4322 return 0;
4323
4324 atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL);
4325 if (!atsru)
4326 return -ENOMEM;
4327
4328 /*
4329 * If memory is allocated from slab by ACPI _DSM method, we need to
4330 * copy the memory content because the memory buffer will be freed
4331 * on return.
4332 */
4333 atsru->hdr = (void *)(atsru + 1);
4334 memcpy(atsru->hdr, hdr, hdr->length);
4335 atsru->include_all = atsr->flags & 0x1;
4336 if (!atsru->include_all) {
4337 atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1),
4338 (void *)atsr + atsr->header.length,
4339 &atsru->devices_cnt);
4340 if (atsru->devices_cnt && atsru->devices == NULL) {
4341 kfree(atsru);
4342 return -ENOMEM;
4343 }
4344 }
4345
4346 list_add_rcu(&atsru->list, &dmar_atsr_units);
4347
4348 return 0;
4349 }
4350
4351 static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru)
4352 {
4353 dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt);
4354 kfree(atsru);
4355 }
4356
4357 int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4358 {
4359 struct acpi_dmar_atsr *atsr;
4360 struct dmar_atsr_unit *atsru;
4361
4362 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4363 atsru = dmar_find_atsr(atsr);
4364 if (atsru) {
4365 list_del_rcu(&atsru->list);
4366 synchronize_rcu();
4367 intel_iommu_free_atsr(atsru);
4368 }
4369
4370 return 0;
4371 }
4372
4373 int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4374 {
4375 int i;
4376 struct device *dev;
4377 struct acpi_dmar_atsr *atsr;
4378 struct dmar_atsr_unit *atsru;
4379
4380 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4381 atsru = dmar_find_atsr(atsr);
4382 if (!atsru)
4383 return 0;
4384
4385 if (!atsru->include_all && atsru->devices && atsru->devices_cnt) {
4386 for_each_active_dev_scope(atsru->devices, atsru->devices_cnt,
4387 i, dev)
4388 return -EBUSY;
4389 }
4390
4391 return 0;
4392 }
4393
4394 static int intel_iommu_add(struct dmar_drhd_unit *dmaru)
4395 {
4396 int sp, ret = 0;
4397 struct intel_iommu *iommu = dmaru->iommu;
4398
4399 if (g_iommus[iommu->seq_id])
4400 return 0;
4401
4402 if (hw_pass_through && !ecap_pass_through(iommu->ecap)) {
4403 pr_warn("%s: Doesn't support hardware pass through.\n",
4404 iommu->name);
4405 return -ENXIO;
4406 }
4407 if (!ecap_sc_support(iommu->ecap) &&
4408 domain_update_iommu_snooping(iommu)) {
4409 pr_warn("%s: Doesn't support snooping.\n",
4410 iommu->name);
4411 return -ENXIO;
4412 }
4413 sp = domain_update_iommu_superpage(iommu) - 1;
4414 if (sp >= 0 && !(cap_super_page_val(iommu->cap) & (1 << sp))) {
4415 pr_warn("%s: Doesn't support large page.\n",
4416 iommu->name);
4417 return -ENXIO;
4418 }
4419
4420 /*
4421 * Disable translation if already enabled prior to OS handover.
4422 */
4423 if (iommu->gcmd & DMA_GCMD_TE)
4424 iommu_disable_translation(iommu);
4425
4426 g_iommus[iommu->seq_id] = iommu;
4427 ret = iommu_init_domains(iommu);
4428 if (ret == 0)
4429 ret = iommu_alloc_root_entry(iommu);
4430 if (ret)
4431 goto out;
4432
4433 #ifdef CONFIG_INTEL_IOMMU_SVM
4434 if (pasid_enabled(iommu))
4435 intel_svm_alloc_pasid_tables(iommu);
4436 #endif
4437
4438 if (dmaru->ignored) {
4439 /*
4440 * we always have to disable PMRs or DMA may fail on this device
4441 */
4442 if (force_on)
4443 iommu_disable_protect_mem_regions(iommu);
4444 return 0;
4445 }
4446
4447 intel_iommu_init_qi(iommu);
4448 iommu_flush_write_buffer(iommu);
4449
4450 #ifdef CONFIG_INTEL_IOMMU_SVM
4451 if (pasid_enabled(iommu) && ecap_prs(iommu->ecap)) {
4452 ret = intel_svm_enable_prq(iommu);
4453 if (ret)
4454 goto disable_iommu;
4455 }
4456 #endif
4457 ret = dmar_set_interrupt(iommu);
4458 if (ret)
4459 goto disable_iommu;
4460
4461 iommu_set_root_entry(iommu);
4462 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
4463 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
4464 iommu_enable_translation(iommu);
4465
4466 iommu_disable_protect_mem_regions(iommu);
4467 return 0;
4468
4469 disable_iommu:
