]> git.ipfire.org Git - people/arne_f/kernel.git/blob - drivers/pci/pci.c
PCI: Turn pcibios_penalize_isa_irq() into a weak function
[people/arne_f/kernel.git] / drivers / pci / pci.c
1 /*
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
3 *
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
6 *
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pm.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 #include <linux/spinlock.h>
18 #include <linux/string.h>
19 #include <linux/log2.h>
20 #include <linux/pci-aspm.h>
21 #include <linux/pm_wakeup.h>
22 #include <linux/interrupt.h>
23 #include <linux/device.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/pci_hotplug.h>
26 #include <asm-generic/pci-bridge.h>
27 #include <asm/setup.h>
28 #include "pci.h"
29
30 const char *pci_power_names[] = {
31 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
32 };
33 EXPORT_SYMBOL_GPL(pci_power_names);
34
35 int isa_dma_bridge_buggy;
36 EXPORT_SYMBOL(isa_dma_bridge_buggy);
37
38 int pci_pci_problems;
39 EXPORT_SYMBOL(pci_pci_problems);
40
41 unsigned int pci_pm_d3_delay;
42
43 static void pci_pme_list_scan(struct work_struct *work);
44
45 static LIST_HEAD(pci_pme_list);
46 static DEFINE_MUTEX(pci_pme_list_mutex);
47 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
48
49 struct pci_pme_device {
50 struct list_head list;
51 struct pci_dev *dev;
52 };
53
54 #define PME_TIMEOUT 1000 /* How long between PME checks */
55
56 static void pci_dev_d3_sleep(struct pci_dev *dev)
57 {
58 unsigned int delay = dev->d3_delay;
59
60 if (delay < pci_pm_d3_delay)
61 delay = pci_pm_d3_delay;
62
63 msleep(delay);
64 }
65
66 #ifdef CONFIG_PCI_DOMAINS
67 int pci_domains_supported = 1;
68 #endif
69
70 #define DEFAULT_CARDBUS_IO_SIZE (256)
71 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
72 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
73 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
74 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
75
76 #define DEFAULT_HOTPLUG_IO_SIZE (256)
77 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
78 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
79 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
80 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
81
82 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
83
84 /*
85 * The default CLS is used if arch didn't set CLS explicitly and not
86 * all pci devices agree on the same value. Arch can override either
87 * the dfl or actual value as it sees fit. Don't forget this is
88 * measured in 32-bit words, not bytes.
89 */
90 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
91 u8 pci_cache_line_size;
92
93 /*
94 * If we set up a device for bus mastering, we need to check the latency
95 * timer as certain BIOSes forget to set it properly.
96 */
97 unsigned int pcibios_max_latency = 255;
98
99 /* If set, the PCIe ARI capability will not be used. */
100 static bool pcie_ari_disabled;
101
102 /**
103 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
104 * @bus: pointer to PCI bus structure to search
105 *
106 * Given a PCI bus, returns the highest PCI bus number present in the set
107 * including the given PCI bus and its list of child PCI buses.
108 */
109 unsigned char pci_bus_max_busnr(struct pci_bus* bus)
110 {
111 struct pci_bus *tmp;
112 unsigned char max, n;
113
114 max = bus->busn_res.end;
115 list_for_each_entry(tmp, &bus->children, node) {
116 n = pci_bus_max_busnr(tmp);
117 if(n > max)
118 max = n;
119 }
120 return max;
121 }
122 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
123
124 #ifdef CONFIG_HAS_IOMEM
125 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
126 {
127 /*
128 * Make sure the BAR is actually a memory resource, not an IO resource
129 */
130 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
131 WARN_ON(1);
132 return NULL;
133 }
134 return ioremap_nocache(pci_resource_start(pdev, bar),
135 pci_resource_len(pdev, bar));
136 }
137 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
138 #endif
139
140 #define PCI_FIND_CAP_TTL 48
141
142 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
143 u8 pos, int cap, int *ttl)
144 {
145 u8 id;
146
147 while ((*ttl)--) {
148 pci_bus_read_config_byte(bus, devfn, pos, &pos);
149 if (pos < 0x40)
150 break;
151 pos &= ~3;
152 pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
153 &id);
154 if (id == 0xff)
155 break;
156 if (id == cap)
157 return pos;
158 pos += PCI_CAP_LIST_NEXT;
159 }
160 return 0;
161 }
162
163 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
164 u8 pos, int cap)
165 {
166 int ttl = PCI_FIND_CAP_TTL;
167
168 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
169 }
170
171 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
172 {
173 return __pci_find_next_cap(dev->bus, dev->devfn,
174 pos + PCI_CAP_LIST_NEXT, cap);
175 }
176 EXPORT_SYMBOL_GPL(pci_find_next_capability);
177
178 static int __pci_bus_find_cap_start(struct pci_bus *bus,
179 unsigned int devfn, u8 hdr_type)
180 {
181 u16 status;
182
183 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
184 if (!(status & PCI_STATUS_CAP_LIST))
185 return 0;
186
187 switch (hdr_type) {
188 case PCI_HEADER_TYPE_NORMAL:
189 case PCI_HEADER_TYPE_BRIDGE:
190 return PCI_CAPABILITY_LIST;
191 case PCI_HEADER_TYPE_CARDBUS:
192 return PCI_CB_CAPABILITY_LIST;
193 default:
194 return 0;
195 }
196
197 return 0;
198 }
199
200 /**
201 * pci_find_capability - query for devices' capabilities
202 * @dev: PCI device to query
203 * @cap: capability code
204 *
205 * Tell if a device supports a given PCI capability.
206 * Returns the address of the requested capability structure within the
207 * device's PCI configuration space or 0 in case the device does not
208 * support it. Possible values for @cap:
209 *
210 * %PCI_CAP_ID_PM Power Management
211 * %PCI_CAP_ID_AGP Accelerated Graphics Port
212 * %PCI_CAP_ID_VPD Vital Product Data
213 * %PCI_CAP_ID_SLOTID Slot Identification
214 * %PCI_CAP_ID_MSI Message Signalled Interrupts
215 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
216 * %PCI_CAP_ID_PCIX PCI-X
217 * %PCI_CAP_ID_EXP PCI Express
218 */
219 int pci_find_capability(struct pci_dev *dev, int cap)
220 {
221 int pos;
222
223 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
224 if (pos)
225 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
226
227 return pos;
228 }
229
230 /**
231 * pci_bus_find_capability - query for devices' capabilities
232 * @bus: the PCI bus to query
233 * @devfn: PCI device to query
234 * @cap: capability code
235 *
236 * Like pci_find_capability() but works for pci devices that do not have a
237 * pci_dev structure set up yet.
238 *
239 * Returns the address of the requested capability structure within the
240 * device's PCI configuration space or 0 in case the device does not
241 * support it.
242 */
243 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
244 {
245 int pos;
246 u8 hdr_type;
247
248 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
249
250 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
251 if (pos)
252 pos = __pci_find_next_cap(bus, devfn, pos, cap);
253
254 return pos;
255 }
256
257 /**
258 * pci_find_next_ext_capability - Find an extended capability
259 * @dev: PCI device to query
260 * @start: address at which to start looking (0 to start at beginning of list)
261 * @cap: capability code
262 *
263 * Returns the address of the next matching extended capability structure
264 * within the device's PCI configuration space or 0 if the device does
265 * not support it. Some capabilities can occur several times, e.g., the
266 * vendor-specific capability, and this provides a way to find them all.
267 */
268 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
269 {
270 u32 header;
271 int ttl;
272 int pos = PCI_CFG_SPACE_SIZE;
273
274 /* minimum 8 bytes per capability */
275 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
276
277 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
278 return 0;
279
280 if (start)
281 pos = start;
282
283 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
284 return 0;
285
286 /*
287 * If we have no capabilities, this is indicated by cap ID,
288 * cap version and next pointer all being 0.
289 */
290 if (header == 0)
291 return 0;
292
293 while (ttl-- > 0) {
294 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
295 return pos;
296
297 pos = PCI_EXT_CAP_NEXT(header);
298 if (pos < PCI_CFG_SPACE_SIZE)
299 break;
300
301 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
302 break;
303 }
304
305 return 0;
306 }
307 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
308
309 /**
310 * pci_find_ext_capability - Find an extended capability
311 * @dev: PCI device to query
312 * @cap: capability code
313 *
314 * Returns the address of the requested extended capability structure
315 * within the device's PCI configuration space or 0 if the device does
316 * not support it. Possible values for @cap:
317 *
318 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
319 * %PCI_EXT_CAP_ID_VC Virtual Channel
320 * %PCI_EXT_CAP_ID_DSN Device Serial Number
321 * %PCI_EXT_CAP_ID_PWR Power Budgeting
322 */
323 int pci_find_ext_capability(struct pci_dev *dev, int cap)
324 {
325 return pci_find_next_ext_capability(dev, 0, cap);
326 }
327 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
328
329 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
330 {
331 int rc, ttl = PCI_FIND_CAP_TTL;
332 u8 cap, mask;
333
334 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
335 mask = HT_3BIT_CAP_MASK;
336 else
337 mask = HT_5BIT_CAP_MASK;
338
339 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
340 PCI_CAP_ID_HT, &ttl);
341 while (pos) {
342 rc = pci_read_config_byte(dev, pos + 3, &cap);
343 if (rc != PCIBIOS_SUCCESSFUL)
344 return 0;
345
346 if ((cap & mask) == ht_cap)
347 return pos;
348
349 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
350 pos + PCI_CAP_LIST_NEXT,
351 PCI_CAP_ID_HT, &ttl);
352 }
353
354 return 0;
355 }
356 /**
357 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
358 * @dev: PCI device to query
359 * @pos: Position from which to continue searching
360 * @ht_cap: Hypertransport capability code
361 *
362 * To be used in conjunction with pci_find_ht_capability() to search for
363 * all capabilities matching @ht_cap. @pos should always be a value returned
364 * from pci_find_ht_capability().
365 *
366 * NB. To be 100% safe against broken PCI devices, the caller should take
367 * steps to avoid an infinite loop.
368 */
369 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
370 {
371 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
372 }
373 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
374
375 /**
376 * pci_find_ht_capability - query a device's Hypertransport capabilities
377 * @dev: PCI device to query
378 * @ht_cap: Hypertransport capability code
379 *
380 * Tell if a device supports a given Hypertransport capability.
381 * Returns an address within the device's PCI configuration space
382 * or 0 in case the device does not support the request capability.
383 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
384 * which has a Hypertransport capability matching @ht_cap.
385 */
386 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
387 {
388 int pos;
389
390 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
391 if (pos)
392 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
393
394 return pos;
395 }
396 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
397
398 /**
399 * pci_find_parent_resource - return resource region of parent bus of given region
400 * @dev: PCI device structure contains resources to be searched
401 * @res: child resource record for which parent is sought
402 *
403 * For given resource region of given device, return the resource
404 * region of parent bus the given region is contained in.
405 */
406 struct resource *
407 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
408 {
409 const struct pci_bus *bus = dev->bus;
410 struct resource *r;
411 int i;
412
413 pci_bus_for_each_resource(bus, r, i) {
414 if (!r)
415 continue;
416 if (res->start && resource_contains(r, res)) {
417
418 /*
419 * If the window is prefetchable but the BAR is
420 * not, the allocator made a mistake.
421 */
422 if (r->flags & IORESOURCE_PREFETCH &&
423 !(res->flags & IORESOURCE_PREFETCH))
424 return NULL;
425
426 /*
427 * If we're below a transparent bridge, there may
428 * be both a positively-decoded aperture and a
429 * subtractively-decoded region that contain the BAR.
430 * We want the positively-decoded one, so this depends
431 * on pci_bus_for_each_resource() giving us those
432 * first.
433 */
434 return r;
435 }
436 }
437 return NULL;
438 }
439
440 /**
441 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
442 * @dev: the PCI device to operate on
443 * @pos: config space offset of status word
444 * @mask: mask of bit(s) to care about in status word
445 *
446 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
447 */
448 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
449 {
450 int i;
451
452 /* Wait for Transaction Pending bit clean */
453 for (i = 0; i < 4; i++) {
454 u16 status;
455 if (i)
456 msleep((1 << (i - 1)) * 100);
457
458 pci_read_config_word(dev, pos, &status);
459 if (!(status & mask))
460 return 1;
461 }
462
463 return 0;
464 }
465
466 /**
467 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
468 * @dev: PCI device to have its BARs restored
469 *
470 * Restore the BAR values for a given device, so as to make it
471 * accessible by its driver.
472 */
473 static void
474 pci_restore_bars(struct pci_dev *dev)
475 {
476 int i;
477
478 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
479 pci_update_resource(dev, i);
480 }
481
482 static struct pci_platform_pm_ops *pci_platform_pm;
483
484 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
485 {
486 if (!ops->is_manageable || !ops->set_state || !ops->choose_state
487 || !ops->sleep_wake)
488 return -EINVAL;
489 pci_platform_pm = ops;
490 return 0;
491 }
492
493 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
494 {
495 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
496 }
497
498 static inline int platform_pci_set_power_state(struct pci_dev *dev,
499 pci_power_t t)
500 {
501 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
502 }
503
504 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
505 {
506 return pci_platform_pm ?
507 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
508 }
509
510 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
511 {
512 return pci_platform_pm ?
513 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
514 }
515
516 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
517 {
518 return pci_platform_pm ?
519 pci_platform_pm->run_wake(dev, enable) : -ENODEV;
520 }
521
522 /**
523 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
524 * given PCI device
525 * @dev: PCI device to handle.
526 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
527 *
528 * RETURN VALUE:
529 * -EINVAL if the requested state is invalid.
530 * -EIO if device does not support PCI PM or its PM capabilities register has a
531 * wrong version, or device doesn't support the requested state.
532 * 0 if device already is in the requested state.
533 * 0 if device's power state has been successfully changed.
534 */
535 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
536 {
537 u16 pmcsr;
538 bool need_restore = false;
539
540 /* Check if we're already there */
541 if (dev->current_state == state)
542 return 0;
543
544 if (!dev->pm_cap)
545 return -EIO;
546
547 if (state < PCI_D0 || state > PCI_D3hot)
548 return -EINVAL;
549
550 /* Validate current state:
551 * Can enter D0 from any state, but if we can only go deeper
552 * to sleep if we're already in a low power state
553 */
554 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
555 && dev->current_state > state) {
556 dev_err(&dev->dev, "invalid power transition "
557 "(from state %d to %d)\n", dev->current_state, state);
558 return -EINVAL;
559 }
560
561 /* check if this device supports the desired state */
562 if ((state == PCI_D1 && !dev->d1_support)
563 || (state == PCI_D2 && !dev->d2_support))
564 return -EIO;
565
566 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
567
568 /* If we're (effectively) in D3, force entire word to 0.
569 * This doesn't affect PME_Status, disables PME_En, and
570 * sets PowerState to 0.
571 */
572 switch (dev->current_state) {
573 case PCI_D0:
574 case PCI_D1:
575 case PCI_D2:
576 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
577 pmcsr |= state;
578 break;
579 case PCI_D3hot:
580 case PCI_D3cold:
581 case PCI_UNKNOWN: /* Boot-up */
582 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
583 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
584 need_restore = true;
585 /* Fall-through: force to D0 */
586 default:
587 pmcsr = 0;
588 break;
589 }
590
591 /* enter specified state */
592 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
593
594 /* Mandatory power management transition delays */
595 /* see PCI PM 1.1 5.6.1 table 18 */
596 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
597 pci_dev_d3_sleep(dev);
598 else if (state == PCI_D2 || dev->current_state == PCI_D2)
599 udelay(PCI_PM_D2_DELAY);
600
601 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
602 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
603 if (dev->current_state != state && printk_ratelimit())
604 dev_info(&dev->dev, "Refused to change power state, "
605 "currently in D%d\n", dev->current_state);
606
607 /*
608 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
609 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
610 * from D3hot to D0 _may_ perform an internal reset, thereby
611 * going to "D0 Uninitialized" rather than "D0 Initialized".
612 * For example, at least some versions of the 3c905B and the
613 * 3c556B exhibit this behaviour.
614 *
615 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
616 * devices in a D3hot state at boot. Consequently, we need to
617 * restore at least the BARs so that the device will be
618 * accessible to its driver.
