]> git.ipfire.org Git - people/arne_f/kernel.git/blob - mm/rmap.c
netfilter: layer7 bugfix packet counter variable
[people/arne_f/kernel.git] / mm / rmap.c
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20 /*
21 * Lock ordering in mm:
22 *
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
26 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
27 * mapping->i_mmap_rwsem
28 * anon_vma->rwsem
29 * mm->page_table_lock or pte_lock
30 * zone_lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
35 * mapping->tree_lock (widely used)
36 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
37 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
38 * sb_lock (within inode_lock in fs/fs-writeback.c)
39 * mapping->tree_lock (widely used, in set_page_dirty,
40 * in arch-dependent flush_dcache_mmap_lock,
41 * within bdi.wb->list_lock in __sync_single_inode)
42 *
43 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
44 * ->tasklist_lock
45 * pte map lock
46 */
47
48 #include <linux/mm.h>
49 #include <linux/sched/mm.h>
50 #include <linux/sched/task.h>
51 #include <linux/pagemap.h>
52 #include <linux/swap.h>
53 #include <linux/swapops.h>
54 #include <linux/slab.h>
55 #include <linux/init.h>
56 #include <linux/ksm.h>
57 #include <linux/rmap.h>
58 #include <linux/rcupdate.h>
59 #include <linux/export.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/migrate.h>
63 #include <linux/hugetlb.h>
64 #include <linux/backing-dev.h>
65 #include <linux/page_idle.h>
66 #include <linux/memremap.h>
67
68 #include <asm/tlbflush.h>
69
70 #include <trace/events/tlb.h>
71
72 #include "internal.h"
73
74 static struct kmem_cache *anon_vma_cachep;
75 static struct kmem_cache *anon_vma_chain_cachep;
76
77 static inline struct anon_vma *anon_vma_alloc(void)
78 {
79 struct anon_vma *anon_vma;
80
81 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
82 if (anon_vma) {
83 atomic_set(&anon_vma->refcount, 1);
84 anon_vma->degree = 1; /* Reference for first vma */
85 anon_vma->parent = anon_vma;
86 /*
87 * Initialise the anon_vma root to point to itself. If called
88 * from fork, the root will be reset to the parents anon_vma.
89 */
90 anon_vma->root = anon_vma;
91 }
92
93 return anon_vma;
94 }
95
96 static inline void anon_vma_free(struct anon_vma *anon_vma)
97 {
98 VM_BUG_ON(atomic_read(&anon_vma->refcount));
99
100 /*
101 * Synchronize against page_lock_anon_vma_read() such that
102 * we can safely hold the lock without the anon_vma getting
103 * freed.
104 *
105 * Relies on the full mb implied by the atomic_dec_and_test() from
106 * put_anon_vma() against the acquire barrier implied by
107 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
108 *
109 * page_lock_anon_vma_read() VS put_anon_vma()
110 * down_read_trylock() atomic_dec_and_test()
111 * LOCK MB
112 * atomic_read() rwsem_is_locked()
113 *
114 * LOCK should suffice since the actual taking of the lock must
115 * happen _before_ what follows.
116 */
117 might_sleep();
118 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
119 anon_vma_lock_write(anon_vma);
120 anon_vma_unlock_write(anon_vma);
121 }
122
123 kmem_cache_free(anon_vma_cachep, anon_vma);
124 }
125
126 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
127 {
128 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
129 }
130
131 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
132 {
133 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
134 }
135
136 static void anon_vma_chain_link(struct vm_area_struct *vma,
137 struct anon_vma_chain *avc,
138 struct anon_vma *anon_vma)
139 {
140 avc->vma = vma;
141 avc->anon_vma = anon_vma;
142 list_add(&avc->same_vma, &vma->anon_vma_chain);
143 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
144 }
145
146 /**
147 * __anon_vma_prepare - attach an anon_vma to a memory region
148 * @vma: the memory region in question
149 *
150 * This makes sure the memory mapping described by 'vma' has
151 * an 'anon_vma' attached to it, so that we can associate the
152 * anonymous pages mapped into it with that anon_vma.
153 *
154 * The common case will be that we already have one, which
155 * is handled inline by anon_vma_prepare(). But if
156 * not we either need to find an adjacent mapping that we
157 * can re-use the anon_vma from (very common when the only
158 * reason for splitting a vma has been mprotect()), or we
159 * allocate a new one.
160 *
161 * Anon-vma allocations are very subtle, because we may have
162 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
163 * and that may actually touch the spinlock even in the newly
164 * allocated vma (it depends on RCU to make sure that the
165 * anon_vma isn't actually destroyed).
166 *
167 * As a result, we need to do proper anon_vma locking even
168 * for the new allocation. At the same time, we do not want
169 * to do any locking for the common case of already having
170 * an anon_vma.
171 *
172 * This must be called with the mmap_sem held for reading.
173 */
174 int __anon_vma_prepare(struct vm_area_struct *vma)
175 {
176 struct mm_struct *mm = vma->vm_mm;
177 struct anon_vma *anon_vma, *allocated;
178 struct anon_vma_chain *avc;
179
180 might_sleep();
181
182 avc = anon_vma_chain_alloc(GFP_KERNEL);
183 if (!avc)
184 goto out_enomem;
185
186 anon_vma = find_mergeable_anon_vma(vma);
187 allocated = NULL;
188 if (!anon_vma) {
189 anon_vma = anon_vma_alloc();
190 if (unlikely(!anon_vma))
191 goto out_enomem_free_avc;
192 allocated = anon_vma;
193 }
194
195 anon_vma_lock_write(anon_vma);
196 /* page_table_lock to protect against threads */
197 spin_lock(&mm->page_table_lock);
198 if (likely(!vma->anon_vma)) {
199 vma->anon_vma = anon_vma;
200 anon_vma_chain_link(vma, avc, anon_vma);
201 /* vma reference or self-parent link for new root */
202 anon_vma->degree++;
203 allocated = NULL;
204 avc = NULL;
205 }
206 spin_unlock(&mm->page_table_lock);
207 anon_vma_unlock_write(anon_vma);
208
209 if (unlikely(allocated))
210 put_anon_vma(allocated);
211 if (unlikely(avc))
212 anon_vma_chain_free(avc);
213
214 return 0;
215
216 out_enomem_free_avc:
217 anon_vma_chain_free(avc);
218 out_enomem:
219 return -ENOMEM;
220 }
221
222 /*
223 * This is a useful helper function for locking the anon_vma root as
224 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
225 * have the same vma.
226 *
227 * Such anon_vma's should have the same root, so you'd expect to see
228 * just a single mutex_lock for the whole traversal.
229 */
230 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
231 {
232 struct anon_vma *new_root = anon_vma->root;
233 if (new_root != root) {
234 if (WARN_ON_ONCE(root))
235 up_write(&root->rwsem);
236 root = new_root;
237 down_write(&root->rwsem);
238 }
239 return root;
240 }
241
242 static inline void unlock_anon_vma_root(struct anon_vma *root)
243 {
244 if (root)
245 up_write(&root->rwsem);
246 }
247
248 /*
249 * Attach the anon_vmas from src to dst.
250 * Returns 0 on success, -ENOMEM on failure.
