]> git.ipfire.org Git - people/arne_f/kernel.git/blob - mm/huge_memory.c
mm: introduce page_vma_mapped_walk()
[people/arne_f/kernel.git] / mm / huge_memory.c
1 /*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/khugepaged.h>
22 #include <linux/freezer.h>
23 #include <linux/pfn_t.h>
24 #include <linux/mman.h>
25 #include <linux/memremap.h>
26 #include <linux/pagemap.h>
27 #include <linux/debugfs.h>
28 #include <linux/migrate.h>
29 #include <linux/hashtable.h>
30 #include <linux/userfaultfd_k.h>
31 #include <linux/page_idle.h>
32 #include <linux/shmem_fs.h>
33
34 #include <asm/tlb.h>
35 #include <asm/pgalloc.h>
36 #include "internal.h"
37
38 /*
39 * By default transparent hugepage support is disabled in order that avoid
40 * to risk increase the memory footprint of applications without a guaranteed
41 * benefit. When transparent hugepage support is enabled, is for all mappings,
42 * and khugepaged scans all mappings.
43 * Defrag is invoked by khugepaged hugepage allocations and by page faults
44 * for all hugepage allocations.
45 */
46 unsigned long transparent_hugepage_flags __read_mostly =
47 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
48 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
49 #endif
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
51 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
52 #endif
53 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
54 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
55 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
56
57 static struct shrinker deferred_split_shrinker;
58
59 static atomic_t huge_zero_refcount;
60 struct page *huge_zero_page __read_mostly;
61
62 static struct page *get_huge_zero_page(void)
63 {
64 struct page *zero_page;
65 retry:
66 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
67 return READ_ONCE(huge_zero_page);
68
69 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
70 HPAGE_PMD_ORDER);
71 if (!zero_page) {
72 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
73 return NULL;
74 }
75 count_vm_event(THP_ZERO_PAGE_ALLOC);
76 preempt_disable();
77 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
78 preempt_enable();
79 __free_pages(zero_page, compound_order(zero_page));
80 goto retry;
81 }
82
83 /* We take additional reference here. It will be put back by shrinker */
84 atomic_set(&huge_zero_refcount, 2);
85 preempt_enable();
86 return READ_ONCE(huge_zero_page);
87 }
88
89 static void put_huge_zero_page(void)
90 {
91 /*
92 * Counter should never go to zero here. Only shrinker can put
93 * last reference.
94 */
95 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
96 }
97
98 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
99 {
100 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
101 return READ_ONCE(huge_zero_page);
102
103 if (!get_huge_zero_page())
104 return NULL;
105
106 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
107 put_huge_zero_page();
108
109 return READ_ONCE(huge_zero_page);
110 }
111
112 void mm_put_huge_zero_page(struct mm_struct *mm)
113 {
114 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
115 put_huge_zero_page();
116 }
117
118 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
119 struct shrink_control *sc)
120 {
121 /* we can free zero page only if last reference remains */
122 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
123 }
124
125 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
126 struct shrink_control *sc)
127 {
128 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
129 struct page *zero_page = xchg(&huge_zero_page, NULL);
130 BUG_ON(zero_page == NULL);
131 __free_pages(zero_page, compound_order(zero_page));
132 return HPAGE_PMD_NR;
133 }
134
135 return 0;
136 }
137
138 static struct shrinker huge_zero_page_shrinker = {
139 .count_objects = shrink_huge_zero_page_count,
140 .scan_objects = shrink_huge_zero_page_scan,
141 .seeks = DEFAULT_SEEKS,
142 };
143
144 #ifdef CONFIG_SYSFS
145 static ssize_t enabled_show(struct kobject *kobj,
146 struct kobj_attribute *attr, char *buf)
147 {
148 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
149 return sprintf(buf, "[always] madvise never\n");
150 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
151 return sprintf(buf, "always [madvise] never\n");
152 else
153 return sprintf(buf, "always madvise [never]\n");
154 }
155
156 static ssize_t enabled_store(struct kobject *kobj,
157 struct kobj_attribute *attr,
158 const char *buf, size_t count)
159 {
160 ssize_t ret = count;
161
162 if (!memcmp("always", buf,
163 min(sizeof("always")-1, count))) {
164 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
165 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
166 } else if (!memcmp("madvise", buf,
167 min(sizeof("madvise")-1, count))) {
168 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
169 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
170 } else if (!memcmp("never", buf,
171 min(sizeof("never")-1, count))) {
172 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
173 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
174 } else
175 ret = -EINVAL;
176
177 if (ret > 0) {
178 int err = start_stop_khugepaged();
179 if (err)
180 ret = err;
181 }
182 return ret;
183 }
184 static struct kobj_attribute enabled_attr =
185 __ATTR(enabled, 0644, enabled_show, enabled_store);
186
187 ssize_t single_hugepage_flag_show(struct kobject *kobj,
188 struct kobj_attribute *attr, char *buf,
189 enum transparent_hugepage_flag flag)
190 {
191 return sprintf(buf, "%d\n",
192 !!test_bit(flag, &transparent_hugepage_flags));
193 }
194
195 ssize_t single_hugepage_flag_store(struct kobject *kobj,
196 struct kobj_attribute *attr,
197 const char *buf, size_t count,
198 enum transparent_hugepage_flag flag)
199 {
200 unsigned long value;
201 int ret;
202
203 ret = kstrtoul(buf, 10, &value);
204 if (ret < 0)
205 return ret;
206 if (value > 1)
207 return -EINVAL;
208
209 if (value)
210 set_bit(flag, &transparent_hugepage_flags);
211 else
212 clear_bit(flag, &transparent_hugepage_flags);
213
214 return count;
215 }
216
217 static ssize_t defrag_show(struct kobject *kobj,
218 struct kobj_attribute *attr, char *buf)
219 {
220 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
221 return sprintf(buf, "[always] defer defer+madvise madvise never\n");
222 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
223 return sprintf(buf, "always [defer] defer+madvise madvise never\n");
224 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
225 return sprintf(buf, "always defer [defer+madvise] madvise never\n");
226 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
227 return sprintf(buf, "always defer defer+madvise [madvise] never\n");
228 return sprintf(buf, "always defer defer+madvise madvise [never]\n");
229 }
230
231 static ssize_t defrag_store(struct kobject *kobj,
232 struct kobj_attribute *attr,
233 const char *buf, size_t count)
234 {
235 if (!memcmp("always", buf,
236 min(sizeof("always")-1, count))) {
237 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
238 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
239 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
240 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
241 } else if (!memcmp("defer", buf,
242 min(sizeof("defer")-1, count))) {
243 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
244 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
245 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
246 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
247 } else if (!memcmp("defer+madvise", buf,
248 min(sizeof("defer+madvise")-1, count))) {
249 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
250 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
251 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
252 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
253 } else if (!memcmp("madvise", buf,
254 min(sizeof("madvise")-1, count))) {
255 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
256 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
257 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
258 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
259 } else if (!memcmp("never", buf,
260 min(sizeof("never")-1, count))) {
261 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
262 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
263 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
264 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
265 } else
266 return -EINVAL;
267
268 return count;
269 }
270 static struct kobj_attribute defrag_attr =
271 __ATTR(defrag, 0644, defrag_show, defrag_store);
272
273 static ssize_t use_zero_page_show(struct kobject *kobj,
274 struct kobj_attribute *attr, char *buf)
275 {
276 return single_hugepage_flag_show(kobj, attr, buf,
277 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
278 }
279 static ssize_t use_zero_page_store(struct kobject *kobj,
280 struct kobj_attribute *attr, const char *buf, size_t count)
281 {
282 return single_hugepage_flag_store(kobj, attr, buf, count,
283 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
284 }
285 static struct kobj_attribute use_zero_page_attr =
286 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
287
288 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
289 struct kobj_attribute *attr, char *buf)
290 {
291 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
292 }
293 static struct kobj_attribute hpage_pmd_size_attr =
294 __ATTR_RO(hpage_pmd_size);
295
296 #ifdef CONFIG_DEBUG_VM
297 static ssize_t debug_cow_show(struct kobject *kobj,
298 struct kobj_attribute *attr, char *buf)
299 {
300 return single_hugepage_flag_show(kobj, attr, buf,
301 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
302 }
303 static ssize_t debug_cow_store(struct kobject *kobj,
304 struct kobj_attribute *attr,
305 const char *buf, size_t count)
306 {
307 return single_hugepage_flag_store(kobj, attr, buf, count,
308 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
309 }
310 static struct kobj_attribute debug_cow_attr =
311 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
312 #endif /* CONFIG_DEBUG_VM */
313
314 static struct attribute *hugepage_attr[] = {
315 &enabled_attr.attr,
316 &defrag_attr.attr,
317 &use_zero_page_attr.attr,
318 &hpage_pmd_size_attr.attr,
319 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
320 &shmem_enabled_attr.attr,
321 #endif
322 #ifdef CONFIG_DEBUG_VM
323 &debug_cow_attr.attr,
324 #endif
325 NULL,
326 };
327
328 static struct attribute_group hugepage_attr_group = {
329 .attrs = hugepage_attr,
330 };
331
332 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
333 {
334 int err;
335
336 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
337 if (unlikely(!*hugepage_kobj)) {
338 pr_err("failed to create transparent hugepage kobject\n");
339 return -ENOMEM;
340 }
341
342 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
343 if (err) {
344 pr_err("failed to register transparent hugepage group\n");
345 goto delete_obj;
346 }
347
348 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
349 if (err) {
350 pr_err("failed to register transparent hugepage group\n");
351 goto remove_hp_group;
352 }
353
354 return 0;
355
356 remove_hp_group:
357 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
358 delete_obj:
359 kobject_put(*hugepage_kobj);
360 return err;
361 }
362
363 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
364 {
365 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
366 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
367 kobject_put(hugepage_kobj);
368 }
369 #else
370 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
371 {
372 return 0;
373 }
374
375 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
376 {
377 }
378 #endif /* CONFIG_SYSFS */
379
380 static int __init hugepage_init(void)
381 {
382 int err;
383 struct kobject *hugepage_kobj;
384
385 if (!has_transparent_hugepage()) {
386 transparent_hugepage_flags = 0;
387 return -EINVAL;
388 }
389
390 /*
391 * hugepages can't be allocated by the buddy allocator
392 */
393 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
394 /*
395 * we use page->mapping and page->index in second tail page
396 * as list_head: assuming THP order >= 2
397 */
398 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
399
400 err = hugepage_init_sysfs(&hugepage_kobj);
401 if (err)
402 goto err_sysfs;
403
404 err = khugepaged_init();
405 if (err)
406 goto err_slab;
407
408 err = register_shrinker(&huge_zero_page_shrinker);
409 if (err)
410 goto err_hzp_shrinker;
411 err = register_shrinker(&deferred_split_shrinker);
412 if (err)
413 goto err_split_shrinker;
414
415 /*
416 * By default disable transparent hugepages on smaller systems,
417 * where the extra memory used could hurt more than TLB overhead
418 * is likely to save. The admin can still enable it through /sys.