619 */
620 if (need_restore)
621 pci_restore_bars(dev);
622
623 if (dev->bus->self)
624 pcie_aspm_pm_state_change(dev->bus->self);
625
626 return 0;
627 }
628
629 /**
630 * pci_update_current_state - Read PCI power state of given device from its
631 * PCI PM registers and cache it
632 * @dev: PCI device to handle.
633 * @state: State to cache in case the device doesn't have the PM capability
634 */
635 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
636 {
637 if (dev->pm_cap) {
638 u16 pmcsr;
639
640 /*
641 * Configuration space is not accessible for device in
642 * D3cold, so just keep or set D3cold for safety
643 */
644 if (dev->current_state == PCI_D3cold)
645 return;
646 if (state == PCI_D3cold) {
647 dev->current_state = PCI_D3cold;
648 return;
649 }
650 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
651 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
652 } else {
653 dev->current_state = state;
654 }
655 }
656
657 /**
658 * pci_power_up - Put the given device into D0 forcibly
659 * @dev: PCI device to power up
660 */
661 void pci_power_up(struct pci_dev *dev)
662 {
663 if (platform_pci_power_manageable(dev))
664 platform_pci_set_power_state(dev, PCI_D0);
665
666 pci_raw_set_power_state(dev, PCI_D0);
667 pci_update_current_state(dev, PCI_D0);
668 }
669
670 /**
671 * pci_platform_power_transition - Use platform to change device power state
672 * @dev: PCI device to handle.
673 * @state: State to put the device into.
674 */
675 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
676 {
677 int error;
678
679 if (platform_pci_power_manageable(dev)) {
680 error = platform_pci_set_power_state(dev, state);
681 if (!error)
682 pci_update_current_state(dev, state);
683 } else
684 error = -ENODEV;
685
686 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
687 dev->current_state = PCI_D0;
688
689 return error;
690 }
691
692 /**
693 * pci_wakeup - Wake up a PCI device
694 * @pci_dev: Device to handle.
695 * @ign: ignored parameter
696 */
697 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
698 {
699 pci_wakeup_event(pci_dev);
700 pm_request_resume(&pci_dev->dev);
701 return 0;
702 }
703
704 /**
705 * pci_wakeup_bus - Walk given bus and wake up devices on it
706 * @bus: Top bus of the subtree to walk.
707 */
708 static void pci_wakeup_bus(struct pci_bus *bus)
709 {
710 if (bus)
711 pci_walk_bus(bus, pci_wakeup, NULL);
712 }
713
714 /**
715 * __pci_start_power_transition - Start power transition of a PCI device
716 * @dev: PCI device to handle.
717 * @state: State to put the device into.
718 */
719 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
720 {
721 if (state == PCI_D0) {
722 pci_platform_power_transition(dev, PCI_D0);
723 /*
724 * Mandatory power management transition delays, see
725 * PCI Express Base Specification Revision 2.0 Section
726 * 6.6.1: Conventional Reset. Do not delay for
727 * devices powered on/off by corresponding bridge,
728 * because have already delayed for the bridge.
729 */
730 if (dev->runtime_d3cold) {
731 msleep(dev->d3cold_delay);
732 /*
733 * When powering on a bridge from D3cold, the
734 * whole hierarchy may be powered on into
735 * D0uninitialized state, resume them to give
736 * them a chance to suspend again
737 */
738 pci_wakeup_bus(dev->subordinate);
739 }
740 }
741 }
742
743 /**
744 * __pci_dev_set_current_state - Set current state of a PCI device
745 * @dev: Device to handle
746 * @data: pointer to state to be set
747 */
748 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
749 {
750 pci_power_t state = *(pci_power_t *)data;
751
752 dev->current_state = state;
753 return 0;
754 }
755
756 /**
757 * __pci_bus_set_current_state - Walk given bus and set current state of devices
758 * @bus: Top bus of the subtree to walk.
759 * @state: state to be set
760 */
761 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
762 {
763 if (bus)
764 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
765 }
766
767 /**
768 * __pci_complete_power_transition - Complete power transition of a PCI device
769 * @dev: PCI device to handle.
770 * @state: State to put the device into.
771 *
772 * This function should not be called directly by device drivers.
773 */
774 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
775 {
776 int ret;
777
778 if (state <= PCI_D0)
779 return -EINVAL;
780 ret = pci_platform_power_transition(dev, state);
781 /* Power off the bridge may power off the whole hierarchy */
782 if (!ret && state == PCI_D3cold)
783 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
784 return ret;
785 }
786 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
787
788 /**
789 * pci_set_power_state - Set the power state of a PCI device
790 * @dev: PCI device to handle.
791 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
792 *
793 * Transition a device to a new power state, using the platform firmware and/or
794 * the device's PCI PM registers.
795 *
796 * RETURN VALUE:
797 * -EINVAL if the requested state is invalid.
798 * -EIO if device does not support PCI PM or its PM capabilities register has a
799 * wrong version, or device doesn't support the requested state.
800 * 0 if device already is in the requested state.
801 * 0 if device's power state has been successfully changed.
802 */
803 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
804 {
805 int error;
806
807 /* bound the state we're entering */
808 if (state > PCI_D3cold)
809 state = PCI_D3cold;
810 else if (state < PCI_D0)
811 state = PCI_D0;
812 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
813 /*
814 * If the device or the parent bridge do not support PCI PM,
815 * ignore the request if we're doing anything other than putting
816 * it into D0 (which would only happen on boot).
817 */
818 return 0;
819
820 /* Check if we're already there */
821 if (dev->current_state == state)
822 return 0;
823
824 __pci_start_power_transition(dev, state);
825
826 /* This device is quirked not to be put into D3, so
827 don't put it in D3 */
828 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
829 return 0;
830
831 /*
832 * To put device in D3cold, we put device into D3hot in native
833 * way, then put device into D3cold with platform ops
834 */
835 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
836 PCI_D3hot : state);
837
838 if (!__pci_complete_power_transition(dev, state))
839 error = 0;
840 /*
841 * When aspm_policy is "powersave" this call ensures
842 * that ASPM is configured.
843 */
844 if (!error && dev->bus->self)
845 pcie_aspm_powersave_config_link(dev->bus->self);
846
847 return error;
848 }
849
850 /**
851 * pci_choose_state - Choose the power state of a PCI device
852 * @dev: PCI device to be suspended
853 * @state: target sleep state for the whole system. This is the value
854 * that is passed to suspend() function.
855 *
856 * Returns PCI power state suitable for given device and given system
857 * message.
858 */
859
860 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
861 {
862 pci_power_t ret;
863
864 if (!dev->pm_cap)
865 return PCI_D0;
866
867 ret = platform_pci_choose_state(dev);
868 if (ret != PCI_POWER_ERROR)
869 return ret;
870
871 switch (state.event) {
872 case PM_EVENT_ON:
873 return PCI_D0;
874 case PM_EVENT_FREEZE:
875 case PM_EVENT_PRETHAW:
876 /* REVISIT both freeze and pre-thaw "should" use D0 */
877 case PM_EVENT_SUSPEND:
878 case PM_EVENT_HIBERNATE:
879 return PCI_D3hot;
880 default:
881 dev_info(&dev->dev, "unrecognized suspend event %d\n",
882 state.event);
883 BUG();
884 }
885 return PCI_D0;
886 }
887
888 EXPORT_SYMBOL(pci_choose_state);
889
890 #define PCI_EXP_SAVE_REGS 7
891
892
893 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
894 u16 cap, bool extended)
895 {
896 struct pci_cap_saved_state *tmp;
897
898 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
899 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
900 return tmp;
901 }
902 return NULL;
903 }
904
905 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
906 {
907 return _pci_find_saved_cap(dev, cap, false);
908 }
909
910 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
911 {
912 return _pci_find_saved_cap(dev, cap, true);
913 }
914
915 static int pci_save_pcie_state(struct pci_dev *dev)
916 {
917 int i = 0;
918 struct pci_cap_saved_state *save_state;
919 u16 *cap;
920
921 if (!pci_is_pcie(dev))
922 return 0;
923
924 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
925 if (!save_state) {
926 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
927 return -ENOMEM;
928 }
929
930 cap = (u16 *)&save_state->cap.data[0];
931 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
932 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
933 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
934 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
935 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
936 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
937 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
938
939 return 0;
940 }
941
942 static void pci_restore_pcie_state(struct pci_dev *dev)
943 {
944 int i = 0;
945 struct pci_cap_saved_state *save_state;
946 u16 *cap;
947
948 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
949 if (!save_state)
950 return;
951
952 cap = (u16 *)&save_state->cap.data[0];
953 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
954 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
955 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
956 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
957 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
958 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
959 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
960 }
961
962
963 static int pci_save_pcix_state(struct pci_dev *dev)
964 {
965 int pos;
966 struct pci_cap_saved_state *save_state;
967
968 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
969 if (pos <= 0)
970 return 0;
971
972 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
973 if (!save_state) {
974 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
975 return -ENOMEM;
976 }
977
978 pci_read_config_word(dev, pos + PCI_X_CMD,
979 (u16 *)save_state->cap.data);
980
981 return 0;
982 }
983
984 static void pci_restore_pcix_state(struct pci_dev *dev)
985 {
986 int i = 0, pos;
987 struct pci_cap_saved_state *save_state;
988 u16 *cap;
989
990 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
991 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
992 if (!save_state || pos <= 0)
993 return;
994 cap = (u16 *)&save_state->cap.data[0];
995
996 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
997 }
998
999
1000 /**
1001 * pci_save_state - save the PCI configuration space of a device before suspending
1002 * @dev: - PCI device that we're dealing with
1003 */
1004 int
1005 pci_save_state(struct pci_dev *dev)
1006 {
1007 int i;
1008 /* XXX: 100% dword access ok here? */
1009 for (i = 0; i < 16; i++)
1010 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1011 dev->state_saved = true;
1012 if ((i = pci_save_pcie_state(dev)) != 0)
1013 return i;
1014 if ((i = pci_save_pcix_state(dev)) != 0)
1015 return i;
1016 if ((i = pci_save_vc_state(dev)) != 0)
1017 return i;
1018 return 0;
1019 }
1020
1021 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1022 u32 saved_val, int retry)
1023 {
1024 u32 val;
1025
1026 pci_read_config_dword(pdev, offset, &val);
1027 if (val == saved_val)
1028 return;
1029
1030 for (;;) {
1031 dev_dbg(&pdev->dev, "restoring config space at offset "
1032 "%#x (was %#x, writing %#x)\n", offset, val, saved_val);
1033 pci_write_config_dword(pdev, offset, saved_val);
1034 if (retry-- <= 0)
1035 return;
1036
1037 pci_read_config_dword(pdev, offset, &val);
1038 if (val == saved_val)
1039 return;
1040
1041 mdelay(1);
1042 }
1043 }
1044
1045 static void pci_restore_config_space_range(struct pci_dev *pdev,
1046 int start, int end, int retry)
1047 {
1048 int index;
1049
1050 for (index = end; index >= start; index--)
1051 pci_restore_config_dword(pdev, 4 * index,
1052 pdev->saved_config_space[index],
1053 retry);
1054 }
1055
1056 static void pci_restore_config_space(struct pci_dev *pdev)
1057 {
1058 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1059 pci_restore_config_space_range(pdev, 10, 15, 0);
1060 /* Restore BARs before the command register. */
1061 pci_restore_config_space_range(pdev, 4, 9, 10);
1062 pci_restore_config_space_range(pdev, 0, 3, 0);
1063 } else {
1064 pci_restore_config_space_range(pdev, 0, 15, 0);
1065 }
1066 }
1067
1068 /**
1069 * pci_restore_state - Restore the saved state of a PCI device
1070 * @dev: - PCI device that we're dealing with
1071 */
1072 void pci_restore_state(struct pci_dev *dev)
1073 {
1074 if (!dev->state_saved)
1075 return;
1076
1077 /* PCI Express register must be restored first */
1078 pci_restore_pcie_state(dev);
1079 pci_restore_ats_state(dev);
1080 pci_restore_vc_state(dev);
1081
1082 pci_restore_config_space(dev);
1083
1084 pci_restore_pcix_state(dev);
1085 pci_restore_msi_state(dev);
1086 pci_restore_iov_state(dev);
1087
1088 dev->state_saved = false;
1089 }
1090
1091 struct pci_saved_state {
1092 u32 config_space[16];
1093 struct pci_cap_saved_data cap[0];
1094 };
1095
1096 /**
1097 * pci_store_saved_state - Allocate and return an opaque struct containing
1098 * the device saved state.
1099 * @dev: PCI device that we're dealing with
1100 *
1101 * Return NULL if no state or error.
1102 */
1103 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1104 {
1105 struct pci_saved_state *state;
1106 struct pci_cap_saved_state *tmp;
1107 struct pci_cap_saved_data *cap;
1108 size_t size;
1109
1110 if (!dev->state_saved)
1111 return NULL;
1112
1113 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1114
1115 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1116 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1117
1118 state = kzalloc(size, GFP_KERNEL);
1119 if (!state)
1120 return NULL;
1121
1122 memcpy(state->config_space, dev->saved_config_space,
1123 sizeof(state->config_space));
1124
1125 cap = state->cap;
1126 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1127 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1128 memcpy(cap, &tmp->cap, len);
1129 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1130 }
1131 /* Empty cap_save terminates list */
1132
1133 return state;
1134 }
1135 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1136
1137 /**
1138 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1139 * @dev: PCI device that we're dealing with
1140 * @state: Saved state returned from pci_store_saved_state()
1141 */
1142 static int pci_load_saved_state(struct pci_dev *dev,
1143 struct pci_saved_state *state)
1144 {
1145 struct pci_cap_saved_data *cap;
1146
1147 dev->state_saved = false;
1148
1149 if (!state)
1150 return 0;
1151
1152 memcpy(dev->saved_config_space, state->config_space,
1153 sizeof(state->config_space));
1154
1155 cap = state->cap;
1156 while (cap->size) {
1157 struct pci_cap_saved_state *tmp;
1158
1159 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1160 if (!tmp || tmp->cap.size != cap->size)
1161 return -EINVAL;
1162
1163 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1164 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1165 sizeof(struct pci_cap_saved_data) + cap->size);
1166 }
1167
1168 dev->state_saved = true;
1169 return 0;
1170 }
1171
1172 /**
1173 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1174 * and free the memory allocated for it.
1175 * @dev: PCI device that we're dealing with
1176 * @state: Pointer to saved state returned from pci_store_saved_state()
1177 */
1178 int pci_load_and_free_saved_state(struct pci_dev *dev,
1179 struct pci_saved_state **state)
1180 {
1181 int ret = pci_load_saved_state(dev, *state);
1182 kfree(*state);
1183 *state = NULL;
1184 return ret;
1185 }
1186 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1187
1188 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1189 {
1190 return pci_enable_resources(dev, bars);
1191 }
1192
1193 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1194 {
1195 int err;
1196 u16 cmd;
1197 u8 pin;
1198
1199 err = pci_set_power_state(dev, PCI_D0);
1200 if (err < 0 && err != -EIO)
1201 return err;
1202 err = pcibios_enable_device(dev, bars);
1203 if (err < 0)
1204 return err;
1205 pci_fixup_device(pci_fixup_enable, dev);
1206
1207 if (dev->msi_enabled || dev->msix_enabled)
1208 return 0;
1209
1210 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1211 if (pin) {
1212 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1213 if (cmd & PCI_COMMAND_INTX_DISABLE)
1214 pci_write_config_word(dev, PCI_COMMAND,
1215 cmd & ~PCI_COMMAND_INTX_DISABLE);
1216 }
1217
1218 return 0;
1219 }
1220
1221 /**
1222 * pci_reenable_device - Resume abandoned device
1223 * @dev: PCI device to be resumed
1224 *
1225 * Note this function is a backend of pci_default_resume and is not supposed
1226 * to be called by normal code, write proper resume handler and use it instead.