251 *
252 * If dst->anon_vma is NULL this function tries to find and reuse existing
253 * anon_vma which has no vmas and only one child anon_vma. This prevents
254 * degradation of anon_vma hierarchy to endless linear chain in case of
255 * constantly forking task. On the other hand, an anon_vma with more than one
256 * child isn't reused even if there was no alive vma, thus rmap walker has a
257 * good chance of avoiding scanning the whole hierarchy when it searches where
258 * page is mapped.
259 */
260 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
261 {
262 struct anon_vma_chain *avc, *pavc;
263 struct anon_vma *root = NULL;
264
265 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
266 struct anon_vma *anon_vma;
267
268 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
269 if (unlikely(!avc)) {
270 unlock_anon_vma_root(root);
271 root = NULL;
272 avc = anon_vma_chain_alloc(GFP_KERNEL);
273 if (!avc)
274 goto enomem_failure;
275 }
276 anon_vma = pavc->anon_vma;
277 root = lock_anon_vma_root(root, anon_vma);
278 anon_vma_chain_link(dst, avc, anon_vma);
279
280 /*
281 * Reuse existing anon_vma if its degree lower than two,
282 * that means it has no vma and only one anon_vma child.
283 *
284 * Do not chose parent anon_vma, otherwise first child
285 * will always reuse it. Root anon_vma is never reused:
286 * it has self-parent reference and at least one child.
287 */
288 if (!dst->anon_vma && anon_vma != src->anon_vma &&
289 anon_vma->degree < 2)
290 dst->anon_vma = anon_vma;
291 }
292 if (dst->anon_vma)
293 dst->anon_vma->degree++;
294 unlock_anon_vma_root(root);
295 return 0;
296
297 enomem_failure:
298 /*
299 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
300 * decremented in unlink_anon_vmas().
301 * We can safely do this because callers of anon_vma_clone() don't care
302 * about dst->anon_vma if anon_vma_clone() failed.
303 */
304 dst->anon_vma = NULL;
305 unlink_anon_vmas(dst);
306 return -ENOMEM;
307 }
308
309 /*
310 * Attach vma to its own anon_vma, as well as to the anon_vmas that
311 * the corresponding VMA in the parent process is attached to.
312 * Returns 0 on success, non-zero on failure.
313 */
314 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
315 {
316 struct anon_vma_chain *avc;
317 struct anon_vma *anon_vma;
318 int error;
319
320 /* Don't bother if the parent process has no anon_vma here. */
321 if (!pvma->anon_vma)
322 return 0;
323
324 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
325 vma->anon_vma = NULL;
326
327 /*
328 * First, attach the new VMA to the parent VMA's anon_vmas,
329 * so rmap can find non-COWed pages in child processes.
330 */
331 error = anon_vma_clone(vma, pvma);
332 if (error)
333 return error;
334
335 /* An existing anon_vma has been reused, all done then. */
336 if (vma->anon_vma)
337 return 0;
338
339 /* Then add our own anon_vma. */
340 anon_vma = anon_vma_alloc();
341 if (!anon_vma)
342 goto out_error;
343 avc = anon_vma_chain_alloc(GFP_KERNEL);
344 if (!avc)
345 goto out_error_free_anon_vma;
346
347 /*
348 * The root anon_vma's spinlock is the lock actually used when we
349 * lock any of the anon_vmas in this anon_vma tree.
350 */
351 anon_vma->root = pvma->anon_vma->root;
352 anon_vma->parent = pvma->anon_vma;
353 /*
354 * With refcounts, an anon_vma can stay around longer than the
355 * process it belongs to. The root anon_vma needs to be pinned until
356 * this anon_vma is freed, because the lock lives in the root.
357 */
358 get_anon_vma(anon_vma->root);
359 /* Mark this anon_vma as the one where our new (COWed) pages go. */
360 vma->anon_vma = anon_vma;
361 anon_vma_lock_write(anon_vma);
362 anon_vma_chain_link(vma, avc, anon_vma);
363 anon_vma->parent->degree++;
364 anon_vma_unlock_write(anon_vma);
365
366 return 0;
367
368 out_error_free_anon_vma:
369 put_anon_vma(anon_vma);
370 out_error:
371 unlink_anon_vmas(vma);
372 return -ENOMEM;
373 }
374
375 void unlink_anon_vmas(struct vm_area_struct *vma)
376 {
377 struct anon_vma_chain *avc, *next;
378 struct anon_vma *root = NULL;
379
380 /*
381 * Unlink each anon_vma chained to the VMA. This list is ordered
382 * from newest to oldest, ensuring the root anon_vma gets freed last.
383 */
384 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
385 struct anon_vma *anon_vma = avc->anon_vma;
386
387 root = lock_anon_vma_root(root, anon_vma);
388 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
389
390 /*
391 * Leave empty anon_vmas on the list - we'll need
392 * to free them outside the lock.
393 */
394 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
395 anon_vma->parent->degree--;
396 continue;
397 }
398
399 list_del(&avc->same_vma);
400 anon_vma_chain_free(avc);
401 }
402 if (vma->anon_vma)
403 vma->anon_vma->degree--;
404 unlock_anon_vma_root(root);
405
406 /*
407 * Iterate the list once more, it now only contains empty and unlinked
408 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
409 * needing to write-acquire the anon_vma->root->rwsem.
410 */
411 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
412 struct anon_vma *anon_vma = avc->anon_vma;
413
414 VM_WARN_ON(anon_vma->degree);
415 put_anon_vma(anon_vma);
416
417 list_del(&avc->same_vma);
418 anon_vma_chain_free(avc);
419 }
420 }
421
422 static void anon_vma_ctor(void *data)
423 {
424 struct anon_vma *anon_vma = data;
425
426 init_rwsem(&anon_vma->rwsem);
427 atomic_set(&anon_vma->refcount, 0);
428 anon_vma->rb_root = RB_ROOT_CACHED;
429 }
430
431 void __init anon_vma_init(void)
432 {
433 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
434 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
435 anon_vma_ctor);
436 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
437 SLAB_PANIC|SLAB_ACCOUNT);
438 }
439
440 /*
441 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
442 *
443 * Since there is no serialization what so ever against page_remove_rmap()
444 * the best this function can do is return a locked anon_vma that might
445 * have been relevant to this page.
446 *
447 * The page might have been remapped to a different anon_vma or the anon_vma
448 * returned may already be freed (and even reused).
449 *
450 * In case it was remapped to a different anon_vma, the new anon_vma will be a
451 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
452 * ensure that any anon_vma obtained from the page will still be valid for as
453 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
454 *
455 * All users of this function must be very careful when walking the anon_vma
456 * chain and verify that the page in question is indeed mapped in it
457 * [ something equivalent to page_mapped_in_vma() ].
458 *
459 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
460 * that the anon_vma pointer from page->mapping is valid if there is a
461 * mapcount, we can dereference the anon_vma after observing those.
