]> git.ipfire.org Git - people/arne_f/kernel.git/blob - mm/memory.c
e9ddc7aceefa02dd698a4efbf1340585366194db
[people/arne_f/kernel.git] / mm / memory.c
1 /*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12 /*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23 /*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31 /*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62 #include <linux/dma-debug.h>
63
64 #include <asm/io.h>
65 #include <asm/pgalloc.h>
66 #include <asm/uaccess.h>
67 #include <asm/tlb.h>
68 #include <asm/tlbflush.h>
69 #include <asm/pgtable.h>
70
71 #include "internal.h"
72
73 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
74 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75 #endif
76
77 #ifndef CONFIG_NEED_MULTIPLE_NODES
78 /* use the per-pgdat data instead for discontigmem - mbligh */
79 unsigned long max_mapnr;
80 struct page *mem_map;
81
82 EXPORT_SYMBOL(max_mapnr);
83 EXPORT_SYMBOL(mem_map);
84 #endif
85
86 /*
87 * A number of key systems in x86 including ioremap() rely on the assumption
88 * that high_memory defines the upper bound on direct map memory, then end
89 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
90 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
91 * and ZONE_HIGHMEM.
92 */
93 void * high_memory;
94
95 EXPORT_SYMBOL(high_memory);
96
97 /*
98 * Randomize the address space (stacks, mmaps, brk, etc.).
99 *
100 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
101 * as ancient (libc5 based) binaries can segfault. )
102 */
103 int randomize_va_space __read_mostly =
104 #ifdef CONFIG_COMPAT_BRK
105 1;
106 #else
107 2;
108 #endif
109
110 static int __init disable_randmaps(char *s)
111 {
112 randomize_va_space = 0;
113 return 1;
114 }
115 __setup("norandmaps", disable_randmaps);
116
117 unsigned long zero_pfn __read_mostly;
118 unsigned long highest_memmap_pfn __read_mostly;
119
120 /*
121 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
122 */
123 static int __init init_zero_pfn(void)
124 {
125 zero_pfn = page_to_pfn(ZERO_PAGE(0));
126 return 0;
127 }
128 core_initcall(init_zero_pfn);
129
130
131 #if defined(SPLIT_RSS_COUNTING)
132
133 void sync_mm_rss(struct mm_struct *mm)
134 {
135 int i;
136
137 for (i = 0; i < NR_MM_COUNTERS; i++) {
138 if (current->rss_stat.count[i]) {
139 add_mm_counter(mm, i, current->rss_stat.count[i]);
140 current->rss_stat.count[i] = 0;
141 }
142 }
143 current->rss_stat.events = 0;
144 }
145
146 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
147 {
148 struct task_struct *task = current;
149
150 if (likely(task->mm == mm))
151 task->rss_stat.count[member] += val;
152 else
153 add_mm_counter(mm, member, val);
154 }
155 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
156 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
157
158 /* sync counter once per 64 page faults */
159 #define TASK_RSS_EVENTS_THRESH (64)
160 static void check_sync_rss_stat(struct task_struct *task)
161 {
162 if (unlikely(task != current))
163 return;
164 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
165 sync_mm_rss(task->mm);
166 }
167 #else /* SPLIT_RSS_COUNTING */
168
169 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
170 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
171
172 static void check_sync_rss_stat(struct task_struct *task)
173 {
174 }
175
176 #endif /* SPLIT_RSS_COUNTING */
177
178 #ifdef HAVE_GENERIC_MMU_GATHER
179
180 static int tlb_next_batch(struct mmu_gather *tlb)
181 {
182 struct mmu_gather_batch *batch;
183
184 batch = tlb->active;
185 if (batch->next) {
186 tlb->active = batch->next;
187 return 1;
188 }
189
190 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
191 return 0;
192
193 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
194 if (!batch)
195 return 0;
196
197 tlb->batch_count++;
198 batch->next = NULL;
199 batch->nr = 0;
200 batch->max = MAX_GATHER_BATCH;
201
202 tlb->active->next = batch;
203 tlb->active = batch;
204
205 return 1;
206 }
207
208 /* tlb_gather_mmu
209 * Called to initialize an (on-stack) mmu_gather structure for page-table
210 * tear-down from @mm. The @fullmm argument is used when @mm is without
211 * users and we're going to destroy the full address space (exit/execve).
212 */
213 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
214 {
215 tlb->mm = mm;
216
217 /* Is it from 0 to ~0? */
218 tlb->fullmm = !(start | (end+1));
219 tlb->need_flush_all = 0;
220 tlb->start = start;
221 tlb->end = end;
222 tlb->need_flush = 0;
223 tlb->local.next = NULL;
224 tlb->local.nr = 0;
225 tlb->local.max = ARRAY_SIZE(tlb->__pages);
226 tlb->active = &tlb->local;
227 tlb->batch_count = 0;
228
229 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
230 tlb->batch = NULL;
231 #endif
232 }
233
234 void tlb_flush_mmu(struct mmu_gather *tlb)
235 {
236 struct mmu_gather_batch *batch;
237
238 if (!tlb->need_flush)
239 return;
240 tlb->need_flush = 0;
241 tlb_flush(tlb);
242 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
243 tlb_table_flush(tlb);
244 #endif
245
246 for (batch = &tlb->local; batch; batch = batch->next) {
247 free_pages_and_swap_cache(batch->pages, batch->nr);
248 batch->nr = 0;
249 }
250 tlb->active = &tlb->local;
251 }
252
253 /* tlb_finish_mmu
254 * Called at the end of the shootdown operation to free up any resources
255 * that were required.
256 */
257 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
258 {
259 struct mmu_gather_batch *batch, *next;
260
261 tlb_flush_mmu(tlb);
262
263 /* keep the page table cache within bounds */
264 check_pgt_cache();
265
266 for (batch = tlb->local.next; batch; batch = next) {
267 next = batch->next;
268 free_pages((unsigned long)batch, 0);
269 }
270 tlb->local.next = NULL;
271 }
272
273 /* __tlb_remove_page
274 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
275 * handling the additional races in SMP caused by other CPUs caching valid
276 * mappings in their TLBs. Returns the number of free page slots left.
277 * When out of page slots we must call tlb_flush_mmu().
278 */
279 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
280 {
281 struct mmu_gather_batch *batch;
282
283 VM_BUG_ON(!tlb->need_flush);
284
285 batch = tlb->active;
286 batch->pages[batch->nr++] = page;
287 if (batch->nr == batch->max) {
288 if (!tlb_next_batch(tlb))
289 return 0;
290 batch = tlb->active;
291 }
292 VM_BUG_ON_PAGE(batch->nr > batch->max, page);
293
294 return batch->max - batch->nr;
295 }
296
297 #endif /* HAVE_GENERIC_MMU_GATHER */
298
299 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
300
301 /*
302 * See the comment near struct mmu_table_batch.
303 */
304
305 static void tlb_remove_table_smp_sync(void *arg)
306 {
307 /* Simply deliver the interrupt */
308 }
309
310 static void tlb_remove_table_one(void *table)
311 {
312 /*
313 * This isn't an RCU grace period and hence the page-tables cannot be
314 * assumed to be actually RCU-freed.
315 *
316 * It is however sufficient for software page-table walkers that rely on
317 * IRQ disabling. See the comment near struct mmu_table_batch.
318 */
319 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
320 __tlb_remove_table(table);
321 }
322
323 static void tlb_remove_table_rcu(struct rcu_head *head)
324 {
325 struct mmu_table_batch *batch;
326 int i;
327
328 batch = container_of(head, struct mmu_table_batch, rcu);
329
330 for (i = 0; i < batch->nr; i++)
331 __tlb_remove_table(batch->tables[i]);
332
333 free_page((unsigned long)batch);
334 }
335
336 void tlb_table_flush(struct mmu_gather *tlb)
337 {
338 struct mmu_table_batch **batch = &tlb->batch;
339
340 if (*batch) {
341 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
342 *batch = NULL;
343 }
344 }
345
346 void tlb_remove_table(struct mmu_gather *tlb, void *table)
347 {
348 struct mmu_table_batch **batch = &tlb->batch;
349
350 tlb->need_flush = 1;
351
352 /*
353 * When there's less then two users of this mm there cannot be a
354 * concurrent page-table walk.
355 */
356 if (atomic_read(&tlb->mm->mm_users) < 2) {
357 __tlb_remove_table(table);
358 return;
359 }
360
361 if (*batch == NULL) {
362 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
363 if (*batch == NULL) {
364 tlb_remove_table_one(table);
365 return;
366 }
367 (*batch)->nr = 0;
368 }
369 (*batch)->tables[(*batch)->nr++] = table;
370 if ((*batch)->nr == MAX_TABLE_BATCH)
371 tlb_table_flush(tlb);
372 }
373
374 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
375
376 /*
377 * Note: this doesn't free the actual pages themselves. That
378 * has been handled earlier when unmapping all the memory regions.
379 */
380 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
381 unsigned long addr)
382 {
383 pgtable_t token = pmd_pgtable(*pmd);
384 pmd_clear(pmd);
385 pte_free_tlb(tlb, token, addr);
386 atomic_long_dec(&tlb->mm->nr_ptes);
387 }
388
389 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
390 unsigned long addr, unsigned long end,
391 unsigned long floor, unsigned long ceiling)
392 {
393 pmd_t *pmd;
394 unsigned long next;
395 unsigned long start;
396
397 start = addr;
398 pmd = pmd_offset(pud, addr);
399 do {
400 next = pmd_addr_end(addr, end);
401 if (pmd_none_or_clear_bad(pmd))
402 continue;
403 free_pte_range(tlb, pmd, addr);
404 } while (pmd++, addr = next, addr != end);
405
406 start &= PUD_MASK;
407 if (start < floor)
408 return;
409 if (ceiling) {
410 ceiling &= PUD_MASK;
411 if (!ceiling)
412 return;
413 }
414 if (end - 1 > ceiling - 1)
415 return;
416
417 pmd = pmd_offset(pud, start);
418 pud_clear(pud);
419 pmd_free_tlb(tlb, pmd, start);
420 }
421
422 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
423 unsigned long addr, unsigned long end,
424 unsigned long floor, unsigned long ceiling)
425 {
426 pud_t *pud;
427 unsigned long next;
428 unsigned long start;
429
430 start = addr;
431 pud = pud_offset(pgd, addr);
432 do {
433 next = pud_addr_end(addr, end);
434 if (pud_none_or_clear_bad(pud))
435 continue;
436 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
437 } while (pud++, addr = next, addr != end);
438
439 start &= PGDIR_MASK;
440 if (start < floor)
441 return;
442 if (ceiling) {
443 ceiling &= PGDIR_MASK;
444 if (!ceiling)
445 return;
446 }
447 if (end - 1 > ceiling - 1)
448 return;
449
450 pud = pud_offset(pgd, start);
451 pgd_clear(pgd);
452 pud_free_tlb(tlb, pud, start);
453 }
454
455 /*
456 * This function frees user-level page tables of a process.
457 */
458 void free_pgd_range(struct mmu_gather *tlb,
459 unsigned long addr, unsigned long end,
460 unsigned long floor, unsigned long ceiling)
461 {
462 pgd_t *pgd;
463 unsigned long next;
464
465 /*
466 * The next few lines have given us lots of grief...
467 *
468 * Why are we testing PMD* at this top level? Because often
469 * there will be no work to do at all, and we'd prefer not to
470 * go all the way down to the bottom just to discover that.
471 *
472 * Why all these "- 1"s? Because 0 represents both the bottom
473 * of the address space and the top of it (using -1 for the
474 * top wouldn't help much: the masks would do the wrong thing).
475 * The rule is that addr 0 and floor 0 refer to the bottom of
476 * the address space, but end 0 and ceiling 0 refer to the top
477 * Comparisons need to use "end - 1" and "ceiling - 1" (though
478 * that end 0 case should be mythical).
479 *
480 * Wherever addr is brought up or ceiling brought down, we must
481 * be careful to reject "the opposite 0" before it confuses the
482 * subsequent tests. But what about where end is brought down
483 * by PMD_SIZE below? no, end can't go down to 0 there.
484 *
485 * Whereas we round start (addr) and ceiling down, by different
486 * masks at different levels, in order to test whether a table
487 * now has no other vmas using it, so can be freed, we don't
488 * bother to round floor or end up - the tests don't need that.
489 */
490
491 addr &= PMD_MASK;
492 if (addr < floor) {
493 addr += PMD_SIZE;
494 if (!addr)
495 return;
496 }
497 if (ceiling) {
498 ceiling &= PMD_MASK;
499 if (!ceiling)
500 return;
501 }
502 if (end - 1 > ceiling - 1)
503 end -= PMD_SIZE;
504 if (addr > end - 1)
505 return;
506
507 pgd = pgd_offset(tlb->mm, addr);
508 do {
509 next = pgd_addr_end(addr, end);
510 if (pgd_none_or_clear_bad(pgd))
511 continue;
512 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
513 } while (pgd++, addr = next, addr != end);
514 }
515
516 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
517 unsigned long floor, unsigned long ceiling)
518 {
519 while (vma) {
520 struct vm_area_struct *next = vma->vm_next;
521 unsigned long addr = vma->vm_start;
522
523 /*
524 * Hide vma from rmap and truncate_pagecache before freeing
525 * pgtables
526 */
527 unlink_anon_vmas(vma);
528 unlink_file_vma(vma);
529
530 if (is_vm_hugetlb_page(vma)) {
531 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
532 floor, next? next->vm_start: ceiling);
533 } else {
534 /*
535 * Optimization: gather nearby vmas into one call down
536 */
537 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
538 && !is_vm_hugetlb_page(next)) {
539 vma = next;
540 next = vma->vm_next;
541 unlink_anon_vmas(vma);
542 unlink_file_vma(vma);
543 }
544 free_pgd_range(tlb, addr, vma->vm_end,
545 floor, next? next->vm_start: ceiling);
546 }
547 vma = next;
548 }
549 }
550
551 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
552 pmd_t *pmd, unsigned long address)
553 {
554 spinlock_t *ptl;
555 pgtable_t new = pte_alloc_one(mm, address);
556 int wait_split_huge_page;
557 if (!new)
558 return -ENOMEM;
559
560 /*
561 * Ensure all pte setup (eg. pte page lock and page clearing) are
562 * visible before the pte is made visible to other CPUs by being
563 * put into page tables.
564 *
565 * The other side of the story is the pointer chasing in the page
566 * table walking code (when walking the page table without locking;
567 * ie. most of the time). Fortunately, these data accesses consist
568 * of a chain of data-dependent loads, meaning most CPUs (alpha
569 * being the notable exception) will already guarantee loads are
570 * seen in-order. See the alpha page table accessors for the
571 * smp_read_barrier_depends() barriers in page table walking code.
572 */
573 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
574
575 ptl = pmd_lock(mm, pmd);
576 wait_split_huge_page = 0;
577 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
578 atomic_long_inc(&mm->nr_ptes);
579 pmd_populate(mm, pmd, new);
580 new = NULL;
581 } else if (unlikely(pmd_trans_splitting(*pmd)))
582 wait_split_huge_page = 1;
583 spin_unlock(ptl);
584 if (new)
585 pte_free(mm, new);
586 if (wait_split_huge_page)
587 wait_split_huge_page(vma->anon_vma, pmd);
588 return 0;
589 }
590
591 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
592 {
593 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
594 if (!new)
595 return -ENOMEM;
596
597 smp_wmb(); /* See comment in __pte_alloc */
598
599 spin_lock(&init_mm.page_table_lock);
600 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
601 pmd_populate_kernel(&init_mm, pmd, new);
602 new = NULL;
603 } else
604 VM_BUG_ON(pmd_trans_splitting(*pmd));
605 spin_unlock(&init_mm.page_table_lock);
606 if (new)
607 pte_free_kernel(&init_mm, new);
608 return 0;
609 }
610
611 static inline void init_rss_vec(int *rss)
612 {
613 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
614 }
615
616 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
617 {
618 int i;
619
620 if (current->mm == mm)
621 sync_mm_rss(mm);
622 for (i = 0; i < NR_MM_COUNTERS; i++)
623 if (rss[i])
624 add_mm_counter(mm, i, rss[i]);
625 }
626
627 /*
628 * This function is called to print an error when a bad pte
629 * is found. For example, we might have a PFN-mapped pte in
630 * a region that doesn't allow it.
631 *
632 * The calling function must still handle the error.
633 */
634 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
635 pte_t pte, struct page *page)
636 {
637 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
638 pud_t *pud = pud_offset(pgd, addr);
639 pmd_t *pmd = pmd_offset(pud, addr);
640 struct address_space *mapping;
641 pgoff_t index;
642 static unsigned long resume;
643 static unsigned long nr_shown;
644 static unsigned long nr_unshown;
645
646 /*
647 * Allow a burst of 60 reports, then keep quiet for that minute;
648 * or allow a steady drip of one report per second.
