]> git.ipfire.org Git - people/arne_f/kernel.git/blob - ipc/mqueue.c
i2c: i801: Fix resume bug
[people/arne_f/kernel.git] / ipc / mqueue.c
1 /*
2 * POSIX message queues filesystem for Linux.
3 *
4 * Copyright (C) 2003,2004 Krzysztof Benedyczak (golbi@mat.uni.torun.pl)
5 * Michal Wronski (michal.wronski@gmail.com)
6 *
7 * Spinlocks: Mohamed Abbas (abbas.mohamed@intel.com)
8 * Lockless receive & send, fd based notify:
9 * Manfred Spraul (manfred@colorfullife.com)
10 *
11 * Audit: George Wilson (ltcgcw@us.ibm.com)
12 *
13 * This file is released under the GPL.
14 */
15
16 #include <linux/capability.h>
17 #include <linux/init.h>
18 #include <linux/pagemap.h>
19 #include <linux/file.h>
20 #include <linux/mount.h>
21 #include <linux/namei.h>
22 #include <linux/sysctl.h>
23 #include <linux/poll.h>
24 #include <linux/mqueue.h>
25 #include <linux/msg.h>
26 #include <linux/skbuff.h>
27 #include <linux/vmalloc.h>
28 #include <linux/netlink.h>
29 #include <linux/syscalls.h>
30 #include <linux/audit.h>
31 #include <linux/signal.h>
32 #include <linux/mutex.h>
33 #include <linux/nsproxy.h>
34 #include <linux/pid.h>
35 #include <linux/ipc_namespace.h>
36 #include <linux/user_namespace.h>
37 #include <linux/slab.h>
38 #include <linux/sched/wake_q.h>
39 #include <linux/sched/signal.h>
40 #include <linux/sched/user.h>
41
42 #include <net/sock.h>
43 #include "util.h"
44
45 #define MQUEUE_MAGIC 0x19800202
46 #define DIRENT_SIZE 20
47 #define FILENT_SIZE 80
48
49 #define SEND 0
50 #define RECV 1
51
52 #define STATE_NONE 0
53 #define STATE_READY 1
54
55 struct posix_msg_tree_node {
56 struct rb_node rb_node;
57 struct list_head msg_list;
58 int priority;
59 };
60
61 struct ext_wait_queue { /* queue of sleeping tasks */
62 struct task_struct *task;
63 struct list_head list;
64 struct msg_msg *msg; /* ptr of loaded message */
65 int state; /* one of STATE_* values */
66 };
67
68 struct mqueue_inode_info {
69 spinlock_t lock;
70 struct inode vfs_inode;
71 wait_queue_head_t wait_q;
72
73 struct rb_root msg_tree;
74 struct posix_msg_tree_node *node_cache;
75 struct mq_attr attr;
76
77 struct sigevent notify;
78 struct pid *notify_owner;
79 struct user_namespace *notify_user_ns;
80 struct user_struct *user; /* user who created, for accounting */
81 struct sock *notify_sock;
82 struct sk_buff *notify_cookie;
83
84 /* for tasks waiting for free space and messages, respectively */
85 struct ext_wait_queue e_wait_q[2];
86
87 unsigned long qsize; /* size of queue in memory (sum of all msgs) */
88 };
89
90 static const struct inode_operations mqueue_dir_inode_operations;
91 static const struct file_operations mqueue_file_operations;
92 static const struct super_operations mqueue_super_ops;
93 static void remove_notification(struct mqueue_inode_info *info);
94
95 static struct kmem_cache *mqueue_inode_cachep;
96
97 static struct ctl_table_header *mq_sysctl_table;
98
99 static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode)
100 {
101 return container_of(inode, struct mqueue_inode_info, vfs_inode);
102 }
103
104 /*
105 * This routine should be called with the mq_lock held.
106 */
107 static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode)
108 {
109 return get_ipc_ns(inode->i_sb->s_fs_info);
110 }
111
112 static struct ipc_namespace *get_ns_from_inode(struct inode *inode)
113 {
114 struct ipc_namespace *ns;
115
116 spin_lock(&mq_lock);
117 ns = __get_ns_from_inode(inode);
118 spin_unlock(&mq_lock);
119 return ns;
120 }
121
122 /* Auxiliary functions to manipulate messages' list */
123 static int msg_insert(struct msg_msg *msg, struct mqueue_inode_info *info)
124 {
125 struct rb_node **p, *parent = NULL;
126 struct posix_msg_tree_node *leaf;
127
128 p = &info->msg_tree.rb_node;
129 while (*p) {
130 parent = *p;
131 leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
132
133 if (likely(leaf->priority == msg->m_type))
134 goto insert_msg;
135 else if (msg->m_type < leaf->priority)
136 p = &(*p)->rb_left;
137 else
138 p = &(*p)->rb_right;
139 }
140 if (info->node_cache) {
141 leaf = info->node_cache;
142 info->node_cache = NULL;
143 } else {
144 leaf = kmalloc(sizeof(*leaf), GFP_ATOMIC);
145 if (!leaf)
146 return -ENOMEM;
147 INIT_LIST_HEAD(&leaf->msg_list);
148 }
149 leaf->priority = msg->m_type;
150 rb_link_node(&leaf->rb_node, parent, p);
151 rb_insert_color(&leaf->rb_node, &info->msg_tree);
152 insert_msg:
153 info->attr.mq_curmsgs++;
154 info->qsize += msg->m_ts;
155 list_add_tail(&msg->m_list, &leaf->msg_list);
156 return 0;
157 }
158
159 static inline struct msg_msg *msg_get(struct mqueue_inode_info *info)
160 {
161 struct rb_node **p, *parent = NULL;
162 struct posix_msg_tree_node *leaf;
163 struct msg_msg *msg;
164
165 try_again:
166 p = &info->msg_tree.rb_node;
167 while (*p) {
168 parent = *p;
169 /*
170 * During insert, low priorities go to the left and high to the
171 * right. On receive, we want the highest priorities first, so
172 * walk all the way to the right.