462 */
463 struct anon_vma *page_get_anon_vma(struct page *page)
464 {
465 struct anon_vma *anon_vma = NULL;
466 unsigned long anon_mapping;
467
468 rcu_read_lock();
469 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
470 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
471 goto out;
472 if (!page_mapped(page))
473 goto out;
474
475 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
476 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
477 anon_vma = NULL;
478 goto out;
479 }
480
481 /*
482 * If this page is still mapped, then its anon_vma cannot have been
483 * freed. But if it has been unmapped, we have no security against the
484 * anon_vma structure being freed and reused (for another anon_vma:
485 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
486 * above cannot corrupt).
487 */
488 if (!page_mapped(page)) {
489 rcu_read_unlock();
490 put_anon_vma(anon_vma);
491 return NULL;
492 }
493 out:
494 rcu_read_unlock();
495
496 return anon_vma;
497 }
498
499 /*
500 * Similar to page_get_anon_vma() except it locks the anon_vma.
501 *
502 * Its a little more complex as it tries to keep the fast path to a single
503 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
504 * reference like with page_get_anon_vma() and then block on the mutex.
505 */
506 struct anon_vma *page_lock_anon_vma_read(struct page *page)
507 {
508 struct anon_vma *anon_vma = NULL;
509 struct anon_vma *root_anon_vma;
510 unsigned long anon_mapping;
511
512 rcu_read_lock();
513 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
514 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
515 goto out;
516 if (!page_mapped(page))
517 goto out;
518
519 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
520 root_anon_vma = READ_ONCE(anon_vma->root);
521 if (down_read_trylock(&root_anon_vma->rwsem)) {
522 /*
523 * If the page is still mapped, then this anon_vma is still
524 * its anon_vma, and holding the mutex ensures that it will
525 * not go away, see anon_vma_free().
526 */
527 if (!page_mapped(page)) {
528 up_read(&root_anon_vma->rwsem);
529 anon_vma = NULL;
530 }
531 goto out;
532 }
533
534 /* trylock failed, we got to sleep */
535 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
536 anon_vma = NULL;
537 goto out;
538 }
539
540 if (!page_mapped(page)) {
541 rcu_read_unlock();
542 put_anon_vma(anon_vma);
543 return NULL;
544 }
545
546 /* we pinned the anon_vma, its safe to sleep */
547 rcu_read_unlock();
548 anon_vma_lock_read(anon_vma);
549
550 if (atomic_dec_and_test(&anon_vma->refcount)) {
551 /*
552 * Oops, we held the last refcount, release the lock
553 * and bail -- can't simply use put_anon_vma() because
554 * we'll deadlock on the anon_vma_lock_write() recursion.
555 */
556 anon_vma_unlock_read(anon_vma);
557 __put_anon_vma(anon_vma);
558 anon_vma = NULL;
559 }
560
561 return anon_vma;
562
563 out:
564 rcu_read_unlock();
565 return anon_vma;
566 }
567
568 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
569 {
570 anon_vma_unlock_read(anon_vma);
571 }
572
573 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
574 /*
575 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
576 * important if a PTE was dirty when it was unmapped that it's flushed
577 * before any IO is initiated on the page to prevent lost writes. Similarly,
578 * it must be flushed before freeing to prevent data leakage.
579 */
580 void try_to_unmap_flush(void)
581 {
582 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
583
584 if (!tlb_ubc->flush_required)
585 return;
586
587 arch_tlbbatch_flush(&tlb_ubc->arch);
588 tlb_ubc->flush_required = false;
589 tlb_ubc->writable = false;
590 }
591
592 /* Flush iff there are potentially writable TLB entries that can race with IO */
593 void try_to_unmap_flush_dirty(void)
594 {
595 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
596
597 if (tlb_ubc->writable)
598 try_to_unmap_flush();
599 }
600
601 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
602 {
603 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
604
605 arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
606 tlb_ubc->flush_required = true;
607
608 /*
609 * Ensure compiler does not re-order the setting of tlb_flush_batched
610 * before the PTE is cleared.
611 */
612 barrier();
613 mm->tlb_flush_batched = true;
614
615 /*
616 * If the PTE was dirty then it's best to assume it's writable. The
617 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
618 * before the page is queued for IO.
619 */
620 if (writable)
621 tlb_ubc->writable = true;
622 }
623
624 /*
625 * Returns true if the TLB flush should be deferred to the end of a batch of
626 * unmap operations to reduce IPIs.
627 */
628 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
629 {
630 bool should_defer = false;
631
632 if (!(flags & TTU_BATCH_FLUSH))
633 return false;
634
635 /* If remote CPUs need to be flushed then defer batch the flush */
636 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
637 should_defer = true;
638 put_cpu();
639
640 return should_defer;
641 }
642
643 /*
644 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
645 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
646 * operation such as mprotect or munmap to race between reclaim unmapping
647 * the page and flushing the page. If this race occurs, it potentially allows
648 * access to data via a stale TLB entry. Tracking all mm's that have TLB
649 * batching in flight would be expensive during reclaim so instead track
650 * whether TLB batching occurred in the past and if so then do a flush here
651 * if required. This will cost one additional flush per reclaim cycle paid
652 * by the first operation at risk such as mprotect and mumap.
653 *
654 * This must be called under the PTL so that an access to tlb_flush_batched
655 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
656 * via the PTL.
657 */
658 void flush_tlb_batched_pending(struct mm_struct *mm)
659 {
660 if (mm->tlb_flush_batched) {
661 flush_tlb_mm(mm);
662
663 /*
664 * Do not allow the compiler to re-order the clearing of
665 * tlb_flush_batched before the tlb is flushed.
666 */
667 barrier();
668 mm->tlb_flush_batched = false;
669 }
670 }
671 #else
672 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
673 {
674 }
675
676 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
677 {
678 return false;
679 }
680 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
681
682 /*
683 * At what user virtual address is page expected in vma?
684 * Caller should check the page is actually part of the vma.
685 */
686 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
687 {
688 unsigned long address;
689 if (PageAnon(page)) {
690 struct anon_vma *page__anon_vma = page_anon_vma(page);
691 /*
692 * Note: swapoff's unuse_vma() is more efficient with this
693 * check, and needs it to match anon_vma when KSM is active.
694 */
695 if (!vma->anon_vma || !page__anon_vma ||
696 vma->anon_vma->root != page__anon_vma->root)
697 return -EFAULT;
698 } else if (page->mapping) {
699 if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
700 return -EFAULT;
701 } else
702 return -EFAULT;
703 address = __vma_address(page, vma);
704 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
705 return -EFAULT;
706 return address;
707 }
708
709 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
710 {
711 pgd_t *pgd;
712 p4d_t *p4d;
713 pud_t *pud;
714 pmd_t *pmd = NULL;
715 pmd_t pmde;
716
717 pgd = pgd_offset(mm, address);
718 if (!pgd_present(*pgd))
719 goto out;
720
721 p4d = p4d_offset(pgd, address);
722 if (!p4d_present(*p4d))
723 goto out;
724
725 pud = pud_offset(p4d, address);
726 if (!pud_present(*pud))
727 goto out;
728
729 pmd = pmd_offset(pud, address);
730 /*
731 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
732 * without holding anon_vma lock for write. So when looking for a
733 * genuine pmde (in which to find pte), test present and !THP together.