419 */
420 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
421 transparent_hugepage_flags = 0;
422 return 0;
423 }
424
425 err = start_stop_khugepaged();
426 if (err)
427 goto err_khugepaged;
428
429 return 0;
430 err_khugepaged:
431 unregister_shrinker(&deferred_split_shrinker);
432 err_split_shrinker:
433 unregister_shrinker(&huge_zero_page_shrinker);
434 err_hzp_shrinker:
435 khugepaged_destroy();
436 err_slab:
437 hugepage_exit_sysfs(hugepage_kobj);
438 err_sysfs:
439 return err;
440 }
441 subsys_initcall(hugepage_init);
442
443 static int __init setup_transparent_hugepage(char *str)
444 {
445 int ret = 0;
446 if (!str)
447 goto out;
448 if (!strcmp(str, "always")) {
449 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
450 &transparent_hugepage_flags);
451 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
452 &transparent_hugepage_flags);
453 ret = 1;
454 } else if (!strcmp(str, "madvise")) {
455 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
456 &transparent_hugepage_flags);
457 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
458 &transparent_hugepage_flags);
459 ret = 1;
460 } else if (!strcmp(str, "never")) {
461 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
462 &transparent_hugepage_flags);
463 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
464 &transparent_hugepage_flags);
465 ret = 1;
466 }
467 out:
468 if (!ret)
469 pr_warn("transparent_hugepage= cannot parse, ignored\n");
470 return ret;
471 }
472 __setup("transparent_hugepage=", setup_transparent_hugepage);
473
474 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
475 {
476 if (likely(vma->vm_flags & VM_WRITE))
477 pmd = pmd_mkwrite(pmd);
478 return pmd;
479 }
480
481 static inline struct list_head *page_deferred_list(struct page *page)
482 {
483 /*
484 * ->lru in the tail pages is occupied by compound_head.
485 * Let's use ->mapping + ->index in the second tail page as list_head.
486 */
487 return (struct list_head *)&page[2].mapping;
488 }
489
490 void prep_transhuge_page(struct page *page)
491 {
492 /*
493 * we use page->mapping and page->indexlru in second tail page
494 * as list_head: assuming THP order >= 2
495 */
496
497 INIT_LIST_HEAD(page_deferred_list(page));
498 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
499 }
500
501 unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
502 loff_t off, unsigned long flags, unsigned long size)
503 {
504 unsigned long addr;
505 loff_t off_end = off + len;
506 loff_t off_align = round_up(off, size);
507 unsigned long len_pad;
508
509 if (off_end <= off_align || (off_end - off_align) < size)
510 return 0;
511
512 len_pad = len + size;
513 if (len_pad < len || (off + len_pad) < off)
514 return 0;
515
516 addr = current->mm->get_unmapped_area(filp, 0, len_pad,
517 off >> PAGE_SHIFT, flags);
518 if (IS_ERR_VALUE(addr))
519 return 0;
520
521 addr += (off - addr) & (size - 1);
522 return addr;
523 }
524
525 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
526 unsigned long len, unsigned long pgoff, unsigned long flags)
527 {
528 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
529
530 if (addr)
531 goto out;
532 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
533 goto out;
534
535 addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
536 if (addr)
537 return addr;
538
539 out:
540 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
541 }
542 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
543
544 static int __do_huge_pmd_anonymous_page(struct vm_fault *vmf, struct page *page,
545 gfp_t gfp)
546 {
547 struct vm_area_struct *vma = vmf->vma;
548 struct mem_cgroup *memcg;
549 pgtable_t pgtable;
550 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
551
552 VM_BUG_ON_PAGE(!PageCompound(page), page);
553
554 if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
555 put_page(page);
556 count_vm_event(THP_FAULT_FALLBACK);
557 return VM_FAULT_FALLBACK;
558 }
559
560 pgtable = pte_alloc_one(vma->vm_mm, haddr);
561 if (unlikely(!pgtable)) {
562 mem_cgroup_cancel_charge(page, memcg, true);
563 put_page(page);
564 return VM_FAULT_OOM;
565 }
566
567 clear_huge_page(page, haddr, HPAGE_PMD_NR);
568 /*
569 * The memory barrier inside __SetPageUptodate makes sure that
570 * clear_huge_page writes become visible before the set_pmd_at()
571 * write.
572 */
573 __SetPageUptodate(page);
574
575 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
576 if (unlikely(!pmd_none(*vmf->pmd))) {
577 spin_unlock(vmf->ptl);
578 mem_cgroup_cancel_charge(page, memcg, true);
579 put_page(page);
580 pte_free(vma->vm_mm, pgtable);
581 } else {
582 pmd_t entry;
583
584 /* Deliver the page fault to userland */
585 if (userfaultfd_missing(vma)) {
586 int ret;
587
588 spin_unlock(vmf->ptl);
589 mem_cgroup_cancel_charge(page, memcg, true);
590 put_page(page);
591 pte_free(vma->vm_mm, pgtable);
592 ret = handle_userfault(vmf, VM_UFFD_MISSING);
593 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
594 return ret;
595 }
596
597 entry = mk_huge_pmd(page, vma->vm_page_prot);
598 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
599 page_add_new_anon_rmap(page, vma, haddr, true);
600 mem_cgroup_commit_charge(page, memcg, false, true);
601 lru_cache_add_active_or_unevictable(page, vma);
602 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
603 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
604 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
605 atomic_long_inc(&vma->vm_mm->nr_ptes);
606 spin_unlock(vmf->ptl);
607 count_vm_event(THP_FAULT_ALLOC);
608 }
609
610 return 0;
611 }
612
613 /*
614 * always: directly stall for all thp allocations
615 * defer: wake kswapd and fail if not immediately available
616 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
617 * fail if not immediately available
618 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
619 * available
620 * never: never stall for any thp allocation
621 */
622 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
623 {
624 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
625
626 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
627 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
628 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
629 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
630 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
631 return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
632 __GFP_KSWAPD_RECLAIM);
633 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
634 return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
635 0);
636 return GFP_TRANSHUGE_LIGHT;
637 }
638
639 /* Caller must hold page table lock. */
640 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
641 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
642 struct page *zero_page)
643 {
644 pmd_t entry;
645 if (!pmd_none(*pmd))
646 return false;
647 entry = mk_pmd(zero_page, vma->vm_page_prot);
648 entry = pmd_mkhuge(entry);
649 if (pgtable)
650 pgtable_trans_huge_deposit(mm, pmd, pgtable);
651 set_pmd_at(mm, haddr, pmd, entry);
652 atomic_long_inc(&mm->nr_ptes);
653 return true;
654 }
655
656 int do_huge_pmd_anonymous_page(struct vm_fault *vmf)
657 {
658 struct vm_area_struct *vma = vmf->vma;
659 gfp_t gfp;
660 struct page *page;
661 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
662
663 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
664 return VM_FAULT_FALLBACK;
665 if (unlikely(anon_vma_prepare(vma)))
666 return VM_FAULT_OOM;
667 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
668 return VM_FAULT_OOM;
669 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
670 !mm_forbids_zeropage(vma->vm_mm) &&
671 transparent_hugepage_use_zero_page()) {
672 pgtable_t pgtable;
673 struct page *zero_page;
674 bool set;
675 int ret;
676 pgtable = pte_alloc_one(vma->vm_mm, haddr);
677 if (unlikely(!pgtable))
678 return VM_FAULT_OOM;
679 zero_page = mm_get_huge_zero_page(vma->vm_mm);
680 if (unlikely(!zero_page)) {
681 pte_free(vma->vm_mm, pgtable);
682 count_vm_event(THP_FAULT_FALLBACK);
683 return VM_FAULT_FALLBACK;
684 }
685 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
686 ret = 0;
687 set = false;
688 if (pmd_none(*vmf->pmd)) {
689 if (userfaultfd_missing(vma)) {
690 spin_unlock(vmf->ptl);
691 ret = handle_userfault(vmf, VM_UFFD_MISSING);
692 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
693 } else {
694 set_huge_zero_page(pgtable, vma->vm_mm, vma,
695 haddr, vmf->pmd, zero_page);
696 spin_unlock(vmf->ptl);
697 set = true;
698 }
699 } else
700 spin_unlock(vmf->ptl);
701 if (!set)
702 pte_free(vma->vm_mm, pgtable);
703 return ret;
704 }
705 gfp = alloc_hugepage_direct_gfpmask(vma);
706 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
707 if (unlikely(!page)) {
708 count_vm_event(THP_FAULT_FALLBACK);
709 return VM_FAULT_FALLBACK;
710 }
711 prep_transhuge_page(page);
712 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
713 }
714
715 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
716 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
717 {
718 struct mm_struct *mm = vma->vm_mm;
719 pmd_t entry;
720 spinlock_t *ptl;
721
722 ptl = pmd_lock(mm, pmd);
723 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
724 if (pfn_t_devmap(pfn))
725 entry = pmd_mkdevmap(entry);
726 if (write) {
727 entry = pmd_mkyoung(pmd_mkdirty(entry));
728 entry = maybe_pmd_mkwrite(entry, vma);
729 }
730 set_pmd_at(mm, addr, pmd, entry);
731 update_mmu_cache_pmd(vma, addr, pmd);
732 spin_unlock(ptl);
733 }
734
735 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
736 pmd_t *pmd, pfn_t pfn, bool write)
737 {
738 pgprot_t pgprot = vma->vm_page_prot;
739 /*
740 * If we had pmd_special, we could avoid all these restrictions,
741 * but we need to be consistent with PTEs and architectures that
742 * can't support a 'special' bit.