173 */
174 p = &(*p)->rb_right;
175 }
176 if (!parent) {
177 if (info->attr.mq_curmsgs) {
178 pr_warn_once("Inconsistency in POSIX message queue, "
179 "no tree element, but supposedly messages "
180 "should exist!\n");
181 info->attr.mq_curmsgs = 0;
182 }
183 return NULL;
184 }
185 leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
186 if (unlikely(list_empty(&leaf->msg_list))) {
187 pr_warn_once("Inconsistency in POSIX message queue, "
188 "empty leaf node but we haven't implemented "
189 "lazy leaf delete!\n");
190 rb_erase(&leaf->rb_node, &info->msg_tree);
191 if (info->node_cache) {
192 kfree(leaf);
193 } else {
194 info->node_cache = leaf;
195 }
196 goto try_again;
197 } else {
198 msg = list_first_entry(&leaf->msg_list,
199 struct msg_msg, m_list);
200 list_del(&msg->m_list);
201 if (list_empty(&leaf->msg_list)) {
202 rb_erase(&leaf->rb_node, &info->msg_tree);
203 if (info->node_cache) {
204 kfree(leaf);
205 } else {
206 info->node_cache = leaf;
207 }
208 }
209 }
210 info->attr.mq_curmsgs--;
211 info->qsize -= msg->m_ts;
212 return msg;
213 }
214
215 static struct inode *mqueue_get_inode(struct super_block *sb,
216 struct ipc_namespace *ipc_ns, umode_t mode,
217 struct mq_attr *attr)
218 {
219 struct user_struct *u = current_user();
220 struct inode *inode;
221 int ret = -ENOMEM;
222
223 inode = new_inode(sb);
224 if (!inode)
225 goto err;
226
227 inode->i_ino = get_next_ino();
228 inode->i_mode = mode;
229 inode->i_uid = current_fsuid();
230 inode->i_gid = current_fsgid();
231 inode->i_mtime = inode->i_ctime = inode->i_atime = current_time(inode);
232
233 if (S_ISREG(mode)) {
234 struct mqueue_inode_info *info;
235 unsigned long mq_bytes, mq_treesize;
236
237 inode->i_fop = &mqueue_file_operations;
238 inode->i_size = FILENT_SIZE;
239 /* mqueue specific info */
240 info = MQUEUE_I(inode);
241 spin_lock_init(&info->lock);
242 init_waitqueue_head(&info->wait_q);
243 INIT_LIST_HEAD(&info->e_wait_q[0].list);
244 INIT_LIST_HEAD(&info->e_wait_q[1].list);
245 info->notify_owner = NULL;
246 info->notify_user_ns = NULL;
247 info->qsize = 0;
248 info->user = NULL; /* set when all is ok */
249 info->msg_tree = RB_ROOT;
250 info->node_cache = NULL;
251 memset(&info->attr, 0, sizeof(info->attr));
252 info->attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
253 ipc_ns->mq_msg_default);
254 info->attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
255 ipc_ns->mq_msgsize_default);
256 if (attr) {
257 info->attr.mq_maxmsg = attr->mq_maxmsg;
258 info->attr.mq_msgsize = attr->mq_msgsize;
259 }
260 /*
261 * We used to allocate a static array of pointers and account
262 * the size of that array as well as one msg_msg struct per
263 * possible message into the queue size. That's no longer
264 * accurate as the queue is now an rbtree and will grow and
265 * shrink depending on usage patterns. We can, however, still
266 * account one msg_msg struct per message, but the nodes are
267 * allocated depending on priority usage, and most programs
268 * only use one, or a handful, of priorities. However, since
269 * this is pinned memory, we need to assume worst case, so
270 * that means the min(mq_maxmsg, max_priorities) * struct
271 * posix_msg_tree_node.
272 */
273 mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
274 min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
275 sizeof(struct posix_msg_tree_node);
276
277 mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
278 info->attr.mq_msgsize);
279
280 spin_lock(&mq_lock);
281 if (u->mq_bytes + mq_bytes < u->mq_bytes ||
282 u->mq_bytes + mq_bytes > rlimit(RLIMIT_MSGQUEUE)) {
283 spin_unlock(&mq_lock);
284 /* mqueue_evict_inode() releases info->messages */
285 ret = -EMFILE;
286 goto out_inode;
287 }
288 u->mq_bytes += mq_bytes;
289 spin_unlock(&mq_lock);
290
291 /* all is ok */
292 info->user = get_uid(u);
293 } else if (S_ISDIR(mode)) {
294 inc_nlink(inode);
295 /* Some things misbehave if size == 0 on a directory */
296 inode->i_size = 2 * DIRENT_SIZE;
297 inode->i_op = &mqueue_dir_inode_operations;
298 inode->i_fop = &simple_dir_operations;
299 }
300
301 return inode;
302 out_inode:
303 iput(inode);
304 err:
305 return ERR_PTR(ret);
306 }
307
308 static int mqueue_fill_super(struct super_block *sb, void *data, int silent)
309 {
310 struct inode *inode;
311 struct ipc_namespace *ns = sb->s_fs_info;
312
313 sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
314 sb->s_blocksize = PAGE_SIZE;
315 sb->s_blocksize_bits = PAGE_SHIFT;
316 sb->s_magic = MQUEUE_MAGIC;
317 sb->s_op = &mqueue_super_ops;
318
319 inode = mqueue_get_inode(sb, ns, S_IFDIR | S_ISVTX | S_IRWXUGO, NULL);
320 if (IS_ERR(inode))
321 return PTR_ERR(inode);
322
323 sb->s_root = d_make_root(inode);
324 if (!sb->s_root)
325 return -ENOMEM;
326 return 0;
327 }
328
329 static struct dentry *mqueue_mount(struct file_system_type *fs_type,
330 int flags, const char *dev_name,
331 void *data)
332 {
333 struct ipc_namespace *ns;
334 if (flags & MS_KERNMOUNT) {
335 ns = data;
336 data = NULL;
337 } else {
338 ns = current->nsproxy->ipc_ns;
339 }
340 return mount_ns(fs_type, flags, data, ns, ns->user_ns, mqueue_fill_super);
341 }
342
343 static void init_once(void *foo)
344 {
345 struct mqueue_inode_info *p = (struct mqueue_inode_info *) foo;
346
347 inode_init_once(&p->vfs_inode);
348 }
349
350 static struct inode *mqueue_alloc_inode(struct super_block *sb)
351 {
352 struct mqueue_inode_info *ei;
353
354 ei = kmem_cache_alloc(mqueue_inode_cachep, GFP_KERNEL);
355 if (!ei)
356 return NULL;
357 return &ei->vfs_inode;
358 }
359
360 static void mqueue_i_callback(struct rcu_head *head)
361 {
362 struct inode *inode = container_of(head, struct inode, i_rcu);
363 kmem_cache_free(mqueue_inode_cachep, MQUEUE_I(inode));
364 }
365
366 static void mqueue_destroy_inode(struct inode *inode)
367 {
368 call_rcu(&inode->i_rcu, mqueue_i_callback);
369 }
370
371 static void mqueue_evict_inode(struct inode *inode)
372 {
373 struct mqueue_inode_info *info;
374 struct user_struct *user;
375 struct ipc_namespace *ipc_ns;
376 struct msg_msg *msg, *nmsg;
377 LIST_HEAD(tmp_msg);
378
379 clear_inode(inode);
380
381 if (S_ISDIR(inode->i_mode))
382 return;
383
384 ipc_ns = get_ns_from_inode(inode);
385 info = MQUEUE_I(inode);
386 spin_lock(&info->lock);
387 while ((msg = msg_get(info)) != NULL)
388 list_add_tail(&msg->m_list, &tmp_msg);
389 kfree(info->node_cache);
390 spin_unlock(&info->lock);
391
392 list_for_each_entry_safe(msg, nmsg, &tmp_msg, m_list) {
393 list_del(&msg->m_list);
394 free_msg(msg);
395 }
396
397 user = info->user;
398 if (user) {
399 unsigned long mq_bytes, mq_treesize;
400
401 /* Total amount of bytes accounted for the mqueue */
402 mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
403 min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
404 sizeof(struct posix_msg_tree_node);
405
406 mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
407 info->attr.mq_msgsize);
408
409 spin_lock(&mq_lock);
410 user->mq_bytes -= mq_bytes;
411 /*
412 * get_ns_from_inode() ensures that the
413 * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns
414 * to which we now hold a reference, or it is NULL.
