]> git.ipfire.org Git - people/arne_f/kernel.git/blob - mm/swap_state.c
Merge tag 'usb-4.14-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/usb
[people/arne_f/kernel.git] / mm / swap_state.c
1 /*
2 * linux/mm/swap_state.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 *
7 * Rewritten to use page cache, (C) 1998 Stephen Tweedie
8 */
9 #include <linux/mm.h>
10 #include <linux/gfp.h>
11 #include <linux/kernel_stat.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/init.h>
15 #include <linux/pagemap.h>
16 #include <linux/backing-dev.h>
17 #include <linux/blkdev.h>
18 #include <linux/pagevec.h>
19 #include <linux/migrate.h>
20 #include <linux/vmalloc.h>
21 #include <linux/swap_slots.h>
22 #include <linux/huge_mm.h>
23
24 #include <asm/pgtable.h>
25
26 /*
27 * swapper_space is a fiction, retained to simplify the path through
28 * vmscan's shrink_page_list.
29 */
30 static const struct address_space_operations swap_aops = {
31 .writepage = swap_writepage,
32 .set_page_dirty = swap_set_page_dirty,
33 #ifdef CONFIG_MIGRATION
34 .migratepage = migrate_page,
35 #endif
36 };
37
38 struct address_space *swapper_spaces[MAX_SWAPFILES];
39 static unsigned int nr_swapper_spaces[MAX_SWAPFILES];
40 bool swap_vma_readahead = true;
41
42 #define SWAP_RA_WIN_SHIFT (PAGE_SHIFT / 2)
43 #define SWAP_RA_HITS_MASK ((1UL << SWAP_RA_WIN_SHIFT) - 1)
44 #define SWAP_RA_HITS_MAX SWAP_RA_HITS_MASK
45 #define SWAP_RA_WIN_MASK (~PAGE_MASK & ~SWAP_RA_HITS_MASK)
46
47 #define SWAP_RA_HITS(v) ((v) & SWAP_RA_HITS_MASK)
48 #define SWAP_RA_WIN(v) (((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
49 #define SWAP_RA_ADDR(v) ((v) & PAGE_MASK)
50
51 #define SWAP_RA_VAL(addr, win, hits) \
52 (((addr) & PAGE_MASK) | \
53 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) | \
54 ((hits) & SWAP_RA_HITS_MASK))
55
56 /* Initial readahead hits is 4 to start up with a small window */
57 #define GET_SWAP_RA_VAL(vma) \
58 (atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
59
60 #define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0)
61 #define ADD_CACHE_INFO(x, nr) do { swap_cache_info.x += (nr); } while (0)
62
63 static struct {
64 unsigned long add_total;
65 unsigned long del_total;
66 unsigned long find_success;
67 unsigned long find_total;
68 } swap_cache_info;
69
70 unsigned long total_swapcache_pages(void)
71 {
72 unsigned int i, j, nr;
73 unsigned long ret = 0;
74 struct address_space *spaces;
75
76 rcu_read_lock();
77 for (i = 0; i < MAX_SWAPFILES; i++) {
78 /*
79 * The corresponding entries in nr_swapper_spaces and
80 * swapper_spaces will be reused only after at least
81 * one grace period. So it is impossible for them
82 * belongs to different usage.
83 */
84 nr = nr_swapper_spaces[i];
85 spaces = rcu_dereference(swapper_spaces[i]);
86 if (!nr || !spaces)
87 continue;
88 for (j = 0; j < nr; j++)
89 ret += spaces[j].nrpages;
90 }
91 rcu_read_unlock();
92 return ret;
93 }
94
95 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
96
97 void show_swap_cache_info(void)
98 {
99 printk("%lu pages in swap cache\n", total_swapcache_pages());
100 printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
101 swap_cache_info.add_total, swap_cache_info.del_total,
102 swap_cache_info.find_success, swap_cache_info.find_total);
103 printk("Free swap = %ldkB\n",
104 get_nr_swap_pages() << (PAGE_SHIFT - 10));
105 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
106 }
107
108 /*
109 * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
110 * but sets SwapCache flag and private instead of mapping and index.