743 */
744 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
745 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
746 (VM_PFNMAP|VM_MIXEDMAP));
747 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
748 BUG_ON(!pfn_t_devmap(pfn));
749
750 if (addr < vma->vm_start || addr >= vma->vm_end)
751 return VM_FAULT_SIGBUS;
752
753 track_pfn_insert(vma, &pgprot, pfn);
754
755 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
756 return VM_FAULT_NOPAGE;
757 }
758 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
759
760 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
761 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
762 {
763 if (likely(vma->vm_flags & VM_WRITE))
764 pud = pud_mkwrite(pud);
765 return pud;
766 }
767
768 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
769 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
770 {
771 struct mm_struct *mm = vma->vm_mm;
772 pud_t entry;
773 spinlock_t *ptl;
774
775 ptl = pud_lock(mm, pud);
776 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
777 if (pfn_t_devmap(pfn))
778 entry = pud_mkdevmap(entry);
779 if (write) {
780 entry = pud_mkyoung(pud_mkdirty(entry));
781 entry = maybe_pud_mkwrite(entry, vma);
782 }
783 set_pud_at(mm, addr, pud, entry);
784 update_mmu_cache_pud(vma, addr, pud);
785 spin_unlock(ptl);
786 }
787
788 int vmf_insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
789 pud_t *pud, pfn_t pfn, bool write)
790 {
791 pgprot_t pgprot = vma->vm_page_prot;
792 /*
793 * If we had pud_special, we could avoid all these restrictions,
794 * but we need to be consistent with PTEs and architectures that
795 * can't support a 'special' bit.
796 */
797 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
798 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
799 (VM_PFNMAP|VM_MIXEDMAP));
800 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
801 BUG_ON(!pfn_t_devmap(pfn));
802
803 if (addr < vma->vm_start || addr >= vma->vm_end)
804 return VM_FAULT_SIGBUS;
805
806 track_pfn_insert(vma, &pgprot, pfn);
807
808 insert_pfn_pud(vma, addr, pud, pfn, pgprot, write);
809 return VM_FAULT_NOPAGE;
810 }
811 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
812 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
813
814 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
815 pmd_t *pmd)
816 {
817 pmd_t _pmd;
818
819 /*
820 * We should set the dirty bit only for FOLL_WRITE but for now
821 * the dirty bit in the pmd is meaningless. And if the dirty
822 * bit will become meaningful and we'll only set it with
823 * FOLL_WRITE, an atomic set_bit will be required on the pmd to
824 * set the young bit, instead of the current set_pmd_at.
825 */
826 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
827 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
828 pmd, _pmd, 1))
829 update_mmu_cache_pmd(vma, addr, pmd);
830 }
831
832 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
833 pmd_t *pmd, int flags)
834 {
835 unsigned long pfn = pmd_pfn(*pmd);
836 struct mm_struct *mm = vma->vm_mm;
837 struct dev_pagemap *pgmap;
838 struct page *page;
839
840 assert_spin_locked(pmd_lockptr(mm, pmd));
841
842 /*
843 * When we COW a devmap PMD entry, we split it into PTEs, so we should
844 * not be in this function with `flags & FOLL_COW` set.
845 */
846 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
847
848 if (flags & FOLL_WRITE && !pmd_write(*pmd))
849 return NULL;
850
851 if (pmd_present(*pmd) && pmd_devmap(*pmd))
852 /* pass */;
853 else
854 return NULL;
855
856 if (flags & FOLL_TOUCH)
857 touch_pmd(vma, addr, pmd);
858
859 /*
860 * device mapped pages can only be returned if the
861 * caller will manage the page reference count.
862 */
863 if (!(flags & FOLL_GET))
864 return ERR_PTR(-EEXIST);
865
866 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
867 pgmap = get_dev_pagemap(pfn, NULL);
868 if (!pgmap)
869 return ERR_PTR(-EFAULT);
870 page = pfn_to_page(pfn);
871 get_page(page);
872 put_dev_pagemap(pgmap);
873
874 return page;
875 }
876
877 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
878 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
879 struct vm_area_struct *vma)
880 {
881 spinlock_t *dst_ptl, *src_ptl;
882 struct page *src_page;
883 pmd_t pmd;
884 pgtable_t pgtable = NULL;
885 int ret = -ENOMEM;
886
887 /* Skip if can be re-fill on fault */
888 if (!vma_is_anonymous(vma))
889 return 0;
890
891 pgtable = pte_alloc_one(dst_mm, addr);
892 if (unlikely(!pgtable))
893 goto out;
894
895 dst_ptl = pmd_lock(dst_mm, dst_pmd);
896 src_ptl = pmd_lockptr(src_mm, src_pmd);
897 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
898
899 ret = -EAGAIN;
900 pmd = *src_pmd;
901 if (unlikely(!pmd_trans_huge(pmd))) {
902 pte_free(dst_mm, pgtable);
903 goto out_unlock;
904 }
905 /*
906 * When page table lock is held, the huge zero pmd should not be
907 * under splitting since we don't split the page itself, only pmd to
908 * a page table.
909 */
910 if (is_huge_zero_pmd(pmd)) {
911 struct page *zero_page;
912 /*
913 * get_huge_zero_page() will never allocate a new page here,
914 * since we already have a zero page to copy. It just takes a
915 * reference.
916 */
917 zero_page = mm_get_huge_zero_page(dst_mm);
918 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
919 zero_page);
920 ret = 0;
921 goto out_unlock;
922 }
923
924 src_page = pmd_page(pmd);
925 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
926 get_page(src_page);
927 page_dup_rmap(src_page, true);
928 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
929 atomic_long_inc(&dst_mm->nr_ptes);
930 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
931
932 pmdp_set_wrprotect(src_mm, addr, src_pmd);
933 pmd = pmd_mkold(pmd_wrprotect(pmd));
934 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
935
936 ret = 0;
937 out_unlock:
938 spin_unlock(src_ptl);
939 spin_unlock(dst_ptl);
940 out:
941 return ret;
942 }
943
944 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
945 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
946 pud_t *pud)
947 {
948 pud_t _pud;
949
950 /*
951 * We should set the dirty bit only for FOLL_WRITE but for now
952 * the dirty bit in the pud is meaningless. And if the dirty
953 * bit will become meaningful and we'll only set it with
954 * FOLL_WRITE, an atomic set_bit will be required on the pud to
955 * set the young bit, instead of the current set_pud_at.
956 */
957 _pud = pud_mkyoung(pud_mkdirty(*pud));
958 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
959 pud, _pud, 1))
960 update_mmu_cache_pud(vma, addr, pud);
961 }
962
963 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
964 pud_t *pud, int flags)
965 {
966 unsigned long pfn = pud_pfn(*pud);
967 struct mm_struct *mm = vma->vm_mm;
968 struct dev_pagemap *pgmap;
969 struct page *page;
970
971 assert_spin_locked(pud_lockptr(mm, pud));
972
973 if (flags & FOLL_WRITE && !pud_write(*pud))
974 return NULL;
975
976 if (pud_present(*pud) && pud_devmap(*pud))
977 /* pass */;
978 else
979 return NULL;
980
981 if (flags & FOLL_TOUCH)
982 touch_pud(vma, addr, pud);
983
984 /*
985 * device mapped pages can only be returned if the
986 * caller will manage the page reference count.
987 */
988 if (!(flags & FOLL_GET))
989 return ERR_PTR(-EEXIST);
990
991 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
992 pgmap = get_dev_pagemap(pfn, NULL);
993 if (!pgmap)
994 return ERR_PTR(-EFAULT);
995 page = pfn_to_page(pfn);
996 get_page(page);
997 put_dev_pagemap(pgmap);
998
999 return page;
1000 }
1001
1002 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1003 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1004 struct vm_area_struct *vma)
1005 {
1006 spinlock_t *dst_ptl, *src_ptl;
1007 pud_t pud;
1008 int ret;
1009
1010 dst_ptl = pud_lock(dst_mm, dst_pud);
1011 src_ptl = pud_lockptr(src_mm, src_pud);
1012 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1013
1014 ret = -EAGAIN;
1015 pud = *src_pud;
1016 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1017 goto out_unlock;
1018
1019 /*
1020 * When page table lock is held, the huge zero pud should not be
1021 * under splitting since we don't split the page itself, only pud to
1022 * a page table.
