]> git.ipfire.org Git - people/arne_f/kernel.git/blob - kernel/pid_namespace.c
Merge tag 'char-misc-4.14-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/gregk...
[people/arne_f/kernel.git] / kernel / pid_namespace.c
1 /*
2 * Pid namespaces
3 *
4 * Authors:
5 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
6 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
7 * Many thanks to Oleg Nesterov for comments and help
8 *
9 */
10
11 #include <linux/pid.h>
12 #include <linux/pid_namespace.h>
13 #include <linux/user_namespace.h>
14 #include <linux/syscalls.h>
15 #include <linux/cred.h>
16 #include <linux/err.h>
17 #include <linux/acct.h>
18 #include <linux/slab.h>
19 #include <linux/proc_ns.h>
20 #include <linux/reboot.h>
21 #include <linux/export.h>
22 #include <linux/sched/task.h>
23 #include <linux/sched/signal.h>
24
25 struct pid_cache {
26 int nr_ids;
27 char name[16];
28 struct kmem_cache *cachep;
29 struct list_head list;
30 };
31
32 static LIST_HEAD(pid_caches_lh);
33 static DEFINE_MUTEX(pid_caches_mutex);
34 static struct kmem_cache *pid_ns_cachep;
35
36 /*
37 * creates the kmem cache to allocate pids from.
38 * @nr_ids: the number of numerical ids this pid will have to carry
39 */
40
41 static struct kmem_cache *create_pid_cachep(int nr_ids)
42 {
43 struct pid_cache *pcache;
44 struct kmem_cache *cachep;
45
46 mutex_lock(&pid_caches_mutex);
47 list_for_each_entry(pcache, &pid_caches_lh, list)
48 if (pcache->nr_ids == nr_ids)
49 goto out;
50
51 pcache = kmalloc(sizeof(struct pid_cache), GFP_KERNEL);
52 if (pcache == NULL)
53 goto err_alloc;
54
55 snprintf(pcache->name, sizeof(pcache->name), "pid_%d", nr_ids);
56 cachep = kmem_cache_create(pcache->name,
57 sizeof(struct pid) + (nr_ids - 1) * sizeof(struct upid),
58 0, SLAB_HWCACHE_ALIGN, NULL);
59 if (cachep == NULL)
60 goto err_cachep;
61
62 pcache->nr_ids = nr_ids;
63 pcache->cachep = cachep;
64 list_add(&pcache->list, &pid_caches_lh);
65 out:
66 mutex_unlock(&pid_caches_mutex);
67 return pcache->cachep;
68
69 err_cachep:
70 kfree(pcache);
71 err_alloc:
72 mutex_unlock(&pid_caches_mutex);
73 return NULL;
74 }
75
76 static void proc_cleanup_work(struct work_struct *work)
77 {
78 struct pid_namespace *ns = container_of(work, struct pid_namespace, proc_work);
79 pid_ns_release_proc(ns);
80 }
81
82 /* MAX_PID_NS_LEVEL is needed for limiting size of 'struct pid' */
83 #define MAX_PID_NS_LEVEL 32
84
85 static struct ucounts *inc_pid_namespaces(struct user_namespace *ns)
86 {
87 return inc_ucount(ns, current_euid(), UCOUNT_PID_NAMESPACES);
88 }
89
90 static void dec_pid_namespaces(struct ucounts *ucounts)
91 {
92 dec_ucount(ucounts, UCOUNT_PID_NAMESPACES);
93 }
94
95 static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns,
96 struct pid_namespace *parent_pid_ns)
97 {
98 struct pid_namespace *ns;
99 unsigned int level = parent_pid_ns->level + 1;
100 struct ucounts *ucounts;
101 int i;
102 int err;
103
104 err = -EINVAL;
105 if (!in_userns(parent_pid_ns->user_ns, user_ns))
106 goto out;
107
108 err = -ENOSPC;
109 if (level > MAX_PID_NS_LEVEL)
110 goto out;
111 ucounts = inc_pid_namespaces(user_ns);
112 if (!ucounts)
113 goto out;
114
115 err = -ENOMEM;
116 ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
117 if (ns == NULL)
118 goto out_dec;
119
120 ns->pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
121 if (!ns->pidmap[0].page)
