]> git.ipfire.org Git - people/arne_f/kernel.git/blob - fs/dax.c
iio:magnetometer:ak8975 Fix alignment and data leak issues.
[people/arne_f/kernel.git] / fs / dax.c
1 /*
2 * fs/dax.c - Direct Access filesystem code
3 * Copyright (c) 2013-2014 Intel Corporation
4 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 */
16
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/sched.h>
29 #include <linux/sched/signal.h>
30 #include <linux/uio.h>
31 #include <linux/vmstat.h>
32 #include <linux/pfn_t.h>
33 #include <linux/sizes.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/iomap.h>
36 #include "internal.h"
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/fs_dax.h>
40
41 /* We choose 4096 entries - same as per-zone page wait tables */
42 #define DAX_WAIT_TABLE_BITS 12
43 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
44
45 /* The 'colour' (ie low bits) within a PMD of a page offset. */
46 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
47
48 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
49
50 static int __init init_dax_wait_table(void)
51 {
52 int i;
53
54 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
55 init_waitqueue_head(wait_table + i);
56 return 0;
57 }
58 fs_initcall(init_dax_wait_table);
59
60 /*
61 * We use lowest available bit in exceptional entry for locking, one bit for
62 * the entry size (PMD) and two more to tell us if the entry is a zero page or
63 * an empty entry that is just used for locking. In total four special bits.
64 *
65 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
66 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
67 * block allocation.
68 */
69 #define RADIX_DAX_SHIFT (RADIX_TREE_EXCEPTIONAL_SHIFT + 4)
70 #define RADIX_DAX_ENTRY_LOCK (1 << RADIX_TREE_EXCEPTIONAL_SHIFT)
71 #define RADIX_DAX_PMD (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 1))
72 #define RADIX_DAX_ZERO_PAGE (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 2))
73 #define RADIX_DAX_EMPTY (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 3))
74
75 static unsigned long dax_radix_sector(void *entry)
76 {
77 return (unsigned long)entry >> RADIX_DAX_SHIFT;
78 }
79
80 static void *dax_radix_locked_entry(sector_t sector, unsigned long flags)
81 {
82 return (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY | flags |
83 ((unsigned long)sector << RADIX_DAX_SHIFT) |
84 RADIX_DAX_ENTRY_LOCK);
85 }
86
87 static unsigned int dax_radix_order(void *entry)
88 {
89 if ((unsigned long)entry & RADIX_DAX_PMD)
90 return PMD_SHIFT - PAGE_SHIFT;
91 return 0;
92 }
93
94 static int dax_is_pmd_entry(void *entry)
95 {
96 return (unsigned long)entry & RADIX_DAX_PMD;
97 }
98
99 static int dax_is_pte_entry(void *entry)
100 {
101 return !((unsigned long)entry & RADIX_DAX_PMD);
102 }
103
104 static int dax_is_zero_entry(void *entry)
105 {
106 return (unsigned long)entry & RADIX_DAX_ZERO_PAGE;
107 }
108
109 static int dax_is_empty_entry(void *entry)
110 {
111 return (unsigned long)entry & RADIX_DAX_EMPTY;
112 }
113
114 /*
115 * DAX radix tree locking
116 */
117 struct exceptional_entry_key {
118 struct address_space *mapping;
119 pgoff_t entry_start;
120 };
121
122 struct wait_exceptional_entry_queue {
123 wait_queue_entry_t wait;
124 struct exceptional_entry_key key;
125 };
126
127 static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping,
128 pgoff_t index, void *entry, struct exceptional_entry_key *key)
129 {
130 unsigned long hash;
131
132 /*
133 * If 'entry' is a PMD, align the 'index' that we use for the wait
134 * queue to the start of that PMD. This ensures that all offsets in
135 * the range covered by the PMD map to the same bit lock.
136 */
137 if (dax_is_pmd_entry(entry))
138 index &= ~PG_PMD_COLOUR;
139
140 key->mapping = mapping;
141 key->entry_start = index;
142
143 hash = hash_long((unsigned long)mapping ^ index, DAX_WAIT_TABLE_BITS);
144 return wait_table + hash;
145 }
146
147 static int wake_exceptional_entry_func(wait_queue_entry_t *wait, unsigned int mode,
148 int sync, void *keyp)
149 {
150 struct exceptional_entry_key *key = keyp;
151 struct wait_exceptional_entry_queue *ewait =
152 container_of(wait, struct wait_exceptional_entry_queue, wait);
153
154 if (key->mapping != ewait->key.mapping ||
155 key->entry_start != ewait->key.entry_start)
156 return 0;
157 return autoremove_wake_function(wait, mode, sync, NULL);
158 }
159
160 /*
161 * We do not necessarily hold the mapping->tree_lock when we call this
162 * function so it is possible that 'entry' is no longer a valid item in the
163 * radix tree. This is okay because all we really need to do is to find the
164 * correct waitqueue where tasks might be waiting for that old 'entry' and
165 * wake them.
166 */
167 static void dax_wake_mapping_entry_waiter(struct address_space *mapping,
168 pgoff_t index, void *entry, bool wake_all)
169 {
170 struct exceptional_entry_key key;
171 wait_queue_head_t *wq;
172
173 wq = dax_entry_waitqueue(mapping, index, entry, &key);
174
175 /*
176 * Checking for locked entry and prepare_to_wait_exclusive() happens
177 * under mapping->tree_lock, ditto for entry handling in our callers.
178 * So at this point all tasks that could have seen our entry locked
179 * must be in the waitqueue and the following check will see them.
180 */
181 if (waitqueue_active(wq))
182 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
183 }
184
185 /*
186 * Check whether the given slot is locked. The function must be called with
187 * mapping->tree_lock held
188 */
189 static inline int slot_locked(struct address_space *mapping, void **slot)
190 {
191 unsigned long entry = (unsigned long)
192 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
193 return entry & RADIX_DAX_ENTRY_LOCK;
194 }
195
196 /*
197 * Mark the given slot is locked. The function must be called with
198 * mapping->tree_lock held
199 */
200 static inline void *lock_slot(struct address_space *mapping, void **slot)
201 {
202 unsigned long entry = (unsigned long)
203 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
204
205 entry |= RADIX_DAX_ENTRY_LOCK;
206 radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry);
207 return (void *)entry;
208 }
209
210 /*
211 * Mark the given slot is unlocked. The function must be called with
212 * mapping->tree_lock held
213 */
214 static inline void *unlock_slot(struct address_space *mapping, void **slot)
215 {
216 unsigned long entry = (unsigned long)
217 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
218
219 entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK;
220 radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry);
221 return (void *)entry;
222 }
223
224 /*
225 * Lookup entry in radix tree, wait for it to become unlocked if it is
226 * exceptional entry and return it. The caller must call
227 * put_unlocked_mapping_entry() when he decided not to lock the entry or
228 * put_locked_mapping_entry() when he locked the entry and now wants to
229 * unlock it.