415 * We can't put it here under mq_lock, though.
416 */
417 if (ipc_ns)
418 ipc_ns->mq_queues_count--;
419 spin_unlock(&mq_lock);
420 free_uid(user);
421 }
422 if (ipc_ns)
423 put_ipc_ns(ipc_ns);
424 }
425
426 static int mqueue_create(struct inode *dir, struct dentry *dentry,
427 umode_t mode, bool excl)
428 {
429 struct inode *inode;
430 struct mq_attr *attr = dentry->d_fsdata;
431 int error;
432 struct ipc_namespace *ipc_ns;
433
434 spin_lock(&mq_lock);
435 ipc_ns = __get_ns_from_inode(dir);
436 if (!ipc_ns) {
437 error = -EACCES;
438 goto out_unlock;
439 }
440
441 if (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max &&
442 !capable(CAP_SYS_RESOURCE)) {
443 error = -ENOSPC;
444 goto out_unlock;
445 }
446 ipc_ns->mq_queues_count++;
447 spin_unlock(&mq_lock);
448
449 inode = mqueue_get_inode(dir->i_sb, ipc_ns, mode, attr);
450 if (IS_ERR(inode)) {
451 error = PTR_ERR(inode);
452 spin_lock(&mq_lock);
453 ipc_ns->mq_queues_count--;
454 goto out_unlock;
455 }
456
457 put_ipc_ns(ipc_ns);
458 dir->i_size += DIRENT_SIZE;
459 dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
460
461 d_instantiate(dentry, inode);
462 dget(dentry);
463 return 0;
464 out_unlock:
465 spin_unlock(&mq_lock);
466 if (ipc_ns)
467 put_ipc_ns(ipc_ns);
468 return error;
469 }
470
471 static int mqueue_unlink(struct inode *dir, struct dentry *dentry)
472 {
473 struct inode *inode = d_inode(dentry);
474
475 dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
476 dir->i_size -= DIRENT_SIZE;
477 drop_nlink(inode);
478 dput(dentry);
479 return 0;
480 }
481
482 /*
483 * This is routine for system read from queue file.
484 * To avoid mess with doing here some sort of mq_receive we allow
485 * to read only queue size & notification info (the only values
486 * that are interesting from user point of view and aren't accessible
487 * through std routines)
488 */
489 static ssize_t mqueue_read_file(struct file *filp, char __user *u_data,
490 size_t count, loff_t *off)
491 {
492 struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
493 char buffer[FILENT_SIZE];
494 ssize_t ret;
495
496 spin_lock(&info->lock);
497 snprintf(buffer, sizeof(buffer),
498 "QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n",
499 info->qsize,
500 info->notify_owner ? info->notify.sigev_notify : 0,
501 (info->notify_owner &&
502 info->notify.sigev_notify == SIGEV_SIGNAL) ?
503 info->notify.sigev_signo : 0,
504 pid_vnr(info->notify_owner));
505 spin_unlock(&info->lock);
506 buffer[sizeof(buffer)-1] = '\0';
507
508 ret = simple_read_from_buffer(u_data, count, off, buffer,
509 strlen(buffer));
510 if (ret <= 0)
511 return ret;
512
513 file_inode(filp)->i_atime = file_inode(filp)->i_ctime = current_time(file_inode(filp));
514 return ret;
515 }
516
517 static int mqueue_flush_file(struct file *filp, fl_owner_t id)
518 {
519 struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
520
521 spin_lock(&info->lock);
522 if (task_tgid(current) == info->notify_owner)
523 remove_notification(info);
524
525 spin_unlock(&info->lock);
526 return 0;
527 }
528
529 static unsigned int mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab)
530 {
531 struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
532 int retval = 0;
533
534 poll_wait(filp, &info->wait_q, poll_tab);
535
536 spin_lock(&info->lock);
537 if (info->attr.mq_curmsgs)
538 retval = POLLIN | POLLRDNORM;
539
540 if (info->attr.mq_curmsgs < info->attr.mq_maxmsg)
541 retval |= POLLOUT | POLLWRNORM;
542 spin_unlock(&info->lock);
543
544 return retval;
545 }
546
547 /* Adds current to info->e_wait_q[sr] before element with smaller prio */
548 static void wq_add(struct mqueue_inode_info *info, int sr,
549 struct ext_wait_queue *ewp)
550 {
551 struct ext_wait_queue *walk;
552
553 ewp->task = current;
554
555 list_for_each_entry(walk, &info->e_wait_q[sr].list, list) {
556 if (walk->task->static_prio <= current->static_prio) {
557 list_add_tail(&ewp->list, &walk->list);
558 return;
559 }
560 }
561 list_add_tail(&ewp->list, &info->e_wait_q[sr].list);
562 }
563
564 /*
565 * Puts current task to sleep. Caller must hold queue lock. After return
566 * lock isn't held.