111 */
112 int __add_to_swap_cache(struct page *page, swp_entry_t entry)
113 {
114 int error, i, nr = hpage_nr_pages(page);
115 struct address_space *address_space;
116 pgoff_t idx = swp_offset(entry);
117
118 VM_BUG_ON_PAGE(!PageLocked(page), page);
119 VM_BUG_ON_PAGE(PageSwapCache(page), page);
120 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
121
122 page_ref_add(page, nr);
123 SetPageSwapCache(page);
124
125 address_space = swap_address_space(entry);
126 spin_lock_irq(&address_space->tree_lock);
127 for (i = 0; i < nr; i++) {
128 set_page_private(page + i, entry.val + i);
129 error = radix_tree_insert(&address_space->page_tree,
130 idx + i, page + i);
131 if (unlikely(error))
132 break;
133 }
134 if (likely(!error)) {
135 address_space->nrpages += nr;
136 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
137 ADD_CACHE_INFO(add_total, nr);
138 } else {
139 /*
140 * Only the context which have set SWAP_HAS_CACHE flag
141 * would call add_to_swap_cache().
142 * So add_to_swap_cache() doesn't returns -EEXIST.
143 */
144 VM_BUG_ON(error == -EEXIST);
145 set_page_private(page + i, 0UL);
146 while (i--) {
147 radix_tree_delete(&address_space->page_tree, idx + i);
148 set_page_private(page + i, 0UL);
149 }
150 ClearPageSwapCache(page);
151 page_ref_sub(page, nr);
152 }
153 spin_unlock_irq(&address_space->tree_lock);
154
155 return error;
156 }
157
158
159 int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
160 {
161 int error;
162
163 error = radix_tree_maybe_preload_order(gfp_mask, compound_order(page));
164 if (!error) {
165 error = __add_to_swap_cache(page, entry);
166 radix_tree_preload_end();
167 }
168 return error;
169 }
170
171 /*
172 * This must be called only on pages that have
173 * been verified to be in the swap cache.
174 */
175 void __delete_from_swap_cache(struct page *page)
176 {
177 struct address_space *address_space;
178 int i, nr = hpage_nr_pages(page);
179 swp_entry_t entry;
180 pgoff_t idx;
181
182 VM_BUG_ON_PAGE(!PageLocked(page), page);
183 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
184 VM_BUG_ON_PAGE(PageWriteback(page), page);
185
186 entry.val = page_private(page);
187 address_space = swap_address_space(entry);
188 idx = swp_offset(entry);
189 for (i = 0; i < nr; i++) {
190 radix_tree_delete(&address_space->page_tree, idx + i);
191 set_page_private(page + i, 0);
192 }
193 ClearPageSwapCache(page);
194 address_space->nrpages -= nr;
195 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
196 ADD_CACHE_INFO(del_total, nr);
197 }
198
199 /**
200 * add_to_swap - allocate swap space for a page
201 * @page: page we want to move to swap
202 *
203 * Allocate swap space for the page and add the page to the
204 * swap cache. Caller needs to hold the page lock.
205 */
206 int add_to_swap(struct page *page)
207 {
208 swp_entry_t entry;
209 int err;
210
211 VM_BUG_ON_PAGE(!PageLocked(page), page);
212 VM_BUG_ON_PAGE(!PageUptodate(page), page);
213
214 entry = get_swap_page(page);
215 if (!entry.val)
216 return 0;
217
218 if (mem_cgroup_try_charge_swap(page, entry))
219 goto fail;
220
221 /*
222 * Radix-tree node allocations from PF_MEMALLOC contexts could
223 * completely exhaust the page allocator. __GFP_NOMEMALLOC
224 * stops emergency reserves from being allocated.
