]> git.ipfire.org Git - people/arne_f/kernel.git/blob - drivers/virtio/virtio_ring.c
71458f493cf864aa260e493c0ef5ddc4d6c78274
[people/arne_f/kernel.git] / drivers / virtio / virtio_ring.c
1 /* Virtio ring implementation.
2 *
3 * Copyright 2007 Rusty Russell IBM Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 */
19 #include <linux/virtio.h>
20 #include <linux/virtio_ring.h>
21 #include <linux/virtio_config.h>
22 #include <linux/device.h>
23 #include <linux/slab.h>
24 #include <linux/module.h>
25 #include <linux/hrtimer.h>
26 #include <linux/kmemleak.h>
27 #include <linux/dma-mapping.h>
28 #include <xen/xen.h>
29
30 #ifdef DEBUG
31 /* For development, we want to crash whenever the ring is screwed. */
32 #define BAD_RING(_vq, fmt, args...) \
33 do { \
34 dev_err(&(_vq)->vq.vdev->dev, \
35 "%s:"fmt, (_vq)->vq.name, ##args); \
36 BUG(); \
37 } while (0)
38 /* Caller is supposed to guarantee no reentry. */
39 #define START_USE(_vq) \
40 do { \
41 if ((_vq)->in_use) \
42 panic("%s:in_use = %i\n", \
43 (_vq)->vq.name, (_vq)->in_use); \
44 (_vq)->in_use = __LINE__; \
45 } while (0)
46 #define END_USE(_vq) \
47 do { BUG_ON(!(_vq)->in_use); (_vq)->in_use = 0; } while(0)
48 #else
49 #define BAD_RING(_vq, fmt, args...) \
50 do { \
51 dev_err(&_vq->vq.vdev->dev, \
52 "%s:"fmt, (_vq)->vq.name, ##args); \
53 (_vq)->broken = true; \
54 } while (0)
55 #define START_USE(vq)
56 #define END_USE(vq)
57 #endif
58
59 struct vring_desc_state {
60 void *data; /* Data for callback. */
61 struct vring_desc *indir_desc; /* Indirect descriptor, if any. */
62 };
63
64 struct vring_virtqueue {
65 struct virtqueue vq;
66
67 /* Actual memory layout for this queue */
68 struct vring vring;
69
70 /* Can we use weak barriers? */
71 bool weak_barriers;
72
73 /* Other side has made a mess, don't try any more. */
74 bool broken;
75
76 /* Host supports indirect buffers */
77 bool indirect;
78
79 /* Host publishes avail event idx */
80 bool event;
81
82 /* Head of free buffer list. */
83 unsigned int free_head;
84 /* Number we've added since last sync. */
85 unsigned int num_added;
86
87 /* Last used index we've seen. */
88 u16 last_used_idx;
89
90 /* Last written value to avail->flags */
91 u16 avail_flags_shadow;
92
93 /* Last written value to avail->idx in guest byte order */
94 u16 avail_idx_shadow;
95
96 /* How to notify other side. FIXME: commonalize hcalls! */
97 bool (*notify)(struct virtqueue *vq);
98
99 /* DMA, allocation, and size information */
100 bool we_own_ring;
101 size_t queue_size_in_bytes;
102 dma_addr_t queue_dma_addr;
103
104 #ifdef DEBUG
105 /* They're supposed to lock for us. */
106 unsigned int in_use;
107
108 /* Figure out if their kicks are too delayed. */
109 bool last_add_time_valid;
110 ktime_t last_add_time;
111 #endif
112
113 /* Per-descriptor state. */
114 struct vring_desc_state desc_state[];
115 };
116
117 #define to_vvq(_vq) container_of(_vq, struct vring_virtqueue, vq)
118
119 /*
120 * Modern virtio devices have feature bits to specify whether they need a
121 * quirk and bypass the IOMMU. If not there, just use the DMA API.
122 *
123 * If there, the interaction between virtio and DMA API is messy.
124 *
125 * On most systems with virtio, physical addresses match bus addresses,
126 * and it doesn't particularly matter whether we use the DMA API.
127 *
128 * On some systems, including Xen and any system with a physical device
129 * that speaks virtio behind a physical IOMMU, we must use the DMA API
130 * for virtio DMA to work at all.
131 *
132 * On other systems, including SPARC and PPC64, virtio-pci devices are
133 * enumerated as though they are behind an IOMMU, but the virtio host
134 * ignores the IOMMU, so we must either pretend that the IOMMU isn't
135 * there or somehow map everything as the identity.
136 *
137 * For the time being, we preserve historic behavior and bypass the DMA
138 * API.
139 *
140 * TODO: install a per-device DMA ops structure that does the right thing
141 * taking into account all the above quirks, and use the DMA API
142 * unconditionally on data path.
143 */
144
145 static bool vring_use_dma_api(struct virtio_device *vdev)
146 {
147 if (!virtio_has_iommu_quirk(vdev))
148 return true;
149
150 /* Otherwise, we are left to guess. */
151 /*
152 * In theory, it's possible to have a buggy QEMU-supposed
153 * emulated Q35 IOMMU and Xen enabled at the same time. On
154 * such a configuration, virtio has never worked and will
155 * not work without an even larger kludge. Instead, enable
156 * the DMA API if we're a Xen guest, which at least allows
157 * all of the sensible Xen configurations to work correctly.
158 */
159 if (xen_domain())
160 return true;
161
162 return false;
163 }
164
165 /*
166 * The DMA ops on various arches are rather gnarly right now, and
167 * making all of the arch DMA ops work on the vring device itself
168 * is a mess. For now, we use the parent device for DMA ops.