1227 */
1228 int pci_reenable_device(struct pci_dev *dev)
1229 {
1230 if (pci_is_enabled(dev))
1231 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1232 return 0;
1233 }
1234
1235 static void pci_enable_bridge(struct pci_dev *dev)
1236 {
1237 struct pci_dev *bridge;
1238 int retval;
1239
1240 bridge = pci_upstream_bridge(dev);
1241 if (bridge)
1242 pci_enable_bridge(bridge);
1243
1244 if (pci_is_enabled(dev)) {
1245 if (!dev->is_busmaster)
1246 pci_set_master(dev);
1247 return;
1248 }
1249
1250 retval = pci_enable_device(dev);
1251 if (retval)
1252 dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n",
1253 retval);
1254 pci_set_master(dev);
1255 }
1256
1257 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1258 {
1259 struct pci_dev *bridge;
1260 int err;
1261 int i, bars = 0;
1262
1263 /*
1264 * Power state could be unknown at this point, either due to a fresh
1265 * boot or a device removal call. So get the current power state
1266 * so that things like MSI message writing will behave as expected
1267 * (e.g. if the device really is in D0 at enable time).
1268 */
1269 if (dev->pm_cap) {
1270 u16 pmcsr;
1271 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1272 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1273 }
1274
1275 if (atomic_inc_return(&dev->enable_cnt) > 1)
1276 return 0; /* already enabled */
1277
1278 bridge = pci_upstream_bridge(dev);
1279 if (bridge)
1280 pci_enable_bridge(bridge);
1281
1282 /* only skip sriov related */
1283 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1284 if (dev->resource[i].flags & flags)
1285 bars |= (1 << i);
1286 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1287 if (dev->resource[i].flags & flags)
1288 bars |= (1 << i);
1289
1290 err = do_pci_enable_device(dev, bars);
1291 if (err < 0)
1292 atomic_dec(&dev->enable_cnt);
1293 return err;
1294 }
1295
1296 /**
1297 * pci_enable_device_io - Initialize a device for use with IO space
1298 * @dev: PCI device to be initialized
1299 *
1300 * Initialize device before it's used by a driver. Ask low-level code
1301 * to enable I/O resources. Wake up the device if it was suspended.
1302 * Beware, this function can fail.
1303 */
1304 int pci_enable_device_io(struct pci_dev *dev)
1305 {
1306 return pci_enable_device_flags(dev, IORESOURCE_IO);
1307 }
1308
1309 /**
1310 * pci_enable_device_mem - Initialize a device for use with Memory space
1311 * @dev: PCI device to be initialized
1312 *
1313 * Initialize device before it's used by a driver. Ask low-level code
1314 * to enable Memory resources. Wake up the device if it was suspended.
1315 * Beware, this function can fail.
1316 */
1317 int pci_enable_device_mem(struct pci_dev *dev)
1318 {
1319 return pci_enable_device_flags(dev, IORESOURCE_MEM);
1320 }
1321
1322 /**
1323 * pci_enable_device - Initialize device before it's used by a driver.
1324 * @dev: PCI device to be initialized
1325 *
1326 * Initialize device before it's used by a driver. Ask low-level code
1327 * to enable I/O and memory. Wake up the device if it was suspended.
1328 * Beware, this function can fail.
1329 *
1330 * Note we don't actually enable the device many times if we call
1331 * this function repeatedly (we just increment the count).
1332 */
1333 int pci_enable_device(struct pci_dev *dev)
1334 {
1335 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1336 }
1337
1338 /*
1339 * Managed PCI resources. This manages device on/off, intx/msi/msix
1340 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1341 * there's no need to track it separately. pci_devres is initialized
1342 * when a device is enabled using managed PCI device enable interface.
1343 */
1344 struct pci_devres {
1345 unsigned int enabled:1;
1346 unsigned int pinned:1;
1347 unsigned int orig_intx:1;
1348 unsigned int restore_intx:1;
1349 u32 region_mask;
1350 };
1351
1352 static void pcim_release(struct device *gendev, void *res)
1353 {
1354 struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
1355 struct pci_devres *this = res;
1356 int i;
1357
1358 if (dev->msi_enabled)
1359 pci_disable_msi(dev);
1360 if (dev->msix_enabled)
1361 pci_disable_msix(dev);
1362
1363 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1364 if (this->region_mask & (1 << i))
1365 pci_release_region(dev, i);
1366
1367 if (this->restore_intx)
1368 pci_intx(dev, this->orig_intx);
1369
1370 if (this->enabled && !this->pinned)
1371 pci_disable_device(dev);
1372 }
1373
1374 static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
1375 {
1376 struct pci_devres *dr, *new_dr;
1377
1378 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1379 if (dr)
1380 return dr;
1381
1382 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1383 if (!new_dr)
1384 return NULL;
1385 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1386 }
1387
1388 static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
1389 {
1390 if (pci_is_managed(pdev))
1391 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1392 return NULL;
1393 }
1394
1395 /**
1396 * pcim_enable_device - Managed pci_enable_device()
1397 * @pdev: PCI device to be initialized
1398 *
1399 * Managed pci_enable_device().
1400 */
1401 int pcim_enable_device(struct pci_dev *pdev)
1402 {
1403 struct pci_devres *dr;
1404 int rc;
1405
1406 dr = get_pci_dr(pdev);
1407 if (unlikely(!dr))
1408 return -ENOMEM;
1409 if (dr->enabled)
1410 return 0;
1411
1412 rc = pci_enable_device(pdev);
1413 if (!rc) {
1414 pdev->is_managed = 1;
1415 dr->enabled = 1;
1416 }
1417 return rc;
1418 }
1419
1420 /**
1421 * pcim_pin_device - Pin managed PCI device
1422 * @pdev: PCI device to pin
1423 *
1424 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1425 * driver detach. @pdev must have been enabled with
1426 * pcim_enable_device().
1427 */
1428 void pcim_pin_device(struct pci_dev *pdev)
1429 {
1430 struct pci_devres *dr;
1431
1432 dr = find_pci_dr(pdev);
1433 WARN_ON(!dr || !dr->enabled);
1434 if (dr)
1435 dr->pinned = 1;
1436 }
1437
1438 /*
1439 * pcibios_add_device - provide arch specific hooks when adding device dev
1440 * @dev: the PCI device being added
1441 *
1442 * Permits the platform to provide architecture specific functionality when
1443 * devices are added. This is the default implementation. Architecture
1444 * implementations can override this.
1445 */
1446 int __weak pcibios_add_device (struct pci_dev *dev)
1447 {
1448 return 0;
1449 }
1450
1451 /**
1452 * pcibios_release_device - provide arch specific hooks when releasing device dev
1453 * @dev: the PCI device being released
1454 *
1455 * Permits the platform to provide architecture specific functionality when
1456 * devices are released. This is the default implementation. Architecture
1457 * implementations can override this.
1458 */
1459 void __weak pcibios_release_device(struct pci_dev *dev) {}
1460
1461 /**
1462 * pcibios_disable_device - disable arch specific PCI resources for device dev
1463 * @dev: the PCI device to disable
1464 *
1465 * Disables architecture specific PCI resources for the device. This
1466 * is the default implementation. Architecture implementations can
1467 * override this.
1468 */
1469 void __weak pcibios_disable_device (struct pci_dev *dev) {}
1470
1471 /**
1472 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1473 * @irq: ISA IRQ to penalize
1474 * @active: IRQ active or not
1475 *
1476 * Permits the platform to provide architecture-specific functionality when
1477 * penalizing ISA IRQs. This is the default implementation. Architecture
1478 * implementations can override this.
1479 */
1480 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1481
1482 static void do_pci_disable_device(struct pci_dev *dev)
1483 {
1484 u16 pci_command;
1485
1486 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1487 if (pci_command & PCI_COMMAND_MASTER) {
1488 pci_command &= ~PCI_COMMAND_MASTER;
1489 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1490 }
1491
1492 pcibios_disable_device(dev);
1493 }
1494
1495 /**
1496 * pci_disable_enabled_device - Disable device without updating enable_cnt
1497 * @dev: PCI device to disable
1498 *
1499 * NOTE: This function is a backend of PCI power management routines and is
1500 * not supposed to be called drivers.
1501 */
1502 void pci_disable_enabled_device(struct pci_dev *dev)
1503 {
1504 if (pci_is_enabled(dev))
1505 do_pci_disable_device(dev);
1506 }
1507
1508 /**
1509 * pci_disable_device - Disable PCI device after use
1510 * @dev: PCI device to be disabled
1511 *
1512 * Signal to the system that the PCI device is not in use by the system
1513 * anymore. This only involves disabling PCI bus-mastering, if active.
1514 *
1515 * Note we don't actually disable the device until all callers of
1516 * pci_enable_device() have called pci_disable_device().
1517 */
1518 void
1519 pci_disable_device(struct pci_dev *dev)
1520 {
1521 struct pci_devres *dr;
1522
1523 dr = find_pci_dr(dev);
1524 if (dr)
1525 dr->enabled = 0;
1526
1527 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1528 "disabling already-disabled device");
1529
1530 if (atomic_dec_return(&dev->enable_cnt) != 0)
1531 return;
1532
1533 do_pci_disable_device(dev);
1534
1535 dev->is_busmaster = 0;
1536 }
1537
1538 /**
1539 * pcibios_set_pcie_reset_state - set reset state for device dev
1540 * @dev: the PCIe device reset
1541 * @state: Reset state to enter into
1542 *
1543 *
1544 * Sets the PCIe reset state for the device. This is the default
1545 * implementation. Architecture implementations can override this.
1546 */
1547 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1548 enum pcie_reset_state state)
1549 {
1550 return -EINVAL;
1551 }
1552
1553 /**
1554 * pci_set_pcie_reset_state - set reset state for device dev
1555 * @dev: the PCIe device reset
1556 * @state: Reset state to enter into
1557 *
1558 *
1559 * Sets the PCI reset state for the device.
1560 */
1561 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1562 {
1563 return pcibios_set_pcie_reset_state(dev, state);
1564 }
1565
1566 /**
1567 * pci_check_pme_status - Check if given device has generated PME.
1568 * @dev: Device to check.
1569 *
1570 * Check the PME status of the device and if set, clear it and clear PME enable
1571 * (if set). Return 'true' if PME status and PME enable were both set or
1572 * 'false' otherwise.
1573 */
1574 bool pci_check_pme_status(struct pci_dev *dev)
1575 {
1576 int pmcsr_pos;
1577 u16 pmcsr;
1578 bool ret = false;
1579
1580 if (!dev->pm_cap)
1581 return false;
1582
1583 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1584 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1585 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1586 return false;
1587
1588 /* Clear PME status. */
1589 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1590 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1591 /* Disable PME to avoid interrupt flood. */
1592 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1593 ret = true;
1594 }
1595
1596 pci_write_config_word(dev, pmcsr_pos, pmcsr);
1597
1598 return ret;
1599 }
1600
1601 /**
1602 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1603 * @dev: Device to handle.
1604 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1605 *
1606 * Check if @dev has generated PME and queue a resume request for it in that
1607 * case.
1608 */
1609 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1610 {
1611 if (pme_poll_reset && dev->pme_poll)
1612 dev->pme_poll = false;
1613
1614 if (pci_check_pme_status(dev)) {
1615 pci_wakeup_event(dev);
1616 pm_request_resume(&dev->dev);
1617 }
1618 return 0;
1619 }
1620
1621 /**
1622 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1623 * @bus: Top bus of the subtree to walk.
1624 */
1625 void pci_pme_wakeup_bus(struct pci_bus *bus)
1626 {
1627 if (bus)
1628 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1629 }
1630
1631
1632 /**
1633 * pci_pme_capable - check the capability of PCI device to generate PME#
1634 * @dev: PCI device to handle.
1635 * @state: PCI state from which device will issue PME#.
1636 */
1637 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1638 {
1639 if (!dev->pm_cap)
1640 return false;
1641
1642 return !!(dev->pme_support & (1 << state));
1643 }
1644
1645 static void pci_pme_list_scan(struct work_struct *work)
1646 {
1647 struct pci_pme_device *pme_dev, *n;
1648
1649 mutex_lock(&pci_pme_list_mutex);
1650 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1651 if (pme_dev->dev->pme_poll) {
1652 struct pci_dev *bridge;
1653
1654 bridge = pme_dev->dev->bus->self;
1655 /*
1656 * If bridge is in low power state, the
1657 * configuration space of subordinate devices
1658 * may be not accessible
1659 */
1660 if (bridge && bridge->current_state != PCI_D0)
1661 continue;
1662 pci_pme_wakeup(pme_dev->dev, NULL);
1663 } else {
1664 list_del(&pme_dev->list);
1665 kfree(pme_dev);
1666 }
1667 }
1668 if (!list_empty(&pci_pme_list))
1669 schedule_delayed_work(&pci_pme_work,
1670 msecs_to_jiffies(PME_TIMEOUT));
1671 mutex_unlock(&pci_pme_list_mutex);
1672 }
1673
1674 /**
1675 * pci_pme_active - enable or disable PCI device's PME# function
1676 * @dev: PCI device to handle.
1677 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1678 *
1679 * The caller must verify that the device is capable of generating PME# before
1680 * calling this function with @enable equal to 'true'.
1681 */
1682 void pci_pme_active(struct pci_dev *dev, bool enable)
1683 {
1684 u16 pmcsr;
1685
1686 if (!dev->pme_support)
1687 return;
1688
1689 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1690 /* Clear PME_Status by writing 1 to it and enable PME# */
1691 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1692 if (!enable)
1693 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1694
1695 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1696
1697 /*
1698 * PCI (as opposed to PCIe) PME requires that the device have
1699 * its PME# line hooked up correctly. Not all hardware vendors
1700 * do this, so the PME never gets delivered and the device
1701 * remains asleep. The easiest way around this is to
1702 * periodically walk the list of suspended devices and check
1703 * whether any have their PME flag set. The assumption is that
1704 * we'll wake up often enough anyway that this won't be a huge
1705 * hit, and the power savings from the devices will still be a
1706 * win.
1707 *
1708 * Although PCIe uses in-band PME message instead of PME# line
1709 * to report PME, PME does not work for some PCIe devices in
1710 * reality. For example, there are devices that set their PME
1711 * status bits, but don't really bother to send a PME message;
1712 * there are PCI Express Root Ports that don't bother to
1713 * trigger interrupts when they receive PME messages from the
1714 * devices below. So PME poll is used for PCIe devices too.
1715 */
1716
1717 if (dev->pme_poll) {
1718 struct pci_pme_device *pme_dev;
1719 if (enable) {
1720 pme_dev = kmalloc(sizeof(struct pci_pme_device),
1721 GFP_KERNEL);
1722 if (!pme_dev) {
1723 dev_warn(&dev->dev, "can't enable PME#\n");
1724 return;
1725 }
1726 pme_dev->dev = dev;
1727 mutex_lock(&pci_pme_list_mutex);
1728 list_add(&pme_dev->list, &pci_pme_list);
1729 if (list_is_singular(&pci_pme_list))
1730 schedule_delayed_work(&pci_pme_work,
1731 msecs_to_jiffies(PME_TIMEOUT));
1732 mutex_unlock(&pci_pme_list_mutex);
1733 } else {
1734 mutex_lock(&pci_pme_list_mutex);
1735 list_for_each_entry(pme_dev, &pci_pme_list, list) {
1736 if (pme_dev->dev == dev) {
1737 list_del(&pme_dev->list);
1738 kfree(pme_dev);
1739 break;
1740 }
1741 }
1742 mutex_unlock(&pci_pme_list_mutex);
1743 }
1744 }
1745
1746 dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1747 }
1748
1749 /**
1750 * __pci_enable_wake - enable PCI device as wakeup event source
1751 * @dev: PCI device affected
1752 * @state: PCI state from which device will issue wakeup events
1753 * @runtime: True if the events are to be generated at run time
1754 * @enable: True to enable event generation; false to disable
1755 *
1756 * This enables the device as a wakeup event source, or disables it.
1757 * When such events involves platform-specific hooks, those hooks are
1758 * called automatically by this routine.
1759 *
1760 * Devices with legacy power management (no standard PCI PM capabilities)
1761 * always require such platform hooks.