225 *
226 * TODO: this could cause a theoretical memory reclaim
227 * deadlock in the swap out path.
228 */
229 /*
230 * Add it to the swap cache.
231 */
232 err = add_to_swap_cache(page, entry,
233 __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
234 /* -ENOMEM radix-tree allocation failure */
235 if (err)
236 /*
237 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
238 * clear SWAP_HAS_CACHE flag.
239 */
240 goto fail;
241 /*
242 * Normally the page will be dirtied in unmap because its pte should be
243 * dirty. A special case is MADV_FREE page. The page'e pte could have
244 * dirty bit cleared but the page's SwapBacked bit is still set because
245 * clearing the dirty bit and SwapBacked bit has no lock protected. For
246 * such page, unmap will not set dirty bit for it, so page reclaim will
247 * not write the page out. This can cause data corruption when the page
248 * is swap in later. Always setting the dirty bit for the page solves
249 * the problem.
250 */
251 set_page_dirty(page);
252
253 return 1;
254
255 fail:
256 put_swap_page(page, entry);
257 return 0;
258 }
259
260 /*
261 * This must be called only on pages that have
262 * been verified to be in the swap cache and locked.
263 * It will never put the page into the free list,
264 * the caller has a reference on the page.
265 */
266 void delete_from_swap_cache(struct page *page)
267 {
268 swp_entry_t entry;
269 struct address_space *address_space;
270
271 entry.val = page_private(page);
272
273 address_space = swap_address_space(entry);
274 spin_lock_irq(&address_space->tree_lock);
275 __delete_from_swap_cache(page);
276 spin_unlock_irq(&address_space->tree_lock);
277
278 put_swap_page(page, entry);
279 page_ref_sub(page, hpage_nr_pages(page));
280 }
281
282 /*
283 * If we are the only user, then try to free up the swap cache.
284 *
285 * Its ok to check for PageSwapCache without the page lock
286 * here because we are going to recheck again inside
287 * try_to_free_swap() _with_ the lock.
288 * - Marcelo
289 */
290 static inline void free_swap_cache(struct page *page)
291 {
292 if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
293 try_to_free_swap(page);
294 unlock_page(page);
295 }
296 }
297
298 /*
299 * Perform a free_page(), also freeing any swap cache associated with
300 * this page if it is the last user of the page.
301 */
302 void free_page_and_swap_cache(struct page *page)
303 {
304 free_swap_cache(page);
305 if (!is_huge_zero_page(page))
306 put_page(page);
307 }
308
309 /*
310 * Passed an array of pages, drop them all from swapcache and then release
311 * them. They are removed from the LRU and freed if this is their last use.
312 */
313 void free_pages_and_swap_cache(struct page **pages, int nr)
314 {
315 struct page **pagep = pages;
316 int i;
317
318 lru_add_drain();
319 for (i = 0; i < nr; i++)
320 free_swap_cache(pagep[i]);
321 release_pages(pagep, nr, false);
322 }
323
324 /*
325 * Lookup a swap entry in the swap cache. A found page will be returned
326 * unlocked and with its refcount incremented - we rely on the kernel
327 * lock getting page table operations atomic even if we drop the page
328 * lock before returning.