169 */
170 static inline struct device *vring_dma_dev(const struct vring_virtqueue *vq)
171 {
172 return vq->vq.vdev->dev.parent;
173 }
174
175 /* Map one sg entry. */
176 static dma_addr_t vring_map_one_sg(const struct vring_virtqueue *vq,
177 struct scatterlist *sg,
178 enum dma_data_direction direction)
179 {
180 if (!vring_use_dma_api(vq->vq.vdev))
181 return (dma_addr_t)sg_phys(sg);
182
183 /*
184 * We can't use dma_map_sg, because we don't use scatterlists in
185 * the way it expects (we don't guarantee that the scatterlist
186 * will exist for the lifetime of the mapping).
187 */
188 return dma_map_page(vring_dma_dev(vq),
189 sg_page(sg), sg->offset, sg->length,
190 direction);
191 }
192
193 static dma_addr_t vring_map_single(const struct vring_virtqueue *vq,
194 void *cpu_addr, size_t size,
195 enum dma_data_direction direction)
196 {
197 if (!vring_use_dma_api(vq->vq.vdev))
198 return (dma_addr_t)virt_to_phys(cpu_addr);
199
200 return dma_map_single(vring_dma_dev(vq),
201 cpu_addr, size, direction);
202 }
203
204 static void vring_unmap_one(const struct vring_virtqueue *vq,
205 struct vring_desc *desc)
206 {
207 u16 flags;
208
209 if (!vring_use_dma_api(vq->vq.vdev))
210 return;
211
212 flags = virtio16_to_cpu(vq->vq.vdev, desc->flags);
213
214 if (flags & VRING_DESC_F_INDIRECT) {
215 dma_unmap_single(vring_dma_dev(vq),
216 virtio64_to_cpu(vq->vq.vdev, desc->addr),
217 virtio32_to_cpu(vq->vq.vdev, desc->len),
218 (flags & VRING_DESC_F_WRITE) ?
219 DMA_FROM_DEVICE : DMA_TO_DEVICE);
220 } else {
221 dma_unmap_page(vring_dma_dev(vq),
222 virtio64_to_cpu(vq->vq.vdev, desc->addr),
223 virtio32_to_cpu(vq->vq.vdev, desc->len),
224 (flags & VRING_DESC_F_WRITE) ?
225 DMA_FROM_DEVICE : DMA_TO_DEVICE);
226 }
227 }
228
229 static int vring_mapping_error(const struct vring_virtqueue *vq,
230 dma_addr_t addr)
231 {
232 if (!vring_use_dma_api(vq->vq.vdev))
233 return 0;
234
235 return dma_mapping_error(vring_dma_dev(vq), addr);
236 }
237
238 static struct vring_desc *alloc_indirect(struct virtqueue *_vq,
239 unsigned int total_sg, gfp_t gfp)
240 {
241 struct vring_desc *desc;
242 unsigned int i;
243
244 /*
245 * We require lowmem mappings for the descriptors because
246 * otherwise virt_to_phys will give us bogus addresses in the
247 * virtqueue.
248 */
249 gfp &= ~__GFP_HIGHMEM;
250
251 desc = kmalloc(total_sg * sizeof(struct vring_desc), gfp);
252 if (!desc)
253 return NULL;
254
255 for (i = 0; i < total_sg; i++)
256 desc[i].next = cpu_to_virtio16(_vq->vdev, i + 1);
257 return desc;
258 }
259
260 static inline int virtqueue_add(struct virtqueue *_vq,
261 struct scatterlist *sgs[],
262 unsigned int total_sg,
263 unsigned int out_sgs,
264 unsigned int in_sgs,
265 void *data,
266 void *ctx,
267 gfp_t gfp)
268 {
269 struct vring_virtqueue *vq = to_vvq(_vq);
270 struct scatterlist *sg;
271 struct vring_desc *desc;
272 unsigned int i, n, avail, descs_used, uninitialized_var(prev), err_idx;
273 int head;
274 bool indirect;
275
276 START_USE(vq);
277
278 BUG_ON(data == NULL);
279 BUG_ON(ctx && vq->indirect);
280
281 if (unlikely(vq->broken)) {
282 END_USE(vq);
283 return -EIO;
284 }
285
286 #ifdef DEBUG
287 {
288 ktime_t now = ktime_get();
289
290 /* No kick or get, with .1 second between? Warn. */
291 if (vq->last_add_time_valid)
292 WARN_ON(ktime_to_ms(ktime_sub(now, vq->last_add_time))
293 > 100);
294 vq->last_add_time = now;
295 vq->last_add_time_valid = true;
296 }
297 #endif
298
299 BUG_ON(total_sg == 0);
300
301 head = vq->free_head;
302
303 /* If the host supports indirect descriptor tables, and we have multiple
304 * buffers, then go indirect. FIXME: tune this threshold */
305 if (vq->indirect && total_sg > 1 && vq->vq.num_free)
306 desc = alloc_indirect(_vq, total_sg, gfp);
307 else {
308 desc = NULL;
309 WARN_ON_ONCE(total_sg > vq->vring.num && !vq->indirect);
310 }
311
312 if (desc) {
313 /* Use a single buffer which doesn't continue */
314 indirect = true;
315 /* Set up rest to use this indirect table. */
316 i = 0;
317 descs_used = 1;
318 } else {
319 indirect = false;
320 desc = vq->vring.desc;
321 i = head;
322 descs_used = total_sg;
323 }
324
325 if (vq->vq.num_free < descs_used) {
326 pr_debug("Can't add buf len %i - avail = %i\n",
327 descs_used, vq->vq.num_free);
328 /* FIXME: for historical reasons, we force a notify here if
329 * there are outgoing parts to the buffer. Presumably the
330 * host should service the ring ASAP. */
331 if (out_sgs)
332 vq->notify(&vq->vq);
333 if (indirect)
334 kfree(desc);
335 END_USE(vq);
336 return -ENOSPC;
337 }
338
339 for (n = 0; n < out_sgs; n++) {
340 for (sg = sgs[n]; sg; sg = sg_next(sg)) {
341 dma_addr_t addr = vring_map_one_sg(vq, sg, DMA_TO_DEVICE);
342 if (vring_mapping_error(vq, addr))
343 goto unmap_release;
344
345 desc[i].flags = cpu_to_virtio16(_vq->vdev, VRING_DESC_F_NEXT);
346 desc[i].addr = cpu_to_virtio64(_vq->vdev, addr);