4470 disable_dmar_iommu(iommu);
4471 out:
4472 free_dmar_iommu(iommu);
4473 return ret;
4474 }
4475
4476 int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
4477 {
4478 int ret = 0;
4479 struct intel_iommu *iommu = dmaru->iommu;
4480
4481 if (!intel_iommu_enabled)
4482 return 0;
4483 if (iommu == NULL)
4484 return -EINVAL;
4485
4486 if (insert) {
4487 ret = intel_iommu_add(dmaru);
4488 } else {
4489 disable_dmar_iommu(iommu);
4490 free_dmar_iommu(iommu);
4491 }
4492
4493 return ret;
4494 }
4495
4496 static void intel_iommu_free_dmars(void)
4497 {
4498 struct dmar_rmrr_unit *rmrru, *rmrr_n;
4499 struct dmar_atsr_unit *atsru, *atsr_n;
4500
4501 list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) {
4502 list_del(&rmrru->list);
4503 dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt);
4504 kfree(rmrru);
4505 }
4506
4507 list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) {
4508 list_del(&atsru->list);
4509 intel_iommu_free_atsr(atsru);
4510 }
4511 }
4512
4513 int dmar_find_matched_atsr_unit(struct pci_dev *dev)
4514 {
4515 int i, ret = 1;
4516 struct pci_bus *bus;
4517 struct pci_dev *bridge = NULL;
4518 struct device *tmp;
4519 struct acpi_dmar_atsr *atsr;
4520 struct dmar_atsr_unit *atsru;
4521
4522 dev = pci_physfn(dev);
4523 for (bus = dev->bus; bus; bus = bus->parent) {
4524 bridge = bus->self;
4525 /* If it's an integrated device, allow ATS */
4526 if (!bridge)
4527 return 1;
4528 /* Connected via non-PCIe: no ATS */
4529 if (!pci_is_pcie(bridge) ||
4530 pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
4531 return 0;
4532 /* If we found the root port, look it up in the ATSR */
4533 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT)
4534 break;
4535 }
4536
4537 rcu_read_lock();
4538 list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
4539 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
4540 if (atsr->segment != pci_domain_nr(dev->bus))
4541 continue;
4542
4543 for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp)
4544 if (tmp == &bridge->dev)
4545 goto out;
4546
4547 if (atsru->include_all)
4548 goto out;
4549 }
4550 ret = 0;
4551 out:
4552 rcu_read_unlock();
4553
4554 return ret;
4555 }
4556
4557 int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info)
4558 {
4559 int ret = 0;
4560 struct dmar_rmrr_unit *rmrru;
4561 struct dmar_atsr_unit *atsru;
4562 struct acpi_dmar_atsr *atsr;
4563 struct acpi_dmar_reserved_memory *rmrr;
4564
4565 if (!intel_iommu_enabled && system_state != SYSTEM_BOOTING)
4566 return 0;
4567
4568 list_for_each_entry(rmrru, &dmar_rmrr_units, list) {
4569 rmrr = container_of(rmrru->hdr,
4570 struct acpi_dmar_reserved_memory, header);
4571 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
4572 ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1),
4573 ((void *)rmrr) + rmrr->header.length,
4574 rmrr->segment, rmrru->devices,
4575 rmrru->devices_cnt);
4576 if(ret < 0)
4577 return ret;
4578 } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
4579 dmar_remove_dev_scope(info, rmrr->segment,
4580 rmrru->devices, rmrru->devices_cnt);
4581 }
4582 }
4583
4584 list_for_each_entry(atsru, &dmar_atsr_units, list) {
4585 if (atsru->include_all)
4586 continue;
4587
4588 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
4589 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
4590 ret = dmar_insert_dev_scope(info, (void *)(atsr + 1),
4591 (void *)atsr + atsr->header.length,
4592 atsr->segment, atsru->devices,
4593 atsru->devices_cnt);
4594 if (ret > 0)
4595 break;
4596 else if(ret < 0)
4597 return ret;
4598 } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
4599 if (dmar_remove_dev_scope(info, atsr->segment,
4600 atsru->devices, atsru->devices_cnt))
4601 break;
4602 }
4603 }
4604
4605 return 0;
4606 }
4607
4608 /*
4609 * Here we only respond to action of unbound device from driver.
4610 *
4611 * Added device is not attached to its DMAR domain here yet. That will happen
4612 * when mapping the device to iova.