230 *
231 * The function must be called with mapping->tree_lock held.
232 */
233 static void *get_unlocked_mapping_entry(struct address_space *mapping,
234 pgoff_t index, void ***slotp)
235 {
236 void *entry, **slot;
237 struct wait_exceptional_entry_queue ewait;
238 wait_queue_head_t *wq;
239
240 init_wait(&ewait.wait);
241 ewait.wait.func = wake_exceptional_entry_func;
242
243 for (;;) {
244 entry = __radix_tree_lookup(&mapping->page_tree, index, NULL,
245 &slot);
246 if (!entry ||
247 WARN_ON_ONCE(!radix_tree_exceptional_entry(entry)) ||
248 !slot_locked(mapping, slot)) {
249 if (slotp)
250 *slotp = slot;
251 return entry;
252 }
253
254 wq = dax_entry_waitqueue(mapping, index, entry, &ewait.key);
255 prepare_to_wait_exclusive(wq, &ewait.wait,
256 TASK_UNINTERRUPTIBLE);
257 spin_unlock_irq(&mapping->tree_lock);
258 schedule();
259 finish_wait(wq, &ewait.wait);
260 spin_lock_irq(&mapping->tree_lock);
261 }
262 }
263
264 static void dax_unlock_mapping_entry(struct address_space *mapping,
265 pgoff_t index)
266 {
267 void *entry, **slot;
268
269 spin_lock_irq(&mapping->tree_lock);
270 entry = __radix_tree_lookup(&mapping->page_tree, index, NULL, &slot);
271 if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry) ||
272 !slot_locked(mapping, slot))) {
273 spin_unlock_irq(&mapping->tree_lock);
274 return;
275 }
276 unlock_slot(mapping, slot);
277 spin_unlock_irq(&mapping->tree_lock);
278 dax_wake_mapping_entry_waiter(mapping, index, entry, false);
279 }
280
281 static void put_locked_mapping_entry(struct address_space *mapping,
282 pgoff_t index)
283 {
284 dax_unlock_mapping_entry(mapping, index);
285 }
286
287 /*
288 * Called when we are done with radix tree entry we looked up via
289 * get_unlocked_mapping_entry() and which we didn't lock in the end.
290 */
291 static void put_unlocked_mapping_entry(struct address_space *mapping,
292 pgoff_t index, void *entry)
293 {
294 if (!entry)
295 return;
296
297 /* We have to wake up next waiter for the radix tree entry lock */
298 dax_wake_mapping_entry_waiter(mapping, index, entry, false);
299 }
300
301 /*
302 * Find radix tree entry at given index. If it points to an exceptional entry,
303 * return it with the radix tree entry locked. If the radix tree doesn't
304 * contain given index, create an empty exceptional entry for the index and
305 * return with it locked.
306 *
307 * When requesting an entry with size RADIX_DAX_PMD, grab_mapping_entry() will
308 * either return that locked entry or will return an error. This error will
309 * happen if there are any 4k entries within the 2MiB range that we are
310 * requesting.
311 *
312 * We always favor 4k entries over 2MiB entries. There isn't a flow where we
313 * evict 4k entries in order to 'upgrade' them to a 2MiB entry. A 2MiB
314 * insertion will fail if it finds any 4k entries already in the tree, and a
315 * 4k insertion will cause an existing 2MiB entry to be unmapped and
316 * downgraded to 4k entries. This happens for both 2MiB huge zero pages as
317 * well as 2MiB empty entries.
318 *
319 * The exception to this downgrade path is for 2MiB DAX PMD entries that have
320 * real storage backing them. We will leave these real 2MiB DAX entries in
321 * the tree, and PTE writes will simply dirty the entire 2MiB DAX entry.
322 *
323 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
324 * persistent memory the benefit is doubtful. We can add that later if we can
325 * show it helps.
326 */
327 static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index,
328 unsigned long size_flag)
329 {
330 bool pmd_downgrade = false; /* splitting 2MiB entry into 4k entries? */
331 void *entry, **slot;
332
333 restart:
334 spin_lock_irq(&mapping->tree_lock);
335 entry = get_unlocked_mapping_entry(mapping, index, &slot);
336
337 if (WARN_ON_ONCE(entry && !radix_tree_exceptional_entry(entry))) {
338 entry = ERR_PTR(-EIO);
339 goto out_unlock;
340 }
341
342 if (entry) {
343 if (size_flag & RADIX_DAX_PMD) {
344 if (dax_is_pte_entry(entry)) {
345 put_unlocked_mapping_entry(mapping, index,
346 entry);
347 entry = ERR_PTR(-EEXIST);
348 goto out_unlock;
349 }
350 } else { /* trying to grab a PTE entry */
351 if (dax_is_pmd_entry(entry) &&
352 (dax_is_zero_entry(entry) ||
353 dax_is_empty_entry(entry))) {
354 pmd_downgrade = true;
355 }
356 }
357 }
358
359 /* No entry for given index? Make sure radix tree is big enough. */
360 if (!entry || pmd_downgrade) {
361 int err;
362
363 if (pmd_downgrade) {
364 /*
365 * Make sure 'entry' remains valid while we drop
366 * mapping->tree_lock.
367 */
368 entry = lock_slot(mapping, slot);
369 }
370
371 spin_unlock_irq(&mapping->tree_lock);
372 /*
373 * Besides huge zero pages the only other thing that gets
374 * downgraded are empty entries which don't need to be
375 * unmapped.