567 * sr: SEND or RECV
568 */
569 static int wq_sleep(struct mqueue_inode_info *info, int sr,
570 ktime_t *timeout, struct ext_wait_queue *ewp)
571 __releases(&info->lock)
572 {
573 int retval;
574 signed long time;
575
576 wq_add(info, sr, ewp);
577
578 for (;;) {
579 __set_current_state(TASK_INTERRUPTIBLE);
580
581 spin_unlock(&info->lock);
582 time = schedule_hrtimeout_range_clock(timeout, 0,
583 HRTIMER_MODE_ABS, CLOCK_REALTIME);
584
585 if (ewp->state == STATE_READY) {
586 retval = 0;
587 goto out;
588 }
589 spin_lock(&info->lock);
590 if (ewp->state == STATE_READY) {
591 retval = 0;
592 goto out_unlock;
593 }
594 if (signal_pending(current)) {
595 retval = -ERESTARTSYS;
596 break;
597 }
598 if (time == 0) {
599 retval = -ETIMEDOUT;
600 break;
601 }
602 }
603 list_del(&ewp->list);
604 out_unlock:
605 spin_unlock(&info->lock);
606 out:
607 return retval;
608 }
609
610 /*
611 * Returns waiting task that should be serviced first or NULL if none exists
612 */
613 static struct ext_wait_queue *wq_get_first_waiter(
614 struct mqueue_inode_info *info, int sr)
615 {
616 struct list_head *ptr;
617
618 ptr = info->e_wait_q[sr].list.prev;
619 if (ptr == &info->e_wait_q[sr].list)
620 return NULL;
621 return list_entry(ptr, struct ext_wait_queue, list);
622 }
623
624
625 static inline void set_cookie(struct sk_buff *skb, char code)
626 {
627 ((char *)skb->data)[NOTIFY_COOKIE_LEN-1] = code;
628 }
629
630 /*
631 * The next function is only to split too long sys_mq_timedsend
632 */
633 static void __do_notify(struct mqueue_inode_info *info)
634 {
635 /* notification
636 * invoked when there is registered process and there isn't process
637 * waiting synchronously for message AND state of queue changed from
638 * empty to not empty. Here we are sure that no one is waiting
639 * synchronously. */
640 if (info->notify_owner &&
641 info->attr.mq_curmsgs == 1) {
642 struct siginfo sig_i;
643 switch (info->notify.sigev_notify) {
644 case SIGEV_NONE:
645 break;
646 case SIGEV_SIGNAL:
647 /* sends signal */
648
649 sig_i.si_signo = info->notify.sigev_signo;
650 sig_i.si_errno = 0;
651 sig_i.si_code = SI_MESGQ;
652 sig_i.si_value = info->notify.sigev_value;
653 /* map current pid/uid into info->owner's namespaces */
654 rcu_read_lock();
655 sig_i.si_pid = task_tgid_nr_ns(current,
656 ns_of_pid(info->notify_owner));
657 sig_i.si_uid = from_kuid_munged(info->notify_user_ns, current_uid());
658 rcu_read_unlock();
659
660 kill_pid_info(info->notify.sigev_signo,
661 &sig_i, info->notify_owner);
662 break;
663 case SIGEV_THREAD:
664 set_cookie(info->notify_cookie, NOTIFY_WOKENUP);
665 netlink_sendskb(info->notify_sock, info->notify_cookie);
666 break;
667 }
668 /* after notification unregisters process */
669 put_pid(info->notify_owner);
670 put_user_ns(info->notify_user_ns);
671 info->notify_owner = NULL;
672 info->notify_user_ns = NULL;
673 }
674 wake_up(&info->wait_q);
675 }
676
677 static int prepare_timeout(const struct timespec __user *u_abs_timeout,
678 struct timespec64 *ts)
679 {
680 if (get_timespec64(ts, u_abs_timeout))
681 return -EFAULT;
682 if (!timespec64_valid(ts))
683 return -EINVAL;
684 return 0;
685 }
686
687 static void remove_notification(struct mqueue_inode_info *info)
688 {
689 if (info->notify_owner != NULL &&
690 info->notify.sigev_notify == SIGEV_THREAD) {
691 set_cookie(info->notify_cookie, NOTIFY_REMOVED);
692 netlink_sendskb(info->notify_sock, info->notify_cookie);
693 }
694 put_pid(info->notify_owner);
695 put_user_ns(info->notify_user_ns);
696 info->notify_owner = NULL;
697 info->notify_user_ns = NULL;
698 }
699
700 static int mq_attr_ok(struct ipc_namespace *ipc_ns, struct mq_attr *attr)
701 {
702 int mq_treesize;
703 unsigned long total_size;
704
705 if (attr->mq_maxmsg <= 0 || attr->mq_msgsize <= 0)
706 return -EINVAL;
707 if (capable(CAP_SYS_RESOURCE)) {
708 if (attr->mq_maxmsg > HARD_MSGMAX ||
709 attr->mq_msgsize > HARD_MSGSIZEMAX)
710 return -EINVAL;
711 } else {
712 if (attr->mq_maxmsg > ipc_ns->mq_msg_max ||
713 attr->mq_msgsize > ipc_ns->mq_msgsize_max)
714 return -EINVAL;
715 }
716 /* check for overflow */
717 if (attr->mq_msgsize > ULONG_MAX/attr->mq_maxmsg)
718 return -EOVERFLOW;
719 mq_treesize = attr->mq_maxmsg * sizeof(struct msg_msg) +
720 min_t(unsigned int, attr->mq_maxmsg, MQ_PRIO_MAX) *
721 sizeof(struct posix_msg_tree_node);
722 total_size = attr->mq_maxmsg * attr->mq_msgsize;
723 if (total_size + mq_treesize < total_size)
724 return -EOVERFLOW;
725 return 0;
726 }
727
728 /*
729 * Invoked when creating a new queue via sys_mq_open
730 */
731 static struct file *do_create(struct ipc_namespace *ipc_ns, struct inode *dir,
732 struct path *path, int oflag, umode_t mode,
733 struct mq_attr *attr)
734 {
735 const struct cred *cred = current_cred();
736 int ret;
737
738 if (attr) {
739 ret = mq_attr_ok(ipc_ns, attr);
740 if (ret)
741 return ERR_PTR(ret);
742 /* store for use during create */
743 path->dentry->d_fsdata = attr;
744 } else {
745 struct mq_attr def_attr;
746
747 def_attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
748 ipc_ns->mq_msg_default);
749 def_attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
750 ipc_ns->mq_msgsize_default);
751 ret = mq_attr_ok(ipc_ns, &def_attr);
752 if (ret)
753 return ERR_PTR(ret);
754 }
755
756 mode &= ~current_umask();
757 ret = vfs_create(dir, path->dentry, mode, true);
758 path->dentry->d_fsdata = NULL;
759 if (ret)
760 return ERR_PTR(ret);
761 return dentry_open(path, oflag, cred);
762 }
763
764 /* Opens existing queue */
765 static struct file *do_open(struct path *path, int oflag)
766 {
767 static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE,
768 MAY_READ | MAY_WRITE };
769 int acc;
770 if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY))
771 return ERR_PTR(-EINVAL);
772 acc = oflag2acc[oflag & O_ACCMODE];
773 if (inode_permission(d_inode(path->dentry), acc))
774 return ERR_PTR(-EACCES);
775 return dentry_open(path, oflag, current_cred());
776 }
777
778 static int do_mq_open(const char __user *u_name, int oflag, umode_t mode,
779 struct mq_attr *attr)
780 {
781 struct path path;
782 struct file *filp;
783 struct filename *name;
784 int fd, error;
785 struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
786 struct vfsmount *mnt = ipc_ns->mq_mnt;
787 struct dentry *root = mnt->mnt_root;
788 int ro;
789
790 audit_mq_open(oflag, mode, attr);
791
792 if (IS_ERR(name = getname(u_name)))
793 return PTR_ERR(name);
794
795 fd = get_unused_fd_flags(O_CLOEXEC);
796 if (fd < 0)
797 goto out_putname;
798
799 ro = mnt_want_write(mnt); /* we'll drop it in any case */
800 error = 0;