1023 */
1024 if (is_huge_zero_pud(pud)) {
1025 /* No huge zero pud yet */
1026 }
1027
1028 pudp_set_wrprotect(src_mm, addr, src_pud);
1029 pud = pud_mkold(pud_wrprotect(pud));
1030 set_pud_at(dst_mm, addr, dst_pud, pud);
1031
1032 ret = 0;
1033 out_unlock:
1034 spin_unlock(src_ptl);
1035 spin_unlock(dst_ptl);
1036 return ret;
1037 }
1038
1039 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1040 {
1041 pud_t entry;
1042 unsigned long haddr;
1043 bool write = vmf->flags & FAULT_FLAG_WRITE;
1044
1045 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1046 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1047 goto unlock;
1048
1049 entry = pud_mkyoung(orig_pud);
1050 if (write)
1051 entry = pud_mkdirty(entry);
1052 haddr = vmf->address & HPAGE_PUD_MASK;
1053 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1054 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1055
1056 unlock:
1057 spin_unlock(vmf->ptl);
1058 }
1059 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1060
1061 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1062 {
1063 pmd_t entry;
1064 unsigned long haddr;
1065 bool write = vmf->flags & FAULT_FLAG_WRITE;
1066
1067 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1068 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1069 goto unlock;
1070
1071 entry = pmd_mkyoung(orig_pmd);
1072 if (write)
1073 entry = pmd_mkdirty(entry);
1074 haddr = vmf->address & HPAGE_PMD_MASK;
1075 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1076 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1077
1078 unlock:
1079 spin_unlock(vmf->ptl);
1080 }
1081
1082 static int do_huge_pmd_wp_page_fallback(struct vm_fault *vmf, pmd_t orig_pmd,
1083 struct page *page)
1084 {
1085 struct vm_area_struct *vma = vmf->vma;
1086 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1087 struct mem_cgroup *memcg;
1088 pgtable_t pgtable;
1089 pmd_t _pmd;
1090 int ret = 0, i;
1091 struct page **pages;
1092 unsigned long mmun_start; /* For mmu_notifiers */
1093 unsigned long mmun_end; /* For mmu_notifiers */
1094
1095 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1096 GFP_KERNEL);
1097 if (unlikely(!pages)) {
1098 ret |= VM_FAULT_OOM;
1099 goto out;
1100 }
1101
1102 for (i = 0; i < HPAGE_PMD_NR; i++) {
1103 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
1104 vmf->address, page_to_nid(page));
1105 if (unlikely(!pages[i] ||
1106 mem_cgroup_try_charge(pages[i], vma->vm_mm,
1107 GFP_KERNEL, &memcg, false))) {
1108 if (pages[i])
1109 put_page(pages[i]);
1110 while (--i >= 0) {
1111 memcg = (void *)page_private(pages[i]);
1112 set_page_private(pages[i], 0);
1113 mem_cgroup_cancel_charge(pages[i], memcg,
1114 false);
1115 put_page(pages[i]);
1116 }
1117 kfree(pages);
1118 ret |= VM_FAULT_OOM;
1119 goto out;
1120 }
1121 set_page_private(pages[i], (unsigned long)memcg);
1122 }
1123
1124 for (i = 0; i < HPAGE_PMD_NR; i++) {
1125 copy_user_highpage(pages[i], page + i,
1126 haddr + PAGE_SIZE * i, vma);
1127 __SetPageUptodate(pages[i]);
1128 cond_resched();
1129 }
1130
1131 mmun_start = haddr;
1132 mmun_end = haddr + HPAGE_PMD_SIZE;
1133 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1134
1135 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1136 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1137 goto out_free_pages;
1138 VM_BUG_ON_PAGE(!PageHead(page), page);
1139
1140 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1141 /* leave pmd empty until pte is filled */
1142
1143 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
1144 pmd_populate(vma->vm_mm, &_pmd, pgtable);
1145
1146 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1147 pte_t entry;
1148 entry = mk_pte(pages[i], vma->vm_page_prot);
1149 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1150 memcg = (void *)page_private(pages[i]);
1151 set_page_private(pages[i], 0);
1152 page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1153 mem_cgroup_commit_charge(pages[i], memcg, false, false);
1154 lru_cache_add_active_or_unevictable(pages[i], vma);
1155 vmf->pte = pte_offset_map(&_pmd, haddr);
1156 VM_BUG_ON(!pte_none(*vmf->pte));
1157 set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1158 pte_unmap(vmf->pte);
1159 }
1160 kfree(pages);
1161
1162 smp_wmb(); /* make pte visible before pmd */
1163 pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1164 page_remove_rmap(page, true);
1165 spin_unlock(vmf->ptl);
1166
1167 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1168
1169 ret |= VM_FAULT_WRITE;
1170 put_page(page);
1171
1172 out:
1173 return ret;
1174
1175 out_free_pages:
1176 spin_unlock(vmf->ptl);
1177 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1178 for (i = 0; i < HPAGE_PMD_NR; i++) {
1179 memcg = (void *)page_private(pages[i]);
1180 set_page_private(pages[i], 0);
1181 mem_cgroup_cancel_charge(pages[i], memcg, false);
1182 put_page(pages[i]);
1183 }
1184 kfree(pages);
1185 goto out;
1186 }
1187
1188 int do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1189 {
1190 struct vm_area_struct *vma = vmf->vma;
1191 struct page *page = NULL, *new_page;
1192 struct mem_cgroup *memcg;
1193 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1194 unsigned long mmun_start; /* For mmu_notifiers */
1195 unsigned long mmun_end; /* For mmu_notifiers */
1196 gfp_t huge_gfp; /* for allocation and charge */
1197 int ret = 0;
1198
1199 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1200 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1201 if (is_huge_zero_pmd(orig_pmd))
1202 goto alloc;
1203 spin_lock(vmf->ptl);
1204 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1205 goto out_unlock;
1206
1207 page = pmd_page(orig_pmd);
1208 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1209 /*
1210 * We can only reuse the page if nobody else maps the huge page or it's
1211 * part.
1212 */
1213 if (page_trans_huge_mapcount(page, NULL) == 1) {
1214 pmd_t entry;
1215 entry = pmd_mkyoung(orig_pmd);
1216 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1217 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1218 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1219 ret |= VM_FAULT_WRITE;
1220 goto out_unlock;
1221 }
1222 get_page(page);
1223 spin_unlock(vmf->ptl);
1224 alloc:
1225 if (transparent_hugepage_enabled(vma) &&
1226 !transparent_hugepage_debug_cow()) {
1227 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1228 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1229 } else
1230 new_page = NULL;
1231
1232 if (likely(new_page)) {
1233 prep_transhuge_page(new_page);
1234 } else {
1235 if (!page) {
1236 split_huge_pmd(vma, vmf->pmd, vmf->address);
1237 ret |= VM_FAULT_FALLBACK;
1238 } else {
1239 ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1240 if (ret & VM_FAULT_OOM) {
1241 split_huge_pmd(vma, vmf->pmd, vmf->address);
1242 ret |= VM_FAULT_FALLBACK;
1243 }
1244 put_page(page);
1245 }
1246 count_vm_event(THP_FAULT_FALLBACK);
1247 goto out;
1248 }
1249
1250 if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
1251 huge_gfp, &memcg, true))) {
1252 put_page(new_page);
1253 split_huge_pmd(vma, vmf->pmd, vmf->address);
1254 if (page)
1255 put_page(page);
1256 ret |= VM_FAULT_FALLBACK;
1257 count_vm_event(THP_FAULT_FALLBACK);
1258 goto out;
1259 }
1260
1261 count_vm_event(THP_FAULT_ALLOC);
1262
1263 if (!page)
1264 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1265 else
1266 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1267 __SetPageUptodate(new_page);
1268
1269 mmun_start = haddr;
1270 mmun_end = haddr + HPAGE_PMD_SIZE;
1271 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1272
1273 spin_lock(vmf->ptl);
1274 if (page)
1275 put_page(page);
1276 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1277 spin_unlock(vmf->ptl);
1278 mem_cgroup_cancel_charge(new_page, memcg, true);
1279 put_page(new_page);
1280 goto out_mn;
1281 } else {
1282 pmd_t entry;
1283 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1284 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1285 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1286 page_add_new_anon_rmap(new_page, vma, haddr, true);
1287 mem_cgroup_commit_charge(new_page, memcg, false, true);
1288 lru_cache_add_active_or_unevictable(new_page, vma);
1289 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1290 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1291 if (!page) {
1292 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1293 } else {
1294 VM_BUG_ON_PAGE(!PageHead(page), page);
1295 page_remove_rmap(page, true);
1296 put_page(page);
1297 }
1298 ret |= VM_FAULT_WRITE;
1299 }
1300 spin_unlock(vmf->ptl);
1301 out_mn:
1302 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1303 out:
1304 return ret;
1305 out_unlock:
1306 spin_unlock(vmf->ptl);
1307 return ret;
1308 }
1309
1310 /*
1311 * FOLL_FORCE can write to even unwritable pmd's, but only
1312 * after we've gone through a COW cycle and they are dirty.
1313 */
1314 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1315 {
1316 return pmd_write(pmd) ||
1317 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1318 }
1319
1320 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1321 unsigned long addr,
1322 pmd_t *pmd,
1323 unsigned int flags)
1324 {
1325 struct mm_struct *mm = vma->vm_mm;
1326 struct page *page = NULL;
1327
1328 assert_spin_locked(pmd_lockptr(mm, pmd));
1329
1330 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1331 goto out;
1332
1333 /* Avoid dumping huge zero page */
1334 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1335 return ERR_PTR(-EFAULT);
1336
1337 /* Full NUMA hinting faults to serialise migration in fault paths */
1338 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1339 goto out;
1340
1341 page = pmd_page(*pmd);
1342 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1343 if (flags & FOLL_TOUCH)
1344 touch_pmd(vma, addr, pmd);
1345 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1346 /*
1347 * We don't mlock() pte-mapped THPs. This way we can avoid
1348 * leaking mlocked pages into non-VM_LOCKED VMAs.
1349 *
1350 * For anon THP:
1351 *
1352 * In most cases the pmd is the only mapping of the page as we
1353 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1354 * writable private mappings in populate_vma_page_range().
1355 *
1356 * The only scenario when we have the page shared here is if we
1357 * mlocking read-only mapping shared over fork(). We skip
1358 * mlocking such pages.
1359 *
1360 * For file THP:
1361 *
1362 * We can expect PageDoubleMap() to be stable under page lock:
1363 * for file pages we set it in page_add_file_rmap(), which
1364 * requires page to be locked.