1762 *
1763 * RETURN VALUE:
1764 * 0 is returned on success
1765 * -EINVAL is returned if device is not supposed to wake up the system
1766 * Error code depending on the platform is returned if both the platform and
1767 * the native mechanism fail to enable the generation of wake-up events
1768 */
1769 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1770 bool runtime, bool enable)
1771 {
1772 int ret = 0;
1773
1774 if (enable && !runtime && !device_may_wakeup(&dev->dev))
1775 return -EINVAL;
1776
1777 /* Don't do the same thing twice in a row for one device. */
1778 if (!!enable == !!dev->wakeup_prepared)
1779 return 0;
1780
1781 /*
1782 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1783 * Anderson we should be doing PME# wake enable followed by ACPI wake
1784 * enable. To disable wake-up we call the platform first, for symmetry.
1785 */
1786
1787 if (enable) {
1788 int error;
1789
1790 if (pci_pme_capable(dev, state))
1791 pci_pme_active(dev, true);
1792 else
1793 ret = 1;
1794 error = runtime ? platform_pci_run_wake(dev, true) :
1795 platform_pci_sleep_wake(dev, true);
1796 if (ret)
1797 ret = error;
1798 if (!ret)
1799 dev->wakeup_prepared = true;
1800 } else {
1801 if (runtime)
1802 platform_pci_run_wake(dev, false);
1803 else
1804 platform_pci_sleep_wake(dev, false);
1805 pci_pme_active(dev, false);
1806 dev->wakeup_prepared = false;
1807 }
1808
1809 return ret;
1810 }
1811 EXPORT_SYMBOL(__pci_enable_wake);
1812
1813 /**
1814 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1815 * @dev: PCI device to prepare
1816 * @enable: True to enable wake-up event generation; false to disable
1817 *
1818 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1819 * and this function allows them to set that up cleanly - pci_enable_wake()
1820 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1821 * ordering constraints.
1822 *
1823 * This function only returns error code if the device is not capable of
1824 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1825 * enable wake-up power for it.
1826 */
1827 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1828 {
1829 return pci_pme_capable(dev, PCI_D3cold) ?
1830 pci_enable_wake(dev, PCI_D3cold, enable) :
1831 pci_enable_wake(dev, PCI_D3hot, enable);
1832 }
1833
1834 /**
1835 * pci_target_state - find an appropriate low power state for a given PCI dev
1836 * @dev: PCI device
1837 *
1838 * Use underlying platform code to find a supported low power state for @dev.
1839 * If the platform can't manage @dev, return the deepest state from which it
1840 * can generate wake events, based on any available PME info.
1841 */
1842 static pci_power_t pci_target_state(struct pci_dev *dev)
1843 {
1844 pci_power_t target_state = PCI_D3hot;
1845
1846 if (platform_pci_power_manageable(dev)) {
1847 /*
1848 * Call the platform to choose the target state of the device
1849 * and enable wake-up from this state if supported.
1850 */
1851 pci_power_t state = platform_pci_choose_state(dev);
1852
1853 switch (state) {
1854 case PCI_POWER_ERROR:
1855 case PCI_UNKNOWN:
1856 break;
1857 case PCI_D1:
1858 case PCI_D2:
1859 if (pci_no_d1d2(dev))
1860 break;
1861 default:
1862 target_state = state;
1863 }
1864 } else if (!dev->pm_cap) {
1865 target_state = PCI_D0;
1866 } else if (device_may_wakeup(&dev->dev)) {
1867 /*
1868 * Find the deepest state from which the device can generate
1869 * wake-up events, make it the target state and enable device
1870 * to generate PME#.
1871 */
1872 if (dev->pme_support) {
1873 while (target_state
1874 && !(dev->pme_support & (1 << target_state)))
1875 target_state--;
1876 }
1877 }
1878
1879 return target_state;
1880 }
1881
1882 /**
1883 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1884 * @dev: Device to handle.
1885 *
1886 * Choose the power state appropriate for the device depending on whether
1887 * it can wake up the system and/or is power manageable by the platform
1888 * (PCI_D3hot is the default) and put the device into that state.
1889 */
1890 int pci_prepare_to_sleep(struct pci_dev *dev)
1891 {
1892 pci_power_t target_state = pci_target_state(dev);
1893 int error;
1894
1895 if (target_state == PCI_POWER_ERROR)
1896 return -EIO;
1897
1898 /* D3cold during system suspend/hibernate is not supported */
1899 if (target_state > PCI_D3hot)
1900 target_state = PCI_D3hot;
1901
1902 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1903
1904 error = pci_set_power_state(dev, target_state);
1905
1906 if (error)
1907 pci_enable_wake(dev, target_state, false);
1908
1909 return error;
1910 }
1911
1912 /**
1913 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1914 * @dev: Device to handle.
1915 *
1916 * Disable device's system wake-up capability and put it into D0.
1917 */
1918 int pci_back_from_sleep(struct pci_dev *dev)
1919 {
1920 pci_enable_wake(dev, PCI_D0, false);
1921 return pci_set_power_state(dev, PCI_D0);
1922 }
1923
1924 /**
1925 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
1926 * @dev: PCI device being suspended.
1927 *
1928 * Prepare @dev to generate wake-up events at run time and put it into a low
1929 * power state.
1930 */
1931 int pci_finish_runtime_suspend(struct pci_dev *dev)
1932 {
1933 pci_power_t target_state = pci_target_state(dev);
1934 int error;
1935
1936 if (target_state == PCI_POWER_ERROR)
1937 return -EIO;
1938
1939 dev->runtime_d3cold = target_state == PCI_D3cold;
1940
1941 __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
1942
1943 error = pci_set_power_state(dev, target_state);
1944
1945 if (error) {
1946 __pci_enable_wake(dev, target_state, true, false);
1947 dev->runtime_d3cold = false;
1948 }
1949
1950 return error;
1951 }
1952
1953 /**
1954 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
1955 * @dev: Device to check.
1956 *
1957 * Return true if the device itself is capable of generating wake-up events
1958 * (through the platform or using the native PCIe PME) or if the device supports
1959 * PME and one of its upstream bridges can generate wake-up events.
1960 */
1961 bool pci_dev_run_wake(struct pci_dev *dev)
1962 {
1963 struct pci_bus *bus = dev->bus;
1964
1965 if (device_run_wake(&dev->dev))
1966 return true;
1967
1968 if (!dev->pme_support)
1969 return false;
1970
1971 while (bus->parent) {
1972 struct pci_dev *bridge = bus->self;
1973
1974 if (device_run_wake(&bridge->dev))
1975 return true;
1976
1977 bus = bus->parent;
1978 }
1979
1980 /* We have reached the root bus. */
1981 if (bus->bridge)
1982 return device_run_wake(bus->bridge);
1983
1984 return false;
1985 }
1986 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
1987
1988 void pci_config_pm_runtime_get(struct pci_dev *pdev)
1989 {
1990 struct device *dev = &pdev->dev;
1991 struct device *parent = dev->parent;
1992
1993 if (parent)
1994 pm_runtime_get_sync(parent);
1995 pm_runtime_get_noresume(dev);
1996 /*
1997 * pdev->current_state is set to PCI_D3cold during suspending,
1998 * so wait until suspending completes
1999 */
2000 pm_runtime_barrier(dev);
2001 /*
2002 * Only need to resume devices in D3cold, because config
2003 * registers are still accessible for devices suspended but
2004 * not in D3cold.
2005 */
2006 if (pdev->current_state == PCI_D3cold)
2007 pm_runtime_resume(dev);
2008 }
2009
2010 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2011 {
2012 struct device *dev = &pdev->dev;
2013 struct device *parent = dev->parent;
2014
2015 pm_runtime_put(dev);
2016 if (parent)
2017 pm_runtime_put_sync(parent);
2018 }
2019
2020 /**
2021 * pci_pm_init - Initialize PM functions of given PCI device
2022 * @dev: PCI device to handle.
2023 */
2024 void pci_pm_init(struct pci_dev *dev)
2025 {
2026 int pm;
2027 u16 pmc;
2028
2029 pm_runtime_forbid(&dev->dev);
2030 pm_runtime_set_active(&dev->dev);
2031 pm_runtime_enable(&dev->dev);
2032 device_enable_async_suspend(&dev->dev);
2033 dev->wakeup_prepared = false;
2034
2035 dev->pm_cap = 0;
2036 dev->pme_support = 0;
2037
2038 /* find PCI PM capability in list */
2039 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2040 if (!pm)
2041 return;
2042 /* Check device's ability to generate PME# */
2043 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2044
2045 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2046 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
2047 pmc & PCI_PM_CAP_VER_MASK);
2048 return;
2049 }
2050
2051 dev->pm_cap = pm;
2052 dev->d3_delay = PCI_PM_D3_WAIT;
2053 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2054 dev->d3cold_allowed = true;
2055
2056 dev->d1_support = false;
2057 dev->d2_support = false;
2058 if (!pci_no_d1d2(dev)) {
2059 if (pmc & PCI_PM_CAP_D1)
2060 dev->d1_support = true;
2061 if (pmc & PCI_PM_CAP_D2)
2062 dev->d2_support = true;
2063
2064 if (dev->d1_support || dev->d2_support)
2065 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
2066 dev->d1_support ? " D1" : "",
2067 dev->d2_support ? " D2" : "");
2068 }
2069
2070 pmc &= PCI_PM_CAP_PME_MASK;
2071 if (pmc) {
2072 dev_printk(KERN_DEBUG, &dev->dev,
2073 "PME# supported from%s%s%s%s%s\n",
2074 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2075 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2076 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2077 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2078 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2079 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2080 dev->pme_poll = true;
2081 /*
2082 * Make device's PM flags reflect the wake-up capability, but
2083 * let the user space enable it to wake up the system as needed.
2084 */
2085 device_set_wakeup_capable(&dev->dev, true);
2086 /* Disable the PME# generation functionality */
2087 pci_pme_active(dev, false);
2088 }
2089 }
2090
2091 static void pci_add_saved_cap(struct pci_dev *pci_dev,
2092 struct pci_cap_saved_state *new_cap)
2093 {
2094 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2095 }
2096
2097 /**
2098 * _pci_add_cap_save_buffer - allocate buffer for saving given
2099 * capability registers
2100 * @dev: the PCI device
2101 * @cap: the capability to allocate the buffer for
2102 * @extended: Standard or Extended capability ID
2103 * @size: requested size of the buffer
2104 */
2105 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2106 bool extended, unsigned int size)
2107 {
2108 int pos;
2109 struct pci_cap_saved_state *save_state;
2110
2111 if (extended)
2112 pos = pci_find_ext_capability(dev, cap);
2113 else
2114 pos = pci_find_capability(dev, cap);
2115
2116 if (pos <= 0)
2117 return 0;
2118
2119 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2120 if (!save_state)
2121 return -ENOMEM;
2122
2123 save_state->cap.cap_nr = cap;
2124 save_state->cap.cap_extended = extended;
2125 save_state->cap.size = size;
2126 pci_add_saved_cap(dev, save_state);
2127
2128 return 0;
2129 }
2130
2131 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2132 {
2133 return _pci_add_cap_save_buffer(dev, cap, false, size);
2134 }
2135
2136 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2137 {
2138 return _pci_add_cap_save_buffer(dev, cap, true, size);
2139 }
2140
2141 /**
2142 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2143 * @dev: the PCI device
2144 */
2145 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2146 {
2147 int error;
2148
2149 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2150 PCI_EXP_SAVE_REGS * sizeof(u16));
2151 if (error)
2152 dev_err(&dev->dev,
2153 "unable to preallocate PCI Express save buffer\n");
2154
2155 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2156 if (error)
2157 dev_err(&dev->dev,
2158 "unable to preallocate PCI-X save buffer\n");
2159
2160 pci_allocate_vc_save_buffers(dev);
2161 }
2162
2163 void pci_free_cap_save_buffers(struct pci_dev *dev)
2164 {
2165 struct pci_cap_saved_state *tmp;
2166 struct hlist_node *n;
2167
2168 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2169 kfree(tmp);
2170 }
2171
2172 /**
2173 * pci_configure_ari - enable or disable ARI forwarding
2174 * @dev: the PCI device
2175 *
2176 * If @dev and its upstream bridge both support ARI, enable ARI in the
2177 * bridge. Otherwise, disable ARI in the bridge.
2178 */
2179 void pci_configure_ari(struct pci_dev *dev)
2180 {
2181 u32 cap;
2182 struct pci_dev *bridge;
2183
2184 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2185 return;
2186
2187 bridge = dev->bus->self;
2188 if (!bridge)
2189 return;
2190
2191 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2192 if (!(cap & PCI_EXP_DEVCAP2_ARI))
2193 return;
2194
2195 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2196 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2197 PCI_EXP_DEVCTL2_ARI);
2198 bridge->ari_enabled = 1;
2199 } else {
2200 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2201 PCI_EXP_DEVCTL2_ARI);
2202 bridge->ari_enabled = 0;
2203 }
2204 }
2205
2206 static int pci_acs_enable;
2207
2208 /**
2209 * pci_request_acs - ask for ACS to be enabled if supported
2210 */
2211 void pci_request_acs(void)
2212 {
2213 pci_acs_enable = 1;
2214 }
2215
2216 /**
2217 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2218 * @dev: the PCI device
2219 */
2220 static int pci_std_enable_acs(struct pci_dev *dev)
2221 {
2222 int pos;
2223 u16 cap;
2224 u16 ctrl;
2225
2226 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2227 if (!pos)
2228 return -ENODEV;
2229
2230 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2231 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2232
2233 /* Source Validation */
2234 ctrl |= (cap & PCI_ACS_SV);
2235
2236 /* P2P Request Redirect */
2237 ctrl |= (cap & PCI_ACS_RR);
2238
2239 /* P2P Completion Redirect */
2240 ctrl |= (cap & PCI_ACS_CR);
2241
2242 /* Upstream Forwarding */
2243 ctrl |= (cap & PCI_ACS_UF);
2244
2245 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2246
2247 return 0;
2248 }
2249
2250 /**
2251 * pci_enable_acs - enable ACS if hardware support it
2252 * @dev: the PCI device
2253 */
2254 void pci_enable_acs(struct pci_dev *dev)
2255 {
2256 if (!pci_acs_enable)
2257 return;
2258
2259 if (!pci_std_enable_acs(dev))
2260 return;
2261
2262 pci_dev_specific_enable_acs(dev);
2263 }
2264
2265 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2266 {
2267 int pos;
2268 u16 cap, ctrl;
2269
2270 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2271 if (!pos)
2272 return false;
2273
2274 /*
2275 * Except for egress control, capabilities are either required
2276 * or only required if controllable. Features missing from the
2277 * capability field can therefore be assumed as hard-wired enabled.
2278 */
2279 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2280 acs_flags &= (cap | PCI_ACS_EC);
2281
2282 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2283 return (ctrl & acs_flags) == acs_flags;
2284 }
2285
2286 /**
2287 * pci_acs_enabled - test ACS against required flags for a given device
2288 * @pdev: device to test
2289 * @acs_flags: required PCI ACS flags
2290 *
2291 * Return true if the device supports the provided flags. Automatically
2292 * filters out flags that are not implemented on multifunction devices.
2293 *
2294 * Note that this interface checks the effective ACS capabilities of the
2295 * device rather than the actual capabilities. For instance, most single
2296 * function endpoints are not required to support ACS because they have no
2297 * opportunity for peer-to-peer access. We therefore return 'true'
2298 * regardless of whether the device exposes an ACS capability. This makes
2299 * it much easier for callers of this function to ignore the actual type
2300 * or topology of the device when testing ACS support.
2301 */
2302 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2303 {
2304 int ret;
2305
2306 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2307 if (ret >= 0)
2308 return ret > 0;
2309
2310 /*
2311 * Conventional PCI and PCI-X devices never support ACS, either
2312 * effectively or actually. The shared bus topology implies that
2313 * any device on the bus can receive or snoop DMA.
2314 */
2315 if (!pci_is_pcie(pdev))
2316 return false;
2317
2318 switch (pci_pcie_type(pdev)) {
2319 /*
2320 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2321 * but since their primary interface is PCI/X, we conservatively
2322 * handle them as we would a non-PCIe device.
2323 */
2324 case PCI_EXP_TYPE_PCIE_BRIDGE:
2325 /*
2326 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
2327 * applicable... must never implement an ACS Extended Capability...".