649 */
650 if (nr_shown == 60) {
651 if (time_before(jiffies, resume)) {
652 nr_unshown++;
653 return;
654 }
655 if (nr_unshown) {
656 printk(KERN_ALERT
657 "BUG: Bad page map: %lu messages suppressed\n",
658 nr_unshown);
659 nr_unshown = 0;
660 }
661 nr_shown = 0;
662 }
663 if (nr_shown++ == 0)
664 resume = jiffies + 60 * HZ;
665
666 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
667 index = linear_page_index(vma, addr);
668
669 printk(KERN_ALERT
670 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
671 current->comm,
672 (long long)pte_val(pte), (long long)pmd_val(*pmd));
673 if (page)
674 dump_page(page, "bad pte");
675 printk(KERN_ALERT
676 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
677 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
678 /*
679 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
680 */
681 if (vma->vm_ops)
682 printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
683 vma->vm_ops->fault);
684 if (vma->vm_file)
685 printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
686 vma->vm_file->f_op->mmap);
687 dump_stack();
688 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
689 }
690
691 static inline bool is_cow_mapping(vm_flags_t flags)
692 {
693 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
694 }
695
696 /*
697 * vm_normal_page -- This function gets the "struct page" associated with a pte.
698 *
699 * "Special" mappings do not wish to be associated with a "struct page" (either
700 * it doesn't exist, or it exists but they don't want to touch it). In this
701 * case, NULL is returned here. "Normal" mappings do have a struct page.
702 *
703 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
704 * pte bit, in which case this function is trivial. Secondly, an architecture
705 * may not have a spare pte bit, which requires a more complicated scheme,
706 * described below.
707 *
708 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
709 * special mapping (even if there are underlying and valid "struct pages").
710 * COWed pages of a VM_PFNMAP are always normal.
711 *
712 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
713 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
714 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
715 * mapping will always honor the rule
716 *
717 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
718 *
719 * And for normal mappings this is false.
720 *
721 * This restricts such mappings to be a linear translation from virtual address
722 * to pfn. To get around this restriction, we allow arbitrary mappings so long
723 * as the vma is not a COW mapping; in that case, we know that all ptes are
724 * special (because none can have been COWed).
725 *
726 *
727 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
728 *
729 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
730 * page" backing, however the difference is that _all_ pages with a struct
731 * page (that is, those where pfn_valid is true) are refcounted and considered
732 * normal pages by the VM. The disadvantage is that pages are refcounted
733 * (which can be slower and simply not an option for some PFNMAP users). The
734 * advantage is that we don't have to follow the strict linearity rule of
735 * PFNMAP mappings in order to support COWable mappings.
736 *
737 */
738 #ifdef __HAVE_ARCH_PTE_SPECIAL
739 # define HAVE_PTE_SPECIAL 1
740 #else
741 # define HAVE_PTE_SPECIAL 0
742 #endif
743 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
744 pte_t pte)
745 {
746 unsigned long pfn = pte_pfn(pte);
747
748 if (HAVE_PTE_SPECIAL) {
749 if (likely(!pte_special(pte)))
750 goto check_pfn;
751 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
752 return NULL;
753 if (!is_zero_pfn(pfn))
754 print_bad_pte(vma, addr, pte, NULL);
755 return NULL;
756 }
757
758 /* !HAVE_PTE_SPECIAL case follows: */
759
760 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
761 if (vma->vm_flags & VM_MIXEDMAP) {
762 if (!pfn_valid(pfn))
763 return NULL;
764 goto out;
765 } else {
766 unsigned long off;
767 off = (addr - vma->vm_start) >> PAGE_SHIFT;
768 if (pfn == vma->vm_pgoff + off)
769 return NULL;
770 if (!is_cow_mapping(vma->vm_flags))
771 return NULL;
772 }
773 }
774
775 if (is_zero_pfn(pfn))
776 return NULL;
777 check_pfn:
778 if (unlikely(pfn > highest_memmap_pfn)) {
779 print_bad_pte(vma, addr, pte, NULL);
780 return NULL;
781 }
782
783 /*
784 * NOTE! We still have PageReserved() pages in the page tables.
785 * eg. VDSO mappings can cause them to exist.
786 */
787 out:
788 return pfn_to_page(pfn);
789 }
790
791 /*
792 * copy one vm_area from one task to the other. Assumes the page tables
793 * already present in the new task to be cleared in the whole range
794 * covered by this vma.
795 */
796
797 static inline unsigned long
798 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
799 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
800 unsigned long addr, int *rss)
801 {
802 unsigned long vm_flags = vma->vm_flags;
803 pte_t pte = *src_pte;
804 struct page *page;
805
806 /* pte contains position in swap or file, so copy. */
807 if (unlikely(!pte_present(pte))) {
808 if (!pte_file(pte)) {
809 swp_entry_t entry = pte_to_swp_entry(pte);
810
811 if (likely(!non_swap_entry(entry))) {
812 if (swap_duplicate(entry) < 0)
813 return entry.val;
814
815 /* make sure dst_mm is on swapoff's mmlist. */
816 if (unlikely(list_empty(&dst_mm->mmlist))) {
817 spin_lock(&mmlist_lock);
818 if (list_empty(&dst_mm->mmlist))
819 list_add(&dst_mm->mmlist,
820 &src_mm->mmlist);
821 spin_unlock(&mmlist_lock);
822 }
823 rss[MM_SWAPENTS]++;
824 } else if (is_migration_entry(entry)) {
825 page = migration_entry_to_page(entry);
826
827 if (PageAnon(page))
828 rss[MM_ANONPAGES]++;
829 else
830 rss[MM_FILEPAGES]++;
831
832 if (is_write_migration_entry(entry) &&
833 is_cow_mapping(vm_flags)) {
834 /*
835 * COW mappings require pages in both
836 * parent and child to be set to read.
837 */
838 make_migration_entry_read(&entry);
839 pte = swp_entry_to_pte(entry);
840 if (pte_swp_soft_dirty(*src_pte))
841 pte = pte_swp_mksoft_dirty(pte);
842 set_pte_at(src_mm, addr, src_pte, pte);
843 }
844 }
845 }
846 goto out_set_pte;
847 }
848
849 /*
850 * If it's a COW mapping, write protect it both
851 * in the parent and the child
852 */
853 if (is_cow_mapping(vm_flags)) {
854 ptep_set_wrprotect(src_mm, addr, src_pte);
855 pte = pte_wrprotect(pte);
856 }
857
858 /*
859 * If it's a shared mapping, mark it clean in
860 * the child
861 */
862 if (vm_flags & VM_SHARED)
863 pte = pte_mkclean(pte);
864 pte = pte_mkold(pte);
865
866 page = vm_normal_page(vma, addr, pte);
867 if (page) {
868 get_page(page);
869 page_dup_rmap(page);
870 if (PageAnon(page))
871 rss[MM_ANONPAGES]++;
872 else
873 rss[MM_FILEPAGES]++;
874 }
875
876 out_set_pte:
877 set_pte_at(dst_mm, addr, dst_pte, pte);
878 return 0;
879 }
880
881 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
882 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
883 unsigned long addr, unsigned long end)
884 {
885 pte_t *orig_src_pte, *orig_dst_pte;
886 pte_t *src_pte, *dst_pte;
887 spinlock_t *src_ptl, *dst_ptl;
888 int progress = 0;
889 int rss[NR_MM_COUNTERS];
890 swp_entry_t entry = (swp_entry_t){0};
891
892 again:
893 init_rss_vec(rss);
894
895 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
896 if (!dst_pte)
897 return -ENOMEM;
898 src_pte = pte_offset_map(src_pmd, addr);
899 src_ptl = pte_lockptr(src_mm, src_pmd);
900 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
901 orig_src_pte = src_pte;
902 orig_dst_pte = dst_pte;
903 arch_enter_lazy_mmu_mode();
904
905 do {
906 /*
907 * We are holding two locks at this point - either of them
908 * could generate latencies in another task on another CPU.
909 */
910 if (progress >= 32) {
911 progress = 0;
912 if (need_resched() ||
913 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
914 break;
915 }
916 if (pte_none(*src_pte)) {
917 progress++;
918 continue;
919 }
920 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
921 vma, addr, rss);
922 if (entry.val)
923 break;
924 progress += 8;
925 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
926
927 arch_leave_lazy_mmu_mode();
928 spin_unlock(src_ptl);
929 pte_unmap(orig_src_pte);
930 add_mm_rss_vec(dst_mm, rss);
931 pte_unmap_unlock(orig_dst_pte, dst_ptl);
932 cond_resched();
933
934 if (entry.val) {
935 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
936 return -ENOMEM;
937 progress = 0;
938 }
939 if (addr != end)
940 goto again;
941 return 0;
942 }
943
944 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
945 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
946 unsigned long addr, unsigned long end)
947 {
948 pmd_t *src_pmd, *dst_pmd;
949 unsigned long next;
950
951 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
952 if (!dst_pmd)
953 return -ENOMEM;
954 src_pmd = pmd_offset(src_pud, addr);
955 do {
956 next = pmd_addr_end(addr, end);
957 if (pmd_trans_huge(*src_pmd)) {
958 int err;
959 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
960 err = copy_huge_pmd(dst_mm, src_mm,
961 dst_pmd, src_pmd, addr, vma);
962 if (err == -ENOMEM)
963 return -ENOMEM;
964 if (!err)
965 continue;
966 /* fall through */
967 }
968 if (pmd_none_or_clear_bad(src_pmd))
969 continue;
970 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
971 vma, addr, next))
972 return -ENOMEM;
973 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
974 return 0;
975 }
976
977 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
978 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
979 unsigned long addr, unsigned long end)
980 {
981 pud_t *src_pud, *dst_pud;
982 unsigned long next;
983
984 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
985 if (!dst_pud)
986 return -ENOMEM;
987 src_pud = pud_offset(src_pgd, addr);
988 do {
989 next = pud_addr_end(addr, end);
990 if (pud_none_or_clear_bad(src_pud))
991 continue;
992 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
993 vma, addr, next))
994 return -ENOMEM;
995 } while (dst_pud++, src_pud++, addr = next, addr != end);
996 return 0;
997 }
998
999 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1000 struct vm_area_struct *vma)
1001 {
1002 pgd_t *src_pgd, *dst_pgd;
1003 unsigned long next;
1004 unsigned long addr = vma->vm_start;
1005 unsigned long end = vma->vm_end;
1006 unsigned long mmun_start; /* For mmu_notifiers */
1007 unsigned long mmun_end; /* For mmu_notifiers */
1008 bool is_cow;
1009 int ret;
1010
1011 /*
1012 * Don't copy ptes where a page fault will fill them correctly.
1013 * Fork becomes much lighter when there are big shared or private
1014 * readonly mappings. The tradeoff is that copy_page_range is more
1015 * efficient than faulting.
1016 */
1017 if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1018 VM_PFNMAP | VM_MIXEDMAP))) {
1019 if (!vma->anon_vma)
1020 return 0;
1021 }
1022
1023 if (is_vm_hugetlb_page(vma))
1024 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1025
1026 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1027 /*
1028 * We do not free on error cases below as remove_vma
1029 * gets called on error from higher level routine
1030 */
1031 ret = track_pfn_copy(vma);
1032 if (ret)
1033 return ret;
1034 }
1035
1036 /*
1037 * We need to invalidate the secondary MMU mappings only when
1038 * there could be a permission downgrade on the ptes of the
1039 * parent mm. And a permission downgrade will only happen if
1040 * is_cow_mapping() returns true.
1041 */
1042 is_cow = is_cow_mapping(vma->vm_flags);
1043 mmun_start = addr;
1044 mmun_end = end;
1045 if (is_cow)
1046 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1047 mmun_end);
1048
1049 ret = 0;
1050 dst_pgd = pgd_offset(dst_mm, addr);
1051 src_pgd = pgd_offset(src_mm, addr);
1052 do {
1053 next = pgd_addr_end(addr, end);
1054 if (pgd_none_or_clear_bad(src_pgd))
1055 continue;
1056 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1057 vma, addr, next))) {
1058 ret = -ENOMEM;
1059 break;
1060 }
1061 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1062
1063 if (is_cow)
1064 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1065 return ret;
1066 }
1067
1068 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1069 struct vm_area_struct *vma, pmd_t *pmd,
1070 unsigned long addr, unsigned long end,
1071 struct zap_details *details)
1072 {
1073 struct mm_struct *mm = tlb->mm;
1074 int force_flush = 0;
1075 int rss[NR_MM_COUNTERS];
1076 spinlock_t *ptl;
1077 pte_t *start_pte;
1078 pte_t *pte;
1079
1080 again:
1081 init_rss_vec(rss);
1082 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1083 pte = start_pte;
1084 arch_enter_lazy_mmu_mode();
1085 do {
1086 pte_t ptent = *pte;
1087 if (pte_none(ptent)) {
1088 continue;
1089 }
1090
1091 if (pte_present(ptent)) {
1092 struct page *page;
1093
1094 page = vm_normal_page(vma, addr, ptent);
1095 if (unlikely(details) && page) {
1096 /*
1097 * unmap_shared_mapping_pages() wants to
1098 * invalidate cache without truncating:
1099 * unmap shared but keep private pages.
1100 */
1101 if (details->check_mapping &&
1102 details->check_mapping != page->mapping)
1103 continue;
1104 /*
1105 * Each page->index must be checked when
1106 * invalidating or truncating nonlinear.
1107 */
1108 if (details->nonlinear_vma &&
1109 (page->index < details->first_index ||
1110 page->index > details->last_index))
1111 continue;
1112 }
1113 ptent = ptep_get_and_clear_full(mm, addr, pte,
1114 tlb->fullmm);
1115 tlb_remove_tlb_entry(tlb, pte, addr);
1116 if (unlikely(!page))
1117 continue;
1118 if (unlikely(details) && details->nonlinear_vma
1119 && linear_page_index(details->nonlinear_vma,
1120 addr) != page->index) {
1121 pte_t ptfile = pgoff_to_pte(page->index);
1122 if (pte_soft_dirty(ptent))
1123 ptfile = pte_file_mksoft_dirty(ptfile);
1124 set_pte_at(mm, addr, pte, ptfile);
1125 }
1126 if (PageAnon(page))
1127 rss[MM_ANONPAGES]--;
1128 else {
1129 if (pte_dirty(ptent))
1130 set_page_dirty(page);
1131 if (pte_young(ptent) &&
1132 likely(!(vma->vm_flags & VM_SEQ_READ)))
1133 mark_page_accessed(page);
1134 rss[MM_FILEPAGES]--;
1135 }
1136 page_remove_rmap(page);
1137 if (unlikely(page_mapcount(page) < 0))
1138 print_bad_pte(vma, addr, ptent, page);
1139 force_flush = !__tlb_remove_page(tlb, page);
1140 if (force_flush)
1141 break;
1142 continue;
1143 }
1144 /*
1145 * If details->check_mapping, we leave swap entries;
1146 * if details->nonlinear_vma, we leave file entries.
1147 */
1148 if (unlikely(details))
1149 continue;
1150 if (pte_file(ptent)) {
1151 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1152 print_bad_pte(vma, addr, ptent, NULL);
1153 } else {
1154 swp_entry_t entry = pte_to_swp_entry(ptent);
1155
1156 if (!non_swap_entry(entry))
1157 rss[MM_SWAPENTS]--;
1158 else if (is_migration_entry(entry)) {
1159 struct page *page;
1160
1161 page = migration_entry_to_page(entry);
1162
1163 if (PageAnon(page))
1164 rss[MM_ANONPAGES]--;
1165 else
1166 rss[MM_FILEPAGES]--;
1167 }
1168 if (unlikely(!free_swap_and_cache(entry)))
1169 print_bad_pte(vma, addr, ptent, NULL);
1170 }
1171 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1172 } while (pte++, addr += PAGE_SIZE, addr != end);
1173
1174 add_mm_rss_vec(mm, rss);
1175 arch_leave_lazy_mmu_mode();
1176 pte_unmap_unlock(start_pte, ptl);
1177
1178 /*
1179 * mmu_gather ran out of room to batch pages, we break out of
1180 * the PTE lock to avoid doing the potential expensive TLB invalidate
1181 * and page-free while holding it.
1182 */
1183 if (force_flush) {
1184 unsigned long old_end;
1185
1186 force_flush = 0;
1187
1188 /*
1189 * Flush the TLB just for the previous segment,
1190 * then update the range to be the remaining
1191 * TLB range.