4613 */
4614 static int device_notifier(struct notifier_block *nb,
4615 unsigned long action, void *data)
4616 {
4617 struct device *dev = data;
4618 struct dmar_domain *domain;
4619
4620 if (iommu_dummy(dev))
4621 return 0;
4622
4623 if (action != BUS_NOTIFY_REMOVED_DEVICE)
4624 return 0;
4625
4626 domain = find_domain(dev);
4627 if (!domain)
4628 return 0;
4629
4630 dmar_remove_one_dev_info(domain, dev);
4631 if (!domain_type_is_vm_or_si(domain) && list_empty(&domain->devices))
4632 domain_exit(domain);
4633
4634 return 0;
4635 }
4636
4637 static struct notifier_block device_nb = {
4638 .notifier_call = device_notifier,
4639 };
4640
4641 static int intel_iommu_memory_notifier(struct notifier_block *nb,
4642 unsigned long val, void *v)
4643 {
4644 struct memory_notify *mhp = v;
4645 unsigned long long start, end;
4646 unsigned long start_vpfn, last_vpfn;
4647
4648 switch (val) {
4649 case MEM_GOING_ONLINE:
4650 start = mhp->start_pfn << PAGE_SHIFT;
4651 end = ((mhp->start_pfn + mhp->nr_pages) << PAGE_SHIFT) - 1;
4652 if (iommu_domain_identity_map(si_domain, start, end)) {
4653 pr_warn("Failed to build identity map for [%llx-%llx]\n",
4654 start, end);
4655 return NOTIFY_BAD;
4656 }
4657 break;
4658
4659 case MEM_OFFLINE:
4660 case MEM_CANCEL_ONLINE:
4661 start_vpfn = mm_to_dma_pfn(mhp->start_pfn);
4662 last_vpfn = mm_to_dma_pfn(mhp->start_pfn + mhp->nr_pages - 1);
4663 while (start_vpfn <= last_vpfn) {
4664 struct iova *iova;
4665 struct dmar_drhd_unit *drhd;
4666 struct intel_iommu *iommu;
4667 struct page *freelist;
4668
4669 iova = find_iova(&si_domain->iovad, start_vpfn);
4670 if (iova == NULL) {
4671 pr_debug("Failed get IOVA for PFN %lx\n",
4672 start_vpfn);
4673 break;
4674 }
4675
4676 iova = split_and_remove_iova(&si_domain->iovad, iova,
4677 start_vpfn, last_vpfn);
4678 if (iova == NULL) {
4679 pr_warn("Failed to split IOVA PFN [%lx-%lx]\n",
4680 start_vpfn, last_vpfn);
4681 return NOTIFY_BAD;
4682 }
4683
4684 freelist = domain_unmap(si_domain, iova->pfn_lo,
4685 iova->pfn_hi);
4686
4687 rcu_read_lock();
4688 for_each_active_iommu(iommu, drhd)
4689 iommu_flush_iotlb_psi(iommu, si_domain,
4690 iova->pfn_lo, iova_size(iova),
4691 !freelist, 0);
4692 rcu_read_unlock();
4693 dma_free_pagelist(freelist);
4694
4695 start_vpfn = iova->pfn_hi + 1;
4696 free_iova_mem(iova);
4697 }
4698 break;
4699 }
4700
4701 return NOTIFY_OK;
4702 }
4703
4704 static struct notifier_block intel_iommu_memory_nb = {
4705 .notifier_call = intel_iommu_memory_notifier,
4706 .priority = 0
4707 };
4708
4709 static void free_all_cpu_cached_iovas(unsigned int cpu)
4710 {
4711 int i;
4712
4713 for (i = 0; i < g_num_of_iommus; i++) {
4714 struct intel_iommu *iommu = g_iommus[i];
4715 struct dmar_domain *domain;
4716 int did;
4717
4718 if (!iommu)
4719 continue;
4720
4721 for (did = 0; did < cap_ndoms(iommu->cap); did++) {
4722 domain = get_iommu_domain(iommu, (u16)did);
4723
4724 if (!domain)
4725 continue;
4726 free_cpu_cached_iovas(cpu, &domain->iovad);
4727 }
4728 }
4729 }
4730
4731 static int intel_iommu_cpu_notifier(struct notifier_block *nfb,
4732 unsigned long action, void *v)
4733 {
4734 unsigned int cpu = (unsigned long)v;
4735
4736 switch (action) {
4737 case CPU_DEAD:
4738 case CPU_DEAD_FROZEN:
4739 free_all_cpu_cached_iovas(cpu);
4740 flush_unmaps_timeout(cpu);
4741 break;
4742 }
4743 return NOTIFY_OK;
4744 }
4745
4746 static struct notifier_block intel_iommu_cpu_nb = {
4747 .notifier_call = intel_iommu_cpu_notifier,
4748 };
4749
4750 static ssize_t intel_iommu_show_version(struct device *dev,
4751 struct device_attribute *attr,
4752 char *buf)
4753 {
4754 struct intel_iommu *iommu = dev_get_drvdata(dev);
4755 u32 ver = readl(iommu->reg + DMAR_VER_REG);
4756 return sprintf(buf, "%d:%d\n",
4757 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver));
4758 }
4759 static DEVICE_ATTR(version, S_IRUGO, intel_iommu_show_version, NULL);
4760
4761 static ssize_t intel_iommu_show_address(struct device *dev,
4762 struct device_attribute *attr,
4763 char *buf)
4764 {
4765 struct intel_iommu *iommu = dev_get_drvdata(dev);
4766 return sprintf(buf, "%llx\n", iommu->reg_phys);
4767 }
4768 static DEVICE_ATTR(address, S_IRUGO, intel_iommu_show_address, NULL);
4769
4770 static ssize_t intel_iommu_show_cap(struct device *dev,
4771 struct device_attribute *attr,
4772 char *buf)
4773 {
4774 struct intel_iommu *iommu = dev_get_drvdata(dev);