2328 * This seems arbitrary, but we take a conservative interpretation
2329 * of this statement.
2330 */
2331 case PCI_EXP_TYPE_PCI_BRIDGE:
2332 case PCI_EXP_TYPE_RC_EC:
2333 return false;
2334 /*
2335 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2336 * implement ACS in order to indicate their peer-to-peer capabilities,
2337 * regardless of whether they are single- or multi-function devices.
2338 */
2339 case PCI_EXP_TYPE_DOWNSTREAM:
2340 case PCI_EXP_TYPE_ROOT_PORT:
2341 return pci_acs_flags_enabled(pdev, acs_flags);
2342 /*
2343 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2344 * implemented by the remaining PCIe types to indicate peer-to-peer
2345 * capabilities, but only when they are part of a multifunction
2346 * device. The footnote for section 6.12 indicates the specific
2347 * PCIe types included here.
2348 */
2349 case PCI_EXP_TYPE_ENDPOINT:
2350 case PCI_EXP_TYPE_UPSTREAM:
2351 case PCI_EXP_TYPE_LEG_END:
2352 case PCI_EXP_TYPE_RC_END:
2353 if (!pdev->multifunction)
2354 break;
2355
2356 return pci_acs_flags_enabled(pdev, acs_flags);
2357 }
2358
2359 /*
2360 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2361 * to single function devices with the exception of downstream ports.
2362 */
2363 return true;
2364 }
2365
2366 /**
2367 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2368 * @start: starting downstream device
2369 * @end: ending upstream device or NULL to search to the root bus
2370 * @acs_flags: required flags
2371 *
2372 * Walk up a device tree from start to end testing PCI ACS support. If
2373 * any step along the way does not support the required flags, return false.
2374 */
2375 bool pci_acs_path_enabled(struct pci_dev *start,
2376 struct pci_dev *end, u16 acs_flags)
2377 {
2378 struct pci_dev *pdev, *parent = start;
2379
2380 do {
2381 pdev = parent;
2382
2383 if (!pci_acs_enabled(pdev, acs_flags))
2384 return false;
2385
2386 if (pci_is_root_bus(pdev->bus))
2387 return (end == NULL);
2388
2389 parent = pdev->bus->self;
2390 } while (pdev != end);
2391
2392 return true;
2393 }
2394
2395 /**
2396 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2397 * @dev: the PCI device
2398 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
2399 *
2400 * Perform INTx swizzling for a device behind one level of bridge. This is
2401 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2402 * behind bridges on add-in cards. For devices with ARI enabled, the slot
2403 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2404 * the PCI Express Base Specification, Revision 2.1)
2405 */
2406 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
2407 {
2408 int slot;
2409
2410 if (pci_ari_enabled(dev->bus))
2411 slot = 0;
2412 else
2413 slot = PCI_SLOT(dev->devfn);
2414
2415 return (((pin - 1) + slot) % 4) + 1;
2416 }
2417
2418 int
2419 pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2420 {
2421 u8 pin;
2422
2423 pin = dev->pin;
2424 if (!pin)
2425 return -1;
2426
2427 while (!pci_is_root_bus(dev->bus)) {
2428 pin = pci_swizzle_interrupt_pin(dev, pin);
2429 dev = dev->bus->self;
2430 }
2431 *bridge = dev;
2432 return pin;
2433 }
2434
2435 /**
2436 * pci_common_swizzle - swizzle INTx all the way to root bridge
2437 * @dev: the PCI device
2438 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2439 *
2440 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
2441 * bridges all the way up to a PCI root bus.
2442 */
2443 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2444 {
2445 u8 pin = *pinp;
2446
2447 while (!pci_is_root_bus(dev->bus)) {
2448 pin = pci_swizzle_interrupt_pin(dev, pin);
2449 dev = dev->bus->self;
2450 }
2451 *pinp = pin;
2452 return PCI_SLOT(dev->devfn);
2453 }
2454
2455 /**
2456 * pci_release_region - Release a PCI bar
2457 * @pdev: PCI device whose resources were previously reserved by pci_request_region
2458 * @bar: BAR to release
2459 *
2460 * Releases the PCI I/O and memory resources previously reserved by a
2461 * successful call to pci_request_region. Call this function only
2462 * after all use of the PCI regions has ceased.
2463 */
2464 void pci_release_region(struct pci_dev *pdev, int bar)
2465 {
2466 struct pci_devres *dr;
2467
2468 if (pci_resource_len(pdev, bar) == 0)
2469 return;
2470 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
2471 release_region(pci_resource_start(pdev, bar),
2472 pci_resource_len(pdev, bar));
2473 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
2474 release_mem_region(pci_resource_start(pdev, bar),
2475 pci_resource_len(pdev, bar));
2476
2477 dr = find_pci_dr(pdev);
2478 if (dr)
2479 dr->region_mask &= ~(1 << bar);
2480 }
2481
2482 /**
2483 * __pci_request_region - Reserved PCI I/O and memory resource
2484 * @pdev: PCI device whose resources are to be reserved
2485 * @bar: BAR to be reserved
2486 * @res_name: Name to be associated with resource.
2487 * @exclusive: whether the region access is exclusive or not
2488 *
2489 * Mark the PCI region associated with PCI device @pdev BR @bar as
2490 * being reserved by owner @res_name. Do not access any
2491 * address inside the PCI regions unless this call returns
2492 * successfully.
2493 *
2494 * If @exclusive is set, then the region is marked so that userspace
2495 * is explicitly not allowed to map the resource via /dev/mem or
2496 * sysfs MMIO access.
2497 *
2498 * Returns 0 on success, or %EBUSY on error. A warning
2499 * message is also printed on failure.
2500 */
2501 static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
2502 int exclusive)
2503 {
2504 struct pci_devres *dr;
2505
2506 if (pci_resource_len(pdev, bar) == 0)
2507 return 0;
2508
2509 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
2510 if (!request_region(pci_resource_start(pdev, bar),
2511 pci_resource_len(pdev, bar), res_name))
2512 goto err_out;
2513 }
2514 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
2515 if (!__request_mem_region(pci_resource_start(pdev, bar),
2516 pci_resource_len(pdev, bar), res_name,
2517 exclusive))
2518 goto err_out;
2519 }
2520
2521 dr = find_pci_dr(pdev);
2522 if (dr)
2523 dr->region_mask |= 1 << bar;
2524
2525 return 0;
2526
2527 err_out:
2528 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
2529 &pdev->resource[bar]);
2530 return -EBUSY;
2531 }
2532
2533 /**
2534 * pci_request_region - Reserve PCI I/O and memory resource
2535 * @pdev: PCI device whose resources are to be reserved
2536 * @bar: BAR to be reserved
2537 * @res_name: Name to be associated with resource
2538 *
2539 * Mark the PCI region associated with PCI device @pdev BAR @bar as
2540 * being reserved by owner @res_name. Do not access any
2541 * address inside the PCI regions unless this call returns
2542 * successfully.
2543 *
2544 * Returns 0 on success, or %EBUSY on error. A warning
2545 * message is also printed on failure.
2546 */
2547 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
2548 {
2549 return __pci_request_region(pdev, bar, res_name, 0);
2550 }
2551
2552 /**
2553 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
2554 * @pdev: PCI device whose resources are to be reserved
2555 * @bar: BAR to be reserved
2556 * @res_name: Name to be associated with resource.
2557 *
2558 * Mark the PCI region associated with PCI device @pdev BR @bar as
2559 * being reserved by owner @res_name. Do not access any
2560 * address inside the PCI regions unless this call returns
2561 * successfully.
2562 *
2563 * Returns 0 on success, or %EBUSY on error. A warning
2564 * message is also printed on failure.
2565 *
2566 * The key difference that _exclusive makes it that userspace is
2567 * explicitly not allowed to map the resource via /dev/mem or
2568 * sysfs.
2569 */
2570 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
2571 {
2572 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
2573 }
2574 /**
2575 * pci_release_selected_regions - Release selected PCI I/O and memory resources
2576 * @pdev: PCI device whose resources were previously reserved
2577 * @bars: Bitmask of BARs to be released
2578 *
2579 * Release selected PCI I/O and memory resources previously reserved.
2580 * Call this function only after all use of the PCI regions has ceased.
2581 */
2582 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
2583 {
2584 int i;
2585
2586 for (i = 0; i < 6; i++)
2587 if (bars & (1 << i))
2588 pci_release_region(pdev, i);
2589 }
2590
2591 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
2592 const char *res_name, int excl)
2593 {
2594 int i;
2595
2596 for (i = 0; i < 6; i++)
2597 if (bars & (1 << i))
2598 if (__pci_request_region(pdev, i, res_name, excl))
2599 goto err_out;
2600 return 0;
2601
2602 err_out:
2603 while(--i >= 0)
2604 if (bars & (1 << i))
2605 pci_release_region(pdev, i);
2606
2607 return -EBUSY;
2608 }
2609
2610
2611 /**
2612 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2613 * @pdev: PCI device whose resources are to be reserved
2614 * @bars: Bitmask of BARs to be requested
2615 * @res_name: Name to be associated with resource
2616 */
2617 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
2618 const char *res_name)
2619 {
2620 return __pci_request_selected_regions(pdev, bars, res_name, 0);
2621 }
2622
2623 int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
2624 int bars, const char *res_name)
2625 {
2626 return __pci_request_selected_regions(pdev, bars, res_name,
2627 IORESOURCE_EXCLUSIVE);
2628 }
2629
2630 /**
2631 * pci_release_regions - Release reserved PCI I/O and memory resources
2632 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
2633 *
2634 * Releases all PCI I/O and memory resources previously reserved by a
2635 * successful call to pci_request_regions. Call this function only
2636 * after all use of the PCI regions has ceased.
2637 */
2638
2639 void pci_release_regions(struct pci_dev *pdev)
2640 {
2641 pci_release_selected_regions(pdev, (1 << 6) - 1);
2642 }
2643
2644 /**
2645 * pci_request_regions - Reserved PCI I/O and memory resources
2646 * @pdev: PCI device whose resources are to be reserved
2647 * @res_name: Name to be associated with resource.
2648 *
2649 * Mark all PCI regions associated with PCI device @pdev as
2650 * being reserved by owner @res_name. Do not access any
2651 * address inside the PCI regions unless this call returns
2652 * successfully.
2653 *
2654 * Returns 0 on success, or %EBUSY on error. A warning
2655 * message is also printed on failure.
2656 */
2657 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
2658 {
2659 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
2660 }
2661
2662 /**
2663 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
2664 * @pdev: PCI device whose resources are to be reserved
2665 * @res_name: Name to be associated with resource.
2666 *
2667 * Mark all PCI regions associated with PCI device @pdev as
2668 * being reserved by owner @res_name. Do not access any
2669 * address inside the PCI regions unless this call returns
2670 * successfully.
2671 *
2672 * pci_request_regions_exclusive() will mark the region so that
2673 * /dev/mem and the sysfs MMIO access will not be allowed.
2674 *
2675 * Returns 0 on success, or %EBUSY on error. A warning
2676 * message is also printed on failure.
2677 */
2678 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
2679 {
2680 return pci_request_selected_regions_exclusive(pdev,
2681 ((1 << 6) - 1), res_name);
2682 }
2683
2684 static void __pci_set_master(struct pci_dev *dev, bool enable)
2685 {
2686 u16 old_cmd, cmd;
2687
2688 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
2689 if (enable)
2690 cmd = old_cmd | PCI_COMMAND_MASTER;
2691 else
2692 cmd = old_cmd & ~PCI_COMMAND_MASTER;
2693 if (cmd != old_cmd) {
2694 dev_dbg(&dev->dev, "%s bus mastering\n",
2695 enable ? "enabling" : "disabling");
2696 pci_write_config_word(dev, PCI_COMMAND, cmd);
2697 }
2698 dev->is_busmaster = enable;
2699 }
2700
2701 /**
2702 * pcibios_setup - process "pci=" kernel boot arguments
2703 * @str: string used to pass in "pci=" kernel boot arguments
2704 *
2705 * Process kernel boot arguments. This is the default implementation.
2706 * Architecture specific implementations can override this as necessary.
2707 */
2708 char * __weak __init pcibios_setup(char *str)
2709 {
2710 return str;
2711 }
2712
2713 /**
2714 * pcibios_set_master - enable PCI bus-mastering for device dev
2715 * @dev: the PCI device to enable
2716 *
2717 * Enables PCI bus-mastering for the device. This is the default
2718 * implementation. Architecture specific implementations can override
2719 * this if necessary.
2720 */
2721 void __weak pcibios_set_master(struct pci_dev *dev)
2722 {
2723 u8 lat;
2724
2725 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
2726 if (pci_is_pcie(dev))
2727 return;
2728
2729 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
2730 if (lat < 16)
2731 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
2732 else if (lat > pcibios_max_latency)
2733 lat = pcibios_max_latency;
2734 else
2735 return;
2736
2737 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
2738 }
2739
2740 /**
2741 * pci_set_master - enables bus-mastering for device dev
2742 * @dev: the PCI device to enable
2743 *
2744 * Enables bus-mastering on the device and calls pcibios_set_master()
2745 * to do the needed arch specific settings.
2746 */
2747 void pci_set_master(struct pci_dev *dev)
2748 {
2749 __pci_set_master(dev, true);
2750 pcibios_set_master(dev);
2751 }
2752
2753 /**
2754 * pci_clear_master - disables bus-mastering for device dev
2755 * @dev: the PCI device to disable
2756 */
2757 void pci_clear_master(struct pci_dev *dev)
2758 {
2759 __pci_set_master(dev, false);
2760 }
2761
2762 /**
2763 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
2764 * @dev: the PCI device for which MWI is to be enabled
2765 *
2766 * Helper function for pci_set_mwi.
2767 * Originally copied from drivers/net/acenic.c.
2768 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
2769 *
2770 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2771 */
2772 int pci_set_cacheline_size(struct pci_dev *dev)
2773 {
2774 u8 cacheline_size;
2775
2776 if (!pci_cache_line_size)
2777 return -EINVAL;
2778
2779 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
2780 equal to or multiple of the right value. */
2781 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2782 if (cacheline_size >= pci_cache_line_size &&
2783 (cacheline_size % pci_cache_line_size) == 0)
2784 return 0;
2785
2786 /* Write the correct value. */
2787 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
2788 /* Read it back. */
2789 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2790 if (cacheline_size == pci_cache_line_size)
2791 return 0;
2792
2793 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
2794 "supported\n", pci_cache_line_size << 2);
2795
2796 return -EINVAL;
2797 }
2798 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
2799
2800 #ifdef PCI_DISABLE_MWI
2801 int pci_set_mwi(struct pci_dev *dev)
2802 {
2803 return 0;
2804 }
2805
2806 int pci_try_set_mwi(struct pci_dev *dev)
2807 {
2808 return 0;
2809 }
2810
2811 void pci_clear_mwi(struct pci_dev *dev)
2812 {
2813 }
2814
2815 #else
2816
2817 /**
2818 * pci_set_mwi - enables memory-write-invalidate PCI transaction
2819 * @dev: the PCI device for which MWI is enabled
2820 *
2821 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2822 *
2823 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2824 */
2825 int
2826 pci_set_mwi(struct pci_dev *dev)
2827 {
2828 int rc;
2829 u16 cmd;
2830
2831 rc = pci_set_cacheline_size(dev);
2832 if (rc)
2833 return rc;
2834
2835 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2836 if (! (cmd & PCI_COMMAND_INVALIDATE)) {
2837 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
2838 cmd |= PCI_COMMAND_INVALIDATE;
2839 pci_write_config_word(dev, PCI_COMMAND, cmd);
2840 }
2841
2842 return 0;
2843 }
2844
2845 /**
2846 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
2847 * @dev: the PCI device for which MWI is enabled
2848 *
2849 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2850 * Callers are not required to check the return value.