329 */
330 struct page *lookup_swap_cache(swp_entry_t entry, struct vm_area_struct *vma,
331 unsigned long addr)
332 {
333 struct page *page;
334 unsigned long ra_info;
335 int win, hits, readahead;
336
337 page = find_get_page(swap_address_space(entry), swp_offset(entry));
338
339 INC_CACHE_INFO(find_total);
340 if (page) {
341 INC_CACHE_INFO(find_success);
342 if (unlikely(PageTransCompound(page)))
343 return page;
344 readahead = TestClearPageReadahead(page);
345 if (vma) {
346 ra_info = GET_SWAP_RA_VAL(vma);
347 win = SWAP_RA_WIN(ra_info);
348 hits = SWAP_RA_HITS(ra_info);
349 if (readahead)
350 hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
351 atomic_long_set(&vma->swap_readahead_info,
352 SWAP_RA_VAL(addr, win, hits));
353 }
354 if (readahead) {
355 count_vm_event(SWAP_RA_HIT);
356 if (!vma)
357 atomic_inc(&swapin_readahead_hits);
358 }
359 }
360 return page;
361 }
362
363 struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
364 struct vm_area_struct *vma, unsigned long addr,
365 bool *new_page_allocated)
366 {
367 struct page *found_page, *new_page = NULL;
368 struct address_space *swapper_space = swap_address_space(entry);
369 int err;
370 *new_page_allocated = false;
371
372 do {
373 /*
374 * First check the swap cache. Since this is normally
375 * called after lookup_swap_cache() failed, re-calling
376 * that would confuse statistics.
377 */
378 found_page = find_get_page(swapper_space, swp_offset(entry));
379 if (found_page)
380 break;
381
382 /*
383 * Just skip read ahead for unused swap slot.
384 * During swap_off when swap_slot_cache is disabled,
385 * we have to handle the race between putting
386 * swap entry in swap cache and marking swap slot
387 * as SWAP_HAS_CACHE. That's done in later part of code or
388 * else swap_off will be aborted if we return NULL.
389 */
390 if (!__swp_swapcount(entry) && swap_slot_cache_enabled)
391 break;
392
393 /*
394 * Get a new page to read into from swap.
395 */
396 if (!new_page) {
397 new_page = alloc_page_vma(gfp_mask, vma, addr);
398 if (!new_page)
399 break; /* Out of memory */
400 }
401
402 /*
403 * call radix_tree_preload() while we can wait.
404 */
405 err = radix_tree_maybe_preload(gfp_mask & GFP_KERNEL);
406 if (err)
407 break;
408
409 /*
410 * Swap entry may have been freed since our caller observed it.
411 */
412 err = swapcache_prepare(entry);
413 if (err == -EEXIST) {
414 radix_tree_preload_end();
415 /*
416 * We might race against get_swap_page() and stumble
417 * across a SWAP_HAS_CACHE swap_map entry whose page
418 * has not been brought into the swapcache yet.
419 */
420 cond_resched();
421 continue;
422 }
423 if (err) { /* swp entry is obsolete ? */
424 radix_tree_preload_end();
425 break;
426 }
427
428 /* May fail (-ENOMEM) if radix-tree node allocation failed. */
429 __SetPageLocked(new_page);
430 __SetPageSwapBacked(new_page);
431 err = __add_to_swap_cache(new_page, entry);
432 if (likely(!err)) {
433 radix_tree_preload_end();
434 /*
435 * Initiate read into locked page and return.
436 */
437 lru_cache_add_anon(new_page);
438 *new_page_allocated = true;
439 return new_page;
440 }
441 radix_tree_preload_end();
442 __ClearPageLocked(new_page);
443 /*
444 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
445 * clear SWAP_HAS_CACHE flag.
446 */
447 put_swap_page(new_page, entry);
448 } while (err != -ENOMEM);
449
450 if (new_page)
451 put_page(new_page);
452 return found_page;
453 }
454
455 /*
456 * Locate a page of swap in physical memory, reserving swap cache space
457 * and reading the disk if it is not already cached.
458 * A failure return means that either the page allocation failed or that
459 * the swap entry is no longer in use.
460 */
461 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
462 struct vm_area_struct *vma, unsigned long addr, bool do_poll)
463 {
464 bool page_was_allocated;
465 struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
466 vma, addr, &page_was_allocated);
467
468 if (page_was_allocated)
469 swap_readpage(retpage, do_poll);
470
471 return retpage;
472 }
473
474 static unsigned int __swapin_nr_pages(unsigned long prev_offset,
475 unsigned long offset,
476 int hits,
477 int max_pages,
478 int prev_win)
479 {
480 unsigned int pages, last_ra;
481
482 /*
483 * This heuristic has been found to work well on both sequential and
484 * random loads, swapping to hard disk or to SSD: please don't ask
485 * what the "+ 2" means, it just happens to work well, that's all.