1192 */
1193 old_end = tlb->end;
1194 tlb->end = addr;
1195
1196 tlb_flush_mmu(tlb);
1197
1198 tlb->start = addr;
1199 tlb->end = old_end;
1200
1201 if (addr != end)
1202 goto again;
1203 }
1204
1205 return addr;
1206 }
1207
1208 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1209 struct vm_area_struct *vma, pud_t *pud,
1210 unsigned long addr, unsigned long end,
1211 struct zap_details *details)
1212 {
1213 pmd_t *pmd;
1214 unsigned long next;
1215
1216 pmd = pmd_offset(pud, addr);
1217 do {
1218 next = pmd_addr_end(addr, end);
1219 if (pmd_trans_huge(*pmd)) {
1220 if (next - addr != HPAGE_PMD_SIZE) {
1221 #ifdef CONFIG_DEBUG_VM
1222 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1223 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1224 __func__, addr, end,
1225 vma->vm_start,
1226 vma->vm_end);
1227 BUG();
1228 }
1229 #endif
1230 split_huge_page_pmd(vma, addr, pmd);
1231 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1232 goto next;
1233 /* fall through */
1234 }
1235 /*
1236 * Here there can be other concurrent MADV_DONTNEED or
1237 * trans huge page faults running, and if the pmd is
1238 * none or trans huge it can change under us. This is
1239 * because MADV_DONTNEED holds the mmap_sem in read
1240 * mode.
1241 */
1242 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1243 goto next;
1244 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1245 next:
1246 cond_resched();
1247 } while (pmd++, addr = next, addr != end);
1248
1249 return addr;
1250 }
1251
1252 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1253 struct vm_area_struct *vma, pgd_t *pgd,
1254 unsigned long addr, unsigned long end,
1255 struct zap_details *details)
1256 {
1257 pud_t *pud;
1258 unsigned long next;
1259
1260 pud = pud_offset(pgd, addr);
1261 do {
1262 next = pud_addr_end(addr, end);
1263 if (pud_none_or_clear_bad(pud))
1264 continue;
1265 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1266 } while (pud++, addr = next, addr != end);
1267
1268 return addr;
1269 }
1270
1271 static void unmap_page_range(struct mmu_gather *tlb,
1272 struct vm_area_struct *vma,
1273 unsigned long addr, unsigned long end,
1274 struct zap_details *details)
1275 {
1276 pgd_t *pgd;
1277 unsigned long next;
1278
1279 if (details && !details->check_mapping && !details->nonlinear_vma)
1280 details = NULL;
1281
1282 BUG_ON(addr >= end);
1283 mem_cgroup_uncharge_start();
1284 tlb_start_vma(tlb, vma);
1285 pgd = pgd_offset(vma->vm_mm, addr);
1286 do {
1287 next = pgd_addr_end(addr, end);
1288 if (pgd_none_or_clear_bad(pgd))
1289 continue;
1290 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1291 } while (pgd++, addr = next, addr != end);
1292 tlb_end_vma(tlb, vma);
1293 mem_cgroup_uncharge_end();
1294 }
1295
1296
1297 static void unmap_single_vma(struct mmu_gather *tlb,
1298 struct vm_area_struct *vma, unsigned long start_addr,
1299 unsigned long end_addr,
1300 struct zap_details *details)
1301 {
1302 unsigned long start = max(vma->vm_start, start_addr);
1303 unsigned long end;
1304
1305 if (start >= vma->vm_end)
1306 return;
1307 end = min(vma->vm_end, end_addr);
1308 if (end <= vma->vm_start)
1309 return;
1310
1311 if (vma->vm_file)
1312 uprobe_munmap(vma, start, end);
1313
1314 if (unlikely(vma->vm_flags & VM_PFNMAP))
1315 untrack_pfn(vma, 0, 0);
1316
1317 if (start != end) {
1318 if (unlikely(is_vm_hugetlb_page(vma))) {
1319 /*
1320 * It is undesirable to test vma->vm_file as it
1321 * should be non-null for valid hugetlb area.
1322 * However, vm_file will be NULL in the error
1323 * cleanup path of do_mmap_pgoff. When
1324 * hugetlbfs ->mmap method fails,
1325 * do_mmap_pgoff() nullifies vma->vm_file
1326 * before calling this function to clean up.
1327 * Since no pte has actually been setup, it is
1328 * safe to do nothing in this case.
1329 */
1330 if (vma->vm_file) {
1331 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
1332 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1333 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1334 }
1335 } else
1336 unmap_page_range(tlb, vma, start, end, details);
1337 }
1338 }
1339
1340 /**
1341 * unmap_vmas - unmap a range of memory covered by a list of vma's
1342 * @tlb: address of the caller's struct mmu_gather
1343 * @vma: the starting vma
1344 * @start_addr: virtual address at which to start unmapping
1345 * @end_addr: virtual address at which to end unmapping
1346 *
1347 * Unmap all pages in the vma list.
1348 *
1349 * Only addresses between `start' and `end' will be unmapped.
1350 *
1351 * The VMA list must be sorted in ascending virtual address order.
1352 *
1353 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1354 * range after unmap_vmas() returns. So the only responsibility here is to
1355 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1356 * drops the lock and schedules.
1357 */
1358 void unmap_vmas(struct mmu_gather *tlb,
1359 struct vm_area_struct *vma, unsigned long start_addr,
1360 unsigned long end_addr)
1361 {
1362 struct mm_struct *mm = vma->vm_mm;
1363
1364 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1365 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1366 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1367 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1368 }
1369
1370 /**
1371 * zap_page_range - remove user pages in a given range
1372 * @vma: vm_area_struct holding the applicable pages
1373 * @start: starting address of pages to zap
1374 * @size: number of bytes to zap
1375 * @details: details of nonlinear truncation or shared cache invalidation
1376 *
1377 * Caller must protect the VMA list
1378 */
1379 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1380 unsigned long size, struct zap_details *details)
1381 {
1382 struct mm_struct *mm = vma->vm_mm;
1383 struct mmu_gather tlb;
1384 unsigned long end = start + size;
1385
1386 lru_add_drain();
1387 tlb_gather_mmu(&tlb, mm, start, end);
1388 update_hiwater_rss(mm);
1389 mmu_notifier_invalidate_range_start(mm, start, end);
1390 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1391 unmap_single_vma(&tlb, vma, start, end, details);
1392 mmu_notifier_invalidate_range_end(mm, start, end);
1393 tlb_finish_mmu(&tlb, start, end);
1394 }
1395
1396 /**
1397 * zap_page_range_single - remove user pages in a given range
1398 * @vma: vm_area_struct holding the applicable pages
1399 * @address: starting address of pages to zap
1400 * @size: number of bytes to zap
1401 * @details: details of nonlinear truncation or shared cache invalidation
1402 *
1403 * The range must fit into one VMA.
1404 */
1405 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1406 unsigned long size, struct zap_details *details)
1407 {
1408 struct mm_struct *mm = vma->vm_mm;
1409 struct mmu_gather tlb;
1410 unsigned long end = address + size;
1411
1412 lru_add_drain();
1413 tlb_gather_mmu(&tlb, mm, address, end);
1414 update_hiwater_rss(mm);
1415 mmu_notifier_invalidate_range_start(mm, address, end);
1416 unmap_single_vma(&tlb, vma, address, end, details);
1417 mmu_notifier_invalidate_range_end(mm, address, end);
1418 tlb_finish_mmu(&tlb, address, end);
1419 }
1420
1421 /**
1422 * zap_vma_ptes - remove ptes mapping the vma
1423 * @vma: vm_area_struct holding ptes to be zapped
1424 * @address: starting address of pages to zap
1425 * @size: number of bytes to zap
1426 *
1427 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1428 *
1429 * The entire address range must be fully contained within the vma.
1430 *
1431 * Returns 0 if successful.
1432 */
1433 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1434 unsigned long size)
1435 {
1436 if (address < vma->vm_start || address + size > vma->vm_end ||
1437 !(vma->vm_flags & VM_PFNMAP))
1438 return -1;
1439 zap_page_range_single(vma, address, size, NULL);
1440 return 0;
1441 }
1442 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1443
1444 /**
1445 * follow_page_mask - look up a page descriptor from a user-virtual address
1446 * @vma: vm_area_struct mapping @address
1447 * @address: virtual address to look up
1448 * @flags: flags modifying lookup behaviour
1449 * @page_mask: on output, *page_mask is set according to the size of the page
1450 *
1451 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1452 *
1453 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1454 * an error pointer if there is a mapping to something not represented
1455 * by a page descriptor (see also vm_normal_page()).
1456 */
1457 struct page *follow_page_mask(struct vm_area_struct *vma,
1458 unsigned long address, unsigned int flags,
1459 unsigned int *page_mask)
1460 {
1461 pgd_t *pgd;
1462 pud_t *pud;
1463 pmd_t *pmd;
1464 pte_t *ptep, pte;
1465 spinlock_t *ptl;
1466 struct page *page;
1467 struct mm_struct *mm = vma->vm_mm;
1468
1469 *page_mask = 0;
1470
1471 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1472 if (!IS_ERR(page)) {
1473 BUG_ON(flags & FOLL_GET);
1474 goto out;
1475 }
1476
1477 page = NULL;
1478 pgd = pgd_offset(mm, address);
1479 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1480 goto no_page_table;
1481
1482 pud = pud_offset(pgd, address);
1483 if (pud_none(*pud))
1484 goto no_page_table;
1485 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1486 if (flags & FOLL_GET)
1487 goto out;
1488 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1489 goto out;
1490 }
1491 if (unlikely(pud_bad(*pud)))
1492 goto no_page_table;
1493
1494 pmd = pmd_offset(pud, address);
1495 if (pmd_none(*pmd))
1496 goto no_page_table;
1497 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1498 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1499 if (flags & FOLL_GET) {
1500 /*
1501 * Refcount on tail pages are not well-defined and
1502 * shouldn't be taken. The caller should handle a NULL
1503 * return when trying to follow tail pages.
1504 */
1505 if (PageHead(page))
1506 get_page(page);
1507 else {
1508 page = NULL;
1509 goto out;
1510 }
1511 }
1512 goto out;
1513 }
1514 if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1515 goto no_page_table;
1516 if (pmd_trans_huge(*pmd)) {
1517 if (flags & FOLL_SPLIT) {
1518 split_huge_page_pmd(vma, address, pmd);
1519 goto split_fallthrough;
1520 }
1521 ptl = pmd_lock(mm, pmd);
1522 if (likely(pmd_trans_huge(*pmd))) {
1523 if (unlikely(pmd_trans_splitting(*pmd))) {
1524 spin_unlock(ptl);
1525 wait_split_huge_page(vma->anon_vma, pmd);
1526 } else {
1527 page = follow_trans_huge_pmd(vma, address,
1528 pmd, flags);
1529 spin_unlock(ptl);
1530 *page_mask = HPAGE_PMD_NR - 1;
1531 goto out;
1532 }
1533 } else
1534 spin_unlock(ptl);
1535 /* fall through */
1536 }
1537 split_fallthrough:
1538 if (unlikely(pmd_bad(*pmd)))
1539 goto no_page_table;
1540
1541 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1542
1543 pte = *ptep;
1544 if (!pte_present(pte)) {
1545 swp_entry_t entry;
1546 /*
1547 * KSM's break_ksm() relies upon recognizing a ksm page
1548 * even while it is being migrated, so for that case we
1549 * need migration_entry_wait().
1550 */
1551 if (likely(!(flags & FOLL_MIGRATION)))
1552 goto no_page;
1553 if (pte_none(pte) || pte_file(pte))
1554 goto no_page;
1555 entry = pte_to_swp_entry(pte);
1556 if (!is_migration_entry(entry))
1557 goto no_page;
1558 pte_unmap_unlock(ptep, ptl);
1559 migration_entry_wait(mm, pmd, address);
1560 goto split_fallthrough;
1561 }
1562 if ((flags & FOLL_NUMA) && pte_numa(pte))
1563 goto no_page;
1564 if ((flags & FOLL_WRITE) && !pte_write(pte))
1565 goto unlock;
1566
1567 page = vm_normal_page(vma, address, pte);
1568 if (unlikely(!page)) {
1569 if ((flags & FOLL_DUMP) ||
1570 !is_zero_pfn(pte_pfn(pte)))
1571 goto bad_page;
1572 page = pte_page(pte);
1573 }
1574
1575 if (flags & FOLL_GET)
1576 get_page_foll(page);
1577 if (flags & FOLL_TOUCH) {
1578 if ((flags & FOLL_WRITE) &&
1579 !pte_dirty(pte) && !PageDirty(page))
1580 set_page_dirty(page);
1581 /*
1582 * pte_mkyoung() would be more correct here, but atomic care
1583 * is needed to avoid losing the dirty bit: it is easier to use
1584 * mark_page_accessed().
1585 */
1586 mark_page_accessed(page);
1587 }
1588 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1589 /*
1590 * The preliminary mapping check is mainly to avoid the
1591 * pointless overhead of lock_page on the ZERO_PAGE
1592 * which might bounce very badly if there is contention.
1593 *
1594 * If the page is already locked, we don't need to
1595 * handle it now - vmscan will handle it later if and
1596 * when it attempts to reclaim the page.
1597 */
1598 if (page->mapping && trylock_page(page)) {
1599 lru_add_drain(); /* push cached pages to LRU */
1600 /*
1601 * Because we lock page here, and migration is
1602 * blocked by the pte's page reference, and we
1603 * know the page is still mapped, we don't even
1604 * need to check for file-cache page truncation.
1605 */
1606 mlock_vma_page(page);
1607 unlock_page(page);
1608 }
1609 }
1610 unlock:
1611 pte_unmap_unlock(ptep, ptl);
1612 out:
1613 return page;
1614
1615 bad_page:
1616 pte_unmap_unlock(ptep, ptl);
1617 return ERR_PTR(-EFAULT);
1618
1619 no_page:
1620 pte_unmap_unlock(ptep, ptl);
1621 if (!pte_none(pte))
1622 return page;
1623
1624 no_page_table:
1625 /*
1626 * When core dumping an enormous anonymous area that nobody
1627 * has touched so far, we don't want to allocate unnecessary pages or
1628 * page tables. Return error instead of NULL to skip handle_mm_fault,
1629 * then get_dump_page() will return NULL to leave a hole in the dump.
1630 * But we can only make this optimization where a hole would surely
1631 * be zero-filled if handle_mm_fault() actually did handle it.
1632 */
1633 if ((flags & FOLL_DUMP) &&
1634 (!vma->vm_ops || !vma->vm_ops->fault))
1635 return ERR_PTR(-EFAULT);
1636 return page;
1637 }
1638
1639 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1640 {
1641 return stack_guard_page_start(vma, addr) ||
1642 stack_guard_page_end(vma, addr+PAGE_SIZE);
1643 }
1644
1645 /**
1646 * __get_user_pages() - pin user pages in memory
1647 * @tsk: task_struct of target task
1648 * @mm: mm_struct of target mm
1649 * @start: starting user address
1650 * @nr_pages: number of pages from start to pin
1651 * @gup_flags: flags modifying pin behaviour
1652 * @pages: array that receives pointers to the pages pinned.
1653 * Should be at least nr_pages long. Or NULL, if caller
1654 * only intends to ensure the pages are faulted in.
1655 * @vmas: array of pointers to vmas corresponding to each page.
1656 * Or NULL if the caller does not require them.
1657 * @nonblocking: whether waiting for disk IO or mmap_sem contention
1658 *
1659 * Returns number of pages pinned. This may be fewer than the number
1660 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1661 * were pinned, returns -errno. Each page returned must be released
1662 * with a put_page() call when it is finished with. vmas will only
1663 * remain valid while mmap_sem is held.
1664 *
1665 * Must be called with mmap_sem held for read or write.
1666 *
1667 * __get_user_pages walks a process's page tables and takes a reference to
1668 * each struct page that each user address corresponds to at a given
1669 * instant. That is, it takes the page that would be accessed if a user
1670 * thread accesses the given user virtual address at that instant.
1671 *
1672 * This does not guarantee that the page exists in the user mappings when
1673 * __get_user_pages returns, and there may even be a completely different
1674 * page there in some cases (eg. if mmapped pagecache has been invalidated
1675 * and subsequently re faulted). However it does guarantee that the page
1676 * won't be freed completely. And mostly callers simply care that the page
1677 * contains data that was valid *at some point in time*. Typically, an IO
1678 * or similar operation cannot guarantee anything stronger anyway because
1679 * locks can't be held over the syscall boundary.
1680 *
1681 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1682 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1683 * appropriate) must be called after the page is finished with, and
1684 * before put_page is called.
1685 *
1686 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1687 * or mmap_sem contention, and if waiting is needed to pin all pages,
1688 * *@nonblocking will be set to 0.
1689 *
1690 * In most cases, get_user_pages or get_user_pages_fast should be used
1691 * instead of __get_user_pages. __get_user_pages should be used only if
1692 * you need some special @gup_flags.