2851 *
2852 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2853 */
2854 int pci_try_set_mwi(struct pci_dev *dev)
2855 {
2856 int rc = pci_set_mwi(dev);
2857 return rc;
2858 }
2859
2860 /**
2861 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
2862 * @dev: the PCI device to disable
2863 *
2864 * Disables PCI Memory-Write-Invalidate transaction on the device
2865 */
2866 void
2867 pci_clear_mwi(struct pci_dev *dev)
2868 {
2869 u16 cmd;
2870
2871 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2872 if (cmd & PCI_COMMAND_INVALIDATE) {
2873 cmd &= ~PCI_COMMAND_INVALIDATE;
2874 pci_write_config_word(dev, PCI_COMMAND, cmd);
2875 }
2876 }
2877 #endif /* ! PCI_DISABLE_MWI */
2878
2879 /**
2880 * pci_intx - enables/disables PCI INTx for device dev
2881 * @pdev: the PCI device to operate on
2882 * @enable: boolean: whether to enable or disable PCI INTx
2883 *
2884 * Enables/disables PCI INTx for device dev
2885 */
2886 void
2887 pci_intx(struct pci_dev *pdev, int enable)
2888 {
2889 u16 pci_command, new;
2890
2891 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
2892
2893 if (enable) {
2894 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
2895 } else {
2896 new = pci_command | PCI_COMMAND_INTX_DISABLE;
2897 }
2898
2899 if (new != pci_command) {
2900 struct pci_devres *dr;
2901
2902 pci_write_config_word(pdev, PCI_COMMAND, new);
2903
2904 dr = find_pci_dr(pdev);
2905 if (dr && !dr->restore_intx) {
2906 dr->restore_intx = 1;
2907 dr->orig_intx = !enable;
2908 }
2909 }
2910 }
2911
2912 /**
2913 * pci_intx_mask_supported - probe for INTx masking support
2914 * @dev: the PCI device to operate on
2915 *
2916 * Check if the device dev support INTx masking via the config space
2917 * command word.
2918 */
2919 bool pci_intx_mask_supported(struct pci_dev *dev)
2920 {
2921 bool mask_supported = false;
2922 u16 orig, new;
2923
2924 if (dev->broken_intx_masking)
2925 return false;
2926
2927 pci_cfg_access_lock(dev);
2928
2929 pci_read_config_word(dev, PCI_COMMAND, &orig);
2930 pci_write_config_word(dev, PCI_COMMAND,
2931 orig ^ PCI_COMMAND_INTX_DISABLE);
2932 pci_read_config_word(dev, PCI_COMMAND, &new);
2933
2934 /*
2935 * There's no way to protect against hardware bugs or detect them
2936 * reliably, but as long as we know what the value should be, let's
2937 * go ahead and check it.
2938 */
2939 if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
2940 dev_err(&dev->dev, "Command register changed from "
2941 "0x%x to 0x%x: driver or hardware bug?\n", orig, new);
2942 } else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
2943 mask_supported = true;
2944 pci_write_config_word(dev, PCI_COMMAND, orig);
2945 }
2946
2947 pci_cfg_access_unlock(dev);
2948 return mask_supported;
2949 }
2950 EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
2951
2952 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
2953 {
2954 struct pci_bus *bus = dev->bus;
2955 bool mask_updated = true;
2956 u32 cmd_status_dword;
2957 u16 origcmd, newcmd;
2958 unsigned long flags;
2959 bool irq_pending;
2960
2961 /*
2962 * We do a single dword read to retrieve both command and status.
2963 * Document assumptions that make this possible.
2964 */
2965 BUILD_BUG_ON(PCI_COMMAND % 4);
2966 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
2967
2968 raw_spin_lock_irqsave(&pci_lock, flags);
2969
2970 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
2971
2972 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
2973
2974 /*
2975 * Check interrupt status register to see whether our device
2976 * triggered the interrupt (when masking) or the next IRQ is
2977 * already pending (when unmasking).
2978 */
2979 if (mask != irq_pending) {
2980 mask_updated = false;
2981 goto done;
2982 }
2983
2984 origcmd = cmd_status_dword;
2985 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
2986 if (mask)
2987 newcmd |= PCI_COMMAND_INTX_DISABLE;
2988 if (newcmd != origcmd)
2989 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
2990
2991 done:
2992 raw_spin_unlock_irqrestore(&pci_lock, flags);
2993
2994 return mask_updated;
2995 }
2996
2997 /**
2998 * pci_check_and_mask_intx - mask INTx on pending interrupt
2999 * @dev: the PCI device to operate on
3000 *
3001 * Check if the device dev has its INTx line asserted, mask it and
3002 * return true in that case. False is returned if not interrupt was
3003 * pending.
3004 */
3005 bool pci_check_and_mask_intx(struct pci_dev *dev)
3006 {
3007 return pci_check_and_set_intx_mask(dev, true);
3008 }
3009 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3010
3011 /**
3012 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
3013 * @dev: the PCI device to operate on
3014 *
3015 * Check if the device dev has its INTx line asserted, unmask it if not
3016 * and return true. False is returned and the mask remains active if
3017 * there was still an interrupt pending.
3018 */
3019 bool pci_check_and_unmask_intx(struct pci_dev *dev)
3020 {
3021 return pci_check_and_set_intx_mask(dev, false);
3022 }
3023 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3024
3025 /**
3026 * pci_msi_off - disables any MSI or MSI-X capabilities
3027 * @dev: the PCI device to operate on
3028 *
3029 * If you want to use MSI, see pci_enable_msi() and friends.
3030 * This is a lower-level primitive that allows us to disable
3031 * MSI operation at the device level.
3032 */
3033 void pci_msi_off(struct pci_dev *dev)
3034 {
3035 int pos;
3036 u16 control;
3037
3038 /*
3039 * This looks like it could go in msi.c, but we need it even when
3040 * CONFIG_PCI_MSI=n. For the same reason, we can't use
3041 * dev->msi_cap or dev->msix_cap here.
3042 */
3043 pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
3044 if (pos) {
3045 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
3046 control &= ~PCI_MSI_FLAGS_ENABLE;
3047 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
3048 }
3049 pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
3050 if (pos) {
3051 pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
3052 control &= ~PCI_MSIX_FLAGS_ENABLE;
3053 pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
3054 }
3055 }
3056 EXPORT_SYMBOL_GPL(pci_msi_off);
3057
3058 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
3059 {
3060 return dma_set_max_seg_size(&dev->dev, size);
3061 }
3062 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
3063
3064 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
3065 {
3066 return dma_set_seg_boundary(&dev->dev, mask);
3067 }
3068 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
3069
3070 /**
3071 * pci_wait_for_pending_transaction - waits for pending transaction
3072 * @dev: the PCI device to operate on
3073 *
3074 * Return 0 if transaction is pending 1 otherwise.
3075 */
3076 int pci_wait_for_pending_transaction(struct pci_dev *dev)
3077 {
3078 if (!pci_is_pcie(dev))
3079 return 1;
3080
3081 return pci_wait_for_pending(dev, PCI_EXP_DEVSTA, PCI_EXP_DEVSTA_TRPND);
3082 }
3083 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
3084
3085 static int pcie_flr(struct pci_dev *dev, int probe)
3086 {
3087 u32 cap;
3088
3089 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3090 if (!(cap & PCI_EXP_DEVCAP_FLR))
3091 return -ENOTTY;
3092
3093 if (probe)
3094 return 0;
3095
3096 if (!pci_wait_for_pending_transaction(dev))
3097 dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
3098
3099 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
3100
3101 msleep(100);
3102
3103 return 0;
3104 }
3105
3106 static int pci_af_flr(struct pci_dev *dev, int probe)
3107 {
3108 int pos;
3109 u8 cap;
3110
3111 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3112 if (!pos)
3113 return -ENOTTY;
3114
3115 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3116 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3117 return -ENOTTY;
3118
3119 if (probe)
3120 return 0;
3121
3122 /* Wait for Transaction Pending bit clean */
3123 if (pci_wait_for_pending(dev, PCI_AF_STATUS, PCI_AF_STATUS_TP))
3124 goto clear;
3125
3126 dev_err(&dev->dev, "transaction is not cleared; "
3127 "proceeding with reset anyway\n");
3128
3129 clear:
3130 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3131 msleep(100);
3132
3133 return 0;
3134 }
3135
3136 /**
3137 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3138 * @dev: Device to reset.
3139 * @probe: If set, only check if the device can be reset this way.
3140 *
3141 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3142 * unset, it will be reinitialized internally when going from PCI_D3hot to
3143 * PCI_D0. If that's the case and the device is not in a low-power state
3144 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3145 *
3146 * NOTE: This causes the caller to sleep for twice the device power transition
3147 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3148 * by default (i.e. unless the @dev's d3_delay field has a different value).
3149 * Moreover, only devices in D0 can be reset by this function.
3150 */
3151 static int pci_pm_reset(struct pci_dev *dev, int probe)
3152 {
3153 u16 csr;
3154
3155 if (!dev->pm_cap)
3156 return -ENOTTY;
3157
3158 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3159 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3160 return -ENOTTY;
3161
3162 if (probe)
3163 return 0;
3164
3165 if (dev->current_state != PCI_D0)
3166 return -EINVAL;
3167
3168 csr &= ~PCI_PM_CTRL_STATE_MASK;
3169 csr |= PCI_D3hot;
3170 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3171 pci_dev_d3_sleep(dev);
3172
3173 csr &= ~PCI_PM_CTRL_STATE_MASK;
3174 csr |= PCI_D0;
3175 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3176 pci_dev_d3_sleep(dev);
3177
3178 return 0;
3179 }
3180
3181 /**
3182 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
3183 * @dev: Bridge device
3184 *
3185 * Use the bridge control register to assert reset on the secondary bus.
3186 * Devices on the secondary bus are left in power-on state.
3187 */
3188 void pci_reset_bridge_secondary_bus(struct pci_dev *dev)
3189 {
3190 u16 ctrl;
3191
3192 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
3193 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3194 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3195 /*
3196 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
3197 * this to 2ms to ensure that we meet the minimum requirement.
3198 */
3199 msleep(2);
3200
3201 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3202 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3203
3204 /*
3205 * Trhfa for conventional PCI is 2^25 clock cycles.
3206 * Assuming a minimum 33MHz clock this results in a 1s
3207 * delay before we can consider subordinate devices to
3208 * be re-initialized. PCIe has some ways to shorten this,
3209 * but we don't make use of them yet.
3210 */
3211 ssleep(1);
3212 }
3213 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
3214
3215 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
3216 {
3217 struct pci_dev *pdev;
3218
3219 if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self)
3220 return -ENOTTY;
3221
3222 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3223 if (pdev != dev)
3224 return -ENOTTY;
3225
3226 if (probe)
3227 return 0;
3228
3229 pci_reset_bridge_secondary_bus(dev->bus->self);
3230
3231 return 0;
3232 }
3233
3234 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
3235 {
3236 int rc = -ENOTTY;
3237
3238 if (!hotplug || !try_module_get(hotplug->ops->owner))
3239 return rc;
3240
3241 if (hotplug->ops->reset_slot)
3242 rc = hotplug->ops->reset_slot(hotplug, probe);
3243
3244 module_put(hotplug->ops->owner);
3245
3246 return rc;
3247 }
3248
3249 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
3250 {
3251 struct pci_dev *pdev;
3252
3253 if (dev->subordinate || !dev->slot)
3254 return -ENOTTY;
3255
3256 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3257 if (pdev != dev && pdev->slot == dev->slot)
3258 return -ENOTTY;
3259
3260 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
3261 }
3262
3263 static int __pci_dev_reset(struct pci_dev *dev, int probe)
3264 {
3265 int rc;
3266
3267 might_sleep();
3268
3269 rc = pci_dev_specific_reset(dev, probe);
3270 if (rc != -ENOTTY)
3271 goto done;
3272
3273 rc = pcie_flr(dev, probe);
3274 if (rc != -ENOTTY)
3275 goto done;
3276
3277 rc = pci_af_flr(dev, probe);
3278 if (rc != -ENOTTY)
3279 goto done;
3280
3281 rc = pci_pm_reset(dev, probe);
3282 if (rc != -ENOTTY)
3283 goto done;
3284
3285 rc = pci_dev_reset_slot_function(dev, probe);
3286 if (rc != -ENOTTY)
3287 goto done;
3288
3289 rc = pci_parent_bus_reset(dev, probe);
3290 done:
3291 return rc;
3292 }
3293
3294 static void pci_dev_lock(struct pci_dev *dev)
3295 {
3296 pci_cfg_access_lock(dev);
3297 /* block PM suspend, driver probe, etc. */
3298 device_lock(&dev->dev);
3299 }
3300
3301 /* Return 1 on successful lock, 0 on contention */
3302 static int pci_dev_trylock(struct pci_dev *dev)
3303 {
3304 if (pci_cfg_access_trylock(dev)) {
3305 if (device_trylock(&dev->dev))
3306 return 1;
3307 pci_cfg_access_unlock(dev);
3308 }
3309
3310 return 0;
3311 }
3312
3313 static void pci_dev_unlock(struct pci_dev *dev)
3314 {
3315 device_unlock(&dev->dev);
3316 pci_cfg_access_unlock(dev);
3317 }
3318
3319 static void pci_dev_save_and_disable(struct pci_dev *dev)
3320 {
3321 /*
3322 * Wake-up device prior to save. PM registers default to D0 after
3323 * reset and a simple register restore doesn't reliably return
3324 * to a non-D0 state anyway.
3325 */
3326 pci_set_power_state(dev, PCI_D0);
3327
3328 pci_save_state(dev);
3329 /*
3330 * Disable the device by clearing the Command register, except for
3331 * INTx-disable which is set. This not only disables MMIO and I/O port
3332 * BARs, but also prevents the device from being Bus Master, preventing
3333 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
3334 * compliant devices, INTx-disable prevents legacy interrupts.
3335 */
3336 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
3337 }
3338
3339 static void pci_dev_restore(struct pci_dev *dev)
3340 {
3341 pci_restore_state(dev);
3342 }
3343
3344 static int pci_dev_reset(struct pci_dev *dev, int probe)
3345 {
3346 int rc;
3347
3348 if (!probe)
3349 pci_dev_lock(dev);
3350
3351 rc = __pci_dev_reset(dev, probe);
3352
3353 if (!probe)
3354 pci_dev_unlock(dev);
3355
3356 return rc;
3357 }
3358 /**
3359 * __pci_reset_function - reset a PCI device function
3360 * @dev: PCI device to reset
3361 *
3362 * Some devices allow an individual function to be reset without affecting
3363 * other functions in the same device. The PCI device must be responsive
3364 * to PCI config space in order to use this function.
3365 *
3366 * The device function is presumed to be unused when this function is called.
3367 * Resetting the device will make the contents of PCI configuration space
3368 * random, so any caller of this must be prepared to reinitialise the
3369 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3370 * etc.
3371 *
3372 * Returns 0 if the device function was successfully reset or negative if the
3373 * device doesn't support resetting a single function.
3374 */
3375 int __pci_reset_function(struct pci_dev *dev)
3376 {
3377 return pci_dev_reset(dev, 0);
3378 }
3379 EXPORT_SYMBOL_GPL(__pci_reset_function);
3380
3381 /**
3382 * __pci_reset_function_locked - reset a PCI device function while holding
3383 * the @dev mutex lock.
3384 * @dev: PCI device to reset
3385 *
3386 * Some devices allow an individual function to be reset without affecting
3387 * other functions in the same device. The PCI device must be responsive
3388 * to PCI config space in order to use this function.
3389 *
3390 * The device function is presumed to be unused and the caller is holding
3391 * the device mutex lock when this function is called.
3392 * Resetting the device will make the contents of PCI configuration space
3393 * random, so any caller of this must be prepared to reinitialise the
3394 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3395 * etc.
3396 *
3397 * Returns 0 if the device function was successfully reset or negative if the
3398 * device doesn't support resetting a single function.
3399 */
3400 int __pci_reset_function_locked(struct pci_dev *dev)
3401 {
3402 return __pci_dev_reset(dev, 0);
3403 }
3404 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
3405
3406 /**
3407 * pci_probe_reset_function - check whether the device can be safely reset
3408 * @dev: PCI device to reset
3409 *
3410 * Some devices allow an individual function to be reset without affecting
3411 * other functions in the same device. The PCI device must be responsive
3412 * to PCI config space in order to use this function.
3413 *
3414 * Returns 0 if the device function can be reset or negative if the
3415 * device doesn't support resetting a single function.