801 inode_lock(d_inode(root));
802 path.dentry = lookup_one_len(name->name, root, strlen(name->name));
803 if (IS_ERR(path.dentry)) {
804 error = PTR_ERR(path.dentry);
805 goto out_putfd;
806 }
807 path.mnt = mntget(mnt);
808
809 if (oflag & O_CREAT) {
810 if (d_really_is_positive(path.dentry)) { /* entry already exists */
811 audit_inode(name, path.dentry, 0);
812 if (oflag & O_EXCL) {
813 error = -EEXIST;
814 goto out;
815 }
816 filp = do_open(&path, oflag);
817 } else {
818 if (ro) {
819 error = ro;
820 goto out;
821 }
822 audit_inode_parent_hidden(name, root);
823 filp = do_create(ipc_ns, d_inode(root), &path,
824 oflag, mode, attr);
825 }
826 } else {
827 if (d_really_is_negative(path.dentry)) {
828 error = -ENOENT;
829 goto out;
830 }
831 audit_inode(name, path.dentry, 0);
832 filp = do_open(&path, oflag);
833 }
834
835 if (!IS_ERR(filp))
836 fd_install(fd, filp);
837 else
838 error = PTR_ERR(filp);
839 out:
840 path_put(&path);
841 out_putfd:
842 if (error) {
843 put_unused_fd(fd);
844 fd = error;
845 }
846 inode_unlock(d_inode(root));
847 if (!ro)
848 mnt_drop_write(mnt);
849 out_putname:
850 putname(name);
851 return fd;
852 }
853
854 SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode,
855 struct mq_attr __user *, u_attr)
856 {
857 struct mq_attr attr;
858 if (u_attr && copy_from_user(&attr, u_attr, sizeof(struct mq_attr)))
859 return -EFAULT;
860
861 return do_mq_open(u_name, oflag, mode, u_attr ? &attr : NULL);
862 }
863
864 SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name)
865 {
866 int err;
867 struct filename *name;
868 struct dentry *dentry;
869 struct inode *inode = NULL;
870 struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
871 struct vfsmount *mnt = ipc_ns->mq_mnt;
872
873 name = getname(u_name);
874 if (IS_ERR(name))
875 return PTR_ERR(name);
876
877 audit_inode_parent_hidden(name, mnt->mnt_root);
878 err = mnt_want_write(mnt);
879 if (err)
880 goto out_name;
881 inode_lock_nested(d_inode(mnt->mnt_root), I_MUTEX_PARENT);
882 dentry = lookup_one_len(name->name, mnt->mnt_root,
883 strlen(name->name));
884 if (IS_ERR(dentry)) {
885 err = PTR_ERR(dentry);
886 goto out_unlock;
887 }
888
889 inode = d_inode(dentry);
890 if (!inode) {
891 err = -ENOENT;
892 } else {
893 ihold(inode);
894 err = vfs_unlink(d_inode(dentry->d_parent), dentry, NULL);
895 }
896 dput(dentry);
897
898 out_unlock:
899 inode_unlock(d_inode(mnt->mnt_root));
900 if (inode)
901 iput(inode);
902 mnt_drop_write(mnt);
903 out_name:
904 putname(name);
905
906 return err;
907 }
908
909 /* Pipelined send and receive functions.
910 *
911 * If a receiver finds no waiting message, then it registers itself in the
912 * list of waiting receivers. A sender checks that list before adding the new
913 * message into the message array. If there is a waiting receiver, then it
914 * bypasses the message array and directly hands the message over to the
915 * receiver. The receiver accepts the message and returns without grabbing the
916 * queue spinlock:
917 *
918 * - Set pointer to message.
919 * - Queue the receiver task for later wakeup (without the info->lock).
920 * - Update its state to STATE_READY. Now the receiver can continue.
921 * - Wake up the process after the lock is dropped. Should the process wake up
922 * before this wakeup (due to a timeout or a signal) it will either see
923 * STATE_READY and continue or acquire the lock to check the state again.
924 *
925 * The same algorithm is used for senders.
926 */
927
928 /* pipelined_send() - send a message directly to the task waiting in
929 * sys_mq_timedreceive() (without inserting message into a queue).
930 */
931 static inline void pipelined_send(struct wake_q_head *wake_q,
932 struct mqueue_inode_info *info,
933 struct msg_msg *message,
934 struct ext_wait_queue *receiver)
935 {
936 receiver->msg = message;
937 list_del(&receiver->list);
938 wake_q_add(wake_q, receiver->task);
939 /*
940 * Rely on the implicit cmpxchg barrier from wake_q_add such
941 * that we can ensure that updating receiver->state is the last
942 * write operation: As once set, the receiver can continue,
943 * and if we don't have the reference count from the wake_q,
944 * yet, at that point we can later have a use-after-free
945 * condition and bogus wakeup.
946 */
947 receiver->state = STATE_READY;
948 }
949
950 /* pipelined_receive() - if there is task waiting in sys_mq_timedsend()
951 * gets its message and put to the queue (we have one free place for sure). */
952 static inline void pipelined_receive(struct wake_q_head *wake_q,
953 struct mqueue_inode_info *info)
954 {
955 struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND);
956
957 if (!sender) {
958 /* for poll */
959 wake_up_interruptible(&info->wait_q);
960 return;
961 }
962 if (msg_insert(sender->msg, info))
963 return;
964
965 list_del(&sender->list);
966 wake_q_add(wake_q, sender->task);
967 sender->state = STATE_READY;
968 }
969
970 static int do_mq_timedsend(mqd_t mqdes, const char __user *u_msg_ptr,
971 size_t msg_len, unsigned int msg_prio,
972 struct timespec64 *ts)
973 {
974 struct fd f;
975 struct inode *inode;
976 struct ext_wait_queue wait;
977 struct ext_wait_queue *receiver;
978 struct msg_msg *msg_ptr;
979 struct mqueue_inode_info *info;
980 ktime_t expires, *timeout = NULL;
981 struct posix_msg_tree_node *new_leaf = NULL;
982 int ret = 0;
983 DEFINE_WAKE_Q(wake_q);
984
985 if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX))
986 return -EINVAL;
987
988 if (ts) {
989 expires = timespec64_to_ktime(*ts);
990 timeout = &expires;
991 }
992
993 audit_mq_sendrecv(mqdes, msg_len, msg_prio, ts);
994
995 f = fdget(mqdes);
996 if (unlikely(!f.file)) {
997 ret = -EBADF;
998 goto out;
999 }
1000
1001 inode = file_inode(f.file);
1002 if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1003 ret = -EBADF;
1004 goto out_fput;
1005 }
1006 info = MQUEUE_I(inode);
1007 audit_file(f.file);
1008
1009 if (unlikely(!(f.file->f_mode & FMODE_WRITE))) {
1010 ret = -EBADF;
1011 goto out_fput;
1012 }
1013
1014 if (unlikely(msg_len > info->attr.mq_msgsize)) {
1015 ret = -EMSGSIZE;
1016 goto out_fput;
1017 }
1018
1019 /* First try to allocate memory, before doing anything with
1020 * existing queues. */
1021 msg_ptr = load_msg(u_msg_ptr, msg_len);
1022 if (IS_ERR(msg_ptr)) {
1023 ret = PTR_ERR(msg_ptr);
1024 goto out_fput;
1025 }
1026 msg_ptr->m_ts = msg_len;
1027 msg_ptr->m_type = msg_prio;
1028
1029 /*
1030 * msg_insert really wants us to have a valid, spare node struct so
1031 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1032 * fall back to that if necessary.