486 */
487 pages = hits + 2;
488 if (pages == 2) {
489 /*
490 * We can have no readahead hits to judge by: but must not get
491 * stuck here forever, so check for an adjacent offset instead
492 * (and don't even bother to check whether swap type is same).
493 */
494 if (offset != prev_offset + 1 && offset != prev_offset - 1)
495 pages = 1;
496 } else {
497 unsigned int roundup = 4;
498 while (roundup < pages)
499 roundup <<= 1;
500 pages = roundup;
501 }
502
503 if (pages > max_pages)
504 pages = max_pages;
505
506 /* Don't shrink readahead too fast */
507 last_ra = prev_win / 2;
508 if (pages < last_ra)
509 pages = last_ra;
510
511 return pages;
512 }
513
514 static unsigned long swapin_nr_pages(unsigned long offset)
515 {
516 static unsigned long prev_offset;
517 unsigned int hits, pages, max_pages;
518 static atomic_t last_readahead_pages;
519
520 max_pages = 1 << READ_ONCE(page_cluster);
521 if (max_pages <= 1)
522 return 1;
523
524 hits = atomic_xchg(&swapin_readahead_hits, 0);
525 pages = __swapin_nr_pages(prev_offset, offset, hits, max_pages,
526 atomic_read(&last_readahead_pages));
527 if (!hits)
528 prev_offset = offset;
529 atomic_set(&last_readahead_pages, pages);
530
531 return pages;
532 }
533
534 /**
535 * swapin_readahead - swap in pages in hope we need them soon
536 * @entry: swap entry of this memory
537 * @gfp_mask: memory allocation flags
538 * @vma: user vma this address belongs to
539 * @addr: target address for mempolicy
540 *
541 * Returns the struct page for entry and addr, after queueing swapin.
542 *
543 * Primitive swap readahead code. We simply read an aligned block of
544 * (1 << page_cluster) entries in the swap area. This method is chosen
545 * because it doesn't cost us any seek time. We also make sure to queue
546 * the 'original' request together with the readahead ones...
547 *
548 * This has been extended to use the NUMA policies from the mm triggering
549 * the readahead.
550 *
551 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
552 */
553 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
554 struct vm_area_struct *vma, unsigned long addr)
555 {
556 struct page *page;
557 unsigned long entry_offset = swp_offset(entry);
558 unsigned long offset = entry_offset;
559 unsigned long start_offset, end_offset;
560 unsigned long mask;
561 struct blk_plug plug;
562 bool do_poll = true, page_allocated;
563
564 mask = swapin_nr_pages(offset) - 1;
565 if (!mask)
566 goto skip;
567
568 do_poll = false;
569 /* Read a page_cluster sized and aligned cluster around offset. */
570 start_offset = offset & ~mask;
571 end_offset = offset | mask;
572 if (!start_offset) /* First page is swap header. */
573 start_offset++;
574
575 blk_start_plug(&plug);
576 for (offset = start_offset; offset <= end_offset ; offset++) {
577 /* Ok, do the async read-ahead now */
578 page = __read_swap_cache_async(
579 swp_entry(swp_type(entry), offset),
580 gfp_mask, vma, addr, &page_allocated);
581 if (!page)
582 continue;
583 if (page_allocated) {
584 swap_readpage(page, false);
585 if (offset != entry_offset &&
586 likely(!PageTransCompound(page))) {