347 desc[i].len = cpu_to_virtio32(_vq->vdev, sg->length);
348 prev = i;
349 i = virtio16_to_cpu(_vq->vdev, desc[i].next);
350 }
351 }
352 for (; n < (out_sgs + in_sgs); n++) {
353 for (sg = sgs[n]; sg; sg = sg_next(sg)) {
354 dma_addr_t addr = vring_map_one_sg(vq, sg, DMA_FROM_DEVICE);
355 if (vring_mapping_error(vq, addr))
356 goto unmap_release;
357
358 desc[i].flags = cpu_to_virtio16(_vq->vdev, VRING_DESC_F_NEXT | VRING_DESC_F_WRITE);
359 desc[i].addr = cpu_to_virtio64(_vq->vdev, addr);
360 desc[i].len = cpu_to_virtio32(_vq->vdev, sg->length);
361 prev = i;
362 i = virtio16_to_cpu(_vq->vdev, desc[i].next);
363 }
364 }
365 /* Last one doesn't continue. */
366 desc[prev].flags &= cpu_to_virtio16(_vq->vdev, ~VRING_DESC_F_NEXT);
367
368 if (indirect) {
369 /* Now that the indirect table is filled in, map it. */
370 dma_addr_t addr = vring_map_single(
371 vq, desc, total_sg * sizeof(struct vring_desc),
372 DMA_TO_DEVICE);
373 if (vring_mapping_error(vq, addr))
374 goto unmap_release;
375
376 vq->vring.desc[head].flags = cpu_to_virtio16(_vq->vdev, VRING_DESC_F_INDIRECT);
377 vq->vring.desc[head].addr = cpu_to_virtio64(_vq->vdev, addr);
378
379 vq->vring.desc[head].len = cpu_to_virtio32(_vq->vdev, total_sg * sizeof(struct vring_desc));
380 }
381
382 /* We're using some buffers from the free list. */
383 vq->vq.num_free -= descs_used;
384
385 /* Update free pointer */
386 if (indirect)
387 vq->free_head = virtio16_to_cpu(_vq->vdev, vq->vring.desc[head].next);
388 else
389 vq->free_head = i;
390
391 /* Store token and indirect buffer state. */
392 vq->desc_state[head].data = data;
393 if (indirect)
394 vq->desc_state[head].indir_desc = desc;
395 else
396 vq->desc_state[head].indir_desc = ctx;
397
398 /* Put entry in available array (but don't update avail->idx until they
399 * do sync). */
400 avail = vq->avail_idx_shadow & (vq->vring.num - 1);
401 vq->vring.avail->ring[avail] = cpu_to_virtio16(_vq->vdev, head);
402
403 /* Descriptors and available array need to be set before we expose the
404 * new available array entries. */
405 virtio_wmb(vq->weak_barriers);
406 vq->avail_idx_shadow++;
407 vq->vring.avail->idx = cpu_to_virtio16(_vq->vdev, vq->avail_idx_shadow);
408 vq->num_added++;
409
410 pr_debug("Added buffer head %i to %p\n", head, vq);
411 END_USE(vq);
412
413 /* This is very unlikely, but theoretically possible. Kick
414 * just in case. */
415 if (unlikely(vq->num_added == (1 << 16) - 1))
416 virtqueue_kick(_vq);
417
418 return 0;
419
420 unmap_release:
421 err_idx = i;
422 i = head;
423
424 for (n = 0; n < total_sg; n++) {
425 if (i == err_idx)
426 break;
427 vring_unmap_one(vq, &desc[i]);
428 i = virtio16_to_cpu(_vq->vdev, vq->vring.desc[i].next);
429 }
430
431 if (indirect)
432 kfree(desc);
433
434 END_USE(vq);
435 return -EIO;
436 }
437
438 /**
439 * virtqueue_add_sgs - expose buffers to other end
440 * @vq: the struct virtqueue we're talking about.
441 * @sgs: array of terminated scatterlists.
442 * @out_num: the number of scatterlists readable by other side
443 * @in_num: the number of scatterlists which are writable (after readable ones)
444 * @data: the token identifying the buffer.
445 * @gfp: how to do memory allocations (if necessary).
446 *
447 * Caller must ensure we don't call this with other virtqueue operations
448 * at the same time (except where noted).
449 *
450 * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
451 */
452 int virtqueue_add_sgs(struct virtqueue *_vq,
453 struct scatterlist *sgs[],
454 unsigned int out_sgs,
455 unsigned int in_sgs,
456 void *data,
457 gfp_t gfp)
458 {
459 unsigned int i, total_sg = 0;
460
461 /* Count them first. */
462 for (i = 0; i < out_sgs + in_sgs; i++) {
463 struct scatterlist *sg;
464 for (sg = sgs[i]; sg; sg = sg_next(sg))
465 total_sg++;
466 }
467 return virtqueue_add(_vq, sgs, total_sg, out_sgs, in_sgs,
468 data, NULL, gfp);
469 }
470 EXPORT_SYMBOL_GPL(virtqueue_add_sgs);
471
472 /**
473 * virtqueue_add_outbuf - expose output buffers to other end
474 * @vq: the struct virtqueue we're talking about.
475 * @sg: scatterlist (must be well-formed and terminated!)
476 * @num: the number of entries in @sg readable by other side
477 * @data: the token identifying the buffer.
478 * @gfp: how to do memory allocations (if necessary).
479 *
480 * Caller must ensure we don't call this with other virtqueue operations
481 * at the same time (except where noted).
482 *
483 * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
484 */
485 int virtqueue_add_outbuf(struct virtqueue *vq,
486 struct scatterlist *sg, unsigned int num,
487 void *data,
488 gfp_t gfp)
489 {
490 return virtqueue_add(vq, &sg, num, 1, 0, data, NULL, gfp);
491 }
492 EXPORT_SYMBOL_GPL(virtqueue_add_outbuf);
493
494 /**
495 * virtqueue_add_inbuf - expose input buffers to other end
496 * @vq: the struct virtqueue we're talking about.