3416 */
3417 int pci_probe_reset_function(struct pci_dev *dev)
3418 {
3419 return pci_dev_reset(dev, 1);
3420 }
3421
3422 /**
3423 * pci_reset_function - quiesce and reset a PCI device function
3424 * @dev: PCI device to reset
3425 *
3426 * Some devices allow an individual function to be reset without affecting
3427 * other functions in the same device. The PCI device must be responsive
3428 * to PCI config space in order to use this function.
3429 *
3430 * This function does not just reset the PCI portion of a device, but
3431 * clears all the state associated with the device. This function differs
3432 * from __pci_reset_function in that it saves and restores device state
3433 * over the reset.
3434 *
3435 * Returns 0 if the device function was successfully reset or negative if the
3436 * device doesn't support resetting a single function.
3437 */
3438 int pci_reset_function(struct pci_dev *dev)
3439 {
3440 int rc;
3441
3442 rc = pci_dev_reset(dev, 1);
3443 if (rc)
3444 return rc;
3445
3446 pci_dev_save_and_disable(dev);
3447
3448 rc = pci_dev_reset(dev, 0);
3449
3450 pci_dev_restore(dev);
3451
3452 return rc;
3453 }
3454 EXPORT_SYMBOL_GPL(pci_reset_function);
3455
3456 /**
3457 * pci_try_reset_function - quiesce and reset a PCI device function
3458 * @dev: PCI device to reset
3459 *
3460 * Same as above, except return -EAGAIN if unable to lock device.
3461 */
3462 int pci_try_reset_function(struct pci_dev *dev)
3463 {
3464 int rc;
3465
3466 rc = pci_dev_reset(dev, 1);
3467 if (rc)
3468 return rc;
3469
3470 pci_dev_save_and_disable(dev);
3471
3472 if (pci_dev_trylock(dev)) {
3473 rc = __pci_dev_reset(dev, 0);
3474 pci_dev_unlock(dev);
3475 } else
3476 rc = -EAGAIN;
3477
3478 pci_dev_restore(dev);
3479
3480 return rc;
3481 }
3482 EXPORT_SYMBOL_GPL(pci_try_reset_function);
3483
3484 /* Lock devices from the top of the tree down */
3485 static void pci_bus_lock(struct pci_bus *bus)
3486 {
3487 struct pci_dev *dev;
3488
3489 list_for_each_entry(dev, &bus->devices, bus_list) {
3490 pci_dev_lock(dev);
3491 if (dev->subordinate)
3492 pci_bus_lock(dev->subordinate);
3493 }
3494 }
3495
3496 /* Unlock devices from the bottom of the tree up */
3497 static void pci_bus_unlock(struct pci_bus *bus)
3498 {
3499 struct pci_dev *dev;
3500
3501 list_for_each_entry(dev, &bus->devices, bus_list) {
3502 if (dev->subordinate)
3503 pci_bus_unlock(dev->subordinate);
3504 pci_dev_unlock(dev);
3505 }
3506 }
3507
3508 /* Return 1 on successful lock, 0 on contention */
3509 static int pci_bus_trylock(struct pci_bus *bus)
3510 {
3511 struct pci_dev *dev;
3512
3513 list_for_each_entry(dev, &bus->devices, bus_list) {
3514 if (!pci_dev_trylock(dev))
3515 goto unlock;
3516 if (dev->subordinate) {
3517 if (!pci_bus_trylock(dev->subordinate)) {
3518 pci_dev_unlock(dev);
3519 goto unlock;
3520 }
3521 }
3522 }
3523 return 1;
3524
3525 unlock:
3526 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
3527 if (dev->subordinate)
3528 pci_bus_unlock(dev->subordinate);
3529 pci_dev_unlock(dev);
3530 }
3531 return 0;
3532 }
3533
3534 /* Lock devices from the top of the tree down */
3535 static void pci_slot_lock(struct pci_slot *slot)
3536 {
3537 struct pci_dev *dev;
3538
3539 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3540 if (!dev->slot || dev->slot != slot)
3541 continue;
3542 pci_dev_lock(dev);
3543 if (dev->subordinate)
3544 pci_bus_lock(dev->subordinate);
3545 }
3546 }
3547
3548 /* Unlock devices from the bottom of the tree up */
3549 static void pci_slot_unlock(struct pci_slot *slot)
3550 {
3551 struct pci_dev *dev;
3552
3553 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3554 if (!dev->slot || dev->slot != slot)
3555 continue;
3556 if (dev->subordinate)
3557 pci_bus_unlock(dev->subordinate);
3558 pci_dev_unlock(dev);
3559 }
3560 }
3561
3562 /* Return 1 on successful lock, 0 on contention */
3563 static int pci_slot_trylock(struct pci_slot *slot)
3564 {
3565 struct pci_dev *dev;
3566
3567 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3568 if (!dev->slot || dev->slot != slot)
3569 continue;
3570 if (!pci_dev_trylock(dev))
3571 goto unlock;
3572 if (dev->subordinate) {
3573 if (!pci_bus_trylock(dev->subordinate)) {
3574 pci_dev_unlock(dev);
3575 goto unlock;
3576 }
3577 }
3578 }
3579 return 1;
3580
3581 unlock:
3582 list_for_each_entry_continue_reverse(dev,
3583 &slot->bus->devices, bus_list) {
3584 if (!dev->slot || dev->slot != slot)
3585 continue;
3586 if (dev->subordinate)
3587 pci_bus_unlock(dev->subordinate);
3588 pci_dev_unlock(dev);
3589 }
3590 return 0;
3591 }
3592
3593 /* Save and disable devices from the top of the tree down */
3594 static void pci_bus_save_and_disable(struct pci_bus *bus)
3595 {
3596 struct pci_dev *dev;
3597
3598 list_for_each_entry(dev, &bus->devices, bus_list) {
3599 pci_dev_save_and_disable(dev);
3600 if (dev->subordinate)
3601 pci_bus_save_and_disable(dev->subordinate);
3602 }
3603 }
3604
3605 /*
3606 * Restore devices from top of the tree down - parent bridges need to be
3607 * restored before we can get to subordinate devices.
3608 */
3609 static void pci_bus_restore(struct pci_bus *bus)
3610 {
3611 struct pci_dev *dev;
3612
3613 list_for_each_entry(dev, &bus->devices, bus_list) {
3614 pci_dev_restore(dev);
3615 if (dev->subordinate)
3616 pci_bus_restore(dev->subordinate);
3617 }
3618 }
3619
3620 /* Save and disable devices from the top of the tree down */
3621 static void pci_slot_save_and_disable(struct pci_slot *slot)
3622 {
3623 struct pci_dev *dev;
3624
3625 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3626 if (!dev->slot || dev->slot != slot)
3627 continue;
3628 pci_dev_save_and_disable(dev);
3629 if (dev->subordinate)
3630 pci_bus_save_and_disable(dev->subordinate);
3631 }
3632 }
3633
3634 /*
3635 * Restore devices from top of the tree down - parent bridges need to be
3636 * restored before we can get to subordinate devices.
3637 */
3638 static void pci_slot_restore(struct pci_slot *slot)
3639 {
3640 struct pci_dev *dev;
3641
3642 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3643 if (!dev->slot || dev->slot != slot)
3644 continue;
3645 pci_dev_restore(dev);
3646 if (dev->subordinate)
3647 pci_bus_restore(dev->subordinate);
3648 }
3649 }
3650
3651 static int pci_slot_reset(struct pci_slot *slot, int probe)
3652 {
3653 int rc;
3654
3655 if (!slot)
3656 return -ENOTTY;
3657
3658 if (!probe)
3659 pci_slot_lock(slot);
3660
3661 might_sleep();
3662
3663 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
3664
3665 if (!probe)
3666 pci_slot_unlock(slot);
3667
3668 return rc;
3669 }
3670
3671 /**
3672 * pci_probe_reset_slot - probe whether a PCI slot can be reset
3673 * @slot: PCI slot to probe
3674 *
3675 * Return 0 if slot can be reset, negative if a slot reset is not supported.
3676 */
3677 int pci_probe_reset_slot(struct pci_slot *slot)
3678 {
3679 return pci_slot_reset(slot, 1);
3680 }
3681 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
3682
3683 /**
3684 * pci_reset_slot - reset a PCI slot
3685 * @slot: PCI slot to reset
3686 *
3687 * A PCI bus may host multiple slots, each slot may support a reset mechanism
3688 * independent of other slots. For instance, some slots may support slot power
3689 * control. In the case of a 1:1 bus to slot architecture, this function may
3690 * wrap the bus reset to avoid spurious slot related events such as hotplug.
3691 * Generally a slot reset should be attempted before a bus reset. All of the
3692 * function of the slot and any subordinate buses behind the slot are reset
3693 * through this function. PCI config space of all devices in the slot and
3694 * behind the slot is saved before and restored after reset.
3695 *
3696 * Return 0 on success, non-zero on error.
3697 */
3698 int pci_reset_slot(struct pci_slot *slot)
3699 {
3700 int rc;
3701
3702 rc = pci_slot_reset(slot, 1);
3703 if (rc)
3704 return rc;
3705
3706 pci_slot_save_and_disable(slot);
3707
3708 rc = pci_slot_reset(slot, 0);
3709
3710 pci_slot_restore(slot);
3711
3712 return rc;
3713 }
3714 EXPORT_SYMBOL_GPL(pci_reset_slot);
3715
3716 /**
3717 * pci_try_reset_slot - Try to reset a PCI slot
3718 * @slot: PCI slot to reset
3719 *
3720 * Same as above except return -EAGAIN if the slot cannot be locked
3721 */
3722 int pci_try_reset_slot(struct pci_slot *slot)
3723 {
3724 int rc;
3725
3726 rc = pci_slot_reset(slot, 1);
3727 if (rc)
3728 return rc;
3729
3730 pci_slot_save_and_disable(slot);
3731
3732 if (pci_slot_trylock(slot)) {
3733 might_sleep();
3734 rc = pci_reset_hotplug_slot(slot->hotplug, 0);
3735 pci_slot_unlock(slot);
3736 } else
3737 rc = -EAGAIN;
3738
3739 pci_slot_restore(slot);
3740
3741 return rc;
3742 }
3743 EXPORT_SYMBOL_GPL(pci_try_reset_slot);
3744
3745 static int pci_bus_reset(struct pci_bus *bus, int probe)
3746 {
3747 if (!bus->self)
3748 return -ENOTTY;
3749
3750 if (probe)
3751 return 0;
3752
3753 pci_bus_lock(bus);
3754
3755 might_sleep();
3756
3757 pci_reset_bridge_secondary_bus(bus->self);
3758
3759 pci_bus_unlock(bus);
3760
3761 return 0;
3762 }
3763
3764 /**
3765 * pci_probe_reset_bus - probe whether a PCI bus can be reset
3766 * @bus: PCI bus to probe
3767 *
3768 * Return 0 if bus can be reset, negative if a bus reset is not supported.
3769 */
3770 int pci_probe_reset_bus(struct pci_bus *bus)
3771 {
3772 return pci_bus_reset(bus, 1);
3773 }
3774 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
3775
3776 /**
3777 * pci_reset_bus - reset a PCI bus
3778 * @bus: top level PCI bus to reset
3779 *
3780 * Do a bus reset on the given bus and any subordinate buses, saving
3781 * and restoring state of all devices.
3782 *
3783 * Return 0 on success, non-zero on error.
3784 */
3785 int pci_reset_bus(struct pci_bus *bus)
3786 {
3787 int rc;
3788
3789 rc = pci_bus_reset(bus, 1);
3790 if (rc)
3791 return rc;
3792
3793 pci_bus_save_and_disable(bus);
3794
3795 rc = pci_bus_reset(bus, 0);
3796
3797 pci_bus_restore(bus);
3798
3799 return rc;
3800 }
3801 EXPORT_SYMBOL_GPL(pci_reset_bus);
3802
3803 /**
3804 * pci_try_reset_bus - Try to reset a PCI bus
3805 * @bus: top level PCI bus to reset
3806 *
3807 * Same as above except return -EAGAIN if the bus cannot be locked
3808 */
3809 int pci_try_reset_bus(struct pci_bus *bus)
3810 {
3811 int rc;
3812
3813 rc = pci_bus_reset(bus, 1);
3814 if (rc)
3815 return rc;
3816
3817 pci_bus_save_and_disable(bus);
3818
3819 if (pci_bus_trylock(bus)) {
3820 might_sleep();
3821 pci_reset_bridge_secondary_bus(bus->self);
3822 pci_bus_unlock(bus);
3823 } else
3824 rc = -EAGAIN;
3825
3826 pci_bus_restore(bus);
3827
3828 return rc;
3829 }
3830 EXPORT_SYMBOL_GPL(pci_try_reset_bus);
3831
3832 /**
3833 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
3834 * @dev: PCI device to query
3835 *
3836 * Returns mmrbc: maximum designed memory read count in bytes
3837 * or appropriate error value.
3838 */
3839 int pcix_get_max_mmrbc(struct pci_dev *dev)
3840 {
3841 int cap;
3842 u32 stat;
3843
3844 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3845 if (!cap)
3846 return -EINVAL;
3847
3848 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3849 return -EINVAL;
3850
3851 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
3852 }
3853 EXPORT_SYMBOL(pcix_get_max_mmrbc);
3854
3855 /**
3856 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
3857 * @dev: PCI device to query
3858 *
3859 * Returns mmrbc: maximum memory read count in bytes
3860 * or appropriate error value.
3861 */
3862 int pcix_get_mmrbc(struct pci_dev *dev)
3863 {
3864 int cap;
3865 u16 cmd;
3866
3867 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3868 if (!cap)
3869 return -EINVAL;
3870
3871 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3872 return -EINVAL;
3873
3874 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
3875 }
3876 EXPORT_SYMBOL(pcix_get_mmrbc);
3877
3878 /**
3879 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
3880 * @dev: PCI device to query
3881 * @mmrbc: maximum memory read count in bytes
3882 * valid values are 512, 1024, 2048, 4096
3883 *
3884 * If possible sets maximum memory read byte count, some bridges have erratas
3885 * that prevent this.
3886 */
3887 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
3888 {
3889 int cap;
3890 u32 stat, v, o;
3891 u16 cmd;
3892
3893 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
3894 return -EINVAL;
3895
3896 v = ffs(mmrbc) - 10;
3897
3898 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3899 if (!cap)
3900 return -EINVAL;
3901
3902 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3903 return -EINVAL;
3904
3905 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
3906 return -E2BIG;
3907
3908 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3909 return -EINVAL;
3910
3911 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
3912 if (o != v) {
3913 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
3914 return -EIO;
3915
3916 cmd &= ~PCI_X_CMD_MAX_READ;
3917 cmd |= v << 2;
3918 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
3919 return -EIO;
3920 }
3921 return 0;
3922 }
3923 EXPORT_SYMBOL(pcix_set_mmrbc);
3924
3925 /**
3926 * pcie_get_readrq - get PCI Express read request size
3927 * @dev: PCI device to query
3928 *
3929 * Returns maximum memory read request in bytes
3930 * or appropriate error value.