1033 */
1034 if (!info->node_cache)
1035 new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1036
1037 spin_lock(&info->lock);
1038
1039 if (!info->node_cache && new_leaf) {
1040 /* Save our speculative allocation into the cache */
1041 INIT_LIST_HEAD(&new_leaf->msg_list);
1042 info->node_cache = new_leaf;
1043 new_leaf = NULL;
1044 } else {
1045 kfree(new_leaf);
1046 }
1047
1048 if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) {
1049 if (f.file->f_flags & O_NONBLOCK) {
1050 ret = -EAGAIN;
1051 } else {
1052 wait.task = current;
1053 wait.msg = (void *) msg_ptr;
1054 wait.state = STATE_NONE;
1055 ret = wq_sleep(info, SEND, timeout, &wait);
1056 /*
1057 * wq_sleep must be called with info->lock held, and
1058 * returns with the lock released
1059 */
1060 goto out_free;
1061 }
1062 } else {
1063 receiver = wq_get_first_waiter(info, RECV);
1064 if (receiver) {
1065 pipelined_send(&wake_q, info, msg_ptr, receiver);
1066 } else {
1067 /* adds message to the queue */
1068 ret = msg_insert(msg_ptr, info);
1069 if (ret)
1070 goto out_unlock;
1071 __do_notify(info);
1072 }
1073 inode->i_atime = inode->i_mtime = inode->i_ctime =
1074 current_time(inode);
1075 }
1076 out_unlock:
1077 spin_unlock(&info->lock);
1078 wake_up_q(&wake_q);
1079 out_free:
1080 if (ret)
1081 free_msg(msg_ptr);
1082 out_fput:
1083 fdput(f);
1084 out:
1085 return ret;
1086 }
1087
1088 static int do_mq_timedreceive(mqd_t mqdes, char __user *u_msg_ptr,
1089 size_t msg_len, unsigned int __user *u_msg_prio,
1090 struct timespec64 *ts)
1091 {
1092 ssize_t ret;
1093 struct msg_msg *msg_ptr;
1094 struct fd f;
1095 struct inode *inode;
1096 struct mqueue_inode_info *info;
1097 struct ext_wait_queue wait;
1098 ktime_t expires, *timeout = NULL;
1099 struct posix_msg_tree_node *new_leaf = NULL;
1100
1101 if (ts) {
1102 expires = timespec64_to_ktime(*ts);
1103 timeout = &expires;
1104 }
1105
1106 audit_mq_sendrecv(mqdes, msg_len, 0, ts);
1107
1108 f = fdget(mqdes);
1109 if (unlikely(!f.file)) {
1110 ret = -EBADF;
1111 goto out;
1112 }
1113
1114 inode = file_inode(f.file);
1115 if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1116 ret = -EBADF;
1117 goto out_fput;
1118 }
1119 info = MQUEUE_I(inode);
1120 audit_file(f.file);
1121
1122 if (unlikely(!(f.file->f_mode & FMODE_READ))) {
1123 ret = -EBADF;
1124 goto out_fput;
1125 }
1126
1127 /* checks if buffer is big enough */
1128 if (unlikely(msg_len < info->attr.mq_msgsize)) {
1129 ret = -EMSGSIZE;
1130 goto out_fput;
1131 }
1132
1133 /*
1134 * msg_insert really wants us to have a valid, spare node struct so
1135 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1136 * fall back to that if necessary.
1137 */
1138 if (!info->node_cache)
1139 new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1140
1141 spin_lock(&info->lock);
1142
1143 if (!info->node_cache && new_leaf) {
1144 /* Save our speculative allocation into the cache */
1145 INIT_LIST_HEAD(&new_leaf->msg_list);
1146 info->node_cache = new_leaf;
1147 } else {
1148 kfree(new_leaf);
1149 }
1150
1151 if (info->attr.mq_curmsgs == 0) {
1152 if (f.file->f_flags & O_NONBLOCK) {
1153 spin_unlock(&info->lock);
1154 ret = -EAGAIN;
1155 } else {
1156 wait.task = current;
1157 wait.state = STATE_NONE;
1158 ret = wq_sleep(info, RECV, timeout, &wait);
1159 msg_ptr = wait.msg;
1160 }
1161 } else {
1162 DEFINE_WAKE_Q(wake_q);
1163
1164 msg_ptr = msg_get(info);
1165
1166 inode->i_atime = inode->i_mtime = inode->i_ctime =
1167 current_time(inode);
1168
1169 /* There is now free space in queue. */
1170 pipelined_receive(&wake_q, info);
1171 spin_unlock(&info->lock);
1172 wake_up_q(&wake_q);
1173 ret = 0;
1174 }
1175 if (ret == 0) {
1176 ret = msg_ptr->m_ts;
1177
1178 if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) ||
1179 store_msg(u_msg_ptr, msg_ptr, msg_ptr->m_ts)) {
1180 ret = -EFAULT;
1181 }
1182 free_msg(msg_ptr);
1183 }
1184 out_fput:
1185 fdput(f);
1186 out:
1187 return ret;
1188 }
1189
1190 SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr,
1191 size_t, msg_len, unsigned int, msg_prio,
1192 const struct timespec __user *, u_abs_timeout)
1193 {
1194 struct timespec64 ts, *p = NULL;
1195 if (u_abs_timeout) {
1196 int res = prepare_timeout(u_abs_timeout, &ts);
1197 if (res)
1198 return res;
1199 p = &ts;
1200 }
1201 return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p);
1202 }
1203
1204 SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr,
1205 size_t, msg_len, unsigned int __user *, u_msg_prio,
1206 const struct timespec __user *, u_abs_timeout)
1207 {
1208 struct timespec64 ts, *p = NULL;
1209 if (u_abs_timeout) {
1210 int res = prepare_timeout(u_abs_timeout, &ts);
1211 if (res)
1212 return res;
1213 p = &ts;
1214 }
1215 return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p);
1216 }
1217
1218 /*
1219 * Notes: the case when user wants us to deregister (with NULL as pointer)
1220 * and he isn't currently owner of notification, will be silently discarded.
1221 * It isn't explicitly defined in the POSIX.