734 */
735 pmde = *pmd;
736 barrier();
737 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
738 pmd = NULL;
739 out:
740 return pmd;
741 }
742
743 struct page_referenced_arg {
744 int mapcount;
745 int referenced;
746 unsigned long vm_flags;
747 struct mem_cgroup *memcg;
748 };
749 /*
750 * arg: page_referenced_arg will be passed
751 */
752 static bool page_referenced_one(struct page *page, struct vm_area_struct *vma,
753 unsigned long address, void *arg)
754 {
755 struct page_referenced_arg *pra = arg;
756 struct page_vma_mapped_walk pvmw = {
757 .page = page,
758 .vma = vma,
759 .address = address,
760 };
761 int referenced = 0;
762
763 while (page_vma_mapped_walk(&pvmw)) {
764 address = pvmw.address;
765
766 if (vma->vm_flags & VM_LOCKED) {
767 page_vma_mapped_walk_done(&pvmw);
768 pra->vm_flags |= VM_LOCKED;
769 return false; /* To break the loop */
770 }
771
772 if (pvmw.pte) {
773 if (ptep_clear_flush_young_notify(vma, address,
774 pvmw.pte)) {
775 /*
776 * Don't treat a reference through
777 * a sequentially read mapping as such.
778 * If the page has been used in another mapping,
779 * we will catch it; if this other mapping is
780 * already gone, the unmap path will have set
781 * PG_referenced or activated the page.
782 */
783 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
784 referenced++;
785 }
786 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
787 if (pmdp_clear_flush_young_notify(vma, address,
788 pvmw.pmd))
789 referenced++;
790 } else {
791 /* unexpected pmd-mapped page? */
792 WARN_ON_ONCE(1);
793 }
794
795 pra->mapcount--;
796 }
797
798 if (referenced)
799 clear_page_idle(page);
800 if (test_and_clear_page_young(page))
801 referenced++;
802
803 if (referenced) {
804 pra->referenced++;
805 pra->vm_flags |= vma->vm_flags;
806 }
807
808 if (!pra->mapcount)
809 return false; /* To break the loop */
810
811 return true;
812 }
813
814 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
815 {
816 struct page_referenced_arg *pra = arg;
817 struct mem_cgroup *memcg = pra->memcg;
818
819 if (!mm_match_cgroup(vma->vm_mm, memcg))
820 return true;
821
822 return false;
823 }
824
825 /**
826 * page_referenced - test if the page was referenced
827 * @page: the page to test
828 * @is_locked: caller holds lock on the page
829 * @memcg: target memory cgroup
830 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
831 *
832 * Quick test_and_clear_referenced for all mappings to a page,
833 * returns the number of ptes which referenced the page.
834 */
835 int page_referenced(struct page *page,
836 int is_locked,
837 struct mem_cgroup *memcg,
838 unsigned long *vm_flags)
839 {
840 int we_locked = 0;
841 struct page_referenced_arg pra = {
842 .mapcount = total_mapcount(page),
843 .memcg = memcg,
844 };
845 struct rmap_walk_control rwc = {
846 .rmap_one = page_referenced_one,
847 .arg = (void *)&pra,
848 .anon_lock = page_lock_anon_vma_read,
849 };
850
851 *vm_flags = 0;
852 if (!page_mapped(page))
853 return 0;
854
855 if (!page_rmapping(page))
856 return 0;
857
858 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
859 we_locked = trylock_page(page);
860 if (!we_locked)
861 return 1;
862 }
863
864 /*
865 * If we are reclaiming on behalf of a cgroup, skip
866 * counting on behalf of references from different
867 * cgroups
868 */
869 if (memcg) {
870 rwc.invalid_vma = invalid_page_referenced_vma;
871 }
872
873 rmap_walk(page, &rwc);
874 *vm_flags = pra.vm_flags;
875
876 if (we_locked)
877 unlock_page(page);
878
879 return pra.referenced;
880 }
881
882 static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma,
883 unsigned long address, void *arg)
884 {
885 struct page_vma_mapped_walk pvmw = {
886 .page = page,
887 .vma = vma,
888 .address = address,
889 .flags = PVMW_SYNC,
890 };
891 unsigned long start = address, end;
892 int *cleaned = arg;
893
894 /*
895 * We have to assume the worse case ie pmd for invalidation. Note that
896 * the page can not be free from this function.
897 */
898 end = min(vma->vm_end, start + (PAGE_SIZE << compound_order(page)));
899 mmu_notifier_invalidate_range_start(vma->vm_mm, start, end);
900
901 while (page_vma_mapped_walk(&pvmw)) {
902 unsigned long cstart, cend;
903 int ret = 0;
904
905 cstart = address = pvmw.address;
906 if (pvmw.pte) {
907 pte_t entry;
908 pte_t *pte = pvmw.pte;
909
910 if (!pte_dirty(*pte) && !pte_write(*pte))
911 continue;
912
913 flush_cache_page(vma, address, pte_pfn(*pte));
914 entry = ptep_clear_flush(vma, address, pte);
915 entry = pte_wrprotect(entry);
916 entry = pte_mkclean(entry);
917 set_pte_at(vma->vm_mm, address, pte, entry);
918 cend = cstart + PAGE_SIZE;
919 ret = 1;
920 } else {
921 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
922 pmd_t *pmd = pvmw.pmd;
923 pmd_t entry;
924
925 if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
926 continue;
927
928 flush_cache_page(vma, address, page_to_pfn(page));
929 entry = pmdp_huge_clear_flush(vma, address, pmd);
930 entry = pmd_wrprotect(entry);
931 entry = pmd_mkclean(entry);
932 set_pmd_at(vma->vm_mm, address, pmd, entry);
933 cstart &= PMD_MASK;
934 cend = cstart + PMD_SIZE;
935 ret = 1;
936 #else
937 /* unexpected pmd-mapped page? */
938 WARN_ON_ONCE(1);
939 #endif
940 }
941
942 if (ret) {
943 mmu_notifier_invalidate_range(vma->vm_mm, cstart, cend);
944 (*cleaned)++;
945 }
946 }
947
948 mmu_notifier_invalidate_range_end(vma->vm_mm, start, end);
949
950 return true;
951 }
952
953 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
954 {
955 if (vma->vm_flags & VM_SHARED)
956 return false;
957
958 return true;
959 }
960
961 int page_mkclean(struct page *page)
962 {
963 int cleaned = 0;
964 struct address_space *mapping;
965 struct rmap_walk_control rwc = {
966 .arg = (void *)&cleaned,
967 .rmap_one = page_mkclean_one,
968 .invalid_vma = invalid_mkclean_vma,
969 };
970
971 BUG_ON(!PageLocked(page));
972
973 if (!page_mapped(page))
974 return 0;
975
976 mapping = page_mapping(page);
977 if (!mapping)
978 return 0;
979
980 rmap_walk(page, &rwc);
981
982 return cleaned;
983 }
984 EXPORT_SYMBOL_GPL(page_mkclean);
985
986 /**
987 * page_move_anon_rmap - move a page to our anon_vma
988 * @page: the page to move to our anon_vma
989 * @vma: the vma the page belongs to
990 *
991 * When a page belongs exclusively to one process after a COW event,
992 * that page can be moved into the anon_vma that belongs to just that
993 * process, so the rmap code will not search the parent or sibling
994 * processes.