376 */
377 if (pmd_downgrade && dax_is_zero_entry(entry))
378 unmap_mapping_range(mapping,
379 (index << PAGE_SHIFT) & PMD_MASK, PMD_SIZE, 0);
380
381 err = radix_tree_preload(
382 mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM);
383 if (err) {
384 if (pmd_downgrade)
385 put_locked_mapping_entry(mapping, index);
386 return ERR_PTR(err);
387 }
388 spin_lock_irq(&mapping->tree_lock);
389
390 if (!entry) {
391 /*
392 * We needed to drop the page_tree lock while calling
393 * radix_tree_preload() and we didn't have an entry to
394 * lock. See if another thread inserted an entry at
395 * our index during this time.
396 */
397 entry = __radix_tree_lookup(&mapping->page_tree, index,
398 NULL, &slot);
399 if (entry) {
400 radix_tree_preload_end();
401 spin_unlock_irq(&mapping->tree_lock);
402 goto restart;
403 }
404 }
405
406 if (pmd_downgrade) {
407 radix_tree_delete(&mapping->page_tree, index);
408 mapping->nrexceptional--;
409 dax_wake_mapping_entry_waiter(mapping, index, entry,
410 true);
411 }
412
413 entry = dax_radix_locked_entry(0, size_flag | RADIX_DAX_EMPTY);
414
415 err = __radix_tree_insert(&mapping->page_tree, index,
416 dax_radix_order(entry), entry);
417 radix_tree_preload_end();
418 if (err) {
419 spin_unlock_irq(&mapping->tree_lock);
420 /*
421 * Our insertion of a DAX entry failed, most likely
422 * because we were inserting a PMD entry and it
423 * collided with a PTE sized entry at a different
424 * index in the PMD range. We haven't inserted
425 * anything into the radix tree and have no waiters to
426 * wake.
427 */
428 return ERR_PTR(err);
429 }
430 /* Good, we have inserted empty locked entry into the tree. */
431 mapping->nrexceptional++;
432 spin_unlock_irq(&mapping->tree_lock);
433 return entry;
434 }
435 entry = lock_slot(mapping, slot);
436 out_unlock:
437 spin_unlock_irq(&mapping->tree_lock);
438 return entry;
439 }
440
441 static int __dax_invalidate_mapping_entry(struct address_space *mapping,
442 pgoff_t index, bool trunc)
443 {
444 int ret = 0;
445 void *entry;
446 struct radix_tree_root *page_tree = &mapping->page_tree;
447
448 spin_lock_irq(&mapping->tree_lock);
449 entry = get_unlocked_mapping_entry(mapping, index, NULL);
450 if (!entry || WARN_ON_ONCE(!radix_tree_exceptional_entry(entry)))
451 goto out;
452 if (!trunc &&
453 (radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_DIRTY) ||
454 radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE)))
455 goto out;
456 radix_tree_delete(page_tree, index);
457 mapping->nrexceptional--;
458 ret = 1;
459 out:
460 put_unlocked_mapping_entry(mapping, index, entry);
461 spin_unlock_irq(&mapping->tree_lock);
462 return ret;
463 }
464 /*
465 * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree
466 * entry to get unlocked before deleting it.
467 */
468 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
469 {
470 int ret = __dax_invalidate_mapping_entry(mapping, index, true);
471
472 /*
473 * This gets called from truncate / punch_hole path. As such, the caller
474 * must hold locks protecting against concurrent modifications of the
475 * radix tree (usually fs-private i_mmap_sem for writing). Since the
476 * caller has seen exceptional entry for this index, we better find it
477 * at that index as well...
478 */
479 WARN_ON_ONCE(!ret);
480 return ret;
481 }
482
483 /*
484 * Invalidate exceptional DAX entry if it is clean.
485 */
486 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
487 pgoff_t index)
488 {
489 return __dax_invalidate_mapping_entry(mapping, index, false);
490 }
491
492 static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev,
493 sector_t sector, size_t size, struct page *to,
494 unsigned long vaddr)
495 {
496 void *vto, *kaddr;
497 pgoff_t pgoff;
498 pfn_t pfn;
499 long rc;
500 int id;
501
502 rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
503 if (rc)
504 return rc;
505
506 id = dax_read_lock();
507 rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, &pfn);
508 if (rc < 0) {
509 dax_read_unlock(id);
510 return rc;
511 }
512 vto = kmap_atomic(to);
513 copy_user_page(vto, (void __force *)kaddr, vaddr, to);
514 kunmap_atomic(vto);
515 dax_read_unlock(id);
516 return 0;
517 }
518
519 /*
520 * By this point grab_mapping_entry() has ensured that we have a locked entry
521 * of the appropriate size so we don't have to worry about downgrading PMDs to
522 * PTEs. If we happen to be trying to insert a PTE and there is a PMD
523 * already in the tree, we will skip the insertion and just dirty the PMD as
524 * appropriate.
525 */
526 static void *dax_insert_mapping_entry(struct address_space *mapping,
527 struct vm_fault *vmf,
528 void *entry, sector_t sector,
529 unsigned long flags)
530 {
531 struct radix_tree_root *page_tree = &mapping->page_tree;
532 void *new_entry;
533 pgoff_t index = vmf->pgoff;
534
535 if (vmf->flags & FAULT_FLAG_WRITE)
536 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
537
538 if (dax_is_zero_entry(entry) && !(flags & RADIX_DAX_ZERO_PAGE)) {
539 /* we are replacing a zero page with block mapping */
540 if (dax_is_pmd_entry(entry))
541 unmap_mapping_range(mapping,
542 (vmf->pgoff << PAGE_SHIFT) & PMD_MASK,
543 PMD_SIZE, 0);
544 else /* pte entry */
545 unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
546 PAGE_SIZE, 0);
547 }
548
549 spin_lock_irq(&mapping->tree_lock);
550 new_entry = dax_radix_locked_entry(sector, flags);
551
552 if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
553 /*
554 * Only swap our new entry into the radix tree if the current
555 * entry is a zero page or an empty entry. If a normal PTE or
556 * PMD entry is already in the tree, we leave it alone. This
557 * means that if we are trying to insert a PTE and the
558 * existing entry is a PMD, we will just leave the PMD in the
559 * tree and dirty it if necessary.