497 * @sg: scatterlist (must be well-formed and terminated!)
498 * @num: the number of entries in @sg writable by other side
499 * @data: the token identifying the buffer.
500 * @gfp: how to do memory allocations (if necessary).
501 *
502 * Caller must ensure we don't call this with other virtqueue operations
503 * at the same time (except where noted).
504 *
505 * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
506 */
507 int virtqueue_add_inbuf(struct virtqueue *vq,
508 struct scatterlist *sg, unsigned int num,
509 void *data,
510 gfp_t gfp)
511 {
512 return virtqueue_add(vq, &sg, num, 0, 1, data, NULL, gfp);
513 }
514 EXPORT_SYMBOL_GPL(virtqueue_add_inbuf);
515
516 /**
517 * virtqueue_add_inbuf_ctx - expose input buffers to other end
518 * @vq: the struct virtqueue we're talking about.
519 * @sg: scatterlist (must be well-formed and terminated!)
520 * @num: the number of entries in @sg writable by other side
521 * @data: the token identifying the buffer.
522 * @ctx: extra context for the token
523 * @gfp: how to do memory allocations (if necessary).
524 *
525 * Caller must ensure we don't call this with other virtqueue operations
526 * at the same time (except where noted).
527 *
528 * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
529 */
530 int virtqueue_add_inbuf_ctx(struct virtqueue *vq,
531 struct scatterlist *sg, unsigned int num,
532 void *data,
533 void *ctx,
534 gfp_t gfp)
535 {
536 return virtqueue_add(vq, &sg, num, 0, 1, data, ctx, gfp);
537 }
538 EXPORT_SYMBOL_GPL(virtqueue_add_inbuf_ctx);
539
540 /**
541 * virtqueue_kick_prepare - first half of split virtqueue_kick call.
542 * @vq: the struct virtqueue
543 *
544 * Instead of virtqueue_kick(), you can do:
545 * if (virtqueue_kick_prepare(vq))
546 * virtqueue_notify(vq);
547 *
548 * This is sometimes useful because the virtqueue_kick_prepare() needs
549 * to be serialized, but the actual virtqueue_notify() call does not.
550 */
551 bool virtqueue_kick_prepare(struct virtqueue *_vq)
552 {
553 struct vring_virtqueue *vq = to_vvq(_vq);
554 u16 new, old;
555 bool needs_kick;
556
557 START_USE(vq);
558 /* We need to expose available array entries before checking avail
559 * event. */
560 virtio_mb(vq->weak_barriers);
561
562 old = vq->avail_idx_shadow - vq->num_added;
563 new = vq->avail_idx_shadow;
564 vq->num_added = 0;
565
566 #ifdef DEBUG
567 if (vq->last_add_time_valid) {
568 WARN_ON(ktime_to_ms(ktime_sub(ktime_get(),
569 vq->last_add_time)) > 100);
570 }
571 vq->last_add_time_valid = false;
572 #endif
573
574 if (vq->event) {
575 needs_kick = vring_need_event(virtio16_to_cpu(_vq->vdev, vring_avail_event(&vq->vring)),
576 new, old);
577 } else {
578 needs_kick = !(vq->vring.used->flags & cpu_to_virtio16(_vq->vdev, VRING_USED_F_NO_NOTIFY));
579 }
580 END_USE(vq);
581 return needs_kick;
582 }
583 EXPORT_SYMBOL_GPL(virtqueue_kick_prepare);
584
585 /**
586 * virtqueue_notify - second half of split virtqueue_kick call.
587 * @vq: the struct virtqueue
588 *
589 * This does not need to be serialized.
590 *
591 * Returns false if host notify failed or queue is broken, otherwise true.
592 */
593 bool virtqueue_notify(struct virtqueue *_vq)
594 {
595 struct vring_virtqueue *vq = to_vvq(_vq);
596
597 if (unlikely(vq->broken))
598 return false;
599
600 /* Prod other side to tell it about changes. */
601 if (!vq->notify(_vq)) {
602 vq->broken = true;
603 return false;
604 }
605 return true;
606 }
607 EXPORT_SYMBOL_GPL(virtqueue_notify);
608
609 /**
610 * virtqueue_kick - update after add_buf
611 * @vq: the struct virtqueue
612 *
613 * After one or more virtqueue_add_* calls, invoke this to kick
614 * the other side.
615 *
616 * Caller must ensure we don't call this with other virtqueue
617 * operations at the same time (except where noted).
618 *
619 * Returns false if kick failed, otherwise true.