587 SetPageReadahead(page);
588 count_vm_event(SWAP_RA);
589 }
590 }
591 put_page(page);
592 }
593 blk_finish_plug(&plug);
594
595 lru_add_drain(); /* Push any new pages onto the LRU now */
596 skip:
597 return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll);
598 }
599
600 int init_swap_address_space(unsigned int type, unsigned long nr_pages)
601 {
602 struct address_space *spaces, *space;
603 unsigned int i, nr;
604
605 nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
606 spaces = kvzalloc(sizeof(struct address_space) * nr, GFP_KERNEL);
607 if (!spaces)
608 return -ENOMEM;
609 for (i = 0; i < nr; i++) {
610 space = spaces + i;
611 INIT_RADIX_TREE(&space->page_tree, GFP_ATOMIC|__GFP_NOWARN);
612 atomic_set(&space->i_mmap_writable, 0);
613 space->a_ops = &swap_aops;
614 /* swap cache doesn't use writeback related tags */
615 mapping_set_no_writeback_tags(space);
616 spin_lock_init(&space->tree_lock);
617 }
618 nr_swapper_spaces[type] = nr;
619 rcu_assign_pointer(swapper_spaces[type], spaces);
620
621 return 0;
622 }
623
624 void exit_swap_address_space(unsigned int type)
625 {
626 struct address_space *spaces;
627
628 spaces = swapper_spaces[type];
629 nr_swapper_spaces[type] = 0;
630 rcu_assign_pointer(swapper_spaces[type], NULL);
631 synchronize_rcu();
632 kvfree(spaces);
633 }
634
635 static inline void swap_ra_clamp_pfn(struct vm_area_struct *vma,
636 unsigned long faddr,
637 unsigned long lpfn,
638 unsigned long rpfn,
639 unsigned long *start,
640 unsigned long *end)
641 {
642 *start = max3(lpfn, PFN_DOWN(vma->vm_start),
643 PFN_DOWN(faddr & PMD_MASK));
644 *end = min3(rpfn, PFN_DOWN(vma->vm_end),
645 PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE));
646 }
647
648 struct page *swap_readahead_detect(struct vm_fault *vmf,
649 struct vma_swap_readahead *swap_ra)
650 {
651 struct vm_area_struct *vma = vmf->vma;
652 unsigned long swap_ra_info;
653 struct page *page;
654 swp_entry_t entry;
655 unsigned long faddr, pfn, fpfn;
656 unsigned long start, end;
657 pte_t *pte;
658 unsigned int max_win, hits, prev_win, win, left;
659 #ifndef CONFIG_64BIT
660 pte_t *tpte;
661 #endif
662
663 max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster),
664 SWAP_RA_ORDER_CEILING);
665 if (max_win == 1) {
666 swap_ra->win = 1;
667 return NULL;
668 }
669
670 faddr = vmf->address;
671 entry = pte_to_swp_entry(vmf->orig_pte);
672 if ((unlikely(non_swap_entry(entry))))
673 return NULL;
674 page = lookup_swap_cache(entry, vma, faddr);
675 if (page)
676 return page;
677
678 fpfn = PFN_DOWN(faddr);
679 swap_ra_info = GET_SWAP_RA_VAL(vma);
680 pfn = PFN_DOWN(SWAP_RA_ADDR(swap_ra_info));
681 prev_win = SWAP_RA_WIN(swap_ra_info);
682 hits = SWAP_RA_HITS(swap_ra_info);
683 swap_ra->win = win = __swapin_nr_pages(pfn, fpfn, hits,
684 max_win, prev_win);
685 atomic_long_set(&vma->swap_readahead_info,
686 SWAP_RA_VAL(faddr, win, 0));
687
688 if (win == 1)
689 return NULL;
690
691 /* Copy the PTEs because the page table may be unmapped */
692 if (fpfn == pfn + 1)
693 swap_ra_clamp_pfn(vma, faddr, fpfn, fpfn + win, &start, &end);
694 else if (pfn == fpfn + 1)