560 */
561 struct radix_tree_node *node;
562 void **slot;
563 void *ret;
564
565 ret = __radix_tree_lookup(page_tree, index, &node, &slot);
566 WARN_ON_ONCE(ret != entry);
567 __radix_tree_replace(page_tree, node, slot,
568 new_entry, NULL, NULL);
569 entry = new_entry;
570 }
571
572 if (vmf->flags & FAULT_FLAG_WRITE)
573 radix_tree_tag_set(page_tree, index, PAGECACHE_TAG_DIRTY);
574
575 spin_unlock_irq(&mapping->tree_lock);
576 return entry;
577 }
578
579 static inline unsigned long
580 pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
581 {
582 unsigned long address;
583
584 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
585 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
586 return address;
587 }
588
589 /* Walk all mappings of a given index of a file and writeprotect them */
590 static void dax_mapping_entry_mkclean(struct address_space *mapping,
591 pgoff_t index, unsigned long pfn)
592 {
593 struct vm_area_struct *vma;
594 pte_t pte, *ptep = NULL;
595 pmd_t *pmdp = NULL;
596 spinlock_t *ptl;
597
598 i_mmap_lock_read(mapping);
599 vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
600 unsigned long address, start, end;
601
602 cond_resched();
603
604 if (!(vma->vm_flags & VM_SHARED))
605 continue;
606
607 address = pgoff_address(index, vma);
608
609 /*
610 * Note because we provide start/end to follow_pte_pmd it will
611 * call mmu_notifier_invalidate_range_start() on our behalf
612 * before taking any lock.
613 */
614 if (follow_pte_pmd(vma->vm_mm, address, &start, &end, &ptep, &pmdp, &ptl))
615 continue;
616
617 if (pmdp) {
618 #ifdef CONFIG_FS_DAX_PMD
619 pmd_t pmd;
620
621 if (pfn != pmd_pfn(*pmdp))
622 goto unlock_pmd;
623 if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
624 goto unlock_pmd;
625
626 flush_cache_page(vma, address, pfn);
627 pmd = pmdp_huge_clear_flush(vma, address, pmdp);
628 pmd = pmd_wrprotect(pmd);
629 pmd = pmd_mkclean(pmd);
630 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
631 mmu_notifier_invalidate_range(vma->vm_mm, start, end);
632 unlock_pmd:
633 #endif
634 spin_unlock(ptl);
635 } else {
636 if (pfn != pte_pfn(*ptep))
637 goto unlock_pte;
638 if (!pte_dirty(*ptep) && !pte_write(*ptep))
639 goto unlock_pte;
640
641 flush_cache_page(vma, address, pfn);
642 pte = ptep_clear_flush(vma, address, ptep);
643 pte = pte_wrprotect(pte);
644 pte = pte_mkclean(pte);
645 set_pte_at(vma->vm_mm, address, ptep, pte);
646 mmu_notifier_invalidate_range(vma->vm_mm, start, end);
647 unlock_pte:
648 pte_unmap_unlock(ptep, ptl);
649 }
650
651 mmu_notifier_invalidate_range_end(vma->vm_mm, start, end);
652 }
653 i_mmap_unlock_read(mapping);
654 }
655
656 static int dax_writeback_one(struct block_device *bdev,
657 struct dax_device *dax_dev, struct address_space *mapping,
658 pgoff_t index, void *entry)
659 {
660 struct radix_tree_root *page_tree = &mapping->page_tree;
661 void *entry2, **slot, *kaddr;
662 long ret = 0, id;
663 sector_t sector;
664 pgoff_t pgoff;
665 size_t size;
666 pfn_t pfn;
667
668 /*
669 * A page got tagged dirty in DAX mapping? Something is seriously
670 * wrong.
671 */
672 if (WARN_ON(!radix_tree_exceptional_entry(entry)))
673 return -EIO;
674
675 spin_lock_irq(&mapping->tree_lock);
676 entry2 = get_unlocked_mapping_entry(mapping, index, &slot);
677 /* Entry got punched out / reallocated? */
678 if (!entry2 || WARN_ON_ONCE(!radix_tree_exceptional_entry(entry2)))
679 goto put_unlocked;
680 /*
681 * Entry got reallocated elsewhere? No need to writeback. We have to
682 * compare sectors as we must not bail out due to difference in lockbit
683 * or entry type.
684 */
685 if (dax_radix_sector(entry2) != dax_radix_sector(entry))
686 goto put_unlocked;
687 if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
688 dax_is_zero_entry(entry))) {
689 ret = -EIO;
690 goto put_unlocked;
691 }
692
693 /* Another fsync thread may have already written back this entry */
694 if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))
695 goto put_unlocked;
696 /* Lock the entry to serialize with page faults */
697 entry = lock_slot(mapping, slot);
698 /*
699 * We can clear the tag now but we have to be careful so that concurrent
700 * dax_writeback_one() calls for the same index cannot finish before we
701 * actually flush the caches. This is achieved as the calls will look
702 * at the entry only under tree_lock and once they do that they will
703 * see the entry locked and wait for it to unlock.
704 */
705 radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_TOWRITE);
706 spin_unlock_irq(&mapping->tree_lock);
707
708 /*
709 * Even if dax_writeback_mapping_range() was given a wbc->range_start
710 * in the middle of a PMD, the 'index' we are given will be aligned to
711 * the start index of the PMD, as will the sector we pull from
712 * 'entry'. This allows us to flush for PMD_SIZE and not have to
713 * worry about partial PMD writebacks.
714 */
715 sector = dax_radix_sector(entry);
716 size = PAGE_SIZE << dax_radix_order(entry);
717
718 id = dax_read_lock();
719 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
720 if (ret)
721 goto dax_unlock;
722
723 /*
724 * dax_direct_access() may sleep, so cannot hold tree_lock over
725 * its invocation.
726 */
727 ret = dax_direct_access(dax_dev, pgoff, size / PAGE_SIZE, &kaddr, &pfn);
728 if (ret < 0)
729 goto dax_unlock;
730
731 if (WARN_ON_ONCE(ret < size / PAGE_SIZE)) {
732 ret = -EIO;
733 goto dax_unlock;
734 }
735
736 dax_mapping_entry_mkclean(mapping, index, pfn_t_to_pfn(pfn));
737 dax_flush(dax_dev, kaddr, size);
738 /*
739 * After we have flushed the cache, we can clear the dirty tag. There
740 * cannot be new dirty data in the pfn after the flush has completed as
741 * the pfn mappings are writeprotected and fault waits for mapping
742 * entry lock.