122 goto out_free;
123
124 ns->pid_cachep = create_pid_cachep(level + 1);
125 if (ns->pid_cachep == NULL)
126 goto out_free_map;
127
128 err = ns_alloc_inum(&ns->ns);
129 if (err)
130 goto out_free_map;
131 ns->ns.ops = &pidns_operations;
132
133 kref_init(&ns->kref);
134 ns->level = level;
135 ns->parent = get_pid_ns(parent_pid_ns);
136 ns->user_ns = get_user_ns(user_ns);
137 ns->ucounts = ucounts;
138 ns->nr_hashed = PIDNS_HASH_ADDING;
139 INIT_WORK(&ns->proc_work, proc_cleanup_work);
140
141 set_bit(0, ns->pidmap[0].page);
142 atomic_set(&ns->pidmap[0].nr_free, BITS_PER_PAGE - 1);
143
144 for (i = 1; i < PIDMAP_ENTRIES; i++)
145 atomic_set(&ns->pidmap[i].nr_free, BITS_PER_PAGE);
146
147 return ns;
148
149 out_free_map:
150 kfree(ns->pidmap[0].page);
151 out_free:
152 kmem_cache_free(pid_ns_cachep, ns);
153 out_dec:
154 dec_pid_namespaces(ucounts);
155 out:
156 return ERR_PTR(err);
157 }
158
159 static void delayed_free_pidns(struct rcu_head *p)
160 {
161 struct pid_namespace *ns = container_of(p, struct pid_namespace, rcu);
162
163 dec_pid_namespaces(ns->ucounts);
164 put_user_ns(ns->user_ns);
165
166 kmem_cache_free(pid_ns_cachep, ns);
167 }
168
169 static void destroy_pid_namespace(struct pid_namespace *ns)
170 {
171 int i;
172
173 ns_free_inum(&ns->ns);
174 for (i = 0; i < PIDMAP_ENTRIES; i++)
175 kfree(ns->pidmap[i].page);
176 call_rcu(&ns->rcu, delayed_free_pidns);
177 }
178
179 struct pid_namespace *copy_pid_ns(unsigned long flags,
180 struct user_namespace *user_ns, struct pid_namespace *old_ns)
181 {
182 if (!(flags & CLONE_NEWPID))
183 return get_pid_ns(old_ns);
184 if (task_active_pid_ns(current) != old_ns)
185 return ERR_PTR(-EINVAL);
186 return create_pid_namespace(user_ns, old_ns);
187 }
188
189 static void free_pid_ns(struct kref *kref)
190 {
191 struct pid_namespace *ns;
192
193 ns = container_of(kref, struct pid_namespace, kref);
194 destroy_pid_namespace(ns);
195 }
196
197 void put_pid_ns(struct pid_namespace *ns)
198 {
199 struct pid_namespace *parent;
200
201 while (ns != &init_pid_ns) {
202 parent = ns->parent;
203 if (!kref_put(&ns->kref, free_pid_ns))
204 break;
205 ns = parent;
206 }
207 }
208 EXPORT_SYMBOL_GPL(put_pid_ns);
209
210 void zap_pid_ns_processes(struct pid_namespace *pid_ns)
211 {
212 int nr;
213 int rc;
214 struct task_struct *task, *me = current;
215 int init_pids = thread_group_leader(me) ? 1 : 2;
216
217 /* Don't allow any more processes into the pid namespace */
218 disable_pid_allocation(pid_ns);
219
220 /*
221 * Ignore SIGCHLD causing any terminated children to autoreap.
222 * This speeds up the namespace shutdown, plus see the comment
223 * below.
224 */
225 spin_lock_irq(&me->sighand->siglock);
226 me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN;
227 spin_unlock_irq(&me->sighand->siglock);
228
229 /*
230 * The last thread in the cgroup-init thread group is terminating.
231 * Find remaining pid_ts in the namespace, signal and wait for them
232 * to exit.
233 *
234 * Note: This signals each threads in the namespace - even those that
235 * belong to the same thread group, To avoid this, we would have
236 * to walk the entire tasklist looking a processes in this
237 * namespace, but that could be unnecessarily expensive if the
238 * pid namespace has just a few processes. Or we need to
239 * maintain a tasklist for each pid namespace.