995 */
996 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
997 {
998 struct anon_vma *anon_vma = vma->anon_vma;
999
1000 page = compound_head(page);
1001
1002 VM_BUG_ON_PAGE(!PageLocked(page), page);
1003 VM_BUG_ON_VMA(!anon_vma, vma);
1004
1005 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1006 /*
1007 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1008 * simultaneously, so a concurrent reader (eg page_referenced()'s
1009 * PageAnon()) will not see one without the other.
1010 */
1011 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1012 }
1013
1014 /**
1015 * __page_set_anon_rmap - set up new anonymous rmap
1016 * @page: Page to add to rmap
1017 * @vma: VM area to add page to.
1018 * @address: User virtual address of the mapping
1019 * @exclusive: the page is exclusively owned by the current process
1020 */
1021 static void __page_set_anon_rmap(struct page *page,
1022 struct vm_area_struct *vma, unsigned long address, int exclusive)
1023 {
1024 struct anon_vma *anon_vma = vma->anon_vma;
1025
1026 BUG_ON(!anon_vma);
1027
1028 if (PageAnon(page))
1029 return;
1030
1031 /*
1032 * If the page isn't exclusively mapped into this vma,
1033 * we must use the _oldest_ possible anon_vma for the
1034 * page mapping!
1035 */
1036 if (!exclusive)
1037 anon_vma = anon_vma->root;
1038
1039 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1040 page->mapping = (struct address_space *) anon_vma;
1041 page->index = linear_page_index(vma, address);
1042 }
1043
1044 /**
1045 * __page_check_anon_rmap - sanity check anonymous rmap addition
1046 * @page: the page to add the mapping to
1047 * @vma: the vm area in which the mapping is added
1048 * @address: the user virtual address mapped
1049 */
1050 static void __page_check_anon_rmap(struct page *page,
1051 struct vm_area_struct *vma, unsigned long address)
1052 {
1053 #ifdef CONFIG_DEBUG_VM
1054 /*
1055 * The page's anon-rmap details (mapping and index) are guaranteed to
1056 * be set up correctly at this point.
1057 *
1058 * We have exclusion against page_add_anon_rmap because the caller
1059 * always holds the page locked, except if called from page_dup_rmap,
1060 * in which case the page is already known to be setup.
1061 *
1062 * We have exclusion against page_add_new_anon_rmap because those pages
1063 * are initially only visible via the pagetables, and the pte is locked
1064 * over the call to page_add_new_anon_rmap.
1065 */
1066 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1067 BUG_ON(page_to_pgoff(page) != linear_page_index(vma, address));
1068 #endif
1069 }
1070
1071 /**
1072 * page_add_anon_rmap - add pte mapping to an anonymous page
1073 * @page: the page to add the mapping to
1074 * @vma: the vm area in which the mapping is added
1075 * @address: the user virtual address mapped
1076 * @compound: charge the page as compound or small page
1077 *
1078 * The caller needs to hold the pte lock, and the page must be locked in
1079 * the anon_vma case: to serialize mapping,index checking after setting,
1080 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1081 * (but PageKsm is never downgraded to PageAnon).
1082 */
1083 void page_add_anon_rmap(struct page *page,
1084 struct vm_area_struct *vma, unsigned long address, bool compound)
1085 {
1086 do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
1087 }
1088
1089 /*
1090 * Special version of the above for do_swap_page, which often runs
1091 * into pages that are exclusively owned by the current process.
1092 * Everybody else should continue to use page_add_anon_rmap above.
1093 */
1094 void do_page_add_anon_rmap(struct page *page,
1095 struct vm_area_struct *vma, unsigned long address, int flags)
1096 {
1097 bool compound = flags & RMAP_COMPOUND;
1098 bool first;
1099
1100 if (compound) {
1101 atomic_t *mapcount;
1102 VM_BUG_ON_PAGE(!PageLocked(page), page);
1103 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1104 mapcount = compound_mapcount_ptr(page);
1105 first = atomic_inc_and_test(mapcount);
1106 } else {
1107 first = atomic_inc_and_test(&page->_mapcount);
1108 }
1109
1110 if (first) {
1111 int nr = compound ? hpage_nr_pages(page) : 1;
1112 /*
1113 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1114 * these counters are not modified in interrupt context, and
1115 * pte lock(a spinlock) is held, which implies preemption
1116 * disabled.
1117 */
1118 if (compound)
1119 __inc_node_page_state(page, NR_ANON_THPS);
1120 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
1121 }
1122 if (unlikely(PageKsm(page)))
1123 return;
1124
1125 VM_BUG_ON_PAGE(!PageLocked(page), page);
1126
1127 /* address might be in next vma when migration races vma_adjust */
1128 if (first)
1129 __page_set_anon_rmap(page, vma, address,
1130 flags & RMAP_EXCLUSIVE);
1131 else
1132 __page_check_anon_rmap(page, vma, address);
1133 }
1134
1135 /**
1136 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1137 * @page: the page to add the mapping to
1138 * @vma: the vm area in which the mapping is added
1139 * @address: the user virtual address mapped
1140 * @compound: charge the page as compound or small page
1141 *
1142 * Same as page_add_anon_rmap but must only be called on *new* pages.
1143 * This means the inc-and-test can be bypassed.
1144 * Page does not have to be locked.
1145 */
1146 void page_add_new_anon_rmap(struct page *page,
1147 struct vm_area_struct *vma, unsigned long address, bool compound)
1148 {
1149 int nr = compound ? hpage_nr_pages(page) : 1;
1150
1151 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1152 __SetPageSwapBacked(page);
1153 if (compound) {
1154 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1155 /* increment count (starts at -1) */
1156 atomic_set(compound_mapcount_ptr(page), 0);
1157 __inc_node_page_state(page, NR_ANON_THPS);
1158 } else {
1159 /* Anon THP always mapped first with PMD */
1160 VM_BUG_ON_PAGE(PageTransCompound(page), page);
1161 /* increment count (starts at -1) */
1162 atomic_set(&page->_mapcount, 0);
1163 }
1164 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
1165 __page_set_anon_rmap(page, vma, address, 1);
1166 }
1167
1168 /**
1169 * page_add_file_rmap - add pte mapping to a file page
1170 * @page: the page to add the mapping to
1171 *
1172 * The caller needs to hold the pte lock.