620 */
621 bool virtqueue_kick(struct virtqueue *vq)
622 {
623 if (virtqueue_kick_prepare(vq))
624 return virtqueue_notify(vq);
625 return true;
626 }
627 EXPORT_SYMBOL_GPL(virtqueue_kick);
628
629 static void detach_buf(struct vring_virtqueue *vq, unsigned int head,
630 void **ctx)
631 {
632 unsigned int i, j;
633 __virtio16 nextflag = cpu_to_virtio16(vq->vq.vdev, VRING_DESC_F_NEXT);
634
635 /* Clear data ptr. */
636 vq->desc_state[head].data = NULL;
637
638 /* Put back on free list: unmap first-level descriptors and find end */
639 i = head;
640
641 while (vq->vring.desc[i].flags & nextflag) {
642 vring_unmap_one(vq, &vq->vring.desc[i]);
643 i = virtio16_to_cpu(vq->vq.vdev, vq->vring.desc[i].next);
644 vq->vq.num_free++;
645 }
646
647 vring_unmap_one(vq, &vq->vring.desc[i]);
648 vq->vring.desc[i].next = cpu_to_virtio16(vq->vq.vdev, vq->free_head);
649 vq->free_head = head;
650
651 /* Plus final descriptor */
652 vq->vq.num_free++;
653
654 if (vq->indirect) {
655 struct vring_desc *indir_desc = vq->desc_state[head].indir_desc;
656 u32 len;
657
658 /* Free the indirect table, if any, now that it's unmapped. */
659 if (!indir_desc)
660 return;
661
662 len = virtio32_to_cpu(vq->vq.vdev, vq->vring.desc[head].len);
663
664 BUG_ON(!(vq->vring.desc[head].flags &
665 cpu_to_virtio16(vq->vq.vdev, VRING_DESC_F_INDIRECT)));
666 BUG_ON(len == 0 || len % sizeof(struct vring_desc));
667
668 for (j = 0; j < len / sizeof(struct vring_desc); j++)
669 vring_unmap_one(vq, &indir_desc[j]);
670
671 kfree(indir_desc);
672 vq->desc_state[head].indir_desc = NULL;
673 } else if (ctx) {
674 *ctx = vq->desc_state[head].indir_desc;
675 }
676 }
677
678 static inline bool more_used(const struct vring_virtqueue *vq)
679 {
680 return vq->last_used_idx != virtio16_to_cpu(vq->vq.vdev, vq->vring.used->idx);
681 }
682
683 /**
684 * virtqueue_get_buf - get the next used buffer
685 * @vq: the struct virtqueue we're talking about.
686 * @len: the length written into the buffer
687 *
688 * If the device wrote data into the buffer, @len will be set to the
689 * amount written. This means you don't need to clear the buffer
690 * beforehand to ensure there's no data leakage in the case of short
691 * writes.
692 *
693 * Caller must ensure we don't call this with other virtqueue
694 * operations at the same time (except where noted).
695 *
696 * Returns NULL if there are no used buffers, or the "data" token
697 * handed to virtqueue_add_*().
698 */
699 void *virtqueue_get_buf_ctx(struct virtqueue *_vq, unsigned int *len,
700 void **ctx)
701 {
702 struct vring_virtqueue *vq = to_vvq(_vq);
703 void *ret;
704 unsigned int i;
705 u16 last_used;
706
707 START_USE(vq);
708
709 if (unlikely(vq->broken)) {
710 END_USE(vq);
711 return NULL;
712 }
713
714 if (!more_used(vq)) {
715 pr_debug("No more buffers in queue\n");
716 END_USE(vq);
717 return NULL;
718 }
719
720 /* Only get used array entries after they have been exposed by host. */
721 virtio_rmb(vq->weak_barriers);
722
723 last_used = (vq->last_used_idx & (vq->vring.num - 1));
724 i = virtio32_to_cpu(_vq->vdev, vq->vring.used->ring[last_used].id);
725 *len = virtio32_to_cpu(_vq->vdev, vq->vring.used->ring[last_used].len);
726
727 if (unlikely(i >= vq->vring.num)) {
728 BAD_RING(vq, "id %u out of range\n", i);
729 return NULL;
730 }
731 if (unlikely(!vq->desc_state[i].data)) {
732 BAD_RING(vq, "id %u is not a head!\n", i);
733 return NULL;
734 }
735
736 /* detach_buf clears data, so grab it now. */
737 ret = vq->desc_state[i].data;
738 detach_buf(vq, i, ctx);
739 vq->last_used_idx++;
740 /* If we expect an interrupt for the next entry, tell host
741 * by writing event index and flush out the write before
742 * the read in the next get_buf call. */
743 if (!(vq->avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT))
744 virtio_store_mb(vq->weak_barriers,
745 &vring_used_event(&vq->vring),
746 cpu_to_virtio16(_vq->vdev, vq->last_used_idx));
747
748 #ifdef DEBUG
749 vq->last_add_time_valid = false;
750 #endif
751
752 END_USE(vq);
753 return ret;
754 }
755 EXPORT_SYMBOL_GPL(virtqueue_get_buf_ctx);
756
757 void *virtqueue_get_buf(struct virtqueue *_vq, unsigned int *len)
758 {
759 return virtqueue_get_buf_ctx(_vq, len, NULL);
760 }
761 EXPORT_SYMBOL_GPL(virtqueue_get_buf);
762 /**
763 * virtqueue_disable_cb - disable callbacks
764 * @vq: the struct virtqueue we're talking about.
765 *
766 * Note that this is not necessarily synchronous, hence unreliable and only
767 * useful as an optimization.
768 *
769 * Unlike other operations, this need not be serialized.
770 */
771 void virtqueue_disable_cb(struct virtqueue *_vq)
772 {
773 struct vring_virtqueue *vq = to_vvq(_vq);
774
775 if (!(vq->avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT)) {
776 vq->avail_flags_shadow |= VRING_AVAIL_F_NO_INTERRUPT;
777 if (!vq->event)
778 vq->vring.avail->flags = cpu_to_virtio16(_vq->vdev, vq->avail_flags_shadow);
779 }
780
781 }
782 EXPORT_SYMBOL_GPL(virtqueue_disable_cb);
783
784 /**
785 * virtqueue_enable_cb_prepare - restart callbacks after disable_cb
786 * @vq: the struct virtqueue we're talking about.
787 *
788 * This re-enables callbacks; it returns current queue state
789 * in an opaque unsigned value. This value should be later tested by
790 * virtqueue_poll, to detect a possible race between the driver checking for
791 * more work, and enabling callbacks.
792 *
793 * Caller must ensure we don't call this with other virtqueue
794 * operations at the same time (except where noted).