240 *
241 */
242 read_lock(&tasklist_lock);
243 nr = next_pidmap(pid_ns, 1);
244 while (nr > 0) {
245 rcu_read_lock();
246
247 task = pid_task(find_vpid(nr), PIDTYPE_PID);
248 if (task && !__fatal_signal_pending(task))
249 send_sig_info(SIGKILL, SEND_SIG_FORCED, task);
250
251 rcu_read_unlock();
252
253 nr = next_pidmap(pid_ns, nr);
254 }
255 read_unlock(&tasklist_lock);
256
257 /*
258 * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD.
259 * sys_wait4() will also block until our children traced from the
260 * parent namespace are detached and become EXIT_DEAD.
261 */
262 do {
263 clear_thread_flag(TIF_SIGPENDING);
264 rc = sys_wait4(-1, NULL, __WALL, NULL);
265 } while (rc != -ECHILD);
266
267 /*
268 * sys_wait4() above can't reap the EXIT_DEAD children but we do not
269 * really care, we could reparent them to the global init. We could
270 * exit and reap ->child_reaper even if it is not the last thread in
271 * this pid_ns, free_pid(nr_hashed == 0) calls proc_cleanup_work(),
272 * pid_ns can not go away until proc_kill_sb() drops the reference.
273 *
274 * But this ns can also have other tasks injected by setns()+fork().
275 * Again, ignoring the user visible semantics we do not really need
276 * to wait until they are all reaped, but they can be reparented to
277 * us and thus we need to ensure that pid->child_reaper stays valid
278 * until they all go away. See free_pid()->wake_up_process().
279 *
280 * We rely on ignored SIGCHLD, an injected zombie must be autoreaped
281 * if reparented.
282 */
283 for (;;) {
284 set_current_state(TASK_INTERRUPTIBLE);
285 if (pid_ns->nr_hashed == init_pids)
286 break;
287 schedule();
288 }
289 __set_current_state(TASK_RUNNING);
290
291 if (pid_ns->reboot)
292 current->signal->group_exit_code = pid_ns->reboot;
293
294 acct_exit_ns(pid_ns);
295 return;
296 }
297
298 #ifdef CONFIG_CHECKPOINT_RESTORE
299 static int pid_ns_ctl_handler(struct ctl_table *table, int write,
300 void __user *buffer, size_t *lenp, loff_t *ppos)
301 {
302 struct pid_namespace *pid_ns = task_active_pid_ns(current);
303 struct ctl_table tmp = *table;
304
305 if (write && !ns_capable(pid_ns->user_ns, CAP_SYS_ADMIN))
306 return -EPERM;
307
308 /*
309 * Writing directly to ns' last_pid field is OK, since this field
310 * is volatile in a living namespace anyway and a code writing to
311 * it should synchronize its usage with external means.