1693 */
1694 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1695 unsigned long start, unsigned long nr_pages,
1696 unsigned int gup_flags, struct page **pages,
1697 struct vm_area_struct **vmas, int *nonblocking)
1698 {
1699 long i;
1700 unsigned long vm_flags;
1701 unsigned int page_mask;
1702
1703 if (!nr_pages)
1704 return 0;
1705
1706 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1707
1708 /*
1709 * Require read or write permissions.
1710 * If FOLL_FORCE is set, we only require the "MAY" flags.
1711 */
1712 vm_flags = (gup_flags & FOLL_WRITE) ?
1713 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1714 vm_flags &= (gup_flags & FOLL_FORCE) ?
1715 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1716
1717 /*
1718 * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault
1719 * would be called on PROT_NONE ranges. We must never invoke
1720 * handle_mm_fault on PROT_NONE ranges or the NUMA hinting
1721 * page faults would unprotect the PROT_NONE ranges if
1722 * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd
1723 * bitflag. So to avoid that, don't set FOLL_NUMA if
1724 * FOLL_FORCE is set.
1725 */
1726 if (!(gup_flags & FOLL_FORCE))
1727 gup_flags |= FOLL_NUMA;
1728
1729 i = 0;
1730
1731 do {
1732 struct vm_area_struct *vma;
1733
1734 vma = find_extend_vma(mm, start);
1735 if (!vma && in_gate_area(mm, start)) {
1736 unsigned long pg = start & PAGE_MASK;
1737 pgd_t *pgd;
1738 pud_t *pud;
1739 pmd_t *pmd;
1740 pte_t *pte;
1741
1742 /* user gate pages are read-only */
1743 if (gup_flags & FOLL_WRITE)
1744 return i ? : -EFAULT;
1745 if (pg > TASK_SIZE)
1746 pgd = pgd_offset_k(pg);
1747 else
1748 pgd = pgd_offset_gate(mm, pg);
1749 BUG_ON(pgd_none(*pgd));
1750 pud = pud_offset(pgd, pg);
1751 BUG_ON(pud_none(*pud));
1752 pmd = pmd_offset(pud, pg);
1753 if (pmd_none(*pmd))
1754 return i ? : -EFAULT;
1755 VM_BUG_ON(pmd_trans_huge(*pmd));
1756 pte = pte_offset_map(pmd, pg);
1757 if (pte_none(*pte)) {
1758 pte_unmap(pte);
1759 return i ? : -EFAULT;
1760 }
1761 vma = get_gate_vma(mm);
1762 if (pages) {
1763 struct page *page;
1764
1765 page = vm_normal_page(vma, start, *pte);
1766 if (!page) {
1767 if (!(gup_flags & FOLL_DUMP) &&
1768 is_zero_pfn(pte_pfn(*pte)))
1769 page = pte_page(*pte);
1770 else {
1771 pte_unmap(pte);
1772 return i ? : -EFAULT;
1773 }
1774 }
1775 pages[i] = page;
1776 get_page(page);
1777 }
1778 pte_unmap(pte);
1779 page_mask = 0;
1780 goto next_page;
1781 }
1782
1783 if (!vma ||
1784 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1785 !(vm_flags & vma->vm_flags))
1786 return i ? : -EFAULT;
1787
1788 if (is_vm_hugetlb_page(vma)) {
1789 i = follow_hugetlb_page(mm, vma, pages, vmas,
1790 &start, &nr_pages, i, gup_flags);
1791 continue;
1792 }
1793
1794 do {
1795 struct page *page;
1796 unsigned int foll_flags = gup_flags;
1797 unsigned int page_increm;
1798
1799 /*
1800 * If we have a pending SIGKILL, don't keep faulting
1801 * pages and potentially allocating memory.
1802 */
1803 if (unlikely(fatal_signal_pending(current)))
1804 return i ? i : -ERESTARTSYS;
1805
1806 cond_resched();
1807 while (!(page = follow_page_mask(vma, start,
1808 foll_flags, &page_mask))) {
1809 int ret;
1810 unsigned int fault_flags = 0;
1811
1812 /* For mlock, just skip the stack guard page. */
1813 if (foll_flags & FOLL_MLOCK) {
1814 if (stack_guard_page(vma, start))
1815 goto next_page;
1816 }
1817 if (foll_flags & FOLL_WRITE)
1818 fault_flags |= FAULT_FLAG_WRITE;
1819 if (nonblocking)
1820 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1821 if (foll_flags & FOLL_NOWAIT)
1822 fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1823
1824 ret = handle_mm_fault(mm, vma, start,
1825 fault_flags);
1826
1827 if (ret & VM_FAULT_ERROR) {
1828 if (ret & VM_FAULT_OOM)
1829 return i ? i : -ENOMEM;
1830 if (ret & (VM_FAULT_HWPOISON |
1831 VM_FAULT_HWPOISON_LARGE)) {
1832 if (i)
1833 return i;
1834 else if (gup_flags & FOLL_HWPOISON)
1835 return -EHWPOISON;
1836 else
1837 return -EFAULT;
1838 }
1839 if (ret & (VM_FAULT_SIGBUS |
1840 VM_FAULT_SIGSEGV))
1841 return i ? i : -EFAULT;
1842 BUG();
1843 }
1844
1845 if (tsk) {
1846 if (ret & VM_FAULT_MAJOR)
1847 tsk->maj_flt++;
1848 else
1849 tsk->min_flt++;
1850 }
1851
1852 if (ret & VM_FAULT_RETRY) {
1853 if (nonblocking)
1854 *nonblocking = 0;
1855 return i;
1856 }
1857
1858 /*
1859 * The VM_FAULT_WRITE bit tells us that
1860 * do_wp_page has broken COW when necessary,
1861 * even if maybe_mkwrite decided not to set
1862 * pte_write. We can thus safely do subsequent
1863 * page lookups as if they were reads. But only
1864 * do so when looping for pte_write is futile:
1865 * in some cases userspace may also be wanting
1866 * to write to the gotten user page, which a
1867 * read fault here might prevent (a readonly
1868 * page might get reCOWed by userspace write).
1869 */
1870 if ((ret & VM_FAULT_WRITE) &&
1871 !(vma->vm_flags & VM_WRITE))
1872 foll_flags &= ~FOLL_WRITE;
1873
1874 cond_resched();
1875 }
1876 if (IS_ERR(page))
1877 return i ? i : PTR_ERR(page);
1878 if (pages) {
1879 pages[i] = page;
1880
1881 flush_anon_page(vma, page, start);
1882 flush_dcache_page(page);
1883 page_mask = 0;
1884 }
1885 next_page:
1886 if (vmas) {
1887 vmas[i] = vma;
1888 page_mask = 0;
1889 }
1890 page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
1891 if (page_increm > nr_pages)
1892 page_increm = nr_pages;
1893 i += page_increm;
1894 start += page_increm * PAGE_SIZE;
1895 nr_pages -= page_increm;
1896 } while (nr_pages && start < vma->vm_end);
1897 } while (nr_pages);
1898 return i;
1899 }
1900 EXPORT_SYMBOL(__get_user_pages);
1901
1902 /*
1903 * fixup_user_fault() - manually resolve a user page fault
1904 * @tsk: the task_struct to use for page fault accounting, or
1905 * NULL if faults are not to be recorded.
1906 * @mm: mm_struct of target mm
1907 * @address: user address
1908 * @fault_flags:flags to pass down to handle_mm_fault()
1909 *
1910 * This is meant to be called in the specific scenario where for locking reasons
1911 * we try to access user memory in atomic context (within a pagefault_disable()
1912 * section), this returns -EFAULT, and we want to resolve the user fault before
1913 * trying again.
1914 *
1915 * Typically this is meant to be used by the futex code.
1916 *
1917 * The main difference with get_user_pages() is that this function will
1918 * unconditionally call handle_mm_fault() which will in turn perform all the
1919 * necessary SW fixup of the dirty and young bits in the PTE, while
1920 * handle_mm_fault() only guarantees to update these in the struct page.
1921 *
1922 * This is important for some architectures where those bits also gate the
1923 * access permission to the page because they are maintained in software. On
1924 * such architectures, gup() will not be enough to make a subsequent access
1925 * succeed.
1926 *
1927 * This should be called with the mm_sem held for read.
1928 */
1929 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1930 unsigned long address, unsigned int fault_flags)
1931 {
1932 struct vm_area_struct *vma;
1933 vm_flags_t vm_flags;
1934 int ret;
1935
1936 vma = find_extend_vma(mm, address);
1937 if (!vma || address < vma->vm_start)
1938 return -EFAULT;
1939
1940 vm_flags = (fault_flags & FAULT_FLAG_WRITE) ? VM_WRITE : VM_READ;
1941 if (!(vm_flags & vma->vm_flags))
1942 return -EFAULT;
1943
1944 ret = handle_mm_fault(mm, vma, address, fault_flags);
1945 if (ret & VM_FAULT_ERROR) {
1946 if (ret & VM_FAULT_OOM)
1947 return -ENOMEM;
1948 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1949 return -EHWPOISON;
1950 if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
1951 return -EFAULT;
1952 BUG();
1953 }
1954 if (tsk) {
1955 if (ret & VM_FAULT_MAJOR)
1956 tsk->maj_flt++;
1957 else
1958 tsk->min_flt++;
1959 }
1960 return 0;
1961 }
1962
1963 /*
1964 * get_user_pages() - pin user pages in memory
1965 * @tsk: the task_struct to use for page fault accounting, or
1966 * NULL if faults are not to be recorded.
1967 * @mm: mm_struct of target mm
1968 * @start: starting user address
1969 * @nr_pages: number of pages from start to pin
1970 * @write: whether pages will be written to by the caller
1971 * @force: whether to force write access even if user mapping is
1972 * readonly. This will result in the page being COWed even
1973 * in MAP_SHARED mappings. You do not want this.
1974 * @pages: array that receives pointers to the pages pinned.
1975 * Should be at least nr_pages long. Or NULL, if caller
1976 * only intends to ensure the pages are faulted in.
1977 * @vmas: array of pointers to vmas corresponding to each page.
1978 * Or NULL if the caller does not require them.
1979 *
1980 * Returns number of pages pinned. This may be fewer than the number
1981 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1982 * were pinned, returns -errno. Each page returned must be released
1983 * with a put_page() call when it is finished with. vmas will only
1984 * remain valid while mmap_sem is held.
1985 *
1986 * Must be called with mmap_sem held for read or write.
1987 *
1988 * get_user_pages walks a process's page tables and takes a reference to
1989 * each struct page that each user address corresponds to at a given
1990 * instant. That is, it takes the page that would be accessed if a user
1991 * thread accesses the given user virtual address at that instant.
1992 *
1993 * This does not guarantee that the page exists in the user mappings when
1994 * get_user_pages returns, and there may even be a completely different
1995 * page there in some cases (eg. if mmapped pagecache has been invalidated
1996 * and subsequently re faulted). However it does guarantee that the page
1997 * won't be freed completely. And mostly callers simply care that the page
1998 * contains data that was valid *at some point in time*. Typically, an IO
1999 * or similar operation cannot guarantee anything stronger anyway because
2000 * locks can't be held over the syscall boundary.
2001 *
2002 * If write=0, the page must not be written to. If the page is written to,
2003 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
2004 * after the page is finished with, and before put_page is called.
2005 *
2006 * get_user_pages is typically used for fewer-copy IO operations, to get a
2007 * handle on the memory by some means other than accesses via the user virtual
2008 * addresses. The pages may be submitted for DMA to devices or accessed via
2009 * their kernel linear mapping (via the kmap APIs). Care should be taken to
2010 * use the correct cache flushing APIs.
2011 *
2012 * See also get_user_pages_fast, for performance critical applications.
2013 */
2014 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
2015 unsigned long start, unsigned long nr_pages, int write,
2016 int force, struct page **pages, struct vm_area_struct **vmas)
2017 {
2018 int flags = FOLL_TOUCH;
2019
2020 if (pages)
2021 flags |= FOLL_GET;
2022 if (write)
2023 flags |= FOLL_WRITE;
2024 if (force)
2025 flags |= FOLL_FORCE;
2026
2027 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
2028 NULL);
2029 }
2030 EXPORT_SYMBOL(get_user_pages);
2031
2032 /**
2033 * get_dump_page() - pin user page in memory while writing it to core dump
2034 * @addr: user address
2035 *
2036 * Returns struct page pointer of user page pinned for dump,
2037 * to be freed afterwards by page_cache_release() or put_page().
2038 *
2039 * Returns NULL on any kind of failure - a hole must then be inserted into
2040 * the corefile, to preserve alignment with its headers; and also returns
2041 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2042 * allowing a hole to be left in the corefile to save diskspace.
2043 *
2044 * Called without mmap_sem, but after all other threads have been killed.
2045 */
2046 #ifdef CONFIG_ELF_CORE
2047 struct page *get_dump_page(unsigned long addr)
2048 {
2049 struct vm_area_struct *vma;
2050 struct page *page;
2051
2052 if (__get_user_pages(current, current->mm, addr, 1,
2053 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
2054 NULL) < 1)
2055 return NULL;
2056 flush_cache_page(vma, addr, page_to_pfn(page));
2057 return page;
2058 }
2059 #endif /* CONFIG_ELF_CORE */
2060
2061 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2062 spinlock_t **ptl)
2063 {
2064 pgd_t * pgd = pgd_offset(mm, addr);
2065 pud_t * pud = pud_alloc(mm, pgd, addr);
2066 if (pud) {
2067 pmd_t * pmd = pmd_alloc(mm, pud, addr);
2068 if (pmd) {
2069 VM_BUG_ON(pmd_trans_huge(*pmd));
2070 return pte_alloc_map_lock(mm, pmd, addr, ptl);
2071 }
2072 }
2073 return NULL;
2074 }
2075
2076 /*
2077 * This is the old fallback for page remapping.
2078 *
2079 * For historical reasons, it only allows reserved pages. Only
2080 * old drivers should use this, and they needed to mark their
2081 * pages reserved for the old functions anyway.
2082 */
2083 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2084 struct page *page, pgprot_t prot)
2085 {
2086 struct mm_struct *mm = vma->vm_mm;
2087 int retval;
2088 pte_t *pte;
2089 spinlock_t *ptl;
2090
2091 retval = -EINVAL;
2092 if (PageAnon(page))
2093 goto out;
2094 retval = -ENOMEM;
2095 flush_dcache_page(page);
2096 pte = get_locked_pte(mm, addr, &ptl);
2097 if (!pte)
2098 goto out;
2099 retval = -EBUSY;
2100 if (!pte_none(*pte))
2101 goto out_unlock;
2102
2103 /* Ok, finally just insert the thing.. */
2104 get_page(page);
2105 inc_mm_counter_fast(mm, MM_FILEPAGES);
2106 page_add_file_rmap(page);
2107 set_pte_at(mm, addr, pte, mk_pte(page, prot));
2108
2109 retval = 0;
2110 pte_unmap_unlock(pte, ptl);
2111 return retval;
2112 out_unlock:
2113 pte_unmap_unlock(pte, ptl);
2114 out:
2115 return retval;
2116 }
2117
2118 /**
2119 * vm_insert_page - insert single page into user vma
2120 * @vma: user vma to map to
2121 * @addr: target user address of this page
2122 * @page: source kernel page
2123 *
2124 * This allows drivers to insert individual pages they've allocated
2125 * into a user vma.
2126 *
2127 * The page has to be a nice clean _individual_ kernel allocation.
2128 * If you allocate a compound page, you need to have marked it as
2129 * such (__GFP_COMP), or manually just split the page up yourself
2130 * (see split_page()).
2131 *
2132 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2133 * took an arbitrary page protection parameter. This doesn't allow
2134 * that. Your vma protection will have to be set up correctly, which
2135 * means that if you want a shared writable mapping, you'd better
2136 * ask for a shared writable mapping!
2137 *
2138 * The page does not need to be reserved.
2139 *
2140 * Usually this function is called from f_op->mmap() handler
2141 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
2142 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2143 * function from other places, for example from page-fault handler.
2144 */
2145 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2146 struct page *page)
2147 {
2148 if (addr < vma->vm_start || addr >= vma->vm_end)
2149 return -EFAULT;
2150 if (!page_count(page))
2151 return -EINVAL;
2152 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2153 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
2154 BUG_ON(vma->vm_flags & VM_PFNMAP);
2155 vma->vm_flags |= VM_MIXEDMAP;
2156 }
2157 return insert_page(vma, addr, page, vma->vm_page_prot);
2158 }
2159 EXPORT_SYMBOL(vm_insert_page);
2160
2161 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2162 unsigned long pfn, pgprot_t prot)
2163 {
2164 struct mm_struct *mm = vma->vm_mm;
2165 int retval;
2166 pte_t *pte, entry;
2167 spinlock_t *ptl;
2168
2169 retval = -ENOMEM;
2170 pte = get_locked_pte(mm, addr, &ptl);
2171 if (!pte)
2172 goto out;
2173 retval = -EBUSY;
2174 if (!pte_none(*pte))
2175 goto out_unlock;
2176
2177 /* Ok, finally just insert the thing.. */
2178 entry = pte_mkspecial(pfn_pte(pfn, prot));
2179 set_pte_at(mm, addr, pte, entry);
2180 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2181
2182 retval = 0;
2183 out_unlock:
2184 pte_unmap_unlock(pte, ptl);
2185 out:
2186 return retval;
2187 }
2188
2189 /**
2190 * vm_insert_pfn - insert single pfn into user vma
2191 * @vma: user vma to map to
2192 * @addr: target user address of this page
2193 * @pfn: source kernel pfn
2194 *
2195 * Similar to vm_insert_page, this allows drivers to insert individual pages
2196 * they've allocated into a user vma. Same comments apply.