743 */
744 spin_lock_irq(&mapping->tree_lock);
745 radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_DIRTY);
746 spin_unlock_irq(&mapping->tree_lock);
747 trace_dax_writeback_one(mapping->host, index, size >> PAGE_SHIFT);
748 dax_unlock:
749 dax_read_unlock(id);
750 put_locked_mapping_entry(mapping, index);
751 return ret;
752
753 put_unlocked:
754 put_unlocked_mapping_entry(mapping, index, entry2);
755 spin_unlock_irq(&mapping->tree_lock);
756 return ret;
757 }
758
759 /*
760 * Flush the mapping to the persistent domain within the byte range of [start,
761 * end]. This is required by data integrity operations to ensure file data is
762 * on persistent storage prior to completion of the operation.
763 */
764 int dax_writeback_mapping_range(struct address_space *mapping,
765 struct block_device *bdev, struct writeback_control *wbc)
766 {
767 struct inode *inode = mapping->host;
768 pgoff_t start_index, end_index;
769 pgoff_t indices[PAGEVEC_SIZE];
770 struct dax_device *dax_dev;
771 struct pagevec pvec;
772 bool done = false;
773 int i, ret = 0;
774
775 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
776 return -EIO;
777
778 if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
779 return 0;
780
781 dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
782 if (!dax_dev)
783 return -EIO;
784
785 start_index = wbc->range_start >> PAGE_SHIFT;
786 end_index = wbc->range_end >> PAGE_SHIFT;
787
788 trace_dax_writeback_range(inode, start_index, end_index);
789
790 tag_pages_for_writeback(mapping, start_index, end_index);
791
792 pagevec_init(&pvec, 0);
793 while (!done) {
794 pvec.nr = find_get_entries_tag(mapping, start_index,
795 PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
796 pvec.pages, indices);
797
798 if (pvec.nr == 0)
799 break;
800
801 for (i = 0; i < pvec.nr; i++) {
802 if (indices[i] > end_index) {
803 done = true;
804 break;
805 }
806
807 ret = dax_writeback_one(bdev, dax_dev, mapping,
808 indices[i], pvec.pages[i]);
809 if (ret < 0) {
810 mapping_set_error(mapping, ret);
811 goto out;
812 }
813 }
814 start_index = indices[pvec.nr - 1] + 1;
815 }
816 out:
817 put_dax(dax_dev);
818 trace_dax_writeback_range_done(inode, start_index, end_index);
819 return (ret < 0 ? ret : 0);
820 }
821 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
822
823 static int dax_insert_mapping(struct address_space *mapping,
824 struct block_device *bdev, struct dax_device *dax_dev,
825 sector_t sector, size_t size, void *entry,
826 struct vm_area_struct *vma, struct vm_fault *vmf)
827 {
828 unsigned long vaddr = vmf->address;
829 void *ret, *kaddr;
830 pgoff_t pgoff;
831 int id, rc;
832 pfn_t pfn;
833
834 rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
835 if (rc)
836 return rc;
837
838 id = dax_read_lock();
839 rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, &pfn);
840 if (rc < 0) {
841 dax_read_unlock(id);
842 return rc;
843 }
844 dax_read_unlock(id);
845
846 ret = dax_insert_mapping_entry(mapping, vmf, entry, sector, 0);
847 if (IS_ERR(ret))
848 return PTR_ERR(ret);
849
850 trace_dax_insert_mapping(mapping->host, vmf, ret);
851 if (vmf->flags & FAULT_FLAG_WRITE)
852 return vm_insert_mixed_mkwrite(vma, vaddr, pfn);
853 else
854 return vm_insert_mixed(vma, vaddr, pfn);
855 }
856
857 /*
858 * The user has performed a load from a hole in the file. Allocating a new
859 * page in the file would cause excessive storage usage for workloads with
860 * sparse files. Instead we insert a read-only mapping of the 4k zero page.
861 * If this page is ever written to we will re-fault and change the mapping to
862 * point to real DAX storage instead.
863 */
864 static int dax_load_hole(struct address_space *mapping, void *entry,
865 struct vm_fault *vmf)
866 {
867 struct inode *inode = mapping->host;
868 unsigned long vaddr = vmf->address;
869 int ret = VM_FAULT_NOPAGE;
870 struct page *zero_page;
871 void *entry2;
872
873 zero_page = ZERO_PAGE(0);
874 if (unlikely(!zero_page)) {
875 ret = VM_FAULT_OOM;
876 goto out;
877 }
878
879 entry2 = dax_insert_mapping_entry(mapping, vmf, entry, 0,
880 RADIX_DAX_ZERO_PAGE);
881 if (IS_ERR(entry2)) {
882 ret = VM_FAULT_SIGBUS;
883 goto out;
884 }
885
886 vm_insert_mixed(vmf->vma, vaddr, page_to_pfn_t(zero_page));
887 out:
888 trace_dax_load_hole(inode, vmf, ret);
889 return ret;
890 }
891
892 static bool dax_range_is_aligned(struct block_device *bdev,
893 unsigned int offset, unsigned int length)
894 {
895 unsigned short sector_size = bdev_logical_block_size(bdev);
896
897 if (!IS_ALIGNED(offset, sector_size))
898 return false;
899 if (!IS_ALIGNED(length, sector_size))
900 return false;
901
902 return true;
903 }
904
905 int __dax_zero_page_range(struct block_device *bdev,
906 struct dax_device *dax_dev, sector_t sector,
907 unsigned int offset, unsigned int size)
908 {
909 if (dax_range_is_aligned(bdev, offset, size)) {
910 sector_t start_sector = sector + (offset >> 9);
911
912 return blkdev_issue_zeroout(bdev, start_sector,
913 size >> 9, GFP_NOFS, 0);
914 } else {
915 pgoff_t pgoff;
916 long rc, id;
917 void *kaddr;
918 pfn_t pfn;
919
920 rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
921 if (rc)
922 return rc;
923
924 id = dax_read_lock();
925 rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr,
926 &pfn);
927 if (rc < 0) {
928 dax_read_unlock(id);
929 return rc;
930 }
931 memset(kaddr + offset, 0, size);
932 dax_flush(dax_dev, kaddr + offset, size);
933 dax_read_unlock(id);
934 }
935 return 0;
936 }
937 EXPORT_SYMBOL_GPL(__dax_zero_page_range);
938
939 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
940 {
941 return iomap->blkno + (((pos & PAGE_MASK) - iomap->offset) >> 9);
942 }
943
944 static loff_t
945 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
946 struct iomap *iomap)
947 {
948 struct block_device *bdev = iomap->bdev;
949 struct dax_device *dax_dev = iomap->dax_dev;
950 struct iov_iter *iter = data;
951 loff_t end = pos + length, done = 0;
952 ssize_t ret = 0;
953 int id;
954
955 if (iov_iter_rw(iter) == READ) {
956 end = min(end, i_size_read(inode));
957 if (pos >= end)
958 return 0;
959
960 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
961 return iov_iter_zero(min(length, end - pos), iter);
962 }
963
964 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
965 return -EIO;
966
967 /*
968 * Write can allocate block for an area which has a hole page mapped
969 * into page tables. We have to tear down these mappings so that data
970 * written by write(2) is visible in mmap.