312 */
313
314 tmp.data = &pid_ns->last_pid;
315 return proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
316 }
317
318 extern int pid_max;
319 static int zero = 0;
320 static struct ctl_table pid_ns_ctl_table[] = {
321 {
322 .procname = "ns_last_pid",
323 .maxlen = sizeof(int),
324 .mode = 0666, /* permissions are checked in the handler */
325 .proc_handler = pid_ns_ctl_handler,
326 .extra1 = &zero,
327 .extra2 = &pid_max,
328 },
329 { }
330 };
331 static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } };
332 #endif /* CONFIG_CHECKPOINT_RESTORE */
333
334 int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
335 {
336 if (pid_ns == &init_pid_ns)
337 return 0;
338
339 switch (cmd) {
340 case LINUX_REBOOT_CMD_RESTART2:
341 case LINUX_REBOOT_CMD_RESTART:
342 pid_ns->reboot = SIGHUP;
343 break;
344
345 case LINUX_REBOOT_CMD_POWER_OFF:
346 case LINUX_REBOOT_CMD_HALT:
347 pid_ns->reboot = SIGINT;
348 break;
349 default:
350 return -EINVAL;
351 }
352
353 read_lock(&tasklist_lock);
354 force_sig(SIGKILL, pid_ns->child_reaper);
355 read_unlock(&tasklist_lock);
356
357 do_exit(0);
358
359 /* Not reached */
360 return 0;
361 }
362
363 static inline struct pid_namespace *to_pid_ns(struct ns_common *ns)
364 {
365 return container_of(ns, struct pid_namespace, ns);
366 }
367
368 static struct ns_common *pidns_get(struct task_struct *task)
369 {
370 struct pid_namespace *ns;
371
372 rcu_read_lock();
373 ns = task_active_pid_ns(task);
374 if (ns)
375 get_pid_ns(ns);
376 rcu_read_unlock();
377
378 return ns ? &ns->ns : NULL;
379 }
380
381 static struct ns_common *pidns_for_children_get(struct task_struct *task)
382 {
383 struct pid_namespace *ns = NULL;
384
385 task_lock(task);
386 if (task->nsproxy) {
387 ns = task->nsproxy->pid_ns_for_children;
388 get_pid_ns(ns);
389 }
390 task_unlock(task);
391
392 if (ns) {
393 read_lock(&tasklist_lock);
394 if (!ns->child_reaper) {
395 put_pid_ns(ns);
396 ns = NULL;
397 }
398 read_unlock(&tasklist_lock);
399 }
400
401 return ns ? &ns->ns : NULL;
402 }
403
404 static void pidns_put(struct ns_common *ns)
405 {
406 put_pid_ns(to_pid_ns(ns));
407 }
408
409 static int pidns_install(struct nsproxy *nsproxy, struct ns_common *ns)
410 {
411 struct pid_namespace *active = task_active_pid_ns(current);
412 struct pid_namespace *ancestor, *new = to_pid_ns(ns);
413
414 if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) ||
415 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
416 return -EPERM;
417
418 /*
419 * Only allow entering the current active pid namespace
420 * or a child of the current active pid namespace.
421 *
422 * This is required for fork to return a usable pid value and
423 * this maintains the property that processes and their
424 * children can not escape their current pid namespace.
425 */
426 if (new->level < active->level)
427 return -EINVAL;
428
429 ancestor = new;
430 while (ancestor->level > active->level)
431 ancestor = ancestor->parent;
432 if (ancestor != active)
433 return -EINVAL;
434
435 put_pid_ns(nsproxy->pid_ns_for_children);
436 nsproxy->pid_ns_for_children = get_pid_ns(new);
437 return 0;
438 }
439
440 static struct ns_common *pidns_get_parent(struct ns_common *ns)
441 {
442 struct pid_namespace *active = task_active_pid_ns(current);
443 struct pid_namespace *pid_ns, *p;
444
445 /* See if the parent is in the current namespace */
446 pid_ns = p = to_pid_ns(ns)->parent;
447 for (;;) {
448 if (!p)
449 return ERR_PTR(-EPERM);
450 if (p == active)
451 break;
452 p = p->parent;
453 }
454
455 return &get_pid_ns(pid_ns)->ns;
456 }
457
458 static struct user_namespace *pidns_owner(struct ns_common *ns)
459 {
460 return to_pid_ns(ns)->user_ns;
461 }
462
463 const struct proc_ns_operations pidns_operations = {
464 .name = "pid",
465 .type = CLONE_NEWPID,
466 .get = pidns_get,
467 .put = pidns_put,
468 .install = pidns_install,
469 .owner = pidns_owner,
470 .get_parent = pidns_get_parent,
471 };
472
473 const struct proc_ns_operations pidns_for_children_operations = {
474 .name = "pid_for_children",
475 .real_ns_name = "pid",
476 .type = CLONE_NEWPID,
477 .get = pidns_for_children_get,
478 .put = pidns_put,
479 .install = pidns_install,
480 .owner = pidns_owner,
481 .get_parent = pidns_get_parent,
482 };
483
484 static __init int pid_namespaces_init(void)
485 {
486 pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC);
487
488 #ifdef CONFIG_CHECKPOINT_RESTORE
489 register_sysctl_paths(kern_path, pid_ns_ctl_table);
490 #endif
491 return 0;
492 }
493
494 __initcall(pid_namespaces_init);