2197 *
2198 * This function should only be called from a vm_ops->fault handler, and
2199 * in that case the handler should return NULL.
2200 *
2201 * vma cannot be a COW mapping.
2202 *
2203 * As this is called only for pages that do not currently exist, we
2204 * do not need to flush old virtual caches or the TLB.
2205 */
2206 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2207 unsigned long pfn)
2208 {
2209 int ret;
2210 pgprot_t pgprot = vma->vm_page_prot;
2211 /*
2212 * Technically, architectures with pte_special can avoid all these
2213 * restrictions (same for remap_pfn_range). However we would like
2214 * consistency in testing and feature parity among all, so we should
2215 * try to keep these invariants in place for everybody.
2216 */
2217 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2218 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2219 (VM_PFNMAP|VM_MIXEDMAP));
2220 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2221 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2222
2223 if (addr < vma->vm_start || addr >= vma->vm_end)
2224 return -EFAULT;
2225 if (track_pfn_insert(vma, &pgprot, pfn))
2226 return -EINVAL;
2227
2228 ret = insert_pfn(vma, addr, pfn, pgprot);
2229
2230 return ret;
2231 }
2232 EXPORT_SYMBOL(vm_insert_pfn);
2233
2234 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2235 unsigned long pfn)
2236 {
2237 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2238
2239 if (addr < vma->vm_start || addr >= vma->vm_end)
2240 return -EFAULT;
2241
2242 /*
2243 * If we don't have pte special, then we have to use the pfn_valid()
2244 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2245 * refcount the page if pfn_valid is true (hence insert_page rather
2246 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2247 * without pte special, it would there be refcounted as a normal page.
2248 */
2249 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2250 struct page *page;
2251
2252 page = pfn_to_page(pfn);
2253 return insert_page(vma, addr, page, vma->vm_page_prot);
2254 }
2255 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2256 }
2257 EXPORT_SYMBOL(vm_insert_mixed);
2258
2259 /*
2260 * maps a range of physical memory into the requested pages. the old
2261 * mappings are removed. any references to nonexistent pages results
2262 * in null mappings (currently treated as "copy-on-access")
2263 */
2264 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2265 unsigned long addr, unsigned long end,
2266 unsigned long pfn, pgprot_t prot)
2267 {
2268 pte_t *pte;
2269 spinlock_t *ptl;
2270
2271 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2272 if (!pte)
2273 return -ENOMEM;
2274 arch_enter_lazy_mmu_mode();
2275 do {
2276 BUG_ON(!pte_none(*pte));
2277 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2278 pfn++;
2279 } while (pte++, addr += PAGE_SIZE, addr != end);
2280 arch_leave_lazy_mmu_mode();
2281 pte_unmap_unlock(pte - 1, ptl);
2282 return 0;
2283 }
2284
2285 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2286 unsigned long addr, unsigned long end,
2287 unsigned long pfn, pgprot_t prot)
2288 {
2289 pmd_t *pmd;
2290 unsigned long next;
2291
2292 pfn -= addr >> PAGE_SHIFT;
2293 pmd = pmd_alloc(mm, pud, addr);
2294 if (!pmd)
2295 return -ENOMEM;
2296 VM_BUG_ON(pmd_trans_huge(*pmd));
2297 do {
2298 next = pmd_addr_end(addr, end);
2299 if (remap_pte_range(mm, pmd, addr, next,
2300 pfn + (addr >> PAGE_SHIFT), prot))
2301 return -ENOMEM;
2302 } while (pmd++, addr = next, addr != end);
2303 return 0;
2304 }
2305
2306 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2307 unsigned long addr, unsigned long end,
2308 unsigned long pfn, pgprot_t prot)
2309 {
2310 pud_t *pud;
2311 unsigned long next;
2312
2313 pfn -= addr >> PAGE_SHIFT;
2314 pud = pud_alloc(mm, pgd, addr);
2315 if (!pud)
2316 return -ENOMEM;
2317 do {
2318 next = pud_addr_end(addr, end);
2319 if (remap_pmd_range(mm, pud, addr, next,
2320 pfn + (addr >> PAGE_SHIFT), prot))
2321 return -ENOMEM;
2322 } while (pud++, addr = next, addr != end);
2323 return 0;
2324 }
2325
2326 /**
2327 * remap_pfn_range - remap kernel memory to userspace
2328 * @vma: user vma to map to
2329 * @addr: target user address to start at
2330 * @pfn: physical address of kernel memory
2331 * @size: size of map area
2332 * @prot: page protection flags for this mapping
2333 *
2334 * Note: this is only safe if the mm semaphore is held when called.
2335 */
2336 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2337 unsigned long pfn, unsigned long size, pgprot_t prot)
2338 {
2339 pgd_t *pgd;
2340 unsigned long next;
2341 unsigned long end = addr + PAGE_ALIGN(size);
2342 struct mm_struct *mm = vma->vm_mm;
2343 int err;
2344
2345 /*
2346 * Physically remapped pages are special. Tell the
2347 * rest of the world about it:
2348 * VM_IO tells people not to look at these pages
2349 * (accesses can have side effects).
2350 * VM_PFNMAP tells the core MM that the base pages are just
2351 * raw PFN mappings, and do not have a "struct page" associated
2352 * with them.
2353 * VM_DONTEXPAND
2354 * Disable vma merging and expanding with mremap().
2355 * VM_DONTDUMP
2356 * Omit vma from core dump, even when VM_IO turned off.
2357 *
2358 * There's a horrible special case to handle copy-on-write
2359 * behaviour that some programs depend on. We mark the "original"
2360 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2361 * See vm_normal_page() for details.
2362 */
2363 if (is_cow_mapping(vma->vm_flags)) {
2364 if (addr != vma->vm_start || end != vma->vm_end)
2365 return -EINVAL;
2366 vma->vm_pgoff = pfn;
2367 }
2368
2369 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2370 if (err)
2371 return -EINVAL;
2372
2373 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2374
2375 BUG_ON(addr >= end);
2376 pfn -= addr >> PAGE_SHIFT;
2377 pgd = pgd_offset(mm, addr);
2378 flush_cache_range(vma, addr, end);
2379 do {
2380 next = pgd_addr_end(addr, end);
2381 err = remap_pud_range(mm, pgd, addr, next,
2382 pfn + (addr >> PAGE_SHIFT), prot);
2383 if (err)
2384 break;
2385 } while (pgd++, addr = next, addr != end);
2386
2387 if (err)
2388 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2389
2390 return err;
2391 }
2392 EXPORT_SYMBOL(remap_pfn_range);
2393
2394 /**
2395 * vm_iomap_memory - remap memory to userspace
2396 * @vma: user vma to map to
2397 * @start: start of area
2398 * @len: size of area
2399 *
2400 * This is a simplified io_remap_pfn_range() for common driver use. The
2401 * driver just needs to give us the physical memory range to be mapped,
2402 * we'll figure out the rest from the vma information.
2403 *
2404 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2405 * whatever write-combining details or similar.
2406 */
2407 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2408 {
2409 unsigned long vm_len, pfn, pages;
2410
2411 /* Check that the physical memory area passed in looks valid */
2412 if (start + len < start)
2413 return -EINVAL;
2414 /*
2415 * You *really* shouldn't map things that aren't page-aligned,
2416 * but we've historically allowed it because IO memory might
2417 * just have smaller alignment.
2418 */
2419 len += start & ~PAGE_MASK;
2420 pfn = start >> PAGE_SHIFT;
2421 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2422 if (pfn + pages < pfn)
2423 return -EINVAL;
2424
2425 /* We start the mapping 'vm_pgoff' pages into the area */
2426 if (vma->vm_pgoff > pages)
2427 return -EINVAL;
2428 pfn += vma->vm_pgoff;
2429 pages -= vma->vm_pgoff;
2430
2431 /* Can we fit all of the mapping? */
2432 vm_len = vma->vm_end - vma->vm_start;
2433 if (vm_len >> PAGE_SHIFT > pages)
2434 return -EINVAL;
2435
2436 /* Ok, let it rip */
2437 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2438 }
2439 EXPORT_SYMBOL(vm_iomap_memory);
2440
2441 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2442 unsigned long addr, unsigned long end,
2443 pte_fn_t fn, void *data)
2444 {
2445 pte_t *pte;
2446 int err;
2447 pgtable_t token;
2448 spinlock_t *uninitialized_var(ptl);
2449
2450 pte = (mm == &init_mm) ?
2451 pte_alloc_kernel(pmd, addr) :
2452 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2453 if (!pte)
2454 return -ENOMEM;
2455
2456 BUG_ON(pmd_huge(*pmd));
2457
2458 arch_enter_lazy_mmu_mode();
2459
2460 token = pmd_pgtable(*pmd);
2461
2462 do {
2463 err = fn(pte++, token, addr, data);
2464 if (err)
2465 break;
2466 } while (addr += PAGE_SIZE, addr != end);
2467
2468 arch_leave_lazy_mmu_mode();
2469
2470 if (mm != &init_mm)
2471 pte_unmap_unlock(pte-1, ptl);
2472 return err;
2473 }
2474
2475 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2476 unsigned long addr, unsigned long end,
2477 pte_fn_t fn, void *data)
2478 {
2479 pmd_t *pmd;
2480 unsigned long next;
2481 int err;
2482
2483 BUG_ON(pud_huge(*pud));
2484
2485 pmd = pmd_alloc(mm, pud, addr);
2486 if (!pmd)
2487 return -ENOMEM;
2488 do {
2489 next = pmd_addr_end(addr, end);
2490 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2491 if (err)
2492 break;
2493 } while (pmd++, addr = next, addr != end);
2494 return err;
2495 }
2496
2497 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2498 unsigned long addr, unsigned long end,
2499 pte_fn_t fn, void *data)
2500 {
2501 pud_t *pud;
2502 unsigned long next;
2503 int err;
2504
2505 pud = pud_alloc(mm, pgd, addr);
2506 if (!pud)
2507 return -ENOMEM;
2508 do {
2509 next = pud_addr_end(addr, end);
2510 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2511 if (err)
2512 break;
2513 } while (pud++, addr = next, addr != end);
2514 return err;
2515 }
2516
2517 /*
2518 * Scan a region of virtual memory, filling in page tables as necessary
2519 * and calling a provided function on each leaf page table.
2520 */
2521 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2522 unsigned long size, pte_fn_t fn, void *data)
2523 {
2524 pgd_t *pgd;
2525 unsigned long next;
2526 unsigned long end = addr + size;
2527 int err;
2528
2529 BUG_ON(addr >= end);
2530 pgd = pgd_offset(mm, addr);
2531 do {
2532 next = pgd_addr_end(addr, end);
2533 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2534 if (err)
2535 break;
2536 } while (pgd++, addr = next, addr != end);
2537
2538 return err;
2539 }
2540 EXPORT_SYMBOL_GPL(apply_to_page_range);
2541
2542 /*
2543 * handle_pte_fault chooses page fault handler according to an entry
2544 * which was read non-atomically. Before making any commitment, on
2545 * those architectures or configurations (e.g. i386 with PAE) which
2546 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2547 * must check under lock before unmapping the pte and proceeding
2548 * (but do_wp_page is only called after already making such a check;
2549 * and do_anonymous_page can safely check later on).
2550 */
2551 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2552 pte_t *page_table, pte_t orig_pte)
2553 {
2554 int same = 1;
2555 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2556 if (sizeof(pte_t) > sizeof(unsigned long)) {
2557 spinlock_t *ptl = pte_lockptr(mm, pmd);
2558 spin_lock(ptl);
2559 same = pte_same(*page_table, orig_pte);
2560 spin_unlock(ptl);
2561 }
2562 #endif
2563 pte_unmap(page_table);
2564 return same;
2565 }
2566
2567 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2568 {
2569 debug_dma_assert_idle(src);
2570
2571 /*
2572 * If the source page was a PFN mapping, we don't have
2573 * a "struct page" for it. We do a best-effort copy by
2574 * just copying from the original user address. If that
2575 * fails, we just zero-fill it. Live with it.
2576 */
2577 if (unlikely(!src)) {
2578 void *kaddr = kmap_atomic(dst);
2579 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2580
2581 /*
2582 * This really shouldn't fail, because the page is there
2583 * in the page tables. But it might just be unreadable,
2584 * in which case we just give up and fill the result with
2585 * zeroes.
2586 */
2587 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2588 clear_page(kaddr);
2589 kunmap_atomic(kaddr);
2590 flush_dcache_page(dst);
2591 } else
2592 copy_user_highpage(dst, src, va, vma);
2593 }
2594
2595 /*
2596 * This routine handles present pages, when users try to write
2597 * to a shared page. It is done by copying the page to a new address
2598 * and decrementing the shared-page counter for the old page.
2599 *
2600 * Note that this routine assumes that the protection checks have been
2601 * done by the caller (the low-level page fault routine in most cases).
2602 * Thus we can safely just mark it writable once we've done any necessary
2603 * COW.
2604 *
2605 * We also mark the page dirty at this point even though the page will
2606 * change only once the write actually happens. This avoids a few races,
2607 * and potentially makes it more efficient.
2608 *
2609 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2610 * but allow concurrent faults), with pte both mapped and locked.
2611 * We return with mmap_sem still held, but pte unmapped and unlocked.
2612 */
2613 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2614 unsigned long address, pte_t *page_table, pmd_t *pmd,
2615 spinlock_t *ptl, pte_t orig_pte)
2616 __releases(ptl)
2617 {
2618 struct page *old_page, *new_page = NULL;
2619 pte_t entry;
2620 int ret = 0;
2621 int page_mkwrite = 0;
2622 struct page *dirty_page = NULL;
2623 unsigned long mmun_start = 0; /* For mmu_notifiers */
2624 unsigned long mmun_end = 0; /* For mmu_notifiers */
2625
2626 old_page = vm_normal_page(vma, address, orig_pte);
2627 if (!old_page) {
2628 /*
2629 * VM_MIXEDMAP !pfn_valid() case
2630 *
2631 * We should not cow pages in a shared writeable mapping.
2632 * Just mark the pages writable as we can't do any dirty
2633 * accounting on raw pfn maps.
2634 */
2635 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2636 (VM_WRITE|VM_SHARED))
2637 goto reuse;
2638 goto gotten;
2639 }
2640
2641 /*
2642 * Take out anonymous pages first, anonymous shared vmas are
2643 * not dirty accountable.
2644 */
2645 if (PageAnon(old_page) && !PageKsm(old_page)) {
2646 if (!trylock_page(old_page)) {
2647 page_cache_get(old_page);
2648 pte_unmap_unlock(page_table, ptl);
2649 lock_page(old_page);
2650 page_table = pte_offset_map_lock(mm, pmd, address,
2651 &ptl);
2652 if (!pte_same(*page_table, orig_pte)) {
2653 unlock_page(old_page);
2654 goto unlock;
2655 }
2656 page_cache_release(old_page);
2657 }
2658 if (reuse_swap_page(old_page)) {
2659 /*
2660 * The page is all ours. Move it to our anon_vma so
2661 * the rmap code will not search our parent or siblings.
2662 * Protected against the rmap code by the page lock.
2663 */
2664 page_move_anon_rmap(old_page, vma, address);
2665 unlock_page(old_page);
2666 goto reuse;
2667 }
2668 unlock_page(old_page);
2669 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2670 (VM_WRITE|VM_SHARED))) {
2671 /*
2672 * Only catch write-faults on shared writable pages,
2673 * read-only shared pages can get COWed by
2674 * get_user_pages(.write=1, .force=1).
2675 */
2676 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2677 struct vm_fault vmf;
2678 int tmp;
2679
2680 vmf.virtual_address = (void __user *)(address &
2681 PAGE_MASK);
2682 vmf.pgoff = old_page->index;
2683 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2684 vmf.page = old_page;
2685
2686 /*
2687 * Notify the address space that the page is about to
2688 * become writable so that it can prohibit this or wait
2689 * for the page to get into an appropriate state.
2690 *
2691 * We do this without the lock held, so that it can
2692 * sleep if it needs to.