971 */
972 if (iomap->flags & IOMAP_F_NEW) {
973 invalidate_inode_pages2_range(inode->i_mapping,
974 pos >> PAGE_SHIFT,
975 (end - 1) >> PAGE_SHIFT);
976 }
977
978 id = dax_read_lock();
979 while (pos < end) {
980 unsigned offset = pos & (PAGE_SIZE - 1);
981 const size_t size = ALIGN(length + offset, PAGE_SIZE);
982 const sector_t sector = dax_iomap_sector(iomap, pos);
983 ssize_t map_len;
984 pgoff_t pgoff;
985 void *kaddr;
986 pfn_t pfn;
987
988 if (fatal_signal_pending(current)) {
989 ret = -EINTR;
990 break;
991 }
992
993 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
994 if (ret)
995 break;
996
997 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
998 &kaddr, &pfn);
999 if (map_len < 0) {
1000 ret = map_len;
1001 break;
1002 }
1003
1004 map_len = PFN_PHYS(map_len);
1005 kaddr += offset;
1006 map_len -= offset;
1007 if (map_len > end - pos)
1008 map_len = end - pos;
1009
1010 /*
1011 * The userspace address for the memory copy has already been
1012 * validated via access_ok() in either vfs_read() or
1013 * vfs_write(), depending on which operation we are doing.
1014 */
1015 if (iov_iter_rw(iter) == WRITE)
1016 map_len = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1017 map_len, iter);
1018 else
1019 map_len = copy_to_iter(kaddr, map_len, iter);
1020 if (map_len <= 0) {
1021 ret = map_len ? map_len : -EFAULT;
1022 break;
1023 }
1024
1025 pos += map_len;
1026 length -= map_len;
1027 done += map_len;
1028 }
1029 dax_read_unlock(id);
1030
1031 return done ? done : ret;
1032 }
1033
1034 /**
1035 * dax_iomap_rw - Perform I/O to a DAX file
1036 * @iocb: The control block for this I/O
1037 * @iter: The addresses to do I/O from or to
1038 * @ops: iomap ops passed from the file system
1039 *
1040 * This function performs read and write operations to directly mapped
1041 * persistent memory. The callers needs to take care of read/write exclusion
1042 * and evicting any page cache pages in the region under I/O.
1043 */
1044 ssize_t
1045 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1046 const struct iomap_ops *ops)
1047 {
1048 struct address_space *mapping = iocb->ki_filp->f_mapping;
1049 struct inode *inode = mapping->host;
1050 loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1051 unsigned flags = 0;
1052
1053 if (iov_iter_rw(iter) == WRITE) {
1054 lockdep_assert_held_exclusive(&inode->i_rwsem);
1055 flags |= IOMAP_WRITE;
1056 } else {
1057 lockdep_assert_held(&inode->i_rwsem);
1058 }
1059
1060 if (iocb->ki_flags & IOCB_NOWAIT)
1061 flags |= IOMAP_NOWAIT;
1062
1063 while (iov_iter_count(iter)) {
1064 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1065 iter, dax_iomap_actor);
1066 if (ret <= 0)
1067 break;
1068 pos += ret;
1069 done += ret;
1070 }
1071
1072 iocb->ki_pos += done;
1073 return done ? done : ret;
1074 }
1075 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1076
1077 static int dax_fault_return(int error)
1078 {
1079 if (error == 0)
1080 return VM_FAULT_NOPAGE;
1081 if (error == -ENOMEM)
1082 return VM_FAULT_OOM;
1083 return VM_FAULT_SIGBUS;
1084 }
1085
1086 static int dax_iomap_pte_fault(struct vm_fault *vmf,
1087 const struct iomap_ops *ops)
1088 {
1089 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1090 struct inode *inode = mapping->host;
1091 unsigned long vaddr = vmf->address;
1092 loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1093 sector_t sector;
1094 struct iomap iomap = { 0 };
1095 unsigned flags = IOMAP_FAULT;
1096 int error, major = 0;
1097 int vmf_ret = 0;
1098 void *entry;
1099
1100 trace_dax_pte_fault(inode, vmf, vmf_ret);
1101 /*
1102 * Check whether offset isn't beyond end of file now. Caller is supposed
1103 * to hold locks serializing us with truncate / punch hole so this is
1104 * a reliable test.
1105 */
1106 if (pos >= i_size_read(inode)) {
1107 vmf_ret = VM_FAULT_SIGBUS;
1108 goto out;
1109 }
1110
1111 if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page)
1112 flags |= IOMAP_WRITE;
1113
1114 entry = grab_mapping_entry(mapping, vmf->pgoff, 0);
1115 if (IS_ERR(entry)) {
1116 vmf_ret = dax_fault_return(PTR_ERR(entry));
1117 goto out;
1118 }
1119
1120 /*
1121 * It is possible, particularly with mixed reads & writes to private
1122 * mappings, that we have raced with a PMD fault that overlaps with
1123 * the PTE we need to set up. If so just return and the fault will be
1124 * retried.