795 */
796 unsigned virtqueue_enable_cb_prepare(struct virtqueue *_vq)
797 {
798 struct vring_virtqueue *vq = to_vvq(_vq);
799 u16 last_used_idx;
800
801 START_USE(vq);
802
803 /* We optimistically turn back on interrupts, then check if there was
804 * more to do. */
805 /* Depending on the VIRTIO_RING_F_EVENT_IDX feature, we need to
806 * either clear the flags bit or point the event index at the next
807 * entry. Always do both to keep code simple. */
808 if (vq->avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT) {
809 vq->avail_flags_shadow &= ~VRING_AVAIL_F_NO_INTERRUPT;
810 if (!vq->event)
811 vq->vring.avail->flags = cpu_to_virtio16(_vq->vdev, vq->avail_flags_shadow);
812 }
813 vring_used_event(&vq->vring) = cpu_to_virtio16(_vq->vdev, last_used_idx = vq->last_used_idx);
814 END_USE(vq);
815 return last_used_idx;
816 }
817 EXPORT_SYMBOL_GPL(virtqueue_enable_cb_prepare);
818
819 /**
820 * virtqueue_poll - query pending used buffers
821 * @vq: the struct virtqueue we're talking about.
822 * @last_used_idx: virtqueue state (from call to virtqueue_enable_cb_prepare).
823 *
824 * Returns "true" if there are pending used buffers in the queue.
825 *
826 * This does not need to be serialized.
827 */
828 bool virtqueue_poll(struct virtqueue *_vq, unsigned last_used_idx)
829 {
830 struct vring_virtqueue *vq = to_vvq(_vq);
831
832 virtio_mb(vq->weak_barriers);
833 return (u16)last_used_idx != virtio16_to_cpu(_vq->vdev, vq->vring.used->idx);
834 }
835 EXPORT_SYMBOL_GPL(virtqueue_poll);
836
837 /**
838 * virtqueue_enable_cb - restart callbacks after disable_cb.
839 * @vq: the struct virtqueue we're talking about.
840 *
841 * This re-enables callbacks; it returns "false" if there are pending
842 * buffers in the queue, to detect a possible race between the driver
843 * checking for more work, and enabling callbacks.
844 *
845 * Caller must ensure we don't call this with other virtqueue
846 * operations at the same time (except where noted).
847 */
848 bool virtqueue_enable_cb(struct virtqueue *_vq)
849 {
850 unsigned last_used_idx = virtqueue_enable_cb_prepare(_vq);
851 return !virtqueue_poll(_vq, last_used_idx);
852 }
853 EXPORT_SYMBOL_GPL(virtqueue_enable_cb);
854
855 /**
856 * virtqueue_enable_cb_delayed - restart callbacks after disable_cb.
857 * @vq: the struct virtqueue we're talking about.
858 *
859 * This re-enables callbacks but hints to the other side to delay
860 * interrupts until most of the available buffers have been processed;
861 * it returns "false" if there are many pending buffers in the queue,
862 * to detect a possible race between the driver checking for more work,
863 * and enabling callbacks.
864 *
865 * Caller must ensure we don't call this with other virtqueue
866 * operations at the same time (except where noted).
867 */
868 bool virtqueue_enable_cb_delayed(struct virtqueue *_vq)
869 {
870 struct vring_virtqueue *vq = to_vvq(_vq);
871 u16 bufs;
872
873 START_USE(vq);
874
875 /* We optimistically turn back on interrupts, then check if there was
876 * more to do. */
877 /* Depending on the VIRTIO_RING_F_USED_EVENT_IDX feature, we need to
878 * either clear the flags bit or point the event index at the next
879 * entry. Always update the event index to keep code simple. */
880 if (vq->avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT) {
881 vq->avail_flags_shadow &= ~VRING_AVAIL_F_NO_INTERRUPT;
882 if (!vq->event)
883 vq->vring.avail->flags = cpu_to_virtio16(_vq->vdev, vq->avail_flags_shadow);
884 }
885 /* TODO: tune this threshold */
886 bufs = (u16)(vq->avail_idx_shadow - vq->last_used_idx) * 3 / 4;
887
888 virtio_store_mb(vq->weak_barriers,
889 &vring_used_event(&vq->vring),
890 cpu_to_virtio16(_vq->vdev, vq->last_used_idx + bufs));
891
892 if (unlikely((u16)(virtio16_to_cpu(_vq->vdev, vq->vring.used->idx) - vq->last_used_idx) > bufs)) {
893 END_USE(vq);
894 return false;
895 }
896
897 END_USE(vq);
898 return true;
899 }
900 EXPORT_SYMBOL_GPL(virtqueue_enable_cb_delayed);
901
902 /**
903 * virtqueue_detach_unused_buf - detach first unused buffer
904 * @vq: the struct virtqueue we're talking about.
905 *
906 * Returns NULL or the "data" token handed to virtqueue_add_*().
907 * This is not valid on an active queue; it is useful only for device
908 * shutdown.