2693 */
2694 page_cache_get(old_page);
2695 pte_unmap_unlock(page_table, ptl);
2696
2697 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2698 if (unlikely(tmp &
2699 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2700 ret = tmp;
2701 goto unwritable_page;
2702 }
2703 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2704 lock_page(old_page);
2705 if (!old_page->mapping) {
2706 ret = 0; /* retry the fault */
2707 unlock_page(old_page);
2708 goto unwritable_page;
2709 }
2710 } else
2711 VM_BUG_ON_PAGE(!PageLocked(old_page), old_page);
2712
2713 /*
2714 * Since we dropped the lock we need to revalidate
2715 * the PTE as someone else may have changed it. If
2716 * they did, we just return, as we can count on the
2717 * MMU to tell us if they didn't also make it writable.
2718 */
2719 page_table = pte_offset_map_lock(mm, pmd, address,
2720 &ptl);
2721 if (!pte_same(*page_table, orig_pte)) {
2722 unlock_page(old_page);
2723 goto unlock;
2724 }
2725
2726 page_mkwrite = 1;
2727 }
2728 dirty_page = old_page;
2729 get_page(dirty_page);
2730
2731 reuse:
2732 /*
2733 * Clear the pages cpupid information as the existing
2734 * information potentially belongs to a now completely
2735 * unrelated process.
2736 */
2737 if (old_page)
2738 page_cpupid_xchg_last(old_page, (1 << LAST_CPUPID_SHIFT) - 1);
2739
2740 flush_cache_page(vma, address, pte_pfn(orig_pte));
2741 entry = pte_mkyoung(orig_pte);
2742 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2743 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2744 update_mmu_cache(vma, address, page_table);
2745 pte_unmap_unlock(page_table, ptl);
2746 ret |= VM_FAULT_WRITE;
2747
2748 if (!dirty_page)
2749 return ret;
2750
2751 /*
2752 * Yes, Virginia, this is actually required to prevent a race
2753 * with clear_page_dirty_for_io() from clearing the page dirty
2754 * bit after it clear all dirty ptes, but before a racing
2755 * do_wp_page installs a dirty pte.
2756 *
2757 * __do_fault is protected similarly.
2758 */
2759 if (!page_mkwrite) {
2760 wait_on_page_locked(dirty_page);
2761 set_page_dirty_balance(dirty_page, page_mkwrite);
2762 /* file_update_time outside page_lock */
2763 if (vma->vm_file)
2764 file_update_time(vma->vm_file);
2765 }
2766 put_page(dirty_page);
2767 if (page_mkwrite) {
2768 struct address_space *mapping = dirty_page->mapping;
2769
2770 set_page_dirty(dirty_page);
2771 unlock_page(dirty_page);
2772 page_cache_release(dirty_page);
2773 if (mapping) {
2774 /*
2775 * Some device drivers do not set page.mapping
2776 * but still dirty their pages
2777 */
2778 balance_dirty_pages_ratelimited(mapping);
2779 }
2780 }
2781
2782 return ret;
2783 }
2784
2785 /*
2786 * Ok, we need to copy. Oh, well..
2787 */
2788 page_cache_get(old_page);
2789 gotten:
2790 pte_unmap_unlock(page_table, ptl);
2791
2792 if (unlikely(anon_vma_prepare(vma)))
2793 goto oom;
2794
2795 if (is_zero_pfn(pte_pfn(orig_pte))) {
2796 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2797 if (!new_page)
2798 goto oom;
2799 } else {
2800 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2801 if (!new_page)
2802 goto oom;
2803 cow_user_page(new_page, old_page, address, vma);
2804 }
2805 __SetPageUptodate(new_page);
2806
2807 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2808 goto oom_free_new;
2809
2810 mmun_start = address & PAGE_MASK;
2811 mmun_end = mmun_start + PAGE_SIZE;
2812 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2813
2814 /*
2815 * Re-check the pte - we dropped the lock
2816 */
2817 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2818 if (likely(pte_same(*page_table, orig_pte))) {
2819 if (old_page) {
2820 if (!PageAnon(old_page)) {
2821 dec_mm_counter_fast(mm, MM_FILEPAGES);
2822 inc_mm_counter_fast(mm, MM_ANONPAGES);
2823 }
2824 } else
2825 inc_mm_counter_fast(mm, MM_ANONPAGES);
2826 flush_cache_page(vma, address, pte_pfn(orig_pte));
2827 entry = mk_pte(new_page, vma->vm_page_prot);
2828 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2829 /*
2830 * Clear the pte entry and flush it first, before updating the
2831 * pte with the new entry. This will avoid a race condition
2832 * seen in the presence of one thread doing SMC and another
2833 * thread doing COW.
2834 */
2835 ptep_clear_flush(vma, address, page_table);
2836 page_add_new_anon_rmap(new_page, vma, address);
2837 /*
2838 * We call the notify macro here because, when using secondary
2839 * mmu page tables (such as kvm shadow page tables), we want the
2840 * new page to be mapped directly into the secondary page table.
2841 */
2842 set_pte_at_notify(mm, address, page_table, entry);
2843 update_mmu_cache(vma, address, page_table);
2844 if (old_page) {
2845 /*
2846 * Only after switching the pte to the new page may
2847 * we remove the mapcount here. Otherwise another
2848 * process may come and find the rmap count decremented
2849 * before the pte is switched to the new page, and
2850 * "reuse" the old page writing into it while our pte
2851 * here still points into it and can be read by other
2852 * threads.
2853 *
2854 * The critical issue is to order this
2855 * page_remove_rmap with the ptp_clear_flush above.
2856 * Those stores are ordered by (if nothing else,)
2857 * the barrier present in the atomic_add_negative
2858 * in page_remove_rmap.
2859 *
2860 * Then the TLB flush in ptep_clear_flush ensures that
2861 * no process can access the old page before the
2862 * decremented mapcount is visible. And the old page
2863 * cannot be reused until after the decremented
2864 * mapcount is visible. So transitively, TLBs to
2865 * old page will be flushed before it can be reused.
2866 */
2867 page_remove_rmap(old_page);
2868 }
2869
2870 /* Free the old page.. */
2871 new_page = old_page;
2872 ret |= VM_FAULT_WRITE;
2873 } else
2874 mem_cgroup_uncharge_page(new_page);
2875
2876 if (new_page)
2877 page_cache_release(new_page);
2878 unlock:
2879 pte_unmap_unlock(page_table, ptl);
2880 if (mmun_end > mmun_start)
2881 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2882 if (old_page) {
2883 /*
2884 * Don't let another task, with possibly unlocked vma,
2885 * keep the mlocked page.
2886 */
2887 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2888 lock_page(old_page); /* LRU manipulation */
2889 munlock_vma_page(old_page);
2890 unlock_page(old_page);
2891 }
2892 page_cache_release(old_page);
2893 }
2894 return ret;
2895 oom_free_new:
2896 page_cache_release(new_page);
2897 oom:
2898 if (old_page)
2899 page_cache_release(old_page);
2900 return VM_FAULT_OOM;
2901
2902 unwritable_page:
2903 page_cache_release(old_page);
2904 return ret;
2905 }
2906
2907 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2908 unsigned long start_addr, unsigned long end_addr,
2909 struct zap_details *details)
2910 {
2911 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2912 }
2913
2914 static inline void unmap_mapping_range_tree(struct rb_root *root,
2915 struct zap_details *details)
2916 {
2917 struct vm_area_struct *vma;
2918 pgoff_t vba, vea, zba, zea;
2919
2920 vma_interval_tree_foreach(vma, root,
2921 details->first_index, details->last_index) {
2922
2923 vba = vma->vm_pgoff;
2924 vea = vba + vma_pages(vma) - 1;
2925 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2926 zba = details->first_index;
2927 if (zba < vba)
2928 zba = vba;
2929 zea = details->last_index;
2930 if (zea > vea)
2931 zea = vea;
2932
2933 unmap_mapping_range_vma(vma,
2934 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2935 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2936 details);
2937 }
2938 }
2939
2940 static inline void unmap_mapping_range_list(struct list_head *head,
2941 struct zap_details *details)
2942 {
2943 struct vm_area_struct *vma;
2944
2945 /*
2946 * In nonlinear VMAs there is no correspondence between virtual address
2947 * offset and file offset. So we must perform an exhaustive search
2948 * across *all* the pages in each nonlinear VMA, not just the pages
2949 * whose virtual address lies outside the file truncation point.
2950 */
2951 list_for_each_entry(vma, head, shared.nonlinear) {
2952 details->nonlinear_vma = vma;
2953 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2954 }
2955 }
2956
2957 /**
2958 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2959 * @mapping: the address space containing mmaps to be unmapped.
2960 * @holebegin: byte in first page to unmap, relative to the start of
2961 * the underlying file. This will be rounded down to a PAGE_SIZE
2962 * boundary. Note that this is different from truncate_pagecache(), which
2963 * must keep the partial page. In contrast, we must get rid of
2964 * partial pages.
2965 * @holelen: size of prospective hole in bytes. This will be rounded
2966 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2967 * end of the file.
2968 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2969 * but 0 when invalidating pagecache, don't throw away private data.
2970 */
2971 void unmap_mapping_range(struct address_space *mapping,
2972 loff_t const holebegin, loff_t const holelen, int even_cows)
2973 {
2974 struct zap_details details;
2975 pgoff_t hba = holebegin >> PAGE_SHIFT;
2976 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2977
2978 /* Check for overflow. */
2979 if (sizeof(holelen) > sizeof(hlen)) {
2980 long long holeend =
2981 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2982 if (holeend & ~(long long)ULONG_MAX)
2983 hlen = ULONG_MAX - hba + 1;
2984 }
2985
2986 details.check_mapping = even_cows? NULL: mapping;
2987 details.nonlinear_vma = NULL;
2988 details.first_index = hba;
2989 details.last_index = hba + hlen - 1;
2990 if (details.last_index < details.first_index)
2991 details.last_index = ULONG_MAX;
2992
2993
2994 mutex_lock(&mapping->i_mmap_mutex);
2995 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2996 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2997 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2998 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2999 mutex_unlock(&mapping->i_mmap_mutex);
3000 }
3001 EXPORT_SYMBOL(unmap_mapping_range);
3002
3003 /*
3004 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3005 * but allow concurrent faults), and pte mapped but not yet locked.
3006 * We return with mmap_sem still held, but pte unmapped and unlocked.
3007 */
3008 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
3009 unsigned long address, pte_t *page_table, pmd_t *pmd,
3010 unsigned int flags, pte_t orig_pte)
3011 {
3012 spinlock_t *ptl;
3013 struct page *page, *swapcache;
3014 swp_entry_t entry;
3015 pte_t pte;
3016 int locked;
3017 struct mem_cgroup *ptr;
3018 int exclusive = 0;
3019 int ret = 0;
3020
3021 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3022 goto out;
3023
3024 entry = pte_to_swp_entry(orig_pte);
3025 if (unlikely(non_swap_entry(entry))) {
3026 if (is_migration_entry(entry)) {
3027 migration_entry_wait(mm, pmd, address);
3028 } else if (is_hwpoison_entry(entry)) {
3029 ret = VM_FAULT_HWPOISON;
3030 } else {
3031 print_bad_pte(vma, address, orig_pte, NULL);
3032 ret = VM_FAULT_SIGBUS;
3033 }
3034 goto out;
3035 }
3036 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3037 page = lookup_swap_cache(entry);
3038 if (!page) {
3039 page = swapin_readahead(entry,
3040 GFP_HIGHUSER_MOVABLE, vma, address);
3041 if (!page) {
3042 /*
3043 * Back out if somebody else faulted in this pte
3044 * while we released the pte lock.
3045 */
3046 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3047 if (likely(pte_same(*page_table, orig_pte)))
3048 ret = VM_FAULT_OOM;
3049 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3050 goto unlock;
3051 }
3052
3053 /* Had to read the page from swap area: Major fault */
3054 ret = VM_FAULT_MAJOR;
3055 count_vm_event(PGMAJFAULT);
3056 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
3057 } else if (PageHWPoison(page)) {
3058 /*
3059 * hwpoisoned dirty swapcache pages are kept for killing
3060 * owner processes (which may be unknown at hwpoison time)
3061 */
3062 ret = VM_FAULT_HWPOISON;
3063 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3064 swapcache = page;
3065 goto out_release;
3066 }
3067
3068 swapcache = page;
3069 locked = lock_page_or_retry(page, mm, flags);
3070
3071 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3072 if (!locked) {
3073 ret |= VM_FAULT_RETRY;
3074 goto out_release;
3075 }
3076
3077 /*
3078 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3079 * release the swapcache from under us. The page pin, and pte_same
3080 * test below, are not enough to exclude that. Even if it is still
3081 * swapcache, we need to check that the page's swap has not changed.
3082 */
3083 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
3084 goto out_page;
3085
3086 page = ksm_might_need_to_copy(page, vma, address);
3087 if (unlikely(!page)) {
3088 ret = VM_FAULT_OOM;
3089 page = swapcache;
3090 goto out_page;
3091 }
3092
3093 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
3094 ret = VM_FAULT_OOM;
3095 goto out_page;
3096 }
3097
3098 /*
3099 * Back out if somebody else already faulted in this pte.
3100 */
3101 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3102 if (unlikely(!pte_same(*page_table, orig_pte)))
3103 goto out_nomap;
3104
3105 if (unlikely(!PageUptodate(page))) {
3106 ret = VM_FAULT_SIGBUS;
3107 goto out_nomap;
3108 }
3109
3110 /*
3111 * The page isn't present yet, go ahead with the fault.
3112 *
3113 * Be careful about the sequence of operations here.
3114 * To get its accounting right, reuse_swap_page() must be called
3115 * while the page is counted on swap but not yet in mapcount i.e.
3116 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3117 * must be called after the swap_free(), or it will never succeed.
3118 * Because delete_from_swap_page() may be called by reuse_swap_page(),
3119 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3120 * in page->private. In this case, a record in swap_cgroup is silently
3121 * discarded at swap_free().
3122 */
3123
3124 inc_mm_counter_fast(mm, MM_ANONPAGES);
3125 dec_mm_counter_fast(mm, MM_SWAPENTS);
3126 pte = mk_pte(page, vma->vm_page_prot);
3127 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3128 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3129 flags &= ~FAULT_FLAG_WRITE;
3130 ret |= VM_FAULT_WRITE;
3131 exclusive = 1;
3132 }
3133 flush_icache_page(vma, page);
3134 if (pte_swp_soft_dirty(orig_pte))
3135 pte = pte_mksoft_dirty(pte);
3136 set_pte_at(mm, address, page_table, pte);
3137 if (page == swapcache)
3138 do_page_add_anon_rmap(page, vma, address, exclusive);
3139 else /* ksm created a completely new copy */
3140 page_add_new_anon_rmap(page, vma, address);
3141 /* It's better to call commit-charge after rmap is established */
3142 mem_cgroup_commit_charge_swapin(page, ptr);
3143
3144 swap_free(entry);
3145 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3146 try_to_free_swap(page);
3147 unlock_page(page);
3148 if (page != swapcache) {
3149 /*
3150 * Hold the lock to avoid the swap entry to be reused
3151 * until we take the PT lock for the pte_same() check
3152 * (to avoid false positives from pte_same). For
3153 * further safety release the lock after the swap_free
3154 * so that the swap count won't change under a
3155 * parallel locked swapcache.
3156 */
3157 unlock_page(swapcache);
3158 page_cache_release(swapcache);
3159 }
3160
3161 if (flags & FAULT_FLAG_WRITE) {
3162 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3163 if (ret & VM_FAULT_ERROR)
3164 ret &= VM_FAULT_ERROR;
3165 goto out;
3166 }
3167
3168 /* No need to invalidate - it was non-present before */
3169 update_mmu_cache(vma, address, page_table);
3170 unlock:
3171 pte_unmap_unlock(page_table, ptl);
3172 out:
3173 return ret;
3174 out_nomap:
3175 mem_cgroup_cancel_charge_swapin(ptr);
3176 pte_unmap_unlock(page_table, ptl);
3177 out_page:
3178 unlock_page(page);
3179 out_release:
3180 page_cache_release(page);
3181 if (page != swapcache) {
3182 unlock_page(swapcache);
3183 page_cache_release(swapcache);
3184 }
3185 return ret;
3186 }
3187
3188 /*
3189 * This is like a special single-page "expand_{down|up}wards()",
3190 * except we must first make sure that 'address{-|+}PAGE_SIZE'
3191 * doesn't hit another vma.
3192 */
3193 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3194 {
3195 address &= PAGE_MASK;
3196 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3197 struct vm_area_struct *prev = vma->vm_prev;
3198
3199 /*
3200 * Is there a mapping abutting this one below?
3201 *
3202 * That's only ok if it's the same stack mapping
3203 * that has gotten split..