1173 */
1174 void page_add_file_rmap(struct page *page, bool compound)
1175 {
1176 int i, nr = 1;
1177
1178 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1179 lock_page_memcg(page);
1180 if (compound && PageTransHuge(page)) {
1181 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1182 if (atomic_inc_and_test(&page[i]._mapcount))
1183 nr++;
1184 }
1185 if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1186 goto out;
1187 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
1188 __inc_node_page_state(page, NR_SHMEM_PMDMAPPED);
1189 } else {
1190 if (PageTransCompound(page) && page_mapping(page)) {
1191 VM_WARN_ON_ONCE(!PageLocked(page));
1192
1193 SetPageDoubleMap(compound_head(page));
1194 if (PageMlocked(page))
1195 clear_page_mlock(compound_head(page));
1196 }
1197 if (!atomic_inc_and_test(&page->_mapcount))
1198 goto out;
1199 }
1200 __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
1201 out:
1202 unlock_page_memcg(page);
1203 }
1204
1205 static void page_remove_file_rmap(struct page *page, bool compound)
1206 {
1207 int i, nr = 1;
1208
1209 VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1210 lock_page_memcg(page);
1211
1212 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1213 if (unlikely(PageHuge(page))) {
1214 /* hugetlb pages are always mapped with pmds */
1215 atomic_dec(compound_mapcount_ptr(page));
1216 goto out;
1217 }
1218
1219 /* page still mapped by someone else? */
1220 if (compound && PageTransHuge(page)) {
1221 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1222 if (atomic_add_negative(-1, &page[i]._mapcount))
1223 nr++;
1224 }
1225 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1226 goto out;
1227 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
1228 __dec_node_page_state(page, NR_SHMEM_PMDMAPPED);
1229 } else {
1230 if (!atomic_add_negative(-1, &page->_mapcount))
1231 goto out;
1232 }
1233
1234 /*
1235 * We use the irq-unsafe __{inc|mod}_lruvec_page_state because
1236 * these counters are not modified in interrupt context, and
1237 * pte lock(a spinlock) is held, which implies preemption disabled.
1238 */
1239 __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
1240
1241 if (unlikely(PageMlocked(page)))
1242 clear_page_mlock(page);
1243 out:
1244 unlock_page_memcg(page);
1245 }
1246
1247 static void page_remove_anon_compound_rmap(struct page *page)
1248 {
1249 int i, nr;
1250
1251 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1252 return;
1253
1254 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1255 if (unlikely(PageHuge(page)))
1256 return;
1257
1258 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1259 return;
1260
1261 __dec_node_page_state(page, NR_ANON_THPS);
1262
1263 if (TestClearPageDoubleMap(page)) {
1264 /*
1265 * Subpages can be mapped with PTEs too. Check how many of
1266 * themi are still mapped.
1267 */
1268 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1269 if (atomic_add_negative(-1, &page[i]._mapcount))
1270 nr++;
1271 }
1272 } else {
1273 nr = HPAGE_PMD_NR;
1274 }
1275
1276 if (unlikely(PageMlocked(page)))
1277 clear_page_mlock(page);
1278
1279 if (nr) {
1280 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, -nr);
1281 deferred_split_huge_page(page);
1282 }
1283 }
1284
1285 /**
1286 * page_remove_rmap - take down pte mapping from a page
1287 * @page: page to remove mapping from
1288 * @compound: uncharge the page as compound or small page
1289 *
1290 * The caller needs to hold the pte lock.
1291 */
1292 void page_remove_rmap(struct page *page, bool compound)
1293 {
1294 if (!PageAnon(page))
1295 return page_remove_file_rmap(page, compound);
1296
1297 if (compound)
1298 return page_remove_anon_compound_rmap(page);
1299
1300 /* page still mapped by someone else? */
1301 if (!atomic_add_negative(-1, &page->_mapcount))
1302 return;
1303
1304 /*
1305 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1306 * these counters are not modified in interrupt context, and
1307 * pte lock(a spinlock) is held, which implies preemption disabled.
1308 */
1309 __dec_node_page_state(page, NR_ANON_MAPPED);
1310
1311 if (unlikely(PageMlocked(page)))
1312 clear_page_mlock(page);
1313
1314 if (PageTransCompound(page))
1315 deferred_split_huge_page(compound_head(page));
1316
1317 /*
1318 * It would be tidy to reset the PageAnon mapping here,
1319 * but that might overwrite a racing page_add_anon_rmap
1320 * which increments mapcount after us but sets mapping
1321 * before us: so leave the reset to free_hot_cold_page,
1322 * and remember that it's only reliable while mapped.
1323 * Leaving it set also helps swapoff to reinstate ptes
1324 * faster for those pages still in swapcache.
1325 */
1326 }
1327
1328 /*
1329 * @arg: enum ttu_flags will be passed to this argument
1330 */
1331 static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1332 unsigned long address, void *arg)
1333 {
1334 struct mm_struct *mm = vma->vm_mm;
1335 struct page_vma_mapped_walk pvmw = {
1336 .page = page,
1337 .vma = vma,
1338 .address = address,
1339 };
1340 pte_t pteval;
1341 struct page *subpage;
1342 bool ret = true;
1343 unsigned long start = address, end;
1344 enum ttu_flags flags = (enum ttu_flags)arg;
1345
1346 /* munlock has nothing to gain from examining un-locked vmas */
1347 if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED))
1348 return true;
1349
1350 if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) &&
1351 is_zone_device_page(page) && !is_device_private_page(page))
1352 return true;
1353
1354 if (flags & TTU_SPLIT_HUGE_PMD) {
1355 split_huge_pmd_address(vma, address,
1356 flags & TTU_SPLIT_FREEZE, page);
1357 }
1358
1359 /*
1360 * We have to assume the worse case ie pmd for invalidation. Note that
1361 * the page can not be free in this function as call of try_to_unmap()
1362 * must hold a reference on the page.
1363 */
1364 end = min(vma->vm_end, start + (PAGE_SIZE << compound_order(page)));
1365 mmu_notifier_invalidate_range_start(vma->vm_mm, start, end);
1366
1367 while (page_vma_mapped_walk(&pvmw)) {
1368 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1369 /* PMD-mapped THP migration entry */
1370 if (!pvmw.pte && (flags & TTU_MIGRATION)) {
1371 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
1372
1373 if (!PageAnon(page))
1374 continue;
1375
1376 set_pmd_migration_entry(&pvmw, page);
1377 continue;
1378 }
1379 #endif
1380
1381 /*
1382 * If the page is mlock()d, we cannot swap it out.
1383 * If it's recently referenced (perhaps page_referenced
1384 * skipped over this mm) then we should reactivate it.
1385 */
1386 if (!(flags & TTU_IGNORE_MLOCK)) {
1387 if (vma->vm_flags & VM_LOCKED) {
1388 /* PTE-mapped THP are never mlocked */
1389 if (!PageTransCompound(page)) {
1390 /*
1391 * Holding pte lock, we do *not* need
1392 * mmap_sem here
1393 */
1394 mlock_vma_page(page);
1395 }
1396 ret = false;
1397 page_vma_mapped_walk_done(&pvmw);
1398 break;
1399 }
1400 if (flags & TTU_MUNLOCK)
1401 continue;
1402 }
1403
1404 /* Unexpected PMD-mapped THP? */
1405 VM_BUG_ON_PAGE(!pvmw.pte, page);
1406
1407 subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
1408 address = pvmw.address;
1409
1410
1411 if (IS_ENABLED(CONFIG_MIGRATION) &&
1412 (flags & TTU_MIGRATION) &&
1413 is_zone_device_page(page)) {
1414 swp_entry_t entry;
1415 pte_t swp_pte;
1416
1417 pteval = ptep_get_and_clear(mm, pvmw.address, pvmw.pte);
1418
1419 /*
1420 * Store the pfn of the page in a special migration
1421 * pte. do_swap_page() will wait until the migration
1422 * pte is removed and then restart fault handling.