1365 */
1366
1367 if (PageAnon(page) && compound_mapcount(page) != 1)
1368 goto skip_mlock;
1369 if (PageDoubleMap(page) || !page->mapping)
1370 goto skip_mlock;
1371 if (!trylock_page(page))
1372 goto skip_mlock;
1373 lru_add_drain();
1374 if (page->mapping && !PageDoubleMap(page))
1375 mlock_vma_page(page);
1376 unlock_page(page);
1377 }
1378 skip_mlock:
1379 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1380 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1381 if (flags & FOLL_GET)
1382 get_page(page);
1383
1384 out:
1385 return page;
1386 }
1387
1388 /* NUMA hinting page fault entry point for trans huge pmds */
1389 int do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1390 {
1391 struct vm_area_struct *vma = vmf->vma;
1392 struct anon_vma *anon_vma = NULL;
1393 struct page *page;
1394 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1395 int page_nid = -1, this_nid = numa_node_id();
1396 int target_nid, last_cpupid = -1;
1397 bool page_locked;
1398 bool migrated = false;
1399 bool was_writable;
1400 int flags = 0;
1401
1402 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1403 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1404 goto out_unlock;
1405
1406 /*
1407 * If there are potential migrations, wait for completion and retry
1408 * without disrupting NUMA hinting information. Do not relock and
1409 * check_same as the page may no longer be mapped.
1410 */
1411 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1412 page = pmd_page(*vmf->pmd);
1413 spin_unlock(vmf->ptl);
1414 wait_on_page_locked(page);
1415 goto out;
1416 }
1417
1418 page = pmd_page(pmd);
1419 BUG_ON(is_huge_zero_page(page));
1420 page_nid = page_to_nid(page);
1421 last_cpupid = page_cpupid_last(page);
1422 count_vm_numa_event(NUMA_HINT_FAULTS);
1423 if (page_nid == this_nid) {
1424 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1425 flags |= TNF_FAULT_LOCAL;
1426 }
1427
1428 /* See similar comment in do_numa_page for explanation */
1429 if (!pmd_write(pmd))
1430 flags |= TNF_NO_GROUP;
1431
1432 /*
1433 * Acquire the page lock to serialise THP migrations but avoid dropping
1434 * page_table_lock if at all possible
1435 */
1436 page_locked = trylock_page(page);
1437 target_nid = mpol_misplaced(page, vma, haddr);
1438 if (target_nid == -1) {
1439 /* If the page was locked, there are no parallel migrations */
1440 if (page_locked)
1441 goto clear_pmdnuma;
1442 }
1443
1444 /* Migration could have started since the pmd_trans_migrating check */
1445 if (!page_locked) {
1446 spin_unlock(vmf->ptl);
1447 wait_on_page_locked(page);
1448 page_nid = -1;
1449 goto out;
1450 }
1451
1452 /*
1453 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1454 * to serialises splits
1455 */
1456 get_page(page);
1457 spin_unlock(vmf->ptl);
1458 anon_vma = page_lock_anon_vma_read(page);
1459
1460 /* Confirm the PMD did not change while page_table_lock was released */
1461 spin_lock(vmf->ptl);
1462 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1463 unlock_page(page);
1464 put_page(page);
1465 page_nid = -1;
1466 goto out_unlock;
1467 }
1468
1469 /* Bail if we fail to protect against THP splits for any reason */
1470 if (unlikely(!anon_vma)) {
1471 put_page(page);
1472 page_nid = -1;
1473 goto clear_pmdnuma;
1474 }
1475
1476 /*
1477 * Migrate the THP to the requested node, returns with page unlocked
1478 * and access rights restored.
1479 */
1480 spin_unlock(vmf->ptl);
1481 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1482 vmf->pmd, pmd, vmf->address, page, target_nid);
1483 if (migrated) {
1484 flags |= TNF_MIGRATED;
1485 page_nid = target_nid;
1486 } else
1487 flags |= TNF_MIGRATE_FAIL;
1488
1489 goto out;
1490 clear_pmdnuma:
1491 BUG_ON(!PageLocked(page));
1492 was_writable = pmd_write(pmd);
1493 pmd = pmd_modify(pmd, vma->vm_page_prot);
1494 pmd = pmd_mkyoung(pmd);
1495 if (was_writable)
1496 pmd = pmd_mkwrite(pmd);
1497 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1498 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1499 unlock_page(page);
1500 out_unlock:
1501 spin_unlock(vmf->ptl);
1502
1503 out:
1504 if (anon_vma)
1505 page_unlock_anon_vma_read(anon_vma);
1506
1507 if (page_nid != -1)
1508 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1509 vmf->flags);
1510
1511 return 0;
1512 }
1513
1514 /*
1515 * Return true if we do MADV_FREE successfully on entire pmd page.
1516 * Otherwise, return false.
1517 */
1518 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1519 pmd_t *pmd, unsigned long addr, unsigned long next)
1520 {
1521 spinlock_t *ptl;
1522 pmd_t orig_pmd;
1523 struct page *page;
1524 struct mm_struct *mm = tlb->mm;
1525 bool ret = false;
1526
1527 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1528
1529 ptl = pmd_trans_huge_lock(pmd, vma);
1530 if (!ptl)
1531 goto out_unlocked;
1532
1533 orig_pmd = *pmd;
1534 if (is_huge_zero_pmd(orig_pmd))
1535 goto out;
1536
1537 page = pmd_page(orig_pmd);
1538 /*
1539 * If other processes are mapping this page, we couldn't discard
1540 * the page unless they all do MADV_FREE so let's skip the page.
1541 */
1542 if (page_mapcount(page) != 1)
1543 goto out;
1544
1545 if (!trylock_page(page))
1546 goto out;
1547
1548 /*
1549 * If user want to discard part-pages of THP, split it so MADV_FREE
1550 * will deactivate only them.
1551 */
1552 if (next - addr != HPAGE_PMD_SIZE) {
1553 get_page(page);
1554 spin_unlock(ptl);
1555 split_huge_page(page);
1556 put_page(page);
1557 unlock_page(page);
1558 goto out_unlocked;
1559 }
1560
1561 if (PageDirty(page))
1562 ClearPageDirty(page);
1563 unlock_page(page);
1564
1565 if (PageActive(page))
1566 deactivate_page(page);
1567
1568 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1569 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1570 tlb->fullmm);
1571 orig_pmd = pmd_mkold(orig_pmd);
1572 orig_pmd = pmd_mkclean(orig_pmd);
1573
1574 set_pmd_at(mm, addr, pmd, orig_pmd);
1575 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1576 }
1577 ret = true;
1578 out:
1579 spin_unlock(ptl);
1580 out_unlocked:
1581 return ret;
1582 }
1583
1584 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1585 {
1586 pgtable_t pgtable;
1587
1588 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1589 pte_free(mm, pgtable);
1590 atomic_long_dec(&mm->nr_ptes);
1591 }
1592
1593 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1594 pmd_t *pmd, unsigned long addr)
1595 {
1596 pmd_t orig_pmd;
1597 spinlock_t *ptl;
1598
1599 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1600
1601 ptl = __pmd_trans_huge_lock(pmd, vma);
1602 if (!ptl)
1603 return 0;
1604 /*
1605 * For architectures like ppc64 we look at deposited pgtable
1606 * when calling pmdp_huge_get_and_clear. So do the
1607 * pgtable_trans_huge_withdraw after finishing pmdp related
1608 * operations.
1609 */
1610 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1611 tlb->fullmm);
1612 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1613 if (vma_is_dax(vma)) {
1614 spin_unlock(ptl);
1615 if (is_huge_zero_pmd(orig_pmd))
1616 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1617 } else if (is_huge_zero_pmd(orig_pmd)) {
1618 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1619 atomic_long_dec(&tlb->mm->nr_ptes);
1620 spin_unlock(ptl);
1621 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1622 } else {
1623 struct page *page = pmd_page(orig_pmd);
1624 page_remove_rmap(page, true);
1625 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1626 VM_BUG_ON_PAGE(!PageHead(page), page);
1627 if (PageAnon(page)) {
1628 pgtable_t pgtable;
1629 pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1630 pte_free(tlb->mm, pgtable);
1631 atomic_long_dec(&tlb->mm->nr_ptes);
1632 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1633 } else {
1634 if (arch_needs_pgtable_deposit())
1635 zap_deposited_table(tlb->mm, pmd);
1636 add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1637 }
1638 spin_unlock(ptl);
1639 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1640 }
1641 return 1;
1642 }
1643
1644 #ifndef pmd_move_must_withdraw
1645 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1646 spinlock_t *old_pmd_ptl,
1647 struct vm_area_struct *vma)
1648 {
1649 /*
1650 * With split pmd lock we also need to move preallocated
1651 * PTE page table if new_pmd is on different PMD page table.
1652 *
1653 * We also don't deposit and withdraw tables for file pages.
1654 */
1655 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1656 }
1657 #endif
1658
1659 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1660 unsigned long new_addr, unsigned long old_end,
1661 pmd_t *old_pmd, pmd_t *new_pmd, bool *need_flush)
1662 {
1663 spinlock_t *old_ptl, *new_ptl;
1664 pmd_t pmd;
1665 struct mm_struct *mm = vma->vm_mm;
1666 bool force_flush = false;
1667
1668 if ((old_addr & ~HPAGE_PMD_MASK) ||
1669 (new_addr & ~HPAGE_PMD_MASK) ||
1670 old_end - old_addr < HPAGE_PMD_SIZE)
1671 return false;
1672
1673 /*
1674 * The destination pmd shouldn't be established, free_pgtables()
1675 * should have release it.
1676 */
1677 if (WARN_ON(!pmd_none(*new_pmd))) {
1678 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1679 return false;
1680 }
1681
1682 /*
1683 * We don't have to worry about the ordering of src and dst
1684 * ptlocks because exclusive mmap_sem prevents deadlock.
1685 */
1686 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1687 if (old_ptl) {
1688 new_ptl = pmd_lockptr(mm, new_pmd);
1689 if (new_ptl != old_ptl)
1690 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1691 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1692 if (pmd_present(pmd) && pmd_dirty(pmd))
1693 force_flush = true;
1694 VM_BUG_ON(!pmd_none(*new_pmd));
1695
1696 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1697 pgtable_t pgtable;
1698 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1699 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1700 }
1701 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1702 if (new_ptl != old_ptl)
1703 spin_unlock(new_ptl);
1704 if (force_flush)
1705 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1706 else
1707 *need_flush = true;
1708 spin_unlock(old_ptl);
1709 return true;
1710 }
1711 return false;
1712 }
1713
1714 /*
1715 * Returns
1716 * - 0 if PMD could not be locked
1717 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1718 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1719 */
1720 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1721 unsigned long addr, pgprot_t newprot, int prot_numa)
1722 {
1723 struct mm_struct *mm = vma->vm_mm;
1724 spinlock_t *ptl;
1725 int ret = 0;
1726
1727 ptl = __pmd_trans_huge_lock(pmd, vma);
1728 if (ptl) {
1729 pmd_t entry;
1730 bool preserve_write = prot_numa && pmd_write(*pmd);
1731 ret = 1;
1732
1733 /*
1734 * Avoid trapping faults against the zero page. The read-only
1735 * data is likely to be read-cached on the local CPU and
1736 * local/remote hits to the zero page are not interesting.