4775 return sprintf(buf, "%llx\n", iommu->cap);
4776 }
4777 static DEVICE_ATTR(cap, S_IRUGO, intel_iommu_show_cap, NULL);
4778
4779 static ssize_t intel_iommu_show_ecap(struct device *dev,
4780 struct device_attribute *attr,
4781 char *buf)
4782 {
4783 struct intel_iommu *iommu = dev_get_drvdata(dev);
4784 return sprintf(buf, "%llx\n", iommu->ecap);
4785 }
4786 static DEVICE_ATTR(ecap, S_IRUGO, intel_iommu_show_ecap, NULL);
4787
4788 static ssize_t intel_iommu_show_ndoms(struct device *dev,
4789 struct device_attribute *attr,
4790 char *buf)
4791 {
4792 struct intel_iommu *iommu = dev_get_drvdata(dev);
4793 return sprintf(buf, "%ld\n", cap_ndoms(iommu->cap));
4794 }
4795 static DEVICE_ATTR(domains_supported, S_IRUGO, intel_iommu_show_ndoms, NULL);
4796
4797 static ssize_t intel_iommu_show_ndoms_used(struct device *dev,
4798 struct device_attribute *attr,
4799 char *buf)
4800 {
4801 struct intel_iommu *iommu = dev_get_drvdata(dev);
4802 return sprintf(buf, "%d\n", bitmap_weight(iommu->domain_ids,
4803 cap_ndoms(iommu->cap)));
4804 }
4805 static DEVICE_ATTR(domains_used, S_IRUGO, intel_iommu_show_ndoms_used, NULL);
4806
4807 static struct attribute *intel_iommu_attrs[] = {
4808 &dev_attr_version.attr,
4809 &dev_attr_address.attr,
4810 &dev_attr_cap.attr,
4811 &dev_attr_ecap.attr,
4812 &dev_attr_domains_supported.attr,
4813 &dev_attr_domains_used.attr,
4814 NULL,
4815 };
4816
4817 static struct attribute_group intel_iommu_group = {
4818 .name = "intel-iommu",
4819 .attrs = intel_iommu_attrs,
4820 };
4821
4822 const struct attribute_group *intel_iommu_groups[] = {
4823 &intel_iommu_group,
4824 NULL,
4825 };
4826
4827 int __init intel_iommu_init(void)
4828 {
4829 int ret = -ENODEV;
4830 struct dmar_drhd_unit *drhd;
4831 struct intel_iommu *iommu;
4832
4833 /* VT-d is required for a TXT/tboot launch, so enforce that */
4834 force_on = tboot_force_iommu();
4835
4836 if (iommu_init_mempool()) {
4837 if (force_on)
4838 panic("tboot: Failed to initialize iommu memory\n");
4839 return -ENOMEM;
4840 }
4841
4842 down_write(&dmar_global_lock);
4843 if (dmar_table_init()) {
4844 if (force_on)
4845 panic("tboot: Failed to initialize DMAR table\n");
4846 goto out_free_dmar;
4847 }
4848
4849 if (dmar_dev_scope_init() < 0) {
4850 if (force_on)
4851 panic("tboot: Failed to initialize DMAR device scope\n");
4852 goto out_free_dmar;
4853 }
4854
4855 if (no_iommu || dmar_disabled)
4856 goto out_free_dmar;
4857
4858 if (list_empty(&dmar_rmrr_units))
4859 pr_info("No RMRR found\n");
4860
4861 if (list_empty(&dmar_atsr_units))
4862 pr_info("No ATSR found\n");
4863
4864 if (dmar_init_reserved_ranges()) {
4865 if (force_on)
4866 panic("tboot: Failed to reserve iommu ranges\n");
4867 goto out_free_reserved_range;
4868 }
4869
4870 init_no_remapping_devices();
4871
4872 ret = init_dmars();
4873 if (ret) {
4874 if (force_on)
4875 panic("tboot: Failed to initialize DMARs\n");
4876 pr_err("Initialization failed\n");
4877 goto out_free_reserved_range;
4878 }
4879 up_write(&dmar_global_lock);
4880 pr_info("Intel(R) Virtualization Technology for Directed I/O\n");
4881
4882 #ifdef CONFIG_SWIOTLB
4883 swiotlb = 0;
4884 #endif
4885 dma_ops = &intel_dma_ops;
4886
4887 init_iommu_pm_ops();
4888
4889 for_each_active_iommu(iommu, drhd)
4890 iommu->iommu_dev = iommu_device_create(NULL, iommu,
4891 intel_iommu_groups,
4892 "%s", iommu->name);
4893
4894 bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
4895 bus_register_notifier(&pci_bus_type, &device_nb);
4896 if (si_domain && !hw_pass_through)
4897 register_memory_notifier(&intel_iommu_memory_nb);
4898 register_hotcpu_notifier(&intel_iommu_cpu_nb);
4899
4900 intel_iommu_enabled = 1;
4901
4902 return 0;
4903
4904 out_free_reserved_range:
4905 put_iova_domain(&reserved_iova_list);
4906 out_free_dmar:
4907 intel_iommu_free_dmars();
4908 up_write(&dmar_global_lock);
4909 iommu_exit_mempool();
4910 return ret;
4911 }
4912
4913 static int domain_context_clear_one_cb(struct pci_dev *pdev, u16 alias, void *opaque)
4914 {
4915 struct intel_iommu *iommu = opaque;
4916
4917 domain_context_clear_one(iommu, PCI_BUS_NUM(alias), alias & 0xff);
4918 return 0;
4919 }
4920
4921 /*
4922 * NB - intel-iommu lacks any sort of reference counting for the users of
4923 * dependent devices. If multiple endpoints have intersecting dependent
4924 * devices, unbinding the driver from any one of them will possibly leave
4925 * the others unable to operate.