1423 */
1424 entry = make_migration_entry(page, 0);
1425 swp_pte = swp_entry_to_pte(entry);
1426 if (pte_soft_dirty(pteval))
1427 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1428 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
1429 goto discard;
1430 }
1431
1432 if (!(flags & TTU_IGNORE_ACCESS)) {
1433 if (ptep_clear_flush_young_notify(vma, address,
1434 pvmw.pte)) {
1435 ret = false;
1436 page_vma_mapped_walk_done(&pvmw);
1437 break;
1438 }
1439 }
1440
1441 /* Nuke the page table entry. */
1442 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1443 if (should_defer_flush(mm, flags)) {
1444 /*
1445 * We clear the PTE but do not flush so potentially
1446 * a remote CPU could still be writing to the page.
1447 * If the entry was previously clean then the
1448 * architecture must guarantee that a clear->dirty
1449 * transition on a cached TLB entry is written through
1450 * and traps if the PTE is unmapped.
1451 */
1452 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1453
1454 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1455 } else {
1456 pteval = ptep_clear_flush(vma, address, pvmw.pte);
1457 }
1458
1459 /* Move the dirty bit to the page. Now the pte is gone. */
1460 if (pte_dirty(pteval))
1461 set_page_dirty(page);
1462
1463 /* Update high watermark before we lower rss */
1464 update_hiwater_rss(mm);
1465
1466 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1467 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1468 if (PageHuge(page)) {
1469 int nr = 1 << compound_order(page);
1470 hugetlb_count_sub(nr, mm);
1471 set_huge_swap_pte_at(mm, address,
1472 pvmw.pte, pteval,
1473 vma_mmu_pagesize(vma));
1474 } else {
1475 dec_mm_counter(mm, mm_counter(page));
1476 set_pte_at(mm, address, pvmw.pte, pteval);
1477 }
1478
1479 } else if (pte_unused(pteval)) {
1480 /*
1481 * The guest indicated that the page content is of no
1482 * interest anymore. Simply discard the pte, vmscan
1483 * will take care of the rest.
1484 */
1485 dec_mm_counter(mm, mm_counter(page));
1486 } else if (IS_ENABLED(CONFIG_MIGRATION) &&
1487 (flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))) {
1488 swp_entry_t entry;
1489 pte_t swp_pte;
1490 /*
1491 * Store the pfn of the page in a special migration
1492 * pte. do_swap_page() will wait until the migration
1493 * pte is removed and then restart fault handling.
1494 */
1495 entry = make_migration_entry(subpage,
1496 pte_write(pteval));
1497 swp_pte = swp_entry_to_pte(entry);
1498 if (pte_soft_dirty(pteval))
1499 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1500 set_pte_at(mm, address, pvmw.pte, swp_pte);
1501 } else if (PageAnon(page)) {
1502 swp_entry_t entry = { .val = page_private(subpage) };
1503 pte_t swp_pte;
1504 /*
1505 * Store the swap location in the pte.
1506 * See handle_pte_fault() ...
1507 */
1508 if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) {
1509 WARN_ON_ONCE(1);
1510 ret = false;
1511 /* We have to invalidate as we cleared the pte */
1512 page_vma_mapped_walk_done(&pvmw);
1513 break;
1514 }
1515
1516 /* MADV_FREE page check */
1517 if (!PageSwapBacked(page)) {
1518 if (!PageDirty(page)) {
1519 dec_mm_counter(mm, MM_ANONPAGES);
1520 goto discard;
1521 }
1522
1523 /*
1524 * If the page was redirtied, it cannot be
1525 * discarded. Remap the page to page table.
1526 */
1527 set_pte_at(mm, address, pvmw.pte, pteval);
1528 SetPageSwapBacked(page);
1529 ret = false;
1530 page_vma_mapped_walk_done(&pvmw);
1531 break;
1532 }
1533
1534 if (swap_duplicate(entry) < 0) {
1535 set_pte_at(mm, address, pvmw.pte, pteval);
1536 ret = false;
1537 page_vma_mapped_walk_done(&pvmw);
1538 break;
1539 }
1540 if (list_empty(&mm->mmlist)) {
1541 spin_lock(&mmlist_lock);
1542 if (list_empty(&mm->mmlist))
1543 list_add(&mm->mmlist, &init_mm.mmlist);
1544 spin_unlock(&mmlist_lock);
1545 }
1546 dec_mm_counter(mm, MM_ANONPAGES);
1547 inc_mm_counter(mm, MM_SWAPENTS);
1548 swp_pte = swp_entry_to_pte(entry);
1549 if (pte_soft_dirty(pteval))
1550 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1551 set_pte_at(mm, address, pvmw.pte, swp_pte);
1552 } else
1553 dec_mm_counter(mm, mm_counter_file(page));
1554 discard:
1555 page_remove_rmap(subpage, PageHuge(page));
1556 put_page(page);
1557 mmu_notifier_invalidate_range(mm, address,
1558 address + PAGE_SIZE);
1559 }
1560
1561 mmu_notifier_invalidate_range_end(vma->vm_mm, start, end);
1562
1563 return ret;
1564 }
1565
1566 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1567 {
1568 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1569
1570 if (!maybe_stack)
1571 return false;
1572
1573 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1574 VM_STACK_INCOMPLETE_SETUP)
1575 return true;
1576
1577 return false;
1578 }
1579
1580 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1581 {
1582 return is_vma_temporary_stack(vma);
1583 }
1584
1585 static int page_mapcount_is_zero(struct page *page)
1586 {
1587 return !total_mapcount(page);
1588 }
1589
1590 /**
1591 * try_to_unmap - try to remove all page table mappings to a page
1592 * @page: the page to get unmapped
1593 * @flags: action and flags
1594 *
1595 * Tries to remove all the page table entries which are mapping this
1596 * page, used in the pageout path. Caller must hold the page lock.
1597 *
1598 * If unmap is successful, return true. Otherwise, false.
1599 */
1600 bool try_to_unmap(struct page *page, enum ttu_flags flags)
1601 {
1602 struct rmap_walk_control rwc = {
1603 .rmap_one = try_to_unmap_one,
1604 .arg = (void *)flags,
1605 .done = page_mapcount_is_zero,
1606 .anon_lock = page_lock_anon_vma_read,
1607 };
1608
1609 /*
1610 * During exec, a temporary VMA is setup and later moved.
1611 * The VMA is moved under the anon_vma lock but not the
1612 * page tables leading to a race where migration cannot
1613 * find the migration ptes. Rather than increasing the
1614 * locking requirements of exec(), migration skips
1615 * temporary VMAs until after exec() completes.