1737 */
1738 if (prot_numa && is_huge_zero_pmd(*pmd)) {
1739 spin_unlock(ptl);
1740 return ret;
1741 }
1742
1743 if (!prot_numa || !pmd_protnone(*pmd)) {
1744 entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
1745 entry = pmd_modify(entry, newprot);
1746 if (preserve_write)
1747 entry = pmd_mkwrite(entry);
1748 ret = HPAGE_PMD_NR;
1749 set_pmd_at(mm, addr, pmd, entry);
1750 BUG_ON(vma_is_anonymous(vma) && !preserve_write &&
1751 pmd_write(entry));
1752 }
1753 spin_unlock(ptl);
1754 }
1755
1756 return ret;
1757 }
1758
1759 /*
1760 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1761 *
1762 * Note that if it returns page table lock pointer, this routine returns without
1763 * unlocking page table lock. So callers must unlock it.
1764 */
1765 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1766 {
1767 spinlock_t *ptl;
1768 ptl = pmd_lock(vma->vm_mm, pmd);
1769 if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
1770 return ptl;
1771 spin_unlock(ptl);
1772 return NULL;
1773 }
1774
1775 /*
1776 * Returns true if a given pud maps a thp, false otherwise.
1777 *
1778 * Note that if it returns true, this routine returns without unlocking page
1779 * table lock. So callers must unlock it.
1780 */
1781 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1782 {
1783 spinlock_t *ptl;
1784
1785 ptl = pud_lock(vma->vm_mm, pud);
1786 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1787 return ptl;
1788 spin_unlock(ptl);
1789 return NULL;
1790 }
1791
1792 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1793 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1794 pud_t *pud, unsigned long addr)
1795 {
1796 pud_t orig_pud;
1797 spinlock_t *ptl;
1798
1799 ptl = __pud_trans_huge_lock(pud, vma);
1800 if (!ptl)
1801 return 0;
1802 /*
1803 * For architectures like ppc64 we look at deposited pgtable
1804 * when calling pudp_huge_get_and_clear. So do the
1805 * pgtable_trans_huge_withdraw after finishing pudp related
1806 * operations.
1807 */
1808 orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
1809 tlb->fullmm);
1810 tlb_remove_pud_tlb_entry(tlb, pud, addr);
1811 if (vma_is_dax(vma)) {
1812 spin_unlock(ptl);
1813 /* No zero page support yet */
1814 } else {
1815 /* No support for anonymous PUD pages yet */
1816 BUG();
1817 }
1818 return 1;
1819 }
1820
1821 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1822 unsigned long haddr)
1823 {
1824 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1825 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1826 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1827 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1828
1829 count_vm_event(THP_SPLIT_PMD);
1830
1831 pudp_huge_clear_flush_notify(vma, haddr, pud);
1832 }
1833
1834 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1835 unsigned long address)
1836 {
1837 spinlock_t *ptl;
1838 struct mm_struct *mm = vma->vm_mm;
1839 unsigned long haddr = address & HPAGE_PUD_MASK;
1840
1841 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE);
1842 ptl = pud_lock(mm, pud);
1843 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
1844 goto out;
1845 __split_huge_pud_locked(vma, pud, haddr);
1846
1847 out:
1848 spin_unlock(ptl);
1849 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PUD_SIZE);
1850 }
1851 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1852
1853 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1854 unsigned long haddr, pmd_t *pmd)
1855 {
1856 struct mm_struct *mm = vma->vm_mm;
1857 pgtable_t pgtable;
1858 pmd_t _pmd;
1859 int i;
1860
1861 /* leave pmd empty until pte is filled */
1862 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1863
1864 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1865 pmd_populate(mm, &_pmd, pgtable);
1866
1867 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1868 pte_t *pte, entry;
1869 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
1870 entry = pte_mkspecial(entry);
1871 pte = pte_offset_map(&_pmd, haddr);
1872 VM_BUG_ON(!pte_none(*pte));
1873 set_pte_at(mm, haddr, pte, entry);
1874 pte_unmap(pte);
1875 }
1876 smp_wmb(); /* make pte visible before pmd */
1877 pmd_populate(mm, pmd, pgtable);
1878 }
1879
1880 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
1881 unsigned long haddr, bool freeze)
1882 {
1883 struct mm_struct *mm = vma->vm_mm;
1884 struct page *page;
1885 pgtable_t pgtable;
1886 pmd_t _pmd;
1887 bool young, write, dirty, soft_dirty;
1888 unsigned long addr;
1889 int i;
1890
1891 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
1892 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1893 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
1894 VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
1895
1896 count_vm_event(THP_SPLIT_PMD);
1897
1898 if (!vma_is_anonymous(vma)) {
1899 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1900 /*
1901 * We are going to unmap this huge page. So
1902 * just go ahead and zap it
1903 */
1904 if (arch_needs_pgtable_deposit())
1905 zap_deposited_table(mm, pmd);
1906 if (vma_is_dax(vma))
1907 return;
1908 page = pmd_page(_pmd);
1909 if (!PageReferenced(page) && pmd_young(_pmd))
1910 SetPageReferenced(page);
1911 page_remove_rmap(page, true);
1912 put_page(page);
1913 add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1914 return;
1915 } else if (is_huge_zero_pmd(*pmd)) {
1916 return __split_huge_zero_page_pmd(vma, haddr, pmd);
1917 }
1918
1919 page = pmd_page(*pmd);
1920 VM_BUG_ON_PAGE(!page_count(page), page);
1921 page_ref_add(page, HPAGE_PMD_NR - 1);
1922 write = pmd_write(*pmd);
1923 young = pmd_young(*pmd);
1924 dirty = pmd_dirty(*pmd);
1925 soft_dirty = pmd_soft_dirty(*pmd);
1926
1927 pmdp_huge_split_prepare(vma, haddr, pmd);
1928 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1929 pmd_populate(mm, &_pmd, pgtable);
1930
1931 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
1932 pte_t entry, *pte;
1933 /*
1934 * Note that NUMA hinting access restrictions are not
1935 * transferred to avoid any possibility of altering
1936 * permissions across VMAs.
1937 */
1938 if (freeze) {
1939 swp_entry_t swp_entry;
1940 swp_entry = make_migration_entry(page + i, write);
1941 entry = swp_entry_to_pte(swp_entry);
1942 if (soft_dirty)
1943 entry = pte_swp_mksoft_dirty(entry);
1944 } else {
1945 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
1946 entry = maybe_mkwrite(entry, vma);
1947 if (!write)
1948 entry = pte_wrprotect(entry);
1949 if (!young)
1950 entry = pte_mkold(entry);
1951 if (soft_dirty)
1952 entry = pte_mksoft_dirty(entry);
1953 }
1954 if (dirty)
1955 SetPageDirty(page + i);
1956 pte = pte_offset_map(&_pmd, addr);
1957 BUG_ON(!pte_none(*pte));
1958 set_pte_at(mm, addr, pte, entry);
1959 atomic_inc(&page[i]._mapcount);
1960 pte_unmap(pte);
1961 }
1962
1963 /*
1964 * Set PG_double_map before dropping compound_mapcount to avoid
1965 * false-negative page_mapped().
1966 */
1967 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
1968 for (i = 0; i < HPAGE_PMD_NR; i++)
1969 atomic_inc(&page[i]._mapcount);
1970 }
1971
1972 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
1973 /* Last compound_mapcount is gone. */
1974 __dec_node_page_state(page, NR_ANON_THPS);
1975 if (TestClearPageDoubleMap(page)) {
1976 /* No need in mapcount reference anymore */
1977 for (i = 0; i < HPAGE_PMD_NR; i++)
1978 atomic_dec(&page[i]._mapcount);
1979 }
1980 }
1981
1982 smp_wmb(); /* make pte visible before pmd */
1983 /*
1984 * Up to this point the pmd is present and huge and userland has the
1985 * whole access to the hugepage during the split (which happens in
1986 * place). If we overwrite the pmd with the not-huge version pointing
1987 * to the pte here (which of course we could if all CPUs were bug
1988 * free), userland could trigger a small page size TLB miss on the
1989 * small sized TLB while the hugepage TLB entry is still established in
1990 * the huge TLB. Some CPU doesn't like that.
1991 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
1992 * 383 on page 93. Intel should be safe but is also warns that it's
1993 * only safe if the permission and cache attributes of the two entries
1994 * loaded in the two TLB is identical (which should be the case here).
1995 * But it is generally safer to never allow small and huge TLB entries
1996 * for the same virtual address to be loaded simultaneously. So instead
1997 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
1998 * current pmd notpresent (atomically because here the pmd_trans_huge
1999 * and pmd_trans_splitting must remain set at all times on the pmd
2000 * until the split is complete for this pmd), then we flush the SMP TLB
2001 * and finally we write the non-huge version of the pmd entry with
2002 * pmd_populate.
2003 */
2004 pmdp_invalidate(vma, haddr, pmd);
2005 pmd_populate(mm, pmd, pgtable);
2006
2007 if (freeze) {
2008 for (i = 0; i < HPAGE_PMD_NR; i++) {
2009 page_remove_rmap(page + i, false);
2010 put_page(page + i);
2011 }
2012 }
2013 }
2014
2015 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2016 unsigned long address, bool freeze, struct page *page)
2017 {
2018 spinlock_t *ptl;
2019 struct mm_struct *mm = vma->vm_mm;
2020 unsigned long haddr = address & HPAGE_PMD_MASK;
2021
2022 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2023 ptl = pmd_lock(mm, pmd);
2024
2025 /*
2026 * If caller asks to setup a migration entries, we need a page to check
2027 * pmd against. Otherwise we can end up replacing wrong page.