1222 */
1223 static int do_mq_notify(mqd_t mqdes, const struct sigevent *notification)
1224 {
1225 int ret;
1226 struct fd f;
1227 struct sock *sock;
1228 struct inode *inode;
1229 struct mqueue_inode_info *info;
1230 struct sk_buff *nc;
1231
1232 audit_mq_notify(mqdes, notification);
1233
1234 nc = NULL;
1235 sock = NULL;
1236 if (notification != NULL) {
1237 if (unlikely(notification->sigev_notify != SIGEV_NONE &&
1238 notification->sigev_notify != SIGEV_SIGNAL &&
1239 notification->sigev_notify != SIGEV_THREAD))
1240 return -EINVAL;
1241 if (notification->sigev_notify == SIGEV_SIGNAL &&
1242 !valid_signal(notification->sigev_signo)) {
1243 return -EINVAL;
1244 }
1245 if (notification->sigev_notify == SIGEV_THREAD) {
1246 long timeo;
1247
1248 /* create the notify skb */
1249 nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL);
1250 if (!nc) {
1251 ret = -ENOMEM;
1252 goto out;
1253 }
1254 if (copy_from_user(nc->data,
1255 notification->sigev_value.sival_ptr,
1256 NOTIFY_COOKIE_LEN)) {
1257 ret = -EFAULT;
1258 goto out;
1259 }
1260
1261 /* TODO: add a header? */
1262 skb_put(nc, NOTIFY_COOKIE_LEN);
1263 /* and attach it to the socket */
1264 retry:
1265 f = fdget(notification->sigev_signo);
1266 if (!f.file) {
1267 ret = -EBADF;
1268 goto out;
1269 }
1270 sock = netlink_getsockbyfilp(f.file);
1271 fdput(f);
1272 if (IS_ERR(sock)) {
1273 ret = PTR_ERR(sock);
1274 sock = NULL;
1275 goto out;
1276 }
1277
1278 timeo = MAX_SCHEDULE_TIMEOUT;
1279 ret = netlink_attachskb(sock, nc, &timeo, NULL);
1280 if (ret == 1) {
1281 sock = NULL;
1282 goto retry;
1283 }
1284 if (ret) {
1285 sock = NULL;
1286 nc = NULL;
1287 goto out;
1288 }
1289 }
1290 }
1291
1292 f = fdget(mqdes);
1293 if (!f.file) {
1294 ret = -EBADF;
1295 goto out;
1296 }
1297
1298 inode = file_inode(f.file);
1299 if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1300 ret = -EBADF;
1301 goto out_fput;
1302 }
1303 info = MQUEUE_I(inode);
1304
1305 ret = 0;
1306 spin_lock(&info->lock);
1307 if (notification == NULL) {
1308 if (info->notify_owner == task_tgid(current)) {
1309 remove_notification(info);
1310 inode->i_atime = inode->i_ctime = current_time(inode);
1311 }
1312 } else if (info->notify_owner != NULL) {
1313 ret = -EBUSY;
1314 } else {
1315 switch (notification->sigev_notify) {
1316 case SIGEV_NONE:
1317 info->notify.sigev_notify = SIGEV_NONE;
1318 break;
1319 case SIGEV_THREAD:
1320 info->notify_sock = sock;
1321 info->notify_cookie = nc;
1322 sock = NULL;
1323 nc = NULL;
1324 info->notify.sigev_notify = SIGEV_THREAD;
1325 break;
1326 case SIGEV_SIGNAL:
1327 info->notify.sigev_signo = notification->sigev_signo;
1328 info->notify.sigev_value = notification->sigev_value;
1329 info->notify.sigev_notify = SIGEV_SIGNAL;
1330 break;
1331 }
1332
1333 info->notify_owner = get_pid(task_tgid(current));
1334 info->notify_user_ns = get_user_ns(current_user_ns());
1335 inode->i_atime = inode->i_ctime = current_time(inode);
1336 }
1337 spin_unlock(&info->lock);
1338 out_fput:
1339 fdput(f);
1340 out:
1341 if (sock)
1342 netlink_detachskb(sock, nc);
1343 else if (nc)
1344 dev_kfree_skb(nc);
1345
1346 return ret;
1347 }
1348
1349 SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1350 const struct sigevent __user *, u_notification)
1351 {
1352 struct sigevent n, *p = NULL;
1353 if (u_notification) {
1354 if (copy_from_user(&n, u_notification, sizeof(struct sigevent)))
1355 return -EFAULT;
1356 p = &n;
1357 }
1358 return do_mq_notify(mqdes, p);
1359 }
1360
1361 static int do_mq_getsetattr(int mqdes, struct mq_attr *new, struct mq_attr *old)
1362 {
1363 struct fd f;
1364 struct inode *inode;
1365 struct mqueue_inode_info *info;
1366
1367 if (new && (new->mq_flags & (~O_NONBLOCK)))
1368 return -EINVAL;
1369
1370 f = fdget(mqdes);
1371 if (!f.file)
1372 return -EBADF;
1373
1374 if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1375 fdput(f);
1376 return -EBADF;
1377 }
1378
1379 inode = file_inode(f.file);
1380 info = MQUEUE_I(inode);
1381
1382 spin_lock(&info->lock);
1383
1384 if (old) {
1385 *old = info->attr;
1386 old->mq_flags = f.file->f_flags & O_NONBLOCK;
1387 }
1388 if (new) {
1389 audit_mq_getsetattr(mqdes, new);
1390 spin_lock(&f.file->f_lock);
1391 if (new->mq_flags & O_NONBLOCK)
1392 f.file->f_flags |= O_NONBLOCK;
1393 else
1394 f.file->f_flags &= ~O_NONBLOCK;
1395 spin_unlock(&f.file->f_lock);
1396
1397 inode->i_atime = inode->i_ctime = current_time(inode);
1398 }
1399
1400 spin_unlock(&info->lock);
1401 fdput(f);
1402 return 0;
1403 }
1404
1405 SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1406 const struct mq_attr __user *, u_mqstat,
1407 struct mq_attr __user *, u_omqstat)
1408 {
1409 int ret;
1410 struct mq_attr mqstat, omqstat;
1411 struct mq_attr *new = NULL, *old = NULL;
1412
1413 if (u_mqstat) {
1414 new = &mqstat;
1415 if (copy_from_user(new, u_mqstat, sizeof(struct mq_attr)))
1416 return -EFAULT;
1417 }
1418 if (u_omqstat)
1419 old = &omqstat;
1420
1421 ret = do_mq_getsetattr(mqdes, new, old);
1422 if (ret || !old)
1423 return ret;
1424
1425 if (copy_to_user(u_omqstat, old, sizeof(struct mq_attr)))
1426 return -EFAULT;
1427 return 0;
1428 }
1429
1430 #ifdef CONFIG_COMPAT
1431
1432 struct compat_mq_attr {
1433 compat_long_t mq_flags; /* message queue flags */
1434 compat_long_t mq_maxmsg; /* maximum number of messages */
1435 compat_long_t mq_msgsize; /* maximum message size */
1436 compat_long_t mq_curmsgs; /* number of messages currently queued */
1437 compat_long_t __reserved[4]; /* ignored for input, zeroed for output */
1438 };
1439
1440 static inline int get_compat_mq_attr(struct mq_attr *attr,
1441 const struct compat_mq_attr __user *uattr)
1442 {
1443 struct compat_mq_attr v;
1444
1445 if (copy_from_user(&v, uattr, sizeof(*uattr)))
1446 return -EFAULT;