4926 */
4927 static void domain_context_clear(struct intel_iommu *iommu, struct device *dev)
4928 {
4929 if (!iommu || !dev || !dev_is_pci(dev))
4930 return;
4931
4932 pci_for_each_dma_alias(to_pci_dev(dev), &domain_context_clear_one_cb, iommu);
4933 }
4934
4935 static void __dmar_remove_one_dev_info(struct device_domain_info *info)
4936 {
4937 struct intel_iommu *iommu;
4938 unsigned long flags;
4939
4940 assert_spin_locked(&device_domain_lock);
4941
4942 if (WARN_ON(!info))
4943 return;
4944
4945 iommu = info->iommu;
4946
4947 if (info->dev) {
4948 iommu_disable_dev_iotlb(info);
4949 domain_context_clear(iommu, info->dev);
4950 }
4951
4952 unlink_domain_info(info);
4953
4954 spin_lock_irqsave(&iommu->lock, flags);
4955 domain_detach_iommu(info->domain, iommu);
4956 spin_unlock_irqrestore(&iommu->lock, flags);
4957
4958 free_devinfo_mem(info);
4959 }
4960
4961 static void dmar_remove_one_dev_info(struct dmar_domain *domain,
4962 struct device *dev)
4963 {
4964 struct device_domain_info *info;
4965 unsigned long flags;
4966
4967 spin_lock_irqsave(&device_domain_lock, flags);
4968 info = dev->archdata.iommu;
4969 __dmar_remove_one_dev_info(info);
4970 spin_unlock_irqrestore(&device_domain_lock, flags);
4971 }
4972
4973 static int md_domain_init(struct dmar_domain *domain, int guest_width)
4974 {
4975 int adjust_width;
4976
4977 init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN,
4978 DMA_32BIT_PFN);
4979 domain_reserve_special_ranges(domain);
4980
4981 /* calculate AGAW */
4982 domain->gaw = guest_width;
4983 adjust_width = guestwidth_to_adjustwidth(guest_width);
4984 domain->agaw = width_to_agaw(adjust_width);
4985
4986 domain->iommu_coherency = 0;
4987 domain->iommu_snooping = 0;
4988 domain->iommu_superpage = 0;
4989 domain->max_addr = 0;
4990
4991 /* always allocate the top pgd */
4992 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
4993 if (!domain->pgd)
4994 return -ENOMEM;
4995 domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
4996 return 0;
4997 }
4998
4999 static struct iommu_domain *intel_iommu_domain_alloc(unsigned type)
5000 {
5001 struct dmar_domain *dmar_domain;
5002 struct iommu_domain *domain;
5003
5004 if (type != IOMMU_DOMAIN_UNMANAGED)
5005 return NULL;
5006
5007 dmar_domain = alloc_domain(DOMAIN_FLAG_VIRTUAL_MACHINE);
5008 if (!dmar_domain) {
5009 pr_err("Can't allocate dmar_domain\n");
5010 return NULL;
5011 }
5012 if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
5013 pr_err("Domain initialization failed\n");
5014 domain_exit(dmar_domain);
5015 return NULL;
5016 }
5017 domain_update_iommu_cap(dmar_domain);
5018
5019 domain = &dmar_domain->domain;
5020 domain->geometry.aperture_start = 0;
5021 domain->geometry.aperture_end = __DOMAIN_MAX_ADDR(dmar_domain->gaw);
5022 domain->geometry.force_aperture = true;
5023
5024 return domain;
5025 }
5026
5027 static void intel_iommu_domain_free(struct iommu_domain *domain)
5028 {
5029 domain_exit(to_dmar_domain(domain));
5030 }
5031
5032 static int intel_iommu_attach_device(struct iommu_domain *domain,
5033 struct device *dev)
5034 {
5035 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5036 struct intel_iommu *iommu;
5037 int addr_width;
5038 u8 bus, devfn;
5039
5040 if (device_is_rmrr_locked(dev)) {
5041 dev_warn(dev, "Device is ineligible for IOMMU domain attach due to platform RMRR requirement. Contact your platform vendor.\n");
5042 return -EPERM;
5043 }
5044
5045 /* normally dev is not mapped */
5046 if (unlikely(domain_context_mapped(dev))) {
5047 struct dmar_domain *old_domain;
5048
5049 old_domain = find_domain(dev);
5050 if (old_domain) {
5051 rcu_read_lock();
5052 dmar_remove_one_dev_info(old_domain, dev);
5053 rcu_read_unlock();
5054
5055 if (!domain_type_is_vm_or_si(old_domain) &&
5056 list_empty(&old_domain->devices))
5057 domain_exit(old_domain);
5058 }
5059 }
5060
5061 iommu = device_to_iommu(dev, &bus, &devfn);
5062 if (!iommu)
5063 return -ENODEV;
5064
5065 /* check if this iommu agaw is sufficient for max mapped address */
5066 addr_width = agaw_to_width(iommu->agaw);
5067 if (addr_width > cap_mgaw(iommu->cap))
5068 addr_width = cap_mgaw(iommu->cap);
5069
5070 if (dmar_domain->max_addr > (1LL << addr_width)) {
5071 pr_err("%s: iommu width (%d) is not "
5072 "sufficient for the mapped address (%llx)\n",
5073 __func__, addr_width, dmar_domain->max_addr);
5074 return -EFAULT;
5075 }
5076 dmar_domain->gaw = addr_width;
5077
5078 /*
5079 * Knock out extra levels of page tables if necessary
5080 */
5081 while (iommu->agaw < dmar_domain->agaw) {
5082 struct dma_pte *pte;
5083
5084 pte = dmar_domain->pgd;