2028 */
2029 VM_BUG_ON(freeze && !page);
2030 if (page && page != pmd_page(*pmd))
2031 goto out;
2032
2033 if (pmd_trans_huge(*pmd)) {
2034 page = pmd_page(*pmd);
2035 if (PageMlocked(page))
2036 clear_page_mlock(page);
2037 } else if (!pmd_devmap(*pmd))
2038 goto out;
2039 __split_huge_pmd_locked(vma, pmd, haddr, freeze);
2040 out:
2041 spin_unlock(ptl);
2042 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
2043 }
2044
2045 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2046 bool freeze, struct page *page)
2047 {
2048 pgd_t *pgd;
2049 pud_t *pud;
2050 pmd_t *pmd;
2051
2052 pgd = pgd_offset(vma->vm_mm, address);
2053 if (!pgd_present(*pgd))
2054 return;
2055
2056 pud = pud_offset(pgd, address);
2057 if (!pud_present(*pud))
2058 return;
2059
2060 pmd = pmd_offset(pud, address);
2061
2062 __split_huge_pmd(vma, pmd, address, freeze, page);
2063 }
2064
2065 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2066 unsigned long start,
2067 unsigned long end,
2068 long adjust_next)
2069 {
2070 /*
2071 * If the new start address isn't hpage aligned and it could
2072 * previously contain an hugepage: check if we need to split
2073 * an huge pmd.
2074 */
2075 if (start & ~HPAGE_PMD_MASK &&
2076 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2077 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2078 split_huge_pmd_address(vma, start, false, NULL);
2079
2080 /*
2081 * If the new end address isn't hpage aligned and it could
2082 * previously contain an hugepage: check if we need to split
2083 * an huge pmd.
2084 */
2085 if (end & ~HPAGE_PMD_MASK &&
2086 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2087 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2088 split_huge_pmd_address(vma, end, false, NULL);
2089
2090 /*
2091 * If we're also updating the vma->vm_next->vm_start, if the new
2092 * vm_next->vm_start isn't page aligned and it could previously
2093 * contain an hugepage: check if we need to split an huge pmd.
2094 */
2095 if (adjust_next > 0) {
2096 struct vm_area_struct *next = vma->vm_next;
2097 unsigned long nstart = next->vm_start;
2098 nstart += adjust_next << PAGE_SHIFT;
2099 if (nstart & ~HPAGE_PMD_MASK &&
2100 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2101 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2102 split_huge_pmd_address(next, nstart, false, NULL);
2103 }
2104 }
2105
2106 static void freeze_page(struct page *page)
2107 {
2108 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2109 TTU_RMAP_LOCKED;
2110 int i, ret;
2111
2112 VM_BUG_ON_PAGE(!PageHead(page), page);
2113
2114 if (PageAnon(page))
2115 ttu_flags |= TTU_MIGRATION;
2116
2117 /* We only need TTU_SPLIT_HUGE_PMD once */
2118 ret = try_to_unmap(page, ttu_flags | TTU_SPLIT_HUGE_PMD);
2119 for (i = 1; !ret && i < HPAGE_PMD_NR; i++) {
2120 /* Cut short if the page is unmapped */
2121 if (page_count(page) == 1)
2122 return;
2123
2124 ret = try_to_unmap(page + i, ttu_flags);
2125 }
2126 VM_BUG_ON_PAGE(ret, page + i - 1);
2127 }
2128
2129 static void unfreeze_page(struct page *page)
2130 {
2131 int i;
2132 if (PageTransHuge(page)) {
2133 remove_migration_ptes(page, page, true);
2134 } else {
2135 for (i = 0; i < HPAGE_PMD_NR; i++)
2136 remove_migration_ptes(page + i, page + i, true);
2137 }
2138 }
2139
2140 static void __split_huge_page_tail(struct page *head, int tail,
2141 struct lruvec *lruvec, struct list_head *list)
2142 {
2143 struct page *page_tail = head + tail;
2144
2145 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2146 VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
2147
2148 /*
2149 * tail_page->_refcount is zero and not changing from under us. But
2150 * get_page_unless_zero() may be running from under us on the
2151 * tail_page. If we used atomic_set() below instead of atomic_inc() or
2152 * atomic_add(), we would then run atomic_set() concurrently with
2153 * get_page_unless_zero(), and atomic_set() is implemented in C not
2154 * using locked ops. spin_unlock on x86 sometime uses locked ops
2155 * because of PPro errata 66, 92, so unless somebody can guarantee
2156 * atomic_set() here would be safe on all archs (and not only on x86),
2157 * it's safer to use atomic_inc()/atomic_add().
2158 */
2159 if (PageAnon(head)) {
2160 page_ref_inc(page_tail);
2161 } else {
2162 /* Additional pin to radix tree */
2163 page_ref_add(page_tail, 2);
2164 }
2165
2166 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2167 page_tail->flags |= (head->flags &
2168 ((1L << PG_referenced) |
2169 (1L << PG_swapbacked) |
2170 (1L << PG_mlocked) |
2171 (1L << PG_uptodate) |
2172 (1L << PG_active) |
2173 (1L << PG_locked) |
2174 (1L << PG_unevictable) |
2175 (1L << PG_dirty)));
2176
2177 /*
2178 * After clearing PageTail the gup refcount can be released.
2179 * Page flags also must be visible before we make the page non-compound.
2180 */
2181 smp_wmb();
2182
2183 clear_compound_head(page_tail);
2184
2185 if (page_is_young(head))
2186 set_page_young(page_tail);
2187 if (page_is_idle(head))
2188 set_page_idle(page_tail);
2189
2190 /* ->mapping in first tail page is compound_mapcount */
2191 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2192 page_tail);
2193 page_tail->mapping = head->mapping;
2194
2195 page_tail->index = head->index + tail;
2196 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2197 lru_add_page_tail(head, page_tail, lruvec, list);
2198 }
2199
2200 static void __split_huge_page(struct page *page, struct list_head *list,
2201 unsigned long flags)
2202 {
2203 struct page *head = compound_head(page);
2204 struct zone *zone = page_zone(head);
2205 struct lruvec *lruvec;
2206 pgoff_t end = -1;
2207 int i;
2208
2209 lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
2210
2211 /* complete memcg works before add pages to LRU */
2212 mem_cgroup_split_huge_fixup(head);
2213
2214 if (!PageAnon(page))
2215 end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
2216
2217 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2218 __split_huge_page_tail(head, i, lruvec, list);
2219 /* Some pages can be beyond i_size: drop them from page cache */
2220 if (head[i].index >= end) {
2221 __ClearPageDirty(head + i);
2222 __delete_from_page_cache(head + i, NULL);
2223 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2224 shmem_uncharge(head->mapping->host, 1);
2225 put_page(head + i);
2226 }
2227 }
2228
2229 ClearPageCompound(head);
2230 /* See comment in __split_huge_page_tail() */
2231 if (PageAnon(head)) {
2232 page_ref_inc(head);
2233 } else {
2234 /* Additional pin to radix tree */
2235 page_ref_add(head, 2);
2236 spin_unlock(&head->mapping->tree_lock);
2237 }
2238
2239 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2240
2241 unfreeze_page(head);
2242
2243 for (i = 0; i < HPAGE_PMD_NR; i++) {
2244 struct page *subpage = head + i;
2245 if (subpage == page)
2246 continue;
2247 unlock_page(subpage);
2248
2249 /*
2250 * Subpages may be freed if there wasn't any mapping
2251 * like if add_to_swap() is running on a lru page that
2252 * had its mapping zapped. And freeing these pages
2253 * requires taking the lru_lock so we do the put_page
2254 * of the tail pages after the split is complete.
2255 */
2256 put_page(subpage);
2257 }
2258 }
2259
2260 int total_mapcount(struct page *page)
2261 {
2262 int i, compound, ret;
2263
2264 VM_BUG_ON_PAGE(PageTail(page), page);
2265
2266 if (likely(!PageCompound(page)))
2267 return atomic_read(&page->_mapcount) + 1;
2268
2269 compound = compound_mapcount(page);
2270 if (PageHuge(page))
2271 return compound;
2272 ret = compound;
2273 for (i = 0; i < HPAGE_PMD_NR; i++)
2274 ret += atomic_read(&page[i]._mapcount) + 1;
2275 /* File pages has compound_mapcount included in _mapcount */
2276 if (!PageAnon(page))
2277 return ret - compound * HPAGE_PMD_NR;
2278 if (PageDoubleMap(page))
2279 ret -= HPAGE_PMD_NR;
2280 return ret;
2281 }
2282
2283 /*
2284 * This calculates accurately how many mappings a transparent hugepage
2285 * has (unlike page_mapcount() which isn't fully accurate). This full
2286 * accuracy is primarily needed to know if copy-on-write faults can
2287 * reuse the page and change the mapping to read-write instead of
2288 * copying them. At the same time this returns the total_mapcount too.
2289 *
2290 * The function returns the highest mapcount any one of the subpages
2291 * has. If the return value is one, even if different processes are
2292 * mapping different subpages of the transparent hugepage, they can
2293 * all reuse it, because each process is reusing a different subpage.
2294 *
2295 * The total_mapcount is instead counting all virtual mappings of the
2296 * subpages. If the total_mapcount is equal to "one", it tells the
2297 * caller all mappings belong to the same "mm" and in turn the
2298 * anon_vma of the transparent hugepage can become the vma->anon_vma
2299 * local one as no other process may be mapping any of the subpages.
2300 *
2301 * It would be more accurate to replace page_mapcount() with
2302 * page_trans_huge_mapcount(), however we only use
2303 * page_trans_huge_mapcount() in the copy-on-write faults where we
2304 * need full accuracy to avoid breaking page pinning, because
2305 * page_trans_huge_mapcount() is slower than page_mapcount().