1447
1448 memset(attr, 0, sizeof(*attr));
1449 attr->mq_flags = v.mq_flags;
1450 attr->mq_maxmsg = v.mq_maxmsg;
1451 attr->mq_msgsize = v.mq_msgsize;
1452 attr->mq_curmsgs = v.mq_curmsgs;
1453 return 0;
1454 }
1455
1456 static inline int put_compat_mq_attr(const struct mq_attr *attr,
1457 struct compat_mq_attr __user *uattr)
1458 {
1459 struct compat_mq_attr v;
1460
1461 memset(&v, 0, sizeof(v));
1462 v.mq_flags = attr->mq_flags;
1463 v.mq_maxmsg = attr->mq_maxmsg;
1464 v.mq_msgsize = attr->mq_msgsize;
1465 v.mq_curmsgs = attr->mq_curmsgs;
1466 if (copy_to_user(uattr, &v, sizeof(*uattr)))
1467 return -EFAULT;
1468 return 0;
1469 }
1470
1471 COMPAT_SYSCALL_DEFINE4(mq_open, const char __user *, u_name,
1472 int, oflag, compat_mode_t, mode,
1473 struct compat_mq_attr __user *, u_attr)
1474 {
1475 struct mq_attr attr, *p = NULL;
1476 if (u_attr && oflag & O_CREAT) {
1477 p = &attr;
1478 if (get_compat_mq_attr(&attr, u_attr))
1479 return -EFAULT;
1480 }
1481 return do_mq_open(u_name, oflag, mode, p);
1482 }
1483
1484 static int compat_prepare_timeout(const struct compat_timespec __user *p,
1485 struct timespec64 *ts)
1486 {
1487 if (compat_get_timespec64(ts, p))
1488 return -EFAULT;
1489 if (!timespec64_valid(ts))
1490 return -EINVAL;
1491 return 0;
1492 }
1493
1494 COMPAT_SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes,
1495 const char __user *, u_msg_ptr,
1496 compat_size_t, msg_len, unsigned int, msg_prio,
1497 const struct compat_timespec __user *, u_abs_timeout)
1498 {
1499 struct timespec64 ts, *p = NULL;
1500 if (u_abs_timeout) {
1501 int res = compat_prepare_timeout(u_abs_timeout, &ts);
1502 if (res)
1503 return res;
1504 p = &ts;
1505 }
1506 return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p);
1507 }
1508
1509 COMPAT_SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes,
1510 char __user *, u_msg_ptr,
1511 compat_size_t, msg_len, unsigned int __user *, u_msg_prio,
1512 const struct compat_timespec __user *, u_abs_timeout)
1513 {
1514 struct timespec64 ts, *p = NULL;
1515 if (u_abs_timeout) {
1516 int res = compat_prepare_timeout(u_abs_timeout, &ts);
1517 if (res)
1518 return res;
1519 p = &ts;
1520 }
1521 return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p);
1522 }
1523
1524 COMPAT_SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1525 const struct compat_sigevent __user *, u_notification)
1526 {
1527 struct sigevent n, *p = NULL;
1528 if (u_notification) {
1529 if (get_compat_sigevent(&n, u_notification))
1530 return -EFAULT;
1531 if (n.sigev_notify == SIGEV_THREAD)
1532 n.sigev_value.sival_ptr = compat_ptr(n.sigev_value.sival_int);
1533 p = &n;
1534 }
1535 return do_mq_notify(mqdes, p);
1536 }
1537
1538 COMPAT_SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1539 const struct compat_mq_attr __user *, u_mqstat,
1540 struct compat_mq_attr __user *, u_omqstat)
1541 {
1542 int ret;
1543 struct mq_attr mqstat, omqstat;
1544 struct mq_attr *new = NULL, *old = NULL;
1545
1546 if (u_mqstat) {
1547 new = &mqstat;
1548 if (get_compat_mq_attr(new, u_mqstat))
1549 return -EFAULT;
1550 }
1551 if (u_omqstat)
1552 old = &omqstat;
1553
1554 ret = do_mq_getsetattr(mqdes, new, old);
1555 if (ret || !old)
1556 return ret;
1557
1558 if (put_compat_mq_attr(old, u_omqstat))
1559 return -EFAULT;
1560 return 0;
1561 }
1562 #endif
1563
1564 static const struct inode_operations mqueue_dir_inode_operations = {
1565 .lookup = simple_lookup,
1566 .create = mqueue_create,
1567 .unlink = mqueue_unlink,
1568 };
1569
1570 static const struct file_operations mqueue_file_operations = {
1571 .flush = mqueue_flush_file,
1572 .poll = mqueue_poll_file,
1573 .read = mqueue_read_file,
1574 .llseek = default_llseek,
1575 };
1576
1577 static const struct super_operations mqueue_super_ops = {
1578 .alloc_inode = mqueue_alloc_inode,
1579 .destroy_inode = mqueue_destroy_inode,
1580 .evict_inode = mqueue_evict_inode,
1581 .statfs = simple_statfs,
1582 };
1583
1584 static struct file_system_type mqueue_fs_type = {
1585 .name = "mqueue",
1586 .mount = mqueue_mount,
1587 .kill_sb = kill_litter_super,
1588 .fs_flags = FS_USERNS_MOUNT,
1589 };
1590
1591 int mq_init_ns(struct ipc_namespace *ns)
1592 {
1593 ns->mq_queues_count = 0;
1594 ns->mq_queues_max = DFLT_QUEUESMAX;
1595 ns->mq_msg_max = DFLT_MSGMAX;
1596 ns->mq_msgsize_max = DFLT_MSGSIZEMAX;
1597 ns->mq_msg_default = DFLT_MSG;
1598 ns->mq_msgsize_default = DFLT_MSGSIZE;
1599
1600 ns->mq_mnt = kern_mount_data(&mqueue_fs_type, ns);
1601 if (IS_ERR(ns->mq_mnt)) {
1602 int err = PTR_ERR(ns->mq_mnt);
1603 ns->mq_mnt = NULL;
1604 return err;
1605 }
1606 return 0;
1607 }
1608
1609 void mq_clear_sbinfo(struct ipc_namespace *ns)
1610 {
1611 ns->mq_mnt->mnt_sb->s_fs_info = NULL;
1612 }
1613
1614 void mq_put_mnt(struct ipc_namespace *ns)
1615 {
1616 kern_unmount(ns->mq_mnt);
1617 }
1618
1619 static int __init init_mqueue_fs(void)
1620 {
1621 int error;
1622
1623 mqueue_inode_cachep = kmem_cache_create("mqueue_inode_cache",
1624 sizeof(struct mqueue_inode_info), 0,
1625 SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, init_once);
1626 if (mqueue_inode_cachep == NULL)
1627 return -ENOMEM;
1628
1629 /* ignore failures - they are not fatal */
1630 mq_sysctl_table = mq_register_sysctl_table();
1631
1632 error = register_filesystem(&mqueue_fs_type);
1633 if (error)
1634 goto out_sysctl;
1635
1636 spin_lock_init(&mq_lock);
1637
1638 error = mq_init_ns(&init_ipc_ns);
1639 if (error)
1640 goto out_filesystem;
1641
1642 return 0;
1643
1644 out_filesystem:
1645 unregister_filesystem(&mqueue_fs_type);
1646 out_sysctl:
1647 if (mq_sysctl_table)
1648 unregister_sysctl_table(mq_sysctl_table);
1649 kmem_cache_destroy(mqueue_inode_cachep);
1650 return error;
1651 }
1652
1653 device_initcall(init_mqueue_fs);