1616 */
1617 if ((flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))
1618 && !PageKsm(page) && PageAnon(page))
1619 rwc.invalid_vma = invalid_migration_vma;
1620
1621 if (flags & TTU_RMAP_LOCKED)
1622 rmap_walk_locked(page, &rwc);
1623 else
1624 rmap_walk(page, &rwc);
1625
1626 return !page_mapcount(page) ? true : false;
1627 }
1628
1629 static int page_not_mapped(struct page *page)
1630 {
1631 return !page_mapped(page);
1632 };
1633
1634 /**
1635 * try_to_munlock - try to munlock a page
1636 * @page: the page to be munlocked
1637 *
1638 * Called from munlock code. Checks all of the VMAs mapping the page
1639 * to make sure nobody else has this page mlocked. The page will be
1640 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1641 */
1642
1643 void try_to_munlock(struct page *page)
1644 {
1645 struct rmap_walk_control rwc = {
1646 .rmap_one = try_to_unmap_one,
1647 .arg = (void *)TTU_MUNLOCK,
1648 .done = page_not_mapped,
1649 .anon_lock = page_lock_anon_vma_read,
1650
1651 };
1652
1653 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1654 VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
1655
1656 rmap_walk(page, &rwc);
1657 }
1658
1659 void __put_anon_vma(struct anon_vma *anon_vma)
1660 {
1661 struct anon_vma *root = anon_vma->root;
1662
1663 anon_vma_free(anon_vma);
1664 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1665 anon_vma_free(root);
1666 }
1667
1668 static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1669 struct rmap_walk_control *rwc)
1670 {
1671 struct anon_vma *anon_vma;
1672
1673 if (rwc->anon_lock)
1674 return rwc->anon_lock(page);
1675
1676 /*
1677 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1678 * because that depends on page_mapped(); but not all its usages
1679 * are holding mmap_sem. Users without mmap_sem are required to
1680 * take a reference count to prevent the anon_vma disappearing
1681 */
1682 anon_vma = page_anon_vma(page);
1683 if (!anon_vma)
1684 return NULL;
1685
1686 anon_vma_lock_read(anon_vma);
1687 return anon_vma;
1688 }
1689
1690 /*
1691 * rmap_walk_anon - do something to anonymous page using the object-based
1692 * rmap method
1693 * @page: the page to be handled
1694 * @rwc: control variable according to each walk type
1695 *
1696 * Find all the mappings of a page using the mapping pointer and the vma chains
1697 * contained in the anon_vma struct it points to.
1698 *
1699 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1700 * where the page was found will be held for write. So, we won't recheck
1701 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1702 * LOCKED.
1703 */
1704 static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
1705 bool locked)
1706 {
1707 struct anon_vma *anon_vma;
1708 pgoff_t pgoff_start, pgoff_end;
1709 struct anon_vma_chain *avc;
1710
1711 if (locked) {
1712 anon_vma = page_anon_vma(page);
1713 /* anon_vma disappear under us? */
1714 VM_BUG_ON_PAGE(!anon_vma, page);
1715 } else {
1716 anon_vma = rmap_walk_anon_lock(page, rwc);
1717 }
1718 if (!anon_vma)
1719 return;
1720
1721 pgoff_start = page_to_pgoff(page);
1722 pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
1723 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1724 pgoff_start, pgoff_end) {
1725 struct vm_area_struct *vma = avc->vma;
1726 unsigned long address = vma_address(page, vma);
1727
1728 cond_resched();
1729
1730 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1731 continue;
1732
1733 if (!rwc->rmap_one(page, vma, address, rwc->arg))
1734 break;
1735 if (rwc->done && rwc->done(page))
1736 break;
1737 }
1738
1739 if (!locked)
1740 anon_vma_unlock_read(anon_vma);
1741 }
1742
1743 /*
1744 * rmap_walk_file - do something to file page using the object-based rmap method
1745 * @page: the page to be handled
1746 * @rwc: control variable according to each walk type
1747 *
1748 * Find all the mappings of a page using the mapping pointer and the vma chains
1749 * contained in the address_space struct it points to.
1750 *
1751 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1752 * where the page was found will be held for write. So, we won't recheck
1753 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1754 * LOCKED.
1755 */
1756 static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
1757 bool locked)
1758 {
1759 struct address_space *mapping = page_mapping(page);
1760 pgoff_t pgoff_start, pgoff_end;
1761 struct vm_area_struct *vma;
1762
1763 /*
1764 * The page lock not only makes sure that page->mapping cannot
1765 * suddenly be NULLified by truncation, it makes sure that the
1766 * structure at mapping cannot be freed and reused yet,
1767 * so we can safely take mapping->i_mmap_rwsem.
1768 */
1769 VM_BUG_ON_PAGE(!PageLocked(page), page);
1770
1771 if (!mapping)
1772 return;
1773
1774 pgoff_start = page_to_pgoff(page);
1775 pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
1776 if (!locked)
1777 i_mmap_lock_read(mapping);
1778 vma_interval_tree_foreach(vma, &mapping->i_mmap,
1779 pgoff_start, pgoff_end) {
1780 unsigned long address = vma_address(page, vma);
1781
1782 cond_resched();
1783
1784 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1785 continue;
1786
1787 if (!rwc->rmap_one(page, vma, address, rwc->arg))
1788 goto done;
1789 if (rwc->done && rwc->done(page))
1790 goto done;
1791 }
1792
1793 done:
1794 if (!locked)
1795 i_mmap_unlock_read(mapping);
1796 }
1797
1798 void rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1799 {
1800 if (unlikely(PageKsm(page)))
1801 rmap_walk_ksm(page, rwc);
1802 else if (PageAnon(page))
1803 rmap_walk_anon(page, rwc, false);
1804 else
1805 rmap_walk_file(page, rwc, false);
1806 }
1807
1808 /* Like rmap_walk, but caller holds relevant rmap lock */
1809 void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
1810 {
1811 /* no ksm support for now */
1812 VM_BUG_ON_PAGE(PageKsm(page), page);
1813 if (PageAnon(page))
1814 rmap_walk_anon(page, rwc, true);
1815 else
1816 rmap_walk_file(page, rwc, true);
1817 }
1818
1819 #ifdef CONFIG_HUGETLB_PAGE
1820 /*
1821 * The following three functions are for anonymous (private mapped) hugepages.
1822 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1823 * and no lru code, because we handle hugepages differently from common pages.
1824 */
1825 static void __hugepage_set_anon_rmap(struct page *page,
1826 struct vm_area_struct *vma, unsigned long address, int exclusive)
1827 {
1828 struct anon_vma *anon_vma = vma->anon_vma;
1829
1830 BUG_ON(!anon_vma);
1831
1832 if (PageAnon(page))
1833 return;
1834 if (!exclusive)
1835 anon_vma = anon_vma->root;
1836
1837 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1838 page->mapping = (struct address_space *) anon_vma;
1839 page->index = linear_page_index(vma, address);
1840 }
1841
1842 void hugepage_add_anon_rmap(struct page *page,
1843 struct vm_area_struct *vma, unsigned long address)
1844 {
1845 struct anon_vma *anon_vma = vma->anon_vma;
1846 int first;
1847
1848 BUG_ON(!PageLocked(page));
1849 BUG_ON(!anon_vma);
1850 /* address might be in next vma when migration races vma_adjust */
1851 first = atomic_inc_and_test(compound_mapcount_ptr(page));
1852 if (first)
1853 __hugepage_set_anon_rmap(page, vma, address, 0);
1854 }
1855
1856 void hugepage_add_new_anon_rmap(struct page *page,
1857 struct vm_area_struct *vma, unsigned long address)
1858 {
1859 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1860 atomic_set(compound_mapcount_ptr(page), 0);
1861 __hugepage_set_anon_rmap(page, vma, address, 1);
1862 }
1863 #endif /* CONFIG_HUGETLB_PAGE */