5085 if (dma_pte_present(pte)) {
5086 dmar_domain->pgd = (struct dma_pte *)
5087 phys_to_virt(dma_pte_addr(pte));
5088 free_pgtable_page(pte);
5089 }
5090 dmar_domain->agaw--;
5091 }
5092
5093 return domain_add_dev_info(dmar_domain, dev);
5094 }
5095
5096 static void intel_iommu_detach_device(struct iommu_domain *domain,
5097 struct device *dev)
5098 {
5099 dmar_remove_one_dev_info(to_dmar_domain(domain), dev);
5100 }
5101
5102 static int intel_iommu_map(struct iommu_domain *domain,
5103 unsigned long iova, phys_addr_t hpa,
5104 size_t size, int iommu_prot)
5105 {
5106 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5107 u64 max_addr;
5108 int prot = 0;
5109 int ret;
5110
5111 if (iommu_prot & IOMMU_READ)
5112 prot |= DMA_PTE_READ;
5113 if (iommu_prot & IOMMU_WRITE)
5114 prot |= DMA_PTE_WRITE;
5115 if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
5116 prot |= DMA_PTE_SNP;
5117
5118 max_addr = iova + size;
5119 if (dmar_domain->max_addr < max_addr) {
5120 u64 end;
5121
5122 /* check if minimum agaw is sufficient for mapped address */
5123 end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
5124 if (end < max_addr) {
5125 pr_err("%s: iommu width (%d) is not "
5126 "sufficient for the mapped address (%llx)\n",
5127 __func__, dmar_domain->gaw, max_addr);
5128 return -EFAULT;
5129 }
5130 dmar_domain->max_addr = max_addr;
5131 }
5132 /* Round up size to next multiple of PAGE_SIZE, if it and
5133 the low bits of hpa would take us onto the next page */
5134 size = aligned_nrpages(hpa, size);
5135 ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
5136 hpa >> VTD_PAGE_SHIFT, size, prot);
5137 return ret;
5138 }
5139
5140 static size_t intel_iommu_unmap(struct iommu_domain *domain,
5141 unsigned long iova, size_t size)
5142 {
5143 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5144 struct page *freelist = NULL;
5145 struct intel_iommu *iommu;
5146 unsigned long start_pfn, last_pfn;
5147 unsigned int npages;
5148 int iommu_id, level = 0;
5149
5150 /* Cope with horrid API which requires us to unmap more than the
5151 size argument if it happens to be a large-page mapping. */
5152 BUG_ON(!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level));
5153
5154 if (size < VTD_PAGE_SIZE << level_to_offset_bits(level))
5155 size = VTD_PAGE_SIZE << level_to_offset_bits(level);
5156
5157 start_pfn = iova >> VTD_PAGE_SHIFT;
5158 last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT;
5159
5160 freelist = domain_unmap(dmar_domain, start_pfn, last_pfn);
5161
5162 npages = last_pfn - start_pfn + 1;
5163
5164 for_each_domain_iommu(iommu_id, dmar_domain) {
5165 iommu = g_iommus[iommu_id];
5166
5167 iommu_flush_iotlb_psi(g_iommus[iommu_id], dmar_domain,
5168 start_pfn, npages, !freelist, 0);
5169 }
5170
5171 dma_free_pagelist(freelist);
5172
5173 if (dmar_domain->max_addr == iova + size)
5174 dmar_domain->max_addr = iova;
5175
5176 return size;
5177 }
5178
5179 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
5180 dma_addr_t iova)
5181 {
5182 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5183 struct dma_pte *pte;
5184 int level = 0;
5185 u64 phys = 0;
5186
5187 pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level);
5188 if (pte)
5189 phys = dma_pte_addr(pte);
5190
5191 return phys;
5192 }
5193
5194 static bool intel_iommu_capable(enum iommu_cap cap)
5195 {
5196 if (cap == IOMMU_CAP_CACHE_COHERENCY)
5197 return domain_update_iommu_snooping(NULL) == 1;
5198 if (cap == IOMMU_CAP_INTR_REMAP)
5199 return irq_remapping_enabled == 1;
5200
5201 return false;
5202 }
5203
5204 static int intel_iommu_add_device(struct device *dev)
5205 {
5206 struct intel_iommu *iommu;
5207 struct iommu_group *group;
5208 u8 bus, devfn;
5209
5210 iommu = device_to_iommu(dev, &bus, &devfn);
5211 if (!iommu)
5212 return -ENODEV;
5213
5214 iommu_device_link(iommu->iommu_dev, dev);
5215
5216 group = iommu_group_get_for_dev(dev);
5217
5218 if (IS_ERR(group))
5219 return PTR_ERR(group);
5220
5221 iommu_group_put(group);
5222 return 0;
5223 }
5224
5225 static void intel_iommu_remove_device(struct device *dev)
5226 {
5227 struct intel_iommu *iommu;
5228 u8 bus, devfn;
5229
5230 iommu = device_to_iommu(dev, &bus, &devfn);
5231 if (!iommu)
5232 return;
5233
5234 iommu_group_remove_device(dev);
5235
5236 iommu_device_unlink(iommu->iommu_dev, dev);
5237 }
5238
5239 #ifdef CONFIG_INTEL_IOMMU_SVM
5240 #define MAX_NR_PASID_BITS (20)
5241 static inline unsigned long intel_iommu_get_pts(struct intel_iommu *iommu)
5242 {
5243 /*
5244 * Convert ecap_pss to extend context entry pts encoding, also
5245 * respect the soft pasid_max value set by the iommu.