3204 */
3205 if (prev && prev->vm_end == address)
3206 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3207
3208 return expand_downwards(vma, address - PAGE_SIZE);
3209 }
3210 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3211 struct vm_area_struct *next = vma->vm_next;
3212
3213 /* As VM_GROWSDOWN but s/below/above/ */
3214 if (next && next->vm_start == address + PAGE_SIZE)
3215 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3216
3217 return expand_upwards(vma, address + PAGE_SIZE);
3218 }
3219 return 0;
3220 }
3221
3222 /*
3223 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3224 * but allow concurrent faults), and pte mapped but not yet locked.
3225 * We return with mmap_sem still held, but pte unmapped and unlocked.
3226 */
3227 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3228 unsigned long address, pte_t *page_table, pmd_t *pmd,
3229 unsigned int flags)
3230 {
3231 struct page *page;
3232 spinlock_t *ptl;
3233 pte_t entry;
3234
3235 pte_unmap(page_table);
3236
3237 /* File mapping without ->vm_ops ? */
3238 if (vma->vm_flags & VM_SHARED)
3239 return VM_FAULT_SIGBUS;
3240
3241 /* Check if we need to add a guard page to the stack */
3242 if (check_stack_guard_page(vma, address) < 0)
3243 return VM_FAULT_SIGSEGV;
3244
3245 /* Use the zero-page for reads */
3246 if (!(flags & FAULT_FLAG_WRITE)) {
3247 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3248 vma->vm_page_prot));
3249 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3250 if (!pte_none(*page_table))
3251 goto unlock;
3252 goto setpte;
3253 }
3254
3255 /* Allocate our own private page. */
3256 if (unlikely(anon_vma_prepare(vma)))
3257 goto oom;
3258 page = alloc_zeroed_user_highpage_movable(vma, address);
3259 if (!page)
3260 goto oom;
3261 /*
3262 * The memory barrier inside __SetPageUptodate makes sure that
3263 * preceeding stores to the page contents become visible before
3264 * the set_pte_at() write.
3265 */
3266 __SetPageUptodate(page);
3267
3268 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3269 goto oom_free_page;
3270
3271 entry = mk_pte(page, vma->vm_page_prot);
3272 if (vma->vm_flags & VM_WRITE)
3273 entry = pte_mkwrite(pte_mkdirty(entry));
3274
3275 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3276 if (!pte_none(*page_table))
3277 goto release;
3278
3279 inc_mm_counter_fast(mm, MM_ANONPAGES);
3280 page_add_new_anon_rmap(page, vma, address);
3281 setpte:
3282 set_pte_at(mm, address, page_table, entry);
3283
3284 /* No need to invalidate - it was non-present before */
3285 update_mmu_cache(vma, address, page_table);
3286 unlock:
3287 pte_unmap_unlock(page_table, ptl);
3288 return 0;
3289 release:
3290 mem_cgroup_uncharge_page(page);
3291 page_cache_release(page);
3292 goto unlock;
3293 oom_free_page:
3294 page_cache_release(page);
3295 oom:
3296 return VM_FAULT_OOM;
3297 }
3298
3299 /*
3300 * __do_fault() tries to create a new page mapping. It aggressively
3301 * tries to share with existing pages, but makes a separate copy if
3302 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3303 * the next page fault.
3304 *
3305 * As this is called only for pages that do not currently exist, we
3306 * do not need to flush old virtual caches or the TLB.
3307 *
3308 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3309 * but allow concurrent faults), and pte neither mapped nor locked.
3310 * We return with mmap_sem still held, but pte unmapped and unlocked.
3311 */
3312 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3313 unsigned long address, pmd_t *pmd,
3314 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3315 {
3316 pte_t *page_table;
3317 spinlock_t *ptl;
3318 struct page *page;
3319 struct page *cow_page;
3320 pte_t entry;
3321 int anon = 0;
3322 struct page *dirty_page = NULL;
3323 struct vm_fault vmf;
3324 int ret;
3325 int page_mkwrite = 0;
3326
3327 /*
3328 * If we do COW later, allocate page befor taking lock_page()
3329 * on the file cache page. This will reduce lock holding time.
3330 */
3331 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3332
3333 if (unlikely(anon_vma_prepare(vma)))
3334 return VM_FAULT_OOM;
3335
3336 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3337 if (!cow_page)
3338 return VM_FAULT_OOM;
3339
3340 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3341 page_cache_release(cow_page);
3342 return VM_FAULT_OOM;
3343 }
3344 } else
3345 cow_page = NULL;
3346
3347 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3348 vmf.pgoff = pgoff;
3349 vmf.flags = flags;
3350 vmf.page = NULL;
3351
3352 ret = vma->vm_ops->fault(vma, &vmf);
3353 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3354 VM_FAULT_RETRY)))
3355 goto uncharge_out;
3356
3357 if (unlikely(PageHWPoison(vmf.page))) {
3358 if (ret & VM_FAULT_LOCKED)
3359 unlock_page(vmf.page);
3360 ret = VM_FAULT_HWPOISON;
3361 page_cache_release(vmf.page);
3362 goto uncharge_out;
3363 }
3364
3365 /*
3366 * For consistency in subsequent calls, make the faulted page always
3367 * locked.
3368 */
3369 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3370 lock_page(vmf.page);
3371 else
3372 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
3373
3374 /*
3375 * Should we do an early C-O-W break?
3376 */
3377 page = vmf.page;
3378 if (flags & FAULT_FLAG_WRITE) {
3379 if (!(vma->vm_flags & VM_SHARED)) {
3380 page = cow_page;
3381 anon = 1;
3382 copy_user_highpage(page, vmf.page, address, vma);
3383 __SetPageUptodate(page);
3384 } else {
3385 /*
3386 * If the page will be shareable, see if the backing
3387 * address space wants to know that the page is about
3388 * to become writable
3389 */
3390 if (vma->vm_ops->page_mkwrite) {
3391 int tmp;
3392
3393 unlock_page(page);
3394 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3395 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3396 if (unlikely(tmp &
3397 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3398 ret = tmp;
3399 goto unwritable_page;
3400 }
3401 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3402 lock_page(page);
3403 if (!page->mapping) {
3404 ret = 0; /* retry the fault */
3405 unlock_page(page);
3406 goto unwritable_page;
3407 }
3408 } else
3409 VM_BUG_ON_PAGE(!PageLocked(page), page);
3410 page_mkwrite = 1;
3411 }
3412 }
3413
3414 }
3415
3416 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3417
3418 /*
3419 * This silly early PAGE_DIRTY setting removes a race
3420 * due to the bad i386 page protection. But it's valid
3421 * for other architectures too.
3422 *
3423 * Note that if FAULT_FLAG_WRITE is set, we either now have
3424 * an exclusive copy of the page, or this is a shared mapping,
3425 * so we can make it writable and dirty to avoid having to
3426 * handle that later.
3427 */
3428 /* Only go through if we didn't race with anybody else... */
3429 if (likely(pte_same(*page_table, orig_pte))) {
3430 flush_icache_page(vma, page);
3431 entry = mk_pte(page, vma->vm_page_prot);
3432 if (flags & FAULT_FLAG_WRITE)
3433 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3434 else if (pte_file(orig_pte) && pte_file_soft_dirty(orig_pte))
3435 pte_mksoft_dirty(entry);
3436 if (anon) {
3437 inc_mm_counter_fast(mm, MM_ANONPAGES);
3438 page_add_new_anon_rmap(page, vma, address);
3439 } else {
3440 inc_mm_counter_fast(mm, MM_FILEPAGES);
3441 page_add_file_rmap(page);
3442 if (flags & FAULT_FLAG_WRITE) {
3443 dirty_page = page;
3444 get_page(dirty_page);
3445 }
3446 }
3447 set_pte_at(mm, address, page_table, entry);
3448
3449 /* no need to invalidate: a not-present page won't be cached */
3450 update_mmu_cache(vma, address, page_table);
3451 } else {
3452 if (cow_page)
3453 mem_cgroup_uncharge_page(cow_page);
3454 if (anon)
3455 page_cache_release(page);
3456 else
3457 anon = 1; /* no anon but release faulted_page */
3458 }
3459
3460 pte_unmap_unlock(page_table, ptl);
3461
3462 if (dirty_page) {
3463 struct address_space *mapping = page->mapping;
3464 int dirtied = 0;
3465
3466 if (set_page_dirty(dirty_page))
3467 dirtied = 1;
3468 unlock_page(dirty_page);
3469 put_page(dirty_page);
3470 if ((dirtied || page_mkwrite) && mapping) {
3471 /*
3472 * Some device drivers do not set page.mapping but still
3473 * dirty their pages
3474 */
3475 balance_dirty_pages_ratelimited(mapping);
3476 }
3477
3478 /* file_update_time outside page_lock */
3479 if (vma->vm_file && !page_mkwrite)
3480 file_update_time(vma->vm_file);
3481 } else {
3482 unlock_page(vmf.page);
3483 if (anon)
3484 page_cache_release(vmf.page);
3485 }
3486
3487 return ret;
3488
3489 unwritable_page:
3490 page_cache_release(page);
3491 return ret;
3492 uncharge_out:
3493 /* fs's fault handler get error */
3494 if (cow_page) {
3495 mem_cgroup_uncharge_page(cow_page);
3496 page_cache_release(cow_page);
3497 }
3498 return ret;
3499 }
3500
3501 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3502 unsigned long address, pte_t *page_table, pmd_t *pmd,
3503 unsigned int flags, pte_t orig_pte)
3504 {
3505 pgoff_t pgoff = (((address & PAGE_MASK)
3506 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3507
3508 pte_unmap(page_table);
3509 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3510 if (!vma->vm_ops->fault)
3511 return VM_FAULT_SIGBUS;
3512 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3513 }
3514
3515 /*
3516 * Fault of a previously existing named mapping. Repopulate the pte
3517 * from the encoded file_pte if possible. This enables swappable
3518 * nonlinear vmas.
3519 *
3520 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3521 * but allow concurrent faults), and pte mapped but not yet locked.
3522 * We return with mmap_sem still held, but pte unmapped and unlocked.
3523 */
3524 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3525 unsigned long address, pte_t *page_table, pmd_t *pmd,
3526 unsigned int flags, pte_t orig_pte)
3527 {
3528 pgoff_t pgoff;
3529
3530 flags |= FAULT_FLAG_NONLINEAR;
3531
3532 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3533 return 0;
3534
3535 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3536 /*
3537 * Page table corrupted: show pte and kill process.
3538 */
3539 print_bad_pte(vma, address, orig_pte, NULL);
3540 return VM_FAULT_SIGBUS;
3541 }
3542
3543 pgoff = pte_to_pgoff(orig_pte);
3544 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3545 }
3546
3547 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3548 unsigned long addr, int page_nid,
3549 int *flags)
3550 {
3551 get_page(page);
3552
3553 count_vm_numa_event(NUMA_HINT_FAULTS);
3554 if (page_nid == numa_node_id()) {
3555 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3556 *flags |= TNF_FAULT_LOCAL;
3557 }
3558
3559 return mpol_misplaced(page, vma, addr);
3560 }
3561
3562 int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3563 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3564 {
3565 struct page *page = NULL;
3566 spinlock_t *ptl;
3567 int page_nid = -1;
3568 int last_cpupid;
3569 int target_nid;
3570 bool migrated = false;
3571 int flags = 0;
3572
3573 /*
3574 * The "pte" at this point cannot be used safely without
3575 * validation through pte_unmap_same(). It's of NUMA type but
3576 * the pfn may be screwed if the read is non atomic.
3577 *
3578 * ptep_modify_prot_start is not called as this is clearing
3579 * the _PAGE_NUMA bit and it is not really expected that there
3580 * would be concurrent hardware modifications to the PTE.
3581 */
3582 ptl = pte_lockptr(mm, pmd);
3583 spin_lock(ptl);
3584 if (unlikely(!pte_same(*ptep, pte))) {
3585 pte_unmap_unlock(ptep, ptl);
3586 goto out;
3587 }
3588
3589 pte = pte_mknonnuma(pte);
3590 set_pte_at(mm, addr, ptep, pte);
3591 update_mmu_cache(vma, addr, ptep);
3592
3593 page = vm_normal_page(vma, addr, pte);
3594 if (!page) {
3595 pte_unmap_unlock(ptep, ptl);
3596 return 0;
3597 }
3598 BUG_ON(is_zero_pfn(page_to_pfn(page)));
3599
3600 /*
3601 * Avoid grouping on DSO/COW pages in specific and RO pages
3602 * in general, RO pages shouldn't hurt as much anyway since
3603 * they can be in shared cache state.
3604 */
3605 if (!pte_write(pte))
3606 flags |= TNF_NO_GROUP;
3607
3608 /*
3609 * Flag if the page is shared between multiple address spaces. This
3610 * is later used when determining whether to group tasks together
3611 */
3612 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3613 flags |= TNF_SHARED;
3614
3615 last_cpupid = page_cpupid_last(page);
3616 page_nid = page_to_nid(page);
3617 target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3618 pte_unmap_unlock(ptep, ptl);
3619 if (target_nid == -1) {
3620 put_page(page);
3621 goto out;
3622 }
3623
3624 /* Migrate to the requested node */
3625 migrated = migrate_misplaced_page(page, vma, target_nid);
3626 if (migrated) {
3627 page_nid = target_nid;
3628 flags |= TNF_MIGRATED;
3629 }
3630
3631 out:
3632 if (page_nid != -1)
3633 task_numa_fault(last_cpupid, page_nid, 1, flags);
3634 return 0;
3635 }
3636
3637 /*
3638 * These routines also need to handle stuff like marking pages dirty
3639 * and/or accessed for architectures that don't do it in hardware (most
3640 * RISC architectures). The early dirtying is also good on the i386.
3641 *
3642 * There is also a hook called "update_mmu_cache()" that architectures
3643 * with external mmu caches can use to update those (ie the Sparc or
3644 * PowerPC hashed page tables that act as extended TLBs).
3645 *
3646 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3647 * but allow concurrent faults), and pte mapped but not yet locked.
3648 * We return with mmap_sem still held, but pte unmapped and unlocked.
3649 */
3650 static int handle_pte_fault(struct mm_struct *mm,
3651 struct vm_area_struct *vma, unsigned long address,
3652 pte_t *pte, pmd_t *pmd, unsigned int flags)
3653 {
3654 pte_t entry;
3655 spinlock_t *ptl;
3656
3657 entry = ACCESS_ONCE(*pte);
3658 if (!pte_present(entry)) {
3659 if (pte_none(entry)) {
3660 if (vma->vm_ops)
3661 return do_linear_fault(mm, vma, address,
3662 pte, pmd, flags, entry);
3663 return do_anonymous_page(mm, vma, address,
3664 pte, pmd, flags);
3665 }
3666 if (pte_file(entry))
3667 return do_nonlinear_fault(mm, vma, address,
3668 pte, pmd, flags, entry);
3669 return do_swap_page(mm, vma, address,
3670 pte, pmd, flags, entry);
3671 }
3672
3673 if (pte_numa(entry))
3674 return do_numa_page(mm, vma, address, entry, pte, pmd);
3675
3676 ptl = pte_lockptr(mm, pmd);
3677 spin_lock(ptl);
3678 if (unlikely(!pte_same(*pte, entry)))
3679 goto unlock;
3680 if (flags & FAULT_FLAG_WRITE) {
3681 if (!pte_write(entry))
3682 return do_wp_page(mm, vma, address,
3683 pte, pmd, ptl, entry);
3684 entry = pte_mkdirty(entry);
3685 }
3686 entry = pte_mkyoung(entry);
3687 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3688 update_mmu_cache(vma, address, pte);
3689 } else {
3690 /*
3691 * This is needed only for protection faults but the arch code
3692 * is not yet telling us if this is a protection fault or not.
3693 * This still avoids useless tlb flushes for .text page faults
3694 * with threads.
3695 */
3696 if (flags & FAULT_FLAG_WRITE)
3697 flush_tlb_fix_spurious_fault(vma, address);
3698 }
3699 unlock:
3700 pte_unmap_unlock(pte, ptl);
3701 return 0;
3702 }
3703
3704 /*
3705 * By the time we get here, we already hold the mm semaphore
3706 */
3707 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3708 unsigned long address, unsigned int flags)
3709 {
3710 pgd_t *pgd;
3711 pud_t *pud;
3712 pmd_t *pmd;
3713 pte_t *pte;
3714
3715 if (unlikely(is_vm_hugetlb_page(vma)))
3716 return hugetlb_fault(mm, vma, address, flags);
3717
3718 pgd = pgd_offset(mm, address);
3719 pud = pud_alloc(mm, pgd, address);
3720 if (!pud)
3721 return VM_FAULT_OOM;
3722 pmd = pmd_alloc(mm, pud, address);
3723 if (!pmd)
3724 return VM_FAULT_OOM;
3725 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3726 int ret = VM_FAULT_FALLBACK;
3727 if (!vma->vm_ops)
3728 ret = do_huge_pmd_anonymous_page(mm, vma, address,
3729 pmd, flags);
3730 if (!(ret & VM_FAULT_FALLBACK))
3731 return ret;
3732 } else {
3733 pmd_t orig_pmd = *pmd;
3734 int ret;
3735
3736 barrier();
3737 if (pmd_trans_huge(orig_pmd)) {
3738 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3739
3740 /*
3741 * If the pmd is splitting, return and retry the
3742 * the fault. Alternative: wait until the split
3743 * is done, and goto retry.