909 */
910 void *virtqueue_detach_unused_buf(struct virtqueue *_vq)
911 {
912 struct vring_virtqueue *vq = to_vvq(_vq);
913 unsigned int i;
914 void *buf;
915
916 START_USE(vq);
917
918 for (i = 0; i < vq->vring.num; i++) {
919 if (!vq->desc_state[i].data)
920 continue;
921 /* detach_buf clears data, so grab it now. */
922 buf = vq->desc_state[i].data;
923 detach_buf(vq, i, NULL);
924 vq->avail_idx_shadow--;
925 vq->vring.avail->idx = cpu_to_virtio16(_vq->vdev, vq->avail_idx_shadow);
926 END_USE(vq);
927 return buf;
928 }
929 /* That should have freed everything. */
930 BUG_ON(vq->vq.num_free != vq->vring.num);
931
932 END_USE(vq);
933 return NULL;
934 }
935 EXPORT_SYMBOL_GPL(virtqueue_detach_unused_buf);
936
937 irqreturn_t vring_interrupt(int irq, void *_vq)
938 {
939 struct vring_virtqueue *vq = to_vvq(_vq);
940
941 if (!more_used(vq)) {
942 pr_debug("virtqueue interrupt with no work for %p\n", vq);
943 return IRQ_NONE;
944 }
945
946 if (unlikely(vq->broken))
947 return IRQ_HANDLED;
948
949 pr_debug("virtqueue callback for %p (%p)\n", vq, vq->vq.callback);
950 if (vq->vq.callback)
951 vq->vq.callback(&vq->vq);
952
953 return IRQ_HANDLED;
954 }
955 EXPORT_SYMBOL_GPL(vring_interrupt);
956
957 struct virtqueue *__vring_new_virtqueue(unsigned int index,
958 struct vring vring,
959 struct virtio_device *vdev,
960 bool weak_barriers,
961 bool context,
962 bool (*notify)(struct virtqueue *),
963 void (*callback)(struct virtqueue *),
964 const char *name)
965 {
966 unsigned int i;
967 struct vring_virtqueue *vq;
968
969 vq = kmalloc(sizeof(*vq) + vring.num * sizeof(struct vring_desc_state),
970 GFP_KERNEL);
971 if (!vq)
972 return NULL;
973
974 vq->vring = vring;
975 vq->vq.callback = callback;
976 vq->vq.vdev = vdev;
977 vq->vq.name = name;
978 vq->vq.num_free = vring.num;
979 vq->vq.index = index;
980 vq->we_own_ring = false;
981 vq->queue_dma_addr = 0;
982 vq->queue_size_in_bytes = 0;
983 vq->notify = notify;
984 vq->weak_barriers = weak_barriers;
985 vq->broken = false;
986 vq->last_used_idx = 0;
987 vq->avail_flags_shadow = 0;
988 vq->avail_idx_shadow = 0;
989 vq->num_added = 0;
990 list_add_tail(&vq->vq.list, &vdev->vqs);
991 #ifdef DEBUG
992 vq->in_use = false;
993 vq->last_add_time_valid = false;
994 #endif
995
996 vq->indirect = virtio_has_feature(vdev, VIRTIO_RING_F_INDIRECT_DESC) &&
997 !context;
998 vq->event = virtio_has_feature(vdev, VIRTIO_RING_F_EVENT_IDX);
999
1000 /* No callback? Tell other side not to bother us. */
1001 if (!callback) {
1002 vq->avail_flags_shadow |= VRING_AVAIL_F_NO_INTERRUPT;
1003 if (!vq->event)
1004 vq->vring.avail->flags = cpu_to_virtio16(vdev, vq->avail_flags_shadow);
1005 }
1006
1007 /* Put everything in free lists. */
1008 vq->free_head = 0;
1009 for (i = 0; i < vring.num-1; i++)
1010 vq->vring.desc[i].next = cpu_to_virtio16(vdev, i + 1);
1011 memset(vq->desc_state, 0, vring.num * sizeof(struct vring_desc_state));
1012
1013 return &vq->vq;
1014 }
1015 EXPORT_SYMBOL_GPL(__vring_new_virtqueue);
1016
1017 static void *vring_alloc_queue(struct virtio_device *vdev, size_t size,
1018 dma_addr_t *dma_handle, gfp_t flag)
1019 {
1020 if (vring_use_dma_api(vdev)) {
1021 return dma_alloc_coherent(vdev->dev.parent, size,
1022 dma_handle, flag);
1023 } else {
1024 void *queue = alloc_pages_exact(PAGE_ALIGN(size), flag);
1025 if (queue) {
1026 phys_addr_t phys_addr = virt_to_phys(queue);
1027 *dma_handle = (dma_addr_t)phys_addr;
1028
1029 /*
1030 * Sanity check: make sure we dind't truncate
1031 * the address. The only arches I can find that
1032 * have 64-bit phys_addr_t but 32-bit dma_addr_t
1033 * are certain non-highmem MIPS and x86
1034 * configurations, but these configurations
1035 * should never allocate physical pages above 32
1036 * bits, so this is fine. Just in case, throw a
1037 * warning and abort if we end up with an
1038 * unrepresentable address.
1039 */
1040 if (WARN_ON_ONCE(*dma_handle != phys_addr)) {
1041 free_pages_exact(queue, PAGE_ALIGN(size));
1042 return NULL;
1043 }
1044 }
1045 return queue;
1046 }
1047 }
1048
1049 static void vring_free_queue(struct virtio_device *vdev, size_t size,
1050 void *queue, dma_addr_t dma_handle)
1051 {
1052 if (vring_use_dma_api(vdev)) {
1053 dma_free_coherent(vdev->dev.parent, size, queue, dma_handle);
1054 } else {
1055 free_pages_exact(queue, PAGE_ALIGN(size));
1056 }
1057 }
1058
1059 struct virtqueue *vring_create_virtqueue(
1060 unsigned int index,
1061 unsigned int num,
1062 unsigned int vring_align,
1063 struct virtio_device *vdev,
1064 bool weak_barriers,
1065 bool may_reduce_num,
1066 bool context,
1067 bool (*notify)(struct virtqueue *),
1068 void (*callback)(struct virtqueue *),
1069 const char *name)
1070 {
1071 struct virtqueue *vq;
1072 void *queue = NULL;
1073 dma_addr_t dma_addr;
1074 size_t queue_size_in_bytes;
1075 struct vring vring;
1076
1077 /* We assume num is a power of 2. */
1078 if (num & (num - 1)) {