5246 * - number of PASID bits = ecap_pss + 1
5247 * - number of PASID table entries = 2^(pts + 5)
5248 * Therefore, pts = ecap_pss - 4
5249 * e.g. KBL ecap_pss = 0x13, PASID has 20 bits, pts = 15
5250 */
5251 if (ecap_pss(iommu->ecap) < 5)
5252 return 0;
5253
5254 /* pasid_max is encoded as actual number of entries not the bits */
5255 return find_first_bit((unsigned long *)&iommu->pasid_max,
5256 MAX_NR_PASID_BITS) - 5;
5257 }
5258
5259 int intel_iommu_enable_pasid(struct intel_iommu *iommu, struct intel_svm_dev *sdev)
5260 {
5261 struct device_domain_info *info;
5262 struct context_entry *context;
5263 struct dmar_domain *domain;
5264 unsigned long flags;
5265 u64 ctx_lo;
5266 int ret;
5267
5268 domain = get_valid_domain_for_dev(sdev->dev);
5269 if (!domain)
5270 return -EINVAL;
5271
5272 spin_lock_irqsave(&device_domain_lock, flags);
5273 spin_lock(&iommu->lock);
5274
5275 ret = -EINVAL;
5276 info = sdev->dev->archdata.iommu;
5277 if (!info || !info->pasid_supported)
5278 goto out;
5279
5280 context = iommu_context_addr(iommu, info->bus, info->devfn, 0);
5281 if (WARN_ON(!context))
5282 goto out;
5283
5284 ctx_lo = context[0].lo;
5285
5286 sdev->did = domain->iommu_did[iommu->seq_id];
5287 sdev->sid = PCI_DEVID(info->bus, info->devfn);
5288
5289 if (!(ctx_lo & CONTEXT_PASIDE)) {
5290 context[1].hi = (u64)virt_to_phys(iommu->pasid_state_table);
5291 context[1].lo = (u64)virt_to_phys(iommu->pasid_table) |
5292 intel_iommu_get_pts(iommu);
5293
5294 wmb();
5295 /* CONTEXT_TT_MULTI_LEVEL and CONTEXT_TT_DEV_IOTLB are both
5296 * extended to permit requests-with-PASID if the PASIDE bit
5297 * is set. which makes sense. For CONTEXT_TT_PASS_THROUGH,
5298 * however, the PASIDE bit is ignored and requests-with-PASID
5299 * are unconditionally blocked. Which makes less sense.
5300 * So convert from CONTEXT_TT_PASS_THROUGH to one of the new
5301 * "guest mode" translation types depending on whether ATS
5302 * is available or not. Annoyingly, we can't use the new
5303 * modes *unless* PASIDE is set. */
5304 if ((ctx_lo & CONTEXT_TT_MASK) == (CONTEXT_TT_PASS_THROUGH << 2)) {
5305 ctx_lo &= ~CONTEXT_TT_MASK;
5306 if (info->ats_supported)
5307 ctx_lo |= CONTEXT_TT_PT_PASID_DEV_IOTLB << 2;
5308 else
5309 ctx_lo |= CONTEXT_TT_PT_PASID << 2;
5310 }
5311 ctx_lo |= CONTEXT_PASIDE;
5312 if (iommu->pasid_state_table)
5313 ctx_lo |= CONTEXT_DINVE;
5314 if (info->pri_supported)
5315 ctx_lo |= CONTEXT_PRS;
5316 context[0].lo = ctx_lo;
5317 wmb();
5318 iommu->flush.flush_context(iommu, sdev->did, sdev->sid,
5319 DMA_CCMD_MASK_NOBIT,
5320 DMA_CCMD_DEVICE_INVL);
5321 }
5322
5323 /* Enable PASID support in the device, if it wasn't already */
5324 if (!info->pasid_enabled)
5325 iommu_enable_dev_iotlb(info);
5326
5327 if (info->ats_enabled) {
5328 sdev->dev_iotlb = 1;
5329 sdev->qdep = info->ats_qdep;
5330 if (sdev->qdep >= QI_DEV_EIOTLB_MAX_INVS)
5331 sdev->qdep = 0;
5332 }
5333 ret = 0;
5334
5335 out:
5336 spin_unlock(&iommu->lock);
5337 spin_unlock_irqrestore(&device_domain_lock, flags);
5338
5339 return ret;
5340 }
5341
5342 struct intel_iommu *intel_svm_device_to_iommu(struct device *dev)
5343 {
5344 struct intel_iommu *iommu;
5345 u8 bus, devfn;
5346
5347 if (iommu_dummy(dev)) {
5348 dev_warn(dev,
5349 "No IOMMU translation for device; cannot enable SVM\n");
5350 return NULL;
5351 }
5352
5353 iommu = device_to_iommu(dev, &bus, &devfn);
5354 if ((!iommu)) {
5355 dev_err(dev, "No IOMMU for device; cannot enable SVM\n");
5356 return NULL;
5357 }
5358
5359 if (!iommu->pasid_table) {
5360 dev_err(dev, "PASID not enabled on IOMMU; cannot enable SVM\n");
5361 return NULL;
5362 }
5363
5364 return iommu;
5365 }
5366 #endif /* CONFIG_INTEL_IOMMU_SVM */
5367
5368 static const struct iommu_ops intel_iommu_ops = {
5369 .capable = intel_iommu_capable,
5370 .domain_alloc = intel_iommu_domain_alloc,
5371 .domain_free = intel_iommu_domain_free,
5372 .attach_dev = intel_iommu_attach_device,
5373 .detach_dev = intel_iommu_detach_device,
5374 .map = intel_iommu_map,
5375 .unmap = intel_iommu_unmap,
5376 .map_sg = default_iommu_map_sg,
5377 .iova_to_phys = intel_iommu_iova_to_phys,
5378 .add_device = intel_iommu_add_device,
5379 .remove_device = intel_iommu_remove_device,
5380 .device_group = pci_device_group,
5381 .pgsize_bitmap = INTEL_IOMMU_PGSIZES,
5382 };
5383
5384 static void quirk_iommu_g4x_gfx(struct pci_dev *dev)
5385 {
5386 /* G4x/GM45 integrated gfx dmar support is totally busted. */