695 swap_ra_clamp_pfn(vma, faddr, fpfn - win + 1, fpfn + 1,
696 &start, &end);
697 else {
698 left = (win - 1) / 2;
699 swap_ra_clamp_pfn(vma, faddr, fpfn - left, fpfn + win - left,
700 &start, &end);
701 }
702 swap_ra->nr_pte = end - start;
703 swap_ra->offset = fpfn - start;
704 pte = vmf->pte - swap_ra->offset;
705 #ifdef CONFIG_64BIT
706 swap_ra->ptes = pte;
707 #else
708 tpte = swap_ra->ptes;
709 for (pfn = start; pfn != end; pfn++)
710 *tpte++ = *pte++;
711 #endif
712
713 return NULL;
714 }
715
716 struct page *do_swap_page_readahead(swp_entry_t fentry, gfp_t gfp_mask,
717 struct vm_fault *vmf,
718 struct vma_swap_readahead *swap_ra)
719 {
720 struct blk_plug plug;
721 struct vm_area_struct *vma = vmf->vma;
722 struct page *page;
723 pte_t *pte, pentry;
724 swp_entry_t entry;
725 unsigned int i;
726 bool page_allocated;
727
728 if (swap_ra->win == 1)
729 goto skip;
730
731 blk_start_plug(&plug);
732 for (i = 0, pte = swap_ra->ptes; i < swap_ra->nr_pte;
733 i++, pte++) {
734 pentry = *pte;
735 if (pte_none(pentry))
736 continue;
737 if (pte_present(pentry))
738 continue;
739 entry = pte_to_swp_entry(pentry);
740 if (unlikely(non_swap_entry(entry)))
741 continue;
742 page = __read_swap_cache_async(entry, gfp_mask, vma,
743 vmf->address, &page_allocated);
744 if (!page)
745 continue;
746 if (page_allocated) {
747 swap_readpage(page, false);
748 if (i != swap_ra->offset &&
749 likely(!PageTransCompound(page))) {
750 SetPageReadahead(page);
751 count_vm_event(SWAP_RA);
752 }
753 }
754 put_page(page);
755 }
756 blk_finish_plug(&plug);
757 lru_add_drain();
758 skip:
759 return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address,
760 swap_ra->win == 1);
761 }
762
763 #ifdef CONFIG_SYSFS
764 static ssize_t vma_ra_enabled_show(struct kobject *kobj,
765 struct kobj_attribute *attr, char *buf)
766 {
767 return sprintf(buf, "%s\n", swap_vma_readahead ? "true" : "false");
768 }
769 static ssize_t vma_ra_enabled_store(struct kobject *kobj,
770 struct kobj_attribute *attr,
771 const char *buf, size_t count)
772 {
773 if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1))
774 swap_vma_readahead = true;
775 else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1))
776 swap_vma_readahead = false;
777 else
778 return -EINVAL;
779
780 return count;
781 }
782 static struct kobj_attribute vma_ra_enabled_attr =
783 __ATTR(vma_ra_enabled, 0644, vma_ra_enabled_show,
784 vma_ra_enabled_store);
785
786 static struct attribute *swap_attrs[] = {
787 &vma_ra_enabled_attr.attr,
788 NULL,
789 };
790
791 static struct attribute_group swap_attr_group = {
792 .attrs = swap_attrs,
793 };
794
795 static int __init swap_init_sysfs(void)
796 {
797 int err;
798 struct kobject *swap_kobj;
799
800 swap_kobj = kobject_create_and_add("swap", mm_kobj);
801 if (!swap_kobj) {
802 pr_err("failed to create swap kobject\n");
803 return -ENOMEM;
804 }
805 err = sysfs_create_group(swap_kobj, &swap_attr_group);
806 if (err) {
807 pr_err("failed to register swap group\n");
808 goto delete_obj;
809 }
810 return 0;
811
812 delete_obj:
813 kobject_put(swap_kobj);
814 return err;
815 }
816 subsys_initcall(swap_init_sysfs);
817 #endif