2306 */
2307 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2308 {
2309 int i, ret, _total_mapcount, mapcount;
2310
2311 /* hugetlbfs shouldn't call it */
2312 VM_BUG_ON_PAGE(PageHuge(page), page);
2313
2314 if (likely(!PageTransCompound(page))) {
2315 mapcount = atomic_read(&page->_mapcount) + 1;
2316 if (total_mapcount)
2317 *total_mapcount = mapcount;
2318 return mapcount;
2319 }
2320
2321 page = compound_head(page);
2322
2323 _total_mapcount = ret = 0;
2324 for (i = 0; i < HPAGE_PMD_NR; i++) {
2325 mapcount = atomic_read(&page[i]._mapcount) + 1;
2326 ret = max(ret, mapcount);
2327 _total_mapcount += mapcount;
2328 }
2329 if (PageDoubleMap(page)) {
2330 ret -= 1;
2331 _total_mapcount -= HPAGE_PMD_NR;
2332 }
2333 mapcount = compound_mapcount(page);
2334 ret += mapcount;
2335 _total_mapcount += mapcount;
2336 if (total_mapcount)
2337 *total_mapcount = _total_mapcount;
2338 return ret;
2339 }
2340
2341 /*
2342 * This function splits huge page into normal pages. @page can point to any
2343 * subpage of huge page to split. Split doesn't change the position of @page.
2344 *
2345 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2346 * The huge page must be locked.
2347 *
2348 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2349 *
2350 * Both head page and tail pages will inherit mapping, flags, and so on from
2351 * the hugepage.
2352 *
2353 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2354 * they are not mapped.
2355 *
2356 * Returns 0 if the hugepage is split successfully.
2357 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2358 * us.
2359 */
2360 int split_huge_page_to_list(struct page *page, struct list_head *list)
2361 {
2362 struct page *head = compound_head(page);
2363 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2364 struct anon_vma *anon_vma = NULL;
2365 struct address_space *mapping = NULL;
2366 int count, mapcount, extra_pins, ret;
2367 bool mlocked;
2368 unsigned long flags;
2369
2370 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
2371 VM_BUG_ON_PAGE(!PageLocked(page), page);
2372 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2373 VM_BUG_ON_PAGE(!PageCompound(page), page);
2374
2375 if (PageAnon(head)) {
2376 /*
2377 * The caller does not necessarily hold an mmap_sem that would
2378 * prevent the anon_vma disappearing so we first we take a
2379 * reference to it and then lock the anon_vma for write. This
2380 * is similar to page_lock_anon_vma_read except the write lock
2381 * is taken to serialise against parallel split or collapse
2382 * operations.
2383 */
2384 anon_vma = page_get_anon_vma(head);
2385 if (!anon_vma) {
2386 ret = -EBUSY;
2387 goto out;
2388 }
2389 extra_pins = 0;
2390 mapping = NULL;
2391 anon_vma_lock_write(anon_vma);
2392 } else {
2393 mapping = head->mapping;
2394
2395 /* Truncated ? */
2396 if (!mapping) {
2397 ret = -EBUSY;
2398 goto out;
2399 }
2400
2401 /* Addidional pins from radix tree */
2402 extra_pins = HPAGE_PMD_NR;
2403 anon_vma = NULL;
2404 i_mmap_lock_read(mapping);
2405 }
2406
2407 /*
2408 * Racy check if we can split the page, before freeze_page() will
2409 * split PMDs
2410 */
2411 if (total_mapcount(head) != page_count(head) - extra_pins - 1) {
2412 ret = -EBUSY;
2413 goto out_unlock;
2414 }
2415
2416 mlocked = PageMlocked(page);
2417 freeze_page(head);
2418 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2419
2420 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2421 if (mlocked)
2422 lru_add_drain();
2423
2424 /* prevent PageLRU to go away from under us, and freeze lru stats */
2425 spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
2426
2427 if (mapping) {
2428 void **pslot;
2429
2430 spin_lock(&mapping->tree_lock);
2431 pslot = radix_tree_lookup_slot(&mapping->page_tree,
2432 page_index(head));
2433 /*
2434 * Check if the head page is present in radix tree.
2435 * We assume all tail are present too, if head is there.
2436 */
2437 if (radix_tree_deref_slot_protected(pslot,
2438 &mapping->tree_lock) != head)
2439 goto fail;
2440 }
2441
2442 /* Prevent deferred_split_scan() touching ->_refcount */
2443 spin_lock(&pgdata->split_queue_lock);
2444 count = page_count(head);
2445 mapcount = total_mapcount(head);
2446 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2447 if (!list_empty(page_deferred_list(head))) {
2448 pgdata->split_queue_len--;
2449 list_del(page_deferred_list(head));
2450 }
2451 if (mapping)
2452 __dec_node_page_state(page, NR_SHMEM_THPS);
2453 spin_unlock(&pgdata->split_queue_lock);
2454 __split_huge_page(page, list, flags);
2455 ret = 0;
2456 } else {
2457 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2458 pr_alert("total_mapcount: %u, page_count(): %u\n",
2459 mapcount, count);
2460 if (PageTail(page))
2461 dump_page(head, NULL);
2462 dump_page(page, "total_mapcount(head) > 0");
2463 BUG();
2464 }
2465 spin_unlock(&pgdata->split_queue_lock);
2466 fail: if (mapping)
2467 spin_unlock(&mapping->tree_lock);
2468 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2469 unfreeze_page(head);
2470 ret = -EBUSY;
2471 }
2472
2473 out_unlock:
2474 if (anon_vma) {
2475 anon_vma_unlock_write(anon_vma);
2476 put_anon_vma(anon_vma);
2477 }
2478 if (mapping)
2479 i_mmap_unlock_read(mapping);
2480 out:
2481 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2482 return ret;
2483 }
2484
2485 void free_transhuge_page(struct page *page)
2486 {
2487 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2488 unsigned long flags;
2489
2490 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2491 if (!list_empty(page_deferred_list(page))) {
2492 pgdata->split_queue_len--;
2493 list_del(page_deferred_list(page));
2494 }
2495 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2496 free_compound_page(page);
2497 }
2498
2499 void deferred_split_huge_page(struct page *page)
2500 {
2501 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2502 unsigned long flags;
2503
2504 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2505
2506 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2507 if (list_empty(page_deferred_list(page))) {
2508 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2509 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2510 pgdata->split_queue_len++;
2511 }
2512 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2513 }
2514
2515 static unsigned long deferred_split_count(struct shrinker *shrink,
2516 struct shrink_control *sc)
2517 {
2518 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2519 return ACCESS_ONCE(pgdata->split_queue_len);
2520 }
2521
2522 static unsigned long deferred_split_scan(struct shrinker *shrink,
2523 struct shrink_control *sc)
2524 {
2525 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2526 unsigned long flags;
2527 LIST_HEAD(list), *pos, *next;
2528 struct page *page;
2529 int split = 0;
2530
2531 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2532 /* Take pin on all head pages to avoid freeing them under us */
2533 list_for_each_safe(pos, next, &pgdata->split_queue) {
2534 page = list_entry((void *)pos, struct page, mapping);
2535 page = compound_head(page);
2536 if (get_page_unless_zero(page)) {
2537 list_move(page_deferred_list(page), &list);
2538 } else {
2539 /* We lost race with put_compound_page() */
2540 list_del_init(page_deferred_list(page));
2541 pgdata->split_queue_len--;
2542 }
2543 if (!--sc->nr_to_scan)
2544 break;
2545 }
2546 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2547
2548 list_for_each_safe(pos, next, &list) {
2549 page = list_entry((void *)pos, struct page, mapping);
2550 lock_page(page);
2551 /* split_huge_page() removes page from list on success */
2552 if (!split_huge_page(page))
2553 split++;
2554 unlock_page(page);
2555 put_page(page);
2556 }
2557
2558 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2559 list_splice_tail(&list, &pgdata->split_queue);
2560 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2561
2562 /*
2563 * Stop shrinker if we didn't split any page, but the queue is empty.
2564 * This can happen if pages were freed under us.
2565 */
2566 if (!split && list_empty(&pgdata->split_queue))
2567 return SHRINK_STOP;
2568 return split;
2569 }
2570
2571 static struct shrinker deferred_split_shrinker = {
2572 .count_objects = deferred_split_count,
2573 .scan_objects = deferred_split_scan,
2574 .seeks = DEFAULT_SEEKS,
2575 .flags = SHRINKER_NUMA_AWARE,
2576 };
2577
2578 #ifdef CONFIG_DEBUG_FS
2579 static int split_huge_pages_set(void *data, u64 val)
2580 {
2581 struct zone *zone;
2582 struct page *page;
2583 unsigned long pfn, max_zone_pfn;
2584 unsigned long total = 0, split = 0;
2585
2586 if (val != 1)
2587 return -EINVAL;
2588
2589 for_each_populated_zone(zone) {
2590 max_zone_pfn = zone_end_pfn(zone);
2591 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2592 if (!pfn_valid(pfn))
2593 continue;
2594
2595 page = pfn_to_page(pfn);
2596 if (!get_page_unless_zero(page))
2597 continue;
2598
2599 if (zone != page_zone(page))
2600 goto next;
2601
2602 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2603 goto next;
2604
2605 total++;
2606 lock_page(page);
2607 if (!split_huge_page(page))
2608 split++;
2609 unlock_page(page);
2610 next:
2611 put_page(page);
2612 }
2613 }
2614
2615 pr_info("%lu of %lu THP split\n", split, total);
2616
2617 return 0;
2618 }
2619 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2620 "%llu\n");
2621
2622 static int __init split_huge_pages_debugfs(void)
2623 {
2624 void *ret;
2625
2626 ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2627 &split_huge_pages_fops);
2628 if (!ret)
2629 pr_warn("Failed to create split_huge_pages in debugfs");
2630 return 0;
2631 }
2632 late_initcall(split_huge_pages_debugfs);
2633 #endif