5387 pr_info("Disabling IOMMU for graphics on this chipset\n");
5388 dmar_map_gfx = 0;
5389 }
5390
5391 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_g4x_gfx);
5392 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_g4x_gfx);
5393 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_g4x_gfx);
5394 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_g4x_gfx);
5395 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_g4x_gfx);
5396 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_g4x_gfx);
5397 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_g4x_gfx);
5398
5399 static void quirk_iommu_rwbf(struct pci_dev *dev)
5400 {
5401 /*
5402 * Mobile 4 Series Chipset neglects to set RWBF capability,
5403 * but needs it. Same seems to hold for the desktop versions.
5404 */
5405 pr_info("Forcing write-buffer flush capability\n");
5406 rwbf_quirk = 1;
5407 }
5408
5409 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
5410 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
5411 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
5412 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
5413 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
5414 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
5415 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
5416
5417 #define GGC 0x52
5418 #define GGC_MEMORY_SIZE_MASK (0xf << 8)
5419 #define GGC_MEMORY_SIZE_NONE (0x0 << 8)
5420 #define GGC_MEMORY_SIZE_1M (0x1 << 8)
5421 #define GGC_MEMORY_SIZE_2M (0x3 << 8)
5422 #define GGC_MEMORY_VT_ENABLED (0x8 << 8)
5423 #define GGC_MEMORY_SIZE_2M_VT (0x9 << 8)
5424 #define GGC_MEMORY_SIZE_3M_VT (0xa << 8)
5425 #define GGC_MEMORY_SIZE_4M_VT (0xb << 8)
5426
5427 static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
5428 {
5429 unsigned short ggc;
5430
5431 if (pci_read_config_word(dev, GGC, &ggc))
5432 return;
5433
5434 if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
5435 pr_info("BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
5436 dmar_map_gfx = 0;
5437 } else if (dmar_map_gfx) {
5438 /* we have to ensure the gfx device is idle before we flush */
5439 pr_info("Disabling batched IOTLB flush on Ironlake\n");
5440 intel_iommu_strict = 1;
5441 }
5442 }
5443 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
5444 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
5445 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
5446 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
5447
5448 /* On Tylersburg chipsets, some BIOSes have been known to enable the
5449 ISOCH DMAR unit for the Azalia sound device, but not give it any
5450 TLB entries, which causes it to deadlock. Check for that. We do
5451 this in a function called from init_dmars(), instead of in a PCI
5452 quirk, because we don't want to print the obnoxious "BIOS broken"
5453 message if VT-d is actually disabled.
5454 */
5455 static void __init check_tylersburg_isoch(void)
5456 {
5457 struct pci_dev *pdev;
5458 uint32_t vtisochctrl;
5459
5460 /* If there's no Azalia in the system anyway, forget it. */
5461 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
5462 if (!pdev)
5463 return;
5464 pci_dev_put(pdev);
5465
5466 /* System Management Registers. Might be hidden, in which case
5467 we can't do the sanity check. But that's OK, because the
5468 known-broken BIOSes _don't_ actually hide it, so far. */
5469 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
5470 if (!pdev)
5471 return;
5472
5473 if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
5474 pci_dev_put(pdev);
5475 return;
5476 }
5477
5478 pci_dev_put(pdev);
5479
5480 /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
5481 if (vtisochctrl & 1)
5482 return;
5483
5484 /* Drop all bits other than the number of TLB entries */
5485 vtisochctrl &= 0x1c;
5486
5487 /* If we have the recommended number of TLB entries (16), fine. */
5488 if (vtisochctrl == 0x10)
5489 return;
5490
5491 /* Zero TLB entries? You get to ride the short bus to school. */
5492 if (!vtisochctrl) {
5493 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
5494 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
5495 dmi_get_system_info(DMI_BIOS_VENDOR),
5496 dmi_get_system_info(DMI_BIOS_VERSION),
5497 dmi_get_system_info(DMI_PRODUCT_VERSION));
5498 iommu_identity_mapping |= IDENTMAP_AZALIA;
5499 return;
5500 }
5501
5502 pr_warn("Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
5503 vtisochctrl);
5504 }