1125 */
1126 if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1127 vmf_ret = VM_FAULT_NOPAGE;
1128 goto unlock_entry;
1129 }
1130
1131 /*
1132 * Note that we don't bother to use iomap_apply here: DAX required
1133 * the file system block size to be equal the page size, which means
1134 * that we never have to deal with more than a single extent here.
1135 */
1136 error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
1137 if (error) {
1138 vmf_ret = dax_fault_return(error);
1139 goto unlock_entry;
1140 }
1141 if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1142 error = -EIO; /* fs corruption? */
1143 goto error_finish_iomap;
1144 }
1145
1146 sector = dax_iomap_sector(&iomap, pos);
1147
1148 if (vmf->cow_page) {
1149 switch (iomap.type) {
1150 case IOMAP_HOLE:
1151 case IOMAP_UNWRITTEN:
1152 clear_user_highpage(vmf->cow_page, vaddr);
1153 break;
1154 case IOMAP_MAPPED:
1155 error = copy_user_dax(iomap.bdev, iomap.dax_dev,
1156 sector, PAGE_SIZE, vmf->cow_page, vaddr);
1157 break;
1158 default:
1159 WARN_ON_ONCE(1);
1160 error = -EIO;
1161 break;
1162 }
1163
1164 if (error)
1165 goto error_finish_iomap;
1166
1167 __SetPageUptodate(vmf->cow_page);
1168 vmf_ret = finish_fault(vmf);
1169 if (!vmf_ret)
1170 vmf_ret = VM_FAULT_DONE_COW;
1171 goto finish_iomap;
1172 }
1173
1174 switch (iomap.type) {
1175 case IOMAP_MAPPED:
1176 if (iomap.flags & IOMAP_F_NEW) {
1177 count_vm_event(PGMAJFAULT);
1178 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
1179 major = VM_FAULT_MAJOR;
1180 }
1181 error = dax_insert_mapping(mapping, iomap.bdev, iomap.dax_dev,
1182 sector, PAGE_SIZE, entry, vmf->vma, vmf);
1183 /* -EBUSY is fine, somebody else faulted on the same PTE */
1184 if (error == -EBUSY)
1185 error = 0;
1186 break;
1187 case IOMAP_UNWRITTEN:
1188 case IOMAP_HOLE:
1189 if (!(vmf->flags & FAULT_FLAG_WRITE)) {
1190 vmf_ret = dax_load_hole(mapping, entry, vmf);
1191 goto finish_iomap;
1192 }
1193 /*FALLTHRU*/
1194 default:
1195 WARN_ON_ONCE(1);
1196 error = -EIO;
1197 break;
1198 }
1199
1200 error_finish_iomap:
1201 vmf_ret = dax_fault_return(error) | major;
1202 finish_iomap:
1203 if (ops->iomap_end) {
1204 int copied = PAGE_SIZE;
1205
1206 if (vmf_ret & VM_FAULT_ERROR)
1207 copied = 0;
1208 /*
1209 * The fault is done by now and there's no way back (other
1210 * thread may be already happily using PTE we have installed).
1211 * Just ignore error from ->iomap_end since we cannot do much
1212 * with it.
1213 */
1214 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1215 }
1216 unlock_entry:
1217 put_locked_mapping_entry(mapping, vmf->pgoff);
1218 out:
1219 trace_dax_pte_fault_done(inode, vmf, vmf_ret);
1220 return vmf_ret;
1221 }
1222
1223 #ifdef CONFIG_FS_DAX_PMD
1224 static int dax_pmd_insert_mapping(struct vm_fault *vmf, struct iomap *iomap,
1225 loff_t pos, void *entry)
1226 {
1227 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1228 const sector_t sector = dax_iomap_sector(iomap, pos);
1229 struct dax_device *dax_dev = iomap->dax_dev;
1230 struct block_device *bdev = iomap->bdev;
1231 struct inode *inode = mapping->host;
1232 const size_t size = PMD_SIZE;
1233 void *ret = NULL, *kaddr;
1234 long length = 0;
1235 pgoff_t pgoff;
1236 pfn_t pfn = {};
1237 int id;
1238
1239 if (bdev_dax_pgoff(bdev, sector, size, &pgoff) != 0)
1240 goto fallback;
1241
1242 id = dax_read_lock();
1243 length = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, &pfn);
1244 if (length < 0)
1245 goto unlock_fallback;
1246 length = PFN_PHYS(length);
1247
1248 if (length < size)
1249 goto unlock_fallback;
1250 if (pfn_t_to_pfn(pfn) & PG_PMD_COLOUR)
1251 goto unlock_fallback;
1252 if (!pfn_t_devmap(pfn))
1253 goto unlock_fallback;
1254 dax_read_unlock(id);
1255
1256 ret = dax_insert_mapping_entry(mapping, vmf, entry, sector,
1257 RADIX_DAX_PMD);
1258 if (IS_ERR(ret))
1259 goto fallback;
1260
1261 trace_dax_pmd_insert_mapping(inode, vmf, length, pfn, ret);
1262 return vmf_insert_pfn_pmd(vmf->vma, vmf->address, vmf->pmd,
1263 pfn, vmf->flags & FAULT_FLAG_WRITE);
1264
1265 unlock_fallback:
1266 dax_read_unlock(id);
1267 fallback:
1268 trace_dax_pmd_insert_mapping_fallback(inode, vmf, length, pfn, ret);
1269 return VM_FAULT_FALLBACK;
1270 }
1271
1272 static int dax_pmd_load_hole(struct vm_fault *vmf, struct iomap *iomap,
1273 void *entry)
1274 {
1275 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1276 unsigned long pmd_addr = vmf->address & PMD_MASK;
1277 struct inode *inode = mapping->host;
1278 struct page *zero_page;
1279 void *ret = NULL;
1280 spinlock_t *ptl;
1281 pmd_t pmd_entry;
1282
1283 zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1284
1285 if (unlikely(!zero_page))
1286 goto fallback;
1287
1288 ret = dax_insert_mapping_entry(mapping, vmf, entry, 0,
1289 RADIX_DAX_PMD | RADIX_DAX_ZERO_PAGE);
1290 if (IS_ERR(ret))
1291 goto fallback;
1292
1293 ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1294 if (!pmd_none(*(vmf->pmd))) {
1295 spin_unlock(ptl);
1296 goto fallback;
1297 }
1298
1299 pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1300 pmd_entry = pmd_mkhuge(pmd_entry);
1301 set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1302 spin_unlock(ptl);
1303 trace_dax_pmd_load_hole(inode, vmf, zero_page, ret);
1304 return VM_FAULT_NOPAGE;
1305
1306 fallback:
1307 trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, ret);
1308 return VM_FAULT_FALLBACK;
1309 }
1310
1311 static int dax_iomap_pmd_fault(struct vm_fault *vmf,
1312 const struct iomap_ops *ops)
1313 {
1314 struct vm_area_struct *vma = vmf->vma;
1315 struct address_space *mapping = vma->vm_file->f_mapping;
1316 unsigned long pmd_addr = vmf->address & PMD_MASK;
1317 bool write = vmf->flags & FAULT_FLAG_WRITE;
1318 unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1319 struct inode *inode = mapping->host;
1320 int result = VM_FAULT_FALLBACK;
1321 struct iomap iomap = { 0 };
1322 pgoff_t max_pgoff, pgoff;
1323 void *entry;
1324 loff_t pos;
1325 int error;
1326
1327 /*
1328 * Check whether offset isn't beyond end of file now. Caller is
1329 * supposed to hold locks serializing us with truncate / punch hole so
1330 * this is a reliable test.