1079 dev_warn(&vdev->dev, "Bad virtqueue length %u\n", num);
1080 return NULL;
1081 }
1082
1083 /* TODO: allocate each queue chunk individually */
1084 for (; num && vring_size(num, vring_align) > PAGE_SIZE; num /= 2) {
1085 queue = vring_alloc_queue(vdev, vring_size(num, vring_align),
1086 &dma_addr,
1087 GFP_KERNEL|__GFP_NOWARN|__GFP_ZERO);
1088 if (queue)
1089 break;
1090 }
1091
1092 if (!num)
1093 return NULL;
1094
1095 if (!queue) {
1096 /* Try to get a single page. You are my only hope! */
1097 queue = vring_alloc_queue(vdev, vring_size(num, vring_align),
1098 &dma_addr, GFP_KERNEL|__GFP_ZERO);
1099 }
1100 if (!queue)
1101 return NULL;
1102
1103 queue_size_in_bytes = vring_size(num, vring_align);
1104 vring_init(&vring, num, queue, vring_align);
1105
1106 vq = __vring_new_virtqueue(index, vring, vdev, weak_barriers, context,
1107 notify, callback, name);
1108 if (!vq) {
1109 vring_free_queue(vdev, queue_size_in_bytes, queue,
1110 dma_addr);
1111 return NULL;
1112 }
1113
1114 to_vvq(vq)->queue_dma_addr = dma_addr;
1115 to_vvq(vq)->queue_size_in_bytes = queue_size_in_bytes;
1116 to_vvq(vq)->we_own_ring = true;
1117
1118 return vq;
1119 }
1120 EXPORT_SYMBOL_GPL(vring_create_virtqueue);
1121
1122 struct virtqueue *vring_new_virtqueue(unsigned int index,
1123 unsigned int num,
1124 unsigned int vring_align,
1125 struct virtio_device *vdev,
1126 bool weak_barriers,
1127 bool context,
1128 void *pages,
1129 bool (*notify)(struct virtqueue *vq),
1130 void (*callback)(struct virtqueue *vq),
1131 const char *name)
1132 {
1133 struct vring vring;
1134 vring_init(&vring, num, pages, vring_align);
1135 return __vring_new_virtqueue(index, vring, vdev, weak_barriers, context,
1136 notify, callback, name);
1137 }
1138 EXPORT_SYMBOL_GPL(vring_new_virtqueue);
1139
1140 void vring_del_virtqueue(struct virtqueue *_vq)
1141 {
1142 struct vring_virtqueue *vq = to_vvq(_vq);
1143
1144 if (vq->we_own_ring) {
1145 vring_free_queue(vq->vq.vdev, vq->queue_size_in_bytes,
1146 vq->vring.desc, vq->queue_dma_addr);
1147 }
1148 list_del(&_vq->list);
1149 kfree(vq);
1150 }
1151 EXPORT_SYMBOL_GPL(vring_del_virtqueue);
1152
1153 /* Manipulates transport-specific feature bits. */
1154 void vring_transport_features(struct virtio_device *vdev)
1155 {
1156 unsigned int i;
1157
1158 for (i = VIRTIO_TRANSPORT_F_START; i < VIRTIO_TRANSPORT_F_END; i++) {
1159 switch (i) {
1160 case VIRTIO_RING_F_INDIRECT_DESC:
1161 break;
1162 case VIRTIO_RING_F_EVENT_IDX:
1163 break;
1164 case VIRTIO_F_VERSION_1:
1165 break;
1166 case VIRTIO_F_IOMMU_PLATFORM:
1167 break;
1168 default:
1169 /* We don't understand this bit. */
1170 __virtio_clear_bit(vdev, i);
1171 }
1172 }
1173 }
1174 EXPORT_SYMBOL_GPL(vring_transport_features);
1175
1176 /**
1177 * virtqueue_get_vring_size - return the size of the virtqueue's vring
1178 * @vq: the struct virtqueue containing the vring of interest.
1179 *
1180 * Returns the size of the vring. This is mainly used for boasting to
1181 * userspace. Unlike other operations, this need not be serialized.
1182 */
1183 unsigned int virtqueue_get_vring_size(struct virtqueue *_vq)
1184 {
1185
1186 struct vring_virtqueue *vq = to_vvq(_vq);
1187
1188 return vq->vring.num;
1189 }
1190 EXPORT_SYMBOL_GPL(virtqueue_get_vring_size);
1191
1192 bool virtqueue_is_broken(struct virtqueue *_vq)
1193 {
1194 struct vring_virtqueue *vq = to_vvq(_vq);
1195
1196 return vq->broken;
1197 }
1198 EXPORT_SYMBOL_GPL(virtqueue_is_broken);
1199
1200 /*
1201 * This should prevent the device from being used, allowing drivers to
1202 * recover. You may need to grab appropriate locks to flush.
1203 */
1204 void virtio_break_device(struct virtio_device *dev)
1205 {
1206 struct virtqueue *_vq;
1207
1208 list_for_each_entry(_vq, &dev->vqs, list) {
1209 struct vring_virtqueue *vq = to_vvq(_vq);
1210 vq->broken = true;
1211 }
1212 }
1213 EXPORT_SYMBOL_GPL(virtio_break_device);
1214
1215 dma_addr_t virtqueue_get_desc_addr(struct virtqueue *_vq)
1216 {
1217 struct vring_virtqueue *vq = to_vvq(_vq);
1218
1219 BUG_ON(!vq->we_own_ring);
1220
1221 return vq->queue_dma_addr;
1222 }
1223 EXPORT_SYMBOL_GPL(virtqueue_get_desc_addr);
1224
1225 dma_addr_t virtqueue_get_avail_addr(struct virtqueue *_vq)
1226 {
1227 struct vring_virtqueue *vq = to_vvq(_vq);
1228
1229 BUG_ON(!vq->we_own_ring);
1230
1231 return vq->queue_dma_addr +
1232 ((char *)vq->vring.avail - (char *)vq->vring.desc);
1233 }
1234 EXPORT_SYMBOL_GPL(virtqueue_get_avail_addr);
1235
1236 dma_addr_t virtqueue_get_used_addr(struct virtqueue *_vq)
1237 {
1238 struct vring_virtqueue *vq = to_vvq(_vq);
1239
1240 BUG_ON(!vq->we_own_ring);
1241
1242 return vq->queue_dma_addr +
1243 ((char *)vq->vring.used - (char *)vq->vring.desc);
1244 }
1245 EXPORT_SYMBOL_GPL(virtqueue_get_used_addr);
1246
1247 const struct vring *virtqueue_get_vring(struct virtqueue *vq)
1248 {
1249 return &to_vvq(vq)->vring;
1250 }
1251 EXPORT_SYMBOL_GPL(virtqueue_get_vring);
1252
1253 MODULE_LICENSE("GPL");