3744 */
3745 if (pmd_trans_splitting(orig_pmd))
3746 return 0;
3747
3748 if (pmd_numa(orig_pmd))
3749 return do_huge_pmd_numa_page(mm, vma, address,
3750 orig_pmd, pmd);
3751
3752 if (dirty && !pmd_write(orig_pmd)) {
3753 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3754 orig_pmd);
3755 if (!(ret & VM_FAULT_FALLBACK))
3756 return ret;
3757 } else {
3758 huge_pmd_set_accessed(mm, vma, address, pmd,
3759 orig_pmd, dirty);
3760 return 0;
3761 }
3762 }
3763 }
3764
3765 /*
3766 * Use __pte_alloc instead of pte_alloc_map, because we can't
3767 * run pte_offset_map on the pmd, if an huge pmd could
3768 * materialize from under us from a different thread.
3769 */
3770 if (unlikely(pmd_none(*pmd)) &&
3771 unlikely(__pte_alloc(mm, vma, pmd, address)))
3772 return VM_FAULT_OOM;
3773 /* if an huge pmd materialized from under us just retry later */
3774 if (unlikely(pmd_trans_huge(*pmd)))
3775 return 0;
3776 /*
3777 * A regular pmd is established and it can't morph into a huge pmd
3778 * from under us anymore at this point because we hold the mmap_sem
3779 * read mode and khugepaged takes it in write mode. So now it's
3780 * safe to run pte_offset_map().
3781 */
3782 pte = pte_offset_map(pmd, address);
3783
3784 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3785 }
3786
3787 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3788 unsigned long address, unsigned int flags)
3789 {
3790 int ret;
3791
3792 __set_current_state(TASK_RUNNING);
3793
3794 count_vm_event(PGFAULT);
3795 mem_cgroup_count_vm_event(mm, PGFAULT);
3796
3797 /* do counter updates before entering really critical section. */
3798 check_sync_rss_stat(current);
3799
3800 /*
3801 * Enable the memcg OOM handling for faults triggered in user
3802 * space. Kernel faults are handled more gracefully.
3803 */
3804 if (flags & FAULT_FLAG_USER)
3805 mem_cgroup_oom_enable();
3806
3807 ret = __handle_mm_fault(mm, vma, address, flags);
3808
3809 if (flags & FAULT_FLAG_USER) {
3810 mem_cgroup_oom_disable();
3811 /*
3812 * The task may have entered a memcg OOM situation but
3813 * if the allocation error was handled gracefully (no
3814 * VM_FAULT_OOM), there is no need to kill anything.
3815 * Just clean up the OOM state peacefully.
3816 */
3817 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3818 mem_cgroup_oom_synchronize(false);
3819 }
3820
3821 return ret;
3822 }
3823
3824 #ifndef __PAGETABLE_PUD_FOLDED
3825 /*
3826 * Allocate page upper directory.
3827 * We've already handled the fast-path in-line.
3828 */
3829 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3830 {
3831 pud_t *new = pud_alloc_one(mm, address);
3832 if (!new)
3833 return -ENOMEM;
3834
3835 smp_wmb(); /* See comment in __pte_alloc */
3836
3837 spin_lock(&mm->page_table_lock);
3838 if (pgd_present(*pgd)) /* Another has populated it */
3839 pud_free(mm, new);
3840 else
3841 pgd_populate(mm, pgd, new);
3842 spin_unlock(&mm->page_table_lock);
3843 return 0;
3844 }
3845 #endif /* __PAGETABLE_PUD_FOLDED */
3846
3847 #ifndef __PAGETABLE_PMD_FOLDED
3848 /*
3849 * Allocate page middle directory.
3850 * We've already handled the fast-path in-line.
3851 */
3852 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3853 {
3854 pmd_t *new = pmd_alloc_one(mm, address);
3855 if (!new)
3856 return -ENOMEM;
3857
3858 smp_wmb(); /* See comment in __pte_alloc */
3859
3860 spin_lock(&mm->page_table_lock);
3861 #ifndef __ARCH_HAS_4LEVEL_HACK
3862 if (pud_present(*pud)) /* Another has populated it */
3863 pmd_free(mm, new);
3864 else
3865 pud_populate(mm, pud, new);
3866 #else
3867 if (pgd_present(*pud)) /* Another has populated it */
3868 pmd_free(mm, new);
3869 else
3870 pgd_populate(mm, pud, new);
3871 #endif /* __ARCH_HAS_4LEVEL_HACK */
3872 spin_unlock(&mm->page_table_lock);
3873 return 0;
3874 }
3875 #endif /* __PAGETABLE_PMD_FOLDED */
3876
3877 #if !defined(__HAVE_ARCH_GATE_AREA)
3878
3879 #if defined(AT_SYSINFO_EHDR)
3880 static struct vm_area_struct gate_vma;
3881
3882 static int __init gate_vma_init(void)
3883 {
3884 gate_vma.vm_mm = NULL;
3885 gate_vma.vm_start = FIXADDR_USER_START;
3886 gate_vma.vm_end = FIXADDR_USER_END;
3887 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3888 gate_vma.vm_page_prot = __P101;
3889
3890 return 0;
3891 }
3892 __initcall(gate_vma_init);
3893 #endif
3894
3895 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3896 {
3897 #ifdef AT_SYSINFO_EHDR
3898 return &gate_vma;
3899 #else
3900 return NULL;
3901 #endif
3902 }
3903
3904 int in_gate_area_no_mm(unsigned long addr)
3905 {
3906 #ifdef AT_SYSINFO_EHDR
3907 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3908 return 1;
3909 #endif
3910 return 0;
3911 }
3912
3913 #endif /* __HAVE_ARCH_GATE_AREA */
3914
3915 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3916 pte_t **ptepp, spinlock_t **ptlp)
3917 {
3918 pgd_t *pgd;
3919 pud_t *pud;
3920 pmd_t *pmd;
3921 pte_t *ptep;
3922
3923 pgd = pgd_offset(mm, address);
3924 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3925 goto out;
3926
3927 pud = pud_offset(pgd, address);
3928 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3929 goto out;
3930
3931 pmd = pmd_offset(pud, address);
3932 VM_BUG_ON(pmd_trans_huge(*pmd));
3933 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3934 goto out;
3935
3936 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3937 if (pmd_huge(*pmd))
3938 goto out;
3939
3940 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3941 if (!ptep)
3942 goto out;
3943 if (!pte_present(*ptep))
3944 goto unlock;
3945 *ptepp = ptep;
3946 return 0;
3947 unlock:
3948 pte_unmap_unlock(ptep, *ptlp);
3949 out:
3950 return -EINVAL;
3951 }
3952
3953 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3954 pte_t **ptepp, spinlock_t **ptlp)
3955 {
3956 int res;
3957
3958 /* (void) is needed to make gcc happy */
3959 (void) __cond_lock(*ptlp,
3960 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3961 return res;
3962 }
3963
3964 /**
3965 * follow_pfn - look up PFN at a user virtual address
3966 * @vma: memory mapping
3967 * @address: user virtual address
3968 * @pfn: location to store found PFN
3969 *
3970 * Only IO mappings and raw PFN mappings are allowed.
3971 *
3972 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3973 */
3974 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3975 unsigned long *pfn)
3976 {
3977 int ret = -EINVAL;
3978 spinlock_t *ptl;
3979 pte_t *ptep;
3980
3981 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3982 return ret;
3983
3984 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3985 if (ret)
3986 return ret;
3987 *pfn = pte_pfn(*ptep);
3988 pte_unmap_unlock(ptep, ptl);
3989 return 0;
3990 }
3991 EXPORT_SYMBOL(follow_pfn);
3992
3993 #ifdef CONFIG_HAVE_IOREMAP_PROT
3994 int follow_phys(struct vm_area_struct *vma,
3995 unsigned long address, unsigned int flags,
3996 unsigned long *prot, resource_size_t *phys)
3997 {
3998 int ret = -EINVAL;
3999 pte_t *ptep, pte;
4000 spinlock_t *ptl;
4001
4002 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4003 goto out;
4004
4005 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4006 goto out;
4007 pte = *ptep;
4008
4009 if ((flags & FOLL_WRITE) && !pte_write(pte))
4010 goto unlock;
4011
4012 *prot = pgprot_val(pte_pgprot(pte));
4013 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4014
4015 ret = 0;
4016 unlock:
4017 pte_unmap_unlock(ptep, ptl);
4018 out:
4019 return ret;
4020 }
4021
4022 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4023 void *buf, int len, int write)
4024 {
4025 resource_size_t phys_addr;
4026 unsigned long prot = 0;
4027 void __iomem *maddr;
4028 int offset = addr & (PAGE_SIZE-1);
4029
4030 if (follow_phys(vma, addr, write, &prot, &phys_addr))
4031 return -EINVAL;
4032
4033 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4034 if (write)
4035 memcpy_toio(maddr + offset, buf, len);
4036 else
4037 memcpy_fromio(buf, maddr + offset, len);
4038 iounmap(maddr);
4039
4040 return len;
4041 }
4042 EXPORT_SYMBOL_GPL(generic_access_phys);
4043 #endif
4044
4045 /*
4046 * Access another process' address space as given in mm. If non-NULL, use the
4047 * given task for page fault accounting.
4048 */
4049 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4050 unsigned long addr, void *buf, int len, int write)
4051 {
4052 struct vm_area_struct *vma;
4053 void *old_buf = buf;
4054
4055 down_read(&mm->mmap_sem);
4056 /* ignore errors, just check how much was successfully transferred */
4057 while (len) {
4058 int bytes, ret, offset;
4059 void *maddr;
4060 struct page *page = NULL;
4061
4062 ret = get_user_pages(tsk, mm, addr, 1,
4063 write, 1, &page, &vma);
4064 if (ret <= 0) {
4065 /*
4066 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4067 * we can access using slightly different code.
4068 */
4069 #ifdef CONFIG_HAVE_IOREMAP_PROT
4070 vma = find_vma(mm, addr);
4071 if (!vma || vma->vm_start > addr)
4072 break;
4073 if (vma->vm_ops && vma->vm_ops->access)
4074 ret = vma->vm_ops->access(vma, addr, buf,
4075 len, write);
4076 if (ret <= 0)
4077 #endif
4078 break;
4079 bytes = ret;
4080 } else {
4081 bytes = len;
4082 offset = addr & (PAGE_SIZE-1);
4083 if (bytes > PAGE_SIZE-offset)
4084 bytes = PAGE_SIZE-offset;
4085
4086 maddr = kmap(page);
4087 if (write) {
4088 copy_to_user_page(vma, page, addr,
4089 maddr + offset, buf, bytes);
4090 set_page_dirty_lock(page);
4091 } else {
4092 copy_from_user_page(vma, page, addr,
4093 buf, maddr + offset, bytes);
4094 }
4095 kunmap(page);
4096 page_cache_release(page);
4097 }
4098 len -= bytes;
4099 buf += bytes;
4100 addr += bytes;
4101 }
4102 up_read(&mm->mmap_sem);
4103
4104 return buf - old_buf;
4105 }
4106
4107 /**
4108 * access_remote_vm - access another process' address space
4109 * @mm: the mm_struct of the target address space
4110 * @addr: start address to access
4111 * @buf: source or destination buffer
4112 * @len: number of bytes to transfer
4113 * @write: whether the access is a write
4114 *
4115 * The caller must hold a reference on @mm.
4116 */
4117 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4118 void *buf, int len, int write)
4119 {
4120 return __access_remote_vm(NULL, mm, addr, buf, len, write);
4121 }
4122
4123 /*
4124 * Access another process' address space.
4125 * Source/target buffer must be kernel space,
4126 * Do not walk the page table directly, use get_user_pages
4127 */
4128 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4129 void *buf, int len, int write)
4130 {
4131 struct mm_struct *mm;
4132 int ret;
4133
4134 mm = get_task_mm(tsk);
4135 if (!mm)
4136 return 0;
4137
4138 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
4139 mmput(mm);
4140
4141 return ret;
4142 }
4143
4144 /*
4145 * Print the name of a VMA.
4146 */
4147 void print_vma_addr(char *prefix, unsigned long ip)
4148 {
4149 struct mm_struct *mm = current->mm;
4150 struct vm_area_struct *vma;
4151
4152 /*
4153 * Do not print if we are in atomic
4154 * contexts (in exception stacks, etc.):
4155 */
4156 if (preempt_count())
4157 return;
4158
4159 down_read(&mm->mmap_sem);
4160 vma = find_vma(mm, ip);
4161 if (vma && vma->vm_file) {
4162 struct file *f = vma->vm_file;
4163 char *buf = (char *)__get_free_page(GFP_KERNEL);
4164 if (buf) {
4165 char *p;
4166
4167 p = d_path(&f->f_path, buf, PAGE_SIZE);
4168 if (IS_ERR(p))
4169 p = "?";
4170 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4171 vma->vm_start,
4172 vma->vm_end - vma->vm_start);
4173 free_page((unsigned long)buf);
4174 }
4175 }
4176 up_read(&mm->mmap_sem);
4177 }
4178
4179 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4180 void might_fault(void)
4181 {
4182 /*
4183 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4184 * holding the mmap_sem, this is safe because kernel memory doesn't
4185 * get paged out, therefore we'll never actually fault, and the
4186 * below annotations will generate false positives.
4187 */
4188 if (segment_eq(get_fs(), KERNEL_DS))
4189 return;
4190
4191 /*
4192 * it would be nicer only to annotate paths which are not under
4193 * pagefault_disable, however that requires a larger audit and
4194 * providing helpers like get_user_atomic.
4195 */
4196 if (in_atomic())
4197 return;
4198
4199 __might_sleep(__FILE__, __LINE__, 0);
4200
4201 if (current->mm)
4202 might_lock_read(&current->mm->mmap_sem);
4203 }
4204 EXPORT_SYMBOL(might_fault);
4205 #endif
4206
4207 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4208 static void clear_gigantic_page(struct page *page,
4209 unsigned long addr,
4210 unsigned int pages_per_huge_page)
4211 {
4212 int i;
4213 struct page *p = page;
4214
4215 might_sleep();
4216 for (i = 0; i < pages_per_huge_page;
4217 i++, p = mem_map_next(p, page, i)) {
4218 cond_resched();
4219 clear_user_highpage(p, addr + i * PAGE_SIZE);
4220 }
4221 }
4222 void clear_huge_page(struct page *page,
4223 unsigned long addr, unsigned int pages_per_huge_page)
4224 {
4225 int i;
4226
4227 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4228 clear_gigantic_page(page, addr, pages_per_huge_page);
4229 return;
4230 }
4231
4232 might_sleep();
4233 for (i = 0; i < pages_per_huge_page; i++) {
4234 cond_resched();
4235 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4236 }
4237 }
4238
4239 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4240 unsigned long addr,
4241 struct vm_area_struct *vma,
4242 unsigned int pages_per_huge_page)
4243 {
4244 int i;
4245 struct page *dst_base = dst;
4246 struct page *src_base = src;
4247
4248 for (i = 0; i < pages_per_huge_page; ) {
4249 cond_resched();
4250 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4251
4252 i++;
4253 dst = mem_map_next(dst, dst_base, i);
4254 src = mem_map_next(src, src_base, i);
4255 }
4256 }
4257
4258 void copy_user_huge_page(struct page *dst, struct page *src,
4259 unsigned long addr, struct vm_area_struct *vma,
4260 unsigned int pages_per_huge_page)
4261 {
4262 int i;
4263
4264 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4265 copy_user_gigantic_page(dst, src, addr, vma,
4266 pages_per_huge_page);
4267 return;
4268 }
4269
4270 might_sleep();
4271 for (i = 0; i < pages_per_huge_page; i++) {
4272 cond_resched();
4273 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4274 }
4275 }
4276 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4277
4278 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4279
4280 static struct kmem_cache *page_ptl_cachep;
4281
4282 void __init ptlock_cache_init(void)
4283 {
4284 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4285 SLAB_PANIC, NULL);
4286 }
4287
4288 bool ptlock_alloc(struct page *page)
4289 {
4290 spinlock_t *ptl;
4291
4292 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4293 if (!ptl)
4294 return false;
4295 page->ptl = ptl;
4296 return true;
4297 }
4298
4299 void ptlock_free(struct page *page)
4300 {
4301 kmem_cache_free(page_ptl_cachep, page->ptl);
4302 }
4303 #endif