1331 */
1332 pgoff = linear_page_index(vma, pmd_addr);
1333 max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1334
1335 trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
1336
1337 /*
1338 * Make sure that the faulting address's PMD offset (color) matches
1339 * the PMD offset from the start of the file. This is necessary so
1340 * that a PMD range in the page table overlaps exactly with a PMD
1341 * range in the radix tree.
1342 */
1343 if ((vmf->pgoff & PG_PMD_COLOUR) !=
1344 ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1345 goto fallback;
1346
1347 /* Fall back to PTEs if we're going to COW */
1348 if (write && !(vma->vm_flags & VM_SHARED))
1349 goto fallback;
1350
1351 /* If the PMD would extend outside the VMA */
1352 if (pmd_addr < vma->vm_start)
1353 goto fallback;
1354 if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1355 goto fallback;
1356
1357 if (pgoff >= max_pgoff) {
1358 result = VM_FAULT_SIGBUS;
1359 goto out;
1360 }
1361
1362 /* If the PMD would extend beyond the file size */
1363 if ((pgoff | PG_PMD_COLOUR) >= max_pgoff)
1364 goto fallback;
1365
1366 /*
1367 * grab_mapping_entry() will make sure we get a 2MiB empty entry, a
1368 * 2MiB zero page entry or a DAX PMD. If it can't (because a 4k page
1369 * is already in the tree, for instance), it will return -EEXIST and
1370 * we just fall back to 4k entries.
1371 */
1372 entry = grab_mapping_entry(mapping, pgoff, RADIX_DAX_PMD);
1373 if (IS_ERR(entry))
1374 goto fallback;
1375
1376 /*
1377 * It is possible, particularly with mixed reads & writes to private
1378 * mappings, that we have raced with a PTE fault that overlaps with
1379 * the PMD we need to set up. If so just return and the fault will be
1380 * retried.
1381 */
1382 if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1383 !pmd_devmap(*vmf->pmd)) {
1384 result = 0;
1385 goto unlock_entry;
1386 }
1387
1388 /*
1389 * Note that we don't use iomap_apply here. We aren't doing I/O, only
1390 * setting up a mapping, so really we're using iomap_begin() as a way
1391 * to look up our filesystem block.
1392 */
1393 pos = (loff_t)pgoff << PAGE_SHIFT;
1394 error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1395 if (error)
1396 goto unlock_entry;
1397
1398 if (iomap.offset + iomap.length < pos + PMD_SIZE)
1399 goto finish_iomap;
1400
1401 switch (iomap.type) {
1402 case IOMAP_MAPPED:
1403 result = dax_pmd_insert_mapping(vmf, &iomap, pos, entry);
1404 break;
1405 case IOMAP_UNWRITTEN:
1406 case IOMAP_HOLE:
1407 if (WARN_ON_ONCE(write))
1408 break;
1409 result = dax_pmd_load_hole(vmf, &iomap, entry);
1410 break;
1411 default:
1412 WARN_ON_ONCE(1);
1413 break;
1414 }
1415
1416 finish_iomap:
1417 if (ops->iomap_end) {
1418 int copied = PMD_SIZE;
1419
1420 if (result == VM_FAULT_FALLBACK)
1421 copied = 0;
1422 /*
1423 * The fault is done by now and there's no way back (other
1424 * thread may be already happily using PMD we have installed).
1425 * Just ignore error from ->iomap_end since we cannot do much
1426 * with it.
1427 */
1428 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1429 &iomap);
1430 }
1431 unlock_entry:
1432 put_locked_mapping_entry(mapping, pgoff);
1433 fallback:
1434 if (result == VM_FAULT_FALLBACK) {
1435 split_huge_pmd(vma, vmf->pmd, vmf->address);
1436 count_vm_event(THP_FAULT_FALLBACK);
1437 }
1438 out:
1439 trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
1440 return result;
1441 }
1442 #else
1443 static int dax_iomap_pmd_fault(struct vm_fault *vmf,
1444 const struct iomap_ops *ops)
1445 {
1446 return VM_FAULT_FALLBACK;
1447 }
1448 #endif /* CONFIG_FS_DAX_PMD */
1449
1450 /**
1451 * dax_iomap_fault - handle a page fault on a DAX file
1452 * @vmf: The description of the fault
1453 * @ops: iomap ops passed from the file system
1454 *
1455 * When a page fault occurs, filesystems may call this helper in
1456 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1457 * has done all the necessary locking for page fault to proceed
1458 * successfully.
1459 */
1460 int dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1461 const struct iomap_ops *ops)
1462 {
1463 switch (pe_size) {
1464 case PE_SIZE_PTE:
1465 return dax_iomap_pte_fault(vmf, ops);
1466 case PE_SIZE_PMD:
1467 return dax_iomap_pmd_fault(vmf, ops);
1468 default:
1469 return VM_FAULT_FALLBACK;
1470 }
1471 }
1472 EXPORT_SYMBOL_GPL(dax_iomap_fault);