3931 */
3932 int pcie_get_readrq(struct pci_dev *dev)
3933 {
3934 u16 ctl;
3935
3936 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
3937
3938 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
3939 }
3940 EXPORT_SYMBOL(pcie_get_readrq);
3941
3942 /**
3943 * pcie_set_readrq - set PCI Express maximum memory read request
3944 * @dev: PCI device to query
3945 * @rq: maximum memory read count in bytes
3946 * valid values are 128, 256, 512, 1024, 2048, 4096
3947 *
3948 * If possible sets maximum memory read request in bytes
3949 */
3950 int pcie_set_readrq(struct pci_dev *dev, int rq)
3951 {
3952 u16 v;
3953
3954 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
3955 return -EINVAL;
3956
3957 /*
3958 * If using the "performance" PCIe config, we clamp the
3959 * read rq size to the max packet size to prevent the
3960 * host bridge generating requests larger than we can
3961 * cope with
3962 */
3963 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
3964 int mps = pcie_get_mps(dev);
3965
3966 if (mps < rq)
3967 rq = mps;
3968 }
3969
3970 v = (ffs(rq) - 8) << 12;
3971
3972 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
3973 PCI_EXP_DEVCTL_READRQ, v);
3974 }
3975 EXPORT_SYMBOL(pcie_set_readrq);
3976
3977 /**
3978 * pcie_get_mps - get PCI Express maximum payload size
3979 * @dev: PCI device to query
3980 *
3981 * Returns maximum payload size in bytes
3982 */
3983 int pcie_get_mps(struct pci_dev *dev)
3984 {
3985 u16 ctl;
3986
3987 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
3988
3989 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
3990 }
3991 EXPORT_SYMBOL(pcie_get_mps);
3992
3993 /**
3994 * pcie_set_mps - set PCI Express maximum payload size
3995 * @dev: PCI device to query
3996 * @mps: maximum payload size in bytes
3997 * valid values are 128, 256, 512, 1024, 2048, 4096
3998 *
3999 * If possible sets maximum payload size
4000 */
4001 int pcie_set_mps(struct pci_dev *dev, int mps)
4002 {
4003 u16 v;
4004
4005 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
4006 return -EINVAL;
4007
4008 v = ffs(mps) - 8;
4009 if (v > dev->pcie_mpss)
4010 return -EINVAL;
4011 v <<= 5;
4012
4013 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4014 PCI_EXP_DEVCTL_PAYLOAD, v);
4015 }
4016 EXPORT_SYMBOL(pcie_set_mps);
4017
4018 /**
4019 * pcie_get_minimum_link - determine minimum link settings of a PCI device
4020 * @dev: PCI device to query
4021 * @speed: storage for minimum speed
4022 * @width: storage for minimum width
4023 *
4024 * This function will walk up the PCI device chain and determine the minimum
4025 * link width and speed of the device.
4026 */
4027 int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
4028 enum pcie_link_width *width)
4029 {
4030 int ret;
4031
4032 *speed = PCI_SPEED_UNKNOWN;
4033 *width = PCIE_LNK_WIDTH_UNKNOWN;
4034
4035 while (dev) {
4036 u16 lnksta;
4037 enum pci_bus_speed next_speed;
4038 enum pcie_link_width next_width;
4039
4040 ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
4041 if (ret)
4042 return ret;
4043
4044 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
4045 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
4046 PCI_EXP_LNKSTA_NLW_SHIFT;
4047
4048 if (next_speed < *speed)
4049 *speed = next_speed;
4050
4051 if (next_width < *width)
4052 *width = next_width;
4053
4054 dev = dev->bus->self;
4055 }
4056
4057 return 0;
4058 }
4059 EXPORT_SYMBOL(pcie_get_minimum_link);
4060
4061 /**
4062 * pci_select_bars - Make BAR mask from the type of resource
4063 * @dev: the PCI device for which BAR mask is made
4064 * @flags: resource type mask to be selected
4065 *
4066 * This helper routine makes bar mask from the type of resource.
4067 */
4068 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
4069 {
4070 int i, bars = 0;
4071 for (i = 0; i < PCI_NUM_RESOURCES; i++)
4072 if (pci_resource_flags(dev, i) & flags)
4073 bars |= (1 << i);
4074 return bars;
4075 }
4076
4077 /**
4078 * pci_resource_bar - get position of the BAR associated with a resource
4079 * @dev: the PCI device
4080 * @resno: the resource number
4081 * @type: the BAR type to be filled in
4082 *
4083 * Returns BAR position in config space, or 0 if the BAR is invalid.
4084 */
4085 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
4086 {
4087 int reg;
4088
4089 if (resno < PCI_ROM_RESOURCE) {
4090 *type = pci_bar_unknown;
4091 return PCI_BASE_ADDRESS_0 + 4 * resno;
4092 } else if (resno == PCI_ROM_RESOURCE) {
4093 *type = pci_bar_mem32;
4094 return dev->rom_base_reg;
4095 } else if (resno < PCI_BRIDGE_RESOURCES) {
4096 /* device specific resource */
4097 reg = pci_iov_resource_bar(dev, resno, type);
4098 if (reg)
4099 return reg;
4100 }
4101
4102 dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
4103 return 0;
4104 }
4105
4106 /* Some architectures require additional programming to enable VGA */
4107 static arch_set_vga_state_t arch_set_vga_state;
4108
4109 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
4110 {
4111 arch_set_vga_state = func; /* NULL disables */
4112 }
4113
4114 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
4115 unsigned int command_bits, u32 flags)
4116 {
4117 if (arch_set_vga_state)
4118 return arch_set_vga_state(dev, decode, command_bits,
4119 flags);
4120 return 0;
4121 }
4122
4123 /**
4124 * pci_set_vga_state - set VGA decode state on device and parents if requested
4125 * @dev: the PCI device
4126 * @decode: true = enable decoding, false = disable decoding
4127 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
4128 * @flags: traverse ancestors and change bridges
4129 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
4130 */
4131 int pci_set_vga_state(struct pci_dev *dev, bool decode,
4132 unsigned int command_bits, u32 flags)
4133 {
4134 struct pci_bus *bus;
4135 struct pci_dev *bridge;
4136 u16 cmd;
4137 int rc;
4138
4139 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
4140
4141 /* ARCH specific VGA enables */
4142 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
4143 if (rc)
4144 return rc;
4145
4146 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
4147 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4148 if (decode == true)
4149 cmd |= command_bits;
4150 else
4151 cmd &= ~command_bits;
4152 pci_write_config_word(dev, PCI_COMMAND, cmd);
4153 }
4154
4155 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
4156 return 0;
4157
4158 bus = dev->bus;
4159 while (bus) {
4160 bridge = bus->self;
4161 if (bridge) {
4162 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
4163 &cmd);
4164 if (decode == true)
4165 cmd |= PCI_BRIDGE_CTL_VGA;
4166 else
4167 cmd &= ~PCI_BRIDGE_CTL_VGA;
4168 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
4169 cmd);
4170 }
4171 bus = bus->parent;
4172 }
4173 return 0;
4174 }
4175
4176 bool pci_device_is_present(struct pci_dev *pdev)
4177 {
4178 u32 v;
4179
4180 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
4181 }
4182 EXPORT_SYMBOL_GPL(pci_device_is_present);
4183
4184 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
4185 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
4186 static DEFINE_SPINLOCK(resource_alignment_lock);
4187
4188 /**
4189 * pci_specified_resource_alignment - get resource alignment specified by user.
4190 * @dev: the PCI device to get
4191 *
4192 * RETURNS: Resource alignment if it is specified.
4193 * Zero if it is not specified.
4194 */
4195 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
4196 {
4197 int seg, bus, slot, func, align_order, count;
4198 resource_size_t align = 0;
4199 char *p;
4200
4201 spin_lock(&resource_alignment_lock);
4202 p = resource_alignment_param;
4203 while (*p) {
4204 count = 0;
4205 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
4206 p[count] == '@') {
4207 p += count + 1;
4208 } else {
4209 align_order = -1;
4210 }
4211 if (sscanf(p, "%x:%x:%x.%x%n",
4212 &seg, &bus, &slot, &func, &count) != 4) {
4213 seg = 0;
4214 if (sscanf(p, "%x:%x.%x%n",
4215 &bus, &slot, &func, &count) != 3) {
4216 /* Invalid format */
4217 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
4218 p);
4219 break;
4220 }
4221 }
4222 p += count;
4223 if (seg == pci_domain_nr(dev->bus) &&
4224 bus == dev->bus->number &&
4225 slot == PCI_SLOT(dev->devfn) &&
4226 func == PCI_FUNC(dev->devfn)) {
4227 if (align_order == -1) {
4228 align = PAGE_SIZE;
4229 } else {
4230 align = 1 << align_order;
4231 }
4232 /* Found */
4233 break;
4234 }
4235 if (*p != ';' && *p != ',') {
4236 /* End of param or invalid format */
4237 break;
4238 }
4239 p++;
4240 }
4241 spin_unlock(&resource_alignment_lock);
4242 return align;
4243 }
4244
4245 /*
4246 * This function disables memory decoding and releases memory resources
4247 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
4248 * It also rounds up size to specified alignment.
4249 * Later on, the kernel will assign page-aligned memory resource back
4250 * to the device.
4251 */
4252 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
4253 {
4254 int i;
4255 struct resource *r;
4256 resource_size_t align, size;
4257 u16 command;
4258
4259 /* check if specified PCI is target device to reassign */
4260 align = pci_specified_resource_alignment(dev);
4261 if (!align)
4262 return;
4263
4264 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
4265 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
4266 dev_warn(&dev->dev,
4267 "Can't reassign resources to host bridge.\n");
4268 return;
4269 }
4270
4271 dev_info(&dev->dev,
4272 "Disabling memory decoding and releasing memory resources.\n");
4273 pci_read_config_word(dev, PCI_COMMAND, &command);
4274 command &= ~PCI_COMMAND_MEMORY;
4275 pci_write_config_word(dev, PCI_COMMAND, command);
4276
4277 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
4278 r = &dev->resource[i];
4279 if (!(r->flags & IORESOURCE_MEM))
4280 continue;
4281 size = resource_size(r);
4282 if (size < align) {
4283 size = align;
4284 dev_info(&dev->dev,
4285 "Rounding up size of resource #%d to %#llx.\n",
4286 i, (unsigned long long)size);
4287 }
4288 r->flags |= IORESOURCE_UNSET;
4289 r->end = size - 1;
4290 r->start = 0;
4291 }
4292 /* Need to disable bridge's resource window,
4293 * to enable the kernel to reassign new resource
4294 * window later on.
4295 */
4296 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
4297 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
4298 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
4299 r = &dev->resource[i];
4300 if (!(r->flags & IORESOURCE_MEM))
4301 continue;
4302 r->flags |= IORESOURCE_UNSET;
4303 r->end = resource_size(r) - 1;
4304 r->start = 0;
4305 }
4306 pci_disable_bridge_window(dev);
4307 }
4308 }
4309
4310 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
4311 {
4312 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
4313 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
4314 spin_lock(&resource_alignment_lock);
4315 strncpy(resource_alignment_param, buf, count);
4316 resource_alignment_param[count] = '\0';
4317 spin_unlock(&resource_alignment_lock);
4318 return count;
4319 }
4320
4321 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
4322 {
4323 size_t count;
4324 spin_lock(&resource_alignment_lock);
4325 count = snprintf(buf, size, "%s", resource_alignment_param);
4326 spin_unlock(&resource_alignment_lock);
4327 return count;
4328 }
4329
4330 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
4331 {
4332 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
4333 }
4334
4335 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
4336 const char *buf, size_t count)
4337 {
4338 return pci_set_resource_alignment_param(buf, count);
4339 }
4340
4341 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
4342 pci_resource_alignment_store);
4343
4344 static int __init pci_resource_alignment_sysfs_init(void)
4345 {
4346 return bus_create_file(&pci_bus_type,
4347 &bus_attr_resource_alignment);
4348 }
4349
4350 late_initcall(pci_resource_alignment_sysfs_init);
4351
4352 static void pci_no_domains(void)
4353 {
4354 #ifdef CONFIG_PCI_DOMAINS
4355 pci_domains_supported = 0;
4356 #endif
4357 }
4358
4359 /**
4360 * pci_ext_cfg_avail - can we access extended PCI config space?
4361 *
4362 * Returns 1 if we can access PCI extended config space (offsets
4363 * greater than 0xff). This is the default implementation. Architecture
4364 * implementations can override this.
4365 */
4366 int __weak pci_ext_cfg_avail(void)
4367 {
4368 return 1;
4369 }
4370
4371 void __weak pci_fixup_cardbus(struct pci_bus *bus)
4372 {
4373 }
4374 EXPORT_SYMBOL(pci_fixup_cardbus);
4375
4376 static int __init pci_setup(char *str)
4377 {
4378 while (str) {
4379 char *k = strchr(str, ',');
4380 if (k)
4381 *k++ = 0;
4382 if (*str && (str = pcibios_setup(str)) && *str) {
4383 if (!strcmp(str, "nomsi")) {
4384 pci_no_msi();
4385 } else if (!strcmp(str, "noaer")) {
4386 pci_no_aer();
4387 } else if (!strncmp(str, "realloc=", 8)) {
4388 pci_realloc_get_opt(str + 8);
4389 } else if (!strncmp(str, "realloc", 7)) {
4390 pci_realloc_get_opt("on");
4391 } else if (!strcmp(str, "nodomains")) {
4392 pci_no_domains();
4393 } else if (!strncmp(str, "noari", 5)) {
4394 pcie_ari_disabled = true;
4395 } else if (!strncmp(str, "cbiosize=", 9)) {
4396 pci_cardbus_io_size = memparse(str + 9, &str);
4397 } else if (!strncmp(str, "cbmemsize=", 10)) {
4398 pci_cardbus_mem_size = memparse(str + 10, &str);
4399 } else if (!strncmp(str, "resource_alignment=", 19)) {
4400 pci_set_resource_alignment_param(str + 19,
4401 strlen(str + 19));
4402 } else if (!strncmp(str, "ecrc=", 5)) {
4403 pcie_ecrc_get_policy(str + 5);
4404 } else if (!strncmp(str, "hpiosize=", 9)) {
4405 pci_hotplug_io_size = memparse(str + 9, &str);
4406 } else if (!strncmp(str, "hpmemsize=", 10)) {
4407 pci_hotplug_mem_size = memparse(str + 10, &str);
4408 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
4409 pcie_bus_config = PCIE_BUS_TUNE_OFF;
4410 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
4411 pcie_bus_config = PCIE_BUS_SAFE;
4412 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
4413 pcie_bus_config = PCIE_BUS_PERFORMANCE;
4414 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
4415 pcie_bus_config = PCIE_BUS_PEER2PEER;
4416 } else if (!strncmp(str, "pcie_scan_all", 13)) {
4417 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
4418 } else {
4419 printk(KERN_ERR "PCI: Unknown option `%s'\n",
4420 str);
4421 }
4422 }
4423 str = k;
4424 }
4425 return 0;
4426 }
4427 early_param("pci", pci_setup);
4428
4429 EXPORT_SYMBOL(pci_reenable_device);
4430 EXPORT_SYMBOL(pci_enable_device_io);
4431 EXPORT_SYMBOL(pci_enable_device_mem);
4432 EXPORT_SYMBOL(pci_enable_device);
4433 EXPORT_SYMBOL(pcim_enable_device);
4434 EXPORT_SYMBOL(pcim_pin_device);
4435 EXPORT_SYMBOL(pci_disable_device);
4436 EXPORT_SYMBOL(pci_find_capability);
4437 EXPORT_SYMBOL(pci_bus_find_capability);
4438 EXPORT_SYMBOL(pci_release_regions);
4439 EXPORT_SYMBOL(pci_request_regions);
4440 EXPORT_SYMBOL(pci_request_regions_exclusive);
4441 EXPORT_SYMBOL(pci_release_region);
4442 EXPORT_SYMBOL(pci_request_region);
4443 EXPORT_SYMBOL(pci_request_region_exclusive);
4444 EXPORT_SYMBOL(pci_release_selected_regions);
4445 EXPORT_SYMBOL(pci_request_selected_regions);
4446 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4447 EXPORT_SYMBOL(pci_set_master);
4448 EXPORT_SYMBOL(pci_clear_master);
4449 EXPORT_SYMBOL(pci_set_mwi);
4450 EXPORT_SYMBOL(pci_try_set_mwi);
4451 EXPORT_SYMBOL(pci_clear_mwi);
4452 EXPORT_SYMBOL_GPL(pci_intx);
4453 EXPORT_SYMBOL(pci_assign_resource);
4454 EXPORT_SYMBOL(pci_find_parent_resource);
4455 EXPORT_SYMBOL(pci_select_bars);
4456
4457 EXPORT_SYMBOL(pci_set_power_state);
4458 EXPORT_SYMBOL(pci_save_state);
4459 EXPORT_SYMBOL(pci_restore_state);
4460 EXPORT_SYMBOL(pci_pme_capable);
4461 EXPORT_SYMBOL(pci_pme_active);
4462 EXPORT_SYMBOL(pci_wake_from_d3);
4463 EXPORT_SYMBOL(pci_prepare_to_sleep);
4464 EXPORT_SYMBOL(pci_back_from_sleep);
4465 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);