]> git.ipfire.org Git - people/arne_f/kernel.git/blob - net/core/net_namespace.c
netns: provide pure entropy for net_hash_mix()
[people/arne_f/kernel.git] / net / core / net_namespace.c
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3 #include <linux/workqueue.h>
4 #include <linux/rtnetlink.h>
5 #include <linux/cache.h>
6 #include <linux/slab.h>
7 #include <linux/list.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/idr.h>
11 #include <linux/rculist.h>
12 #include <linux/nsproxy.h>
13 #include <linux/fs.h>
14 #include <linux/proc_ns.h>
15 #include <linux/file.h>
16 #include <linux/export.h>
17 #include <linux/user_namespace.h>
18 #include <linux/net_namespace.h>
19 #include <linux/sched/task.h>
20 #include <linux/uidgid.h>
21
22 #include <net/sock.h>
23 #include <net/netlink.h>
24 #include <net/net_namespace.h>
25 #include <net/netns/generic.h>
26
27 /*
28 * Our network namespace constructor/destructor lists
29 */
30
31 static LIST_HEAD(pernet_list);
32 static struct list_head *first_device = &pernet_list;
33
34 LIST_HEAD(net_namespace_list);
35 EXPORT_SYMBOL_GPL(net_namespace_list);
36
37 /* Protects net_namespace_list. Nests iside rtnl_lock() */
38 DECLARE_RWSEM(net_rwsem);
39 EXPORT_SYMBOL_GPL(net_rwsem);
40
41 struct net init_net = {
42 .count = REFCOUNT_INIT(1),
43 .dev_base_head = LIST_HEAD_INIT(init_net.dev_base_head),
44 };
45 EXPORT_SYMBOL(init_net);
46
47 static bool init_net_initialized;
48 /*
49 * pernet_ops_rwsem: protects: pernet_list, net_generic_ids,
50 * init_net_initialized and first_device pointer.
51 * This is internal net namespace object. Please, don't use it
52 * outside.
53 */
54 DECLARE_RWSEM(pernet_ops_rwsem);
55 EXPORT_SYMBOL_GPL(pernet_ops_rwsem);
56
57 #define MIN_PERNET_OPS_ID \
58 ((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *))
59
60 #define INITIAL_NET_GEN_PTRS 13 /* +1 for len +2 for rcu_head */
61
62 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
63
64 static struct net_generic *net_alloc_generic(void)
65 {
66 struct net_generic *ng;
67 unsigned int generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]);
68
69 ng = kzalloc(generic_size, GFP_KERNEL);
70 if (ng)
71 ng->s.len = max_gen_ptrs;
72
73 return ng;
74 }
75
76 static int net_assign_generic(struct net *net, unsigned int id, void *data)
77 {
78 struct net_generic *ng, *old_ng;
79
80 BUG_ON(id < MIN_PERNET_OPS_ID);
81
82 old_ng = rcu_dereference_protected(net->gen,
83 lockdep_is_held(&pernet_ops_rwsem));
84 if (old_ng->s.len > id) {
85 old_ng->ptr[id] = data;
86 return 0;
87 }
88
89 ng = net_alloc_generic();
90 if (ng == NULL)
91 return -ENOMEM;
92
93 /*
94 * Some synchronisation notes:
95 *
96 * The net_generic explores the net->gen array inside rcu
97 * read section. Besides once set the net->gen->ptr[x]
98 * pointer never changes (see rules in netns/generic.h).
99 *
100 * That said, we simply duplicate this array and schedule
101 * the old copy for kfree after a grace period.
102 */
103
104 memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID],
105 (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *));
106 ng->ptr[id] = data;
107
108 rcu_assign_pointer(net->gen, ng);
109 kfree_rcu(old_ng, s.rcu);
110 return 0;
111 }
112
113 static int ops_init(const struct pernet_operations *ops, struct net *net)
114 {
115 int err = -ENOMEM;
116 void *data = NULL;
117
118 if (ops->id && ops->size) {
119 data = kzalloc(ops->size, GFP_KERNEL);
120 if (!data)
121 goto out;
122
123 err = net_assign_generic(net, *ops->id, data);
124 if (err)
125 goto cleanup;
126 }
127 err = 0;
128 if (ops->init)
129 err = ops->init(net);
130 if (!err)
131 return 0;
132
133 cleanup:
134 kfree(data);
135
136 out:
137 return err;
138 }
139
140 static void ops_free(const struct pernet_operations *ops, struct net *net)
141 {
142 if (ops->id && ops->size) {
143 kfree(net_generic(net, *ops->id));
144 }
145 }
146
147 static void ops_exit_list(const struct pernet_operations *ops,
148 struct list_head *net_exit_list)
149 {
150 struct net *net;
151 if (ops->exit) {
152 list_for_each_entry(net, net_exit_list, exit_list)
153 ops->exit(net);
154 }
155 if (ops->exit_batch)
156 ops->exit_batch(net_exit_list);
157 }
158
159 static void ops_free_list(const struct pernet_operations *ops,
160 struct list_head *net_exit_list)
161 {
162 struct net *net;
163 if (ops->size && ops->id) {
164 list_for_each_entry(net, net_exit_list, exit_list)
165 ops_free(ops, net);
166 }
167 }
168
169 /* should be called with nsid_lock held */
170 static int alloc_netid(struct net *net, struct net *peer, int reqid)
171 {
172 int min = 0, max = 0;
173
174 if (reqid >= 0) {
175 min = reqid;
176 max = reqid + 1;
177 }
178
179 return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC);
180 }
181
182 /* This function is used by idr_for_each(). If net is equal to peer, the
183 * function returns the id so that idr_for_each() stops. Because we cannot
184 * returns the id 0 (idr_for_each() will not stop), we return the magic value
185 * NET_ID_ZERO (-1) for it.
186 */
187 #define NET_ID_ZERO -1
188 static int net_eq_idr(int id, void *net, void *peer)
189 {
190 if (net_eq(net, peer))
191 return id ? : NET_ID_ZERO;
192 return 0;
193 }
194
195 /* Should be called with nsid_lock held. If a new id is assigned, the bool alloc
196 * is set to true, thus the caller knows that the new id must be notified via
197 * rtnl.
198 */
199 static int __peernet2id_alloc(struct net *net, struct net *peer, bool *alloc)
200 {
201 int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
202 bool alloc_it = *alloc;
203
204 *alloc = false;
205
206 /* Magic value for id 0. */
207 if (id == NET_ID_ZERO)
208 return 0;
209 if (id > 0)
210 return id;
211
212 if (alloc_it) {
213 id = alloc_netid(net, peer, -1);
214 *alloc = true;
215 return id >= 0 ? id : NETNSA_NSID_NOT_ASSIGNED;
216 }
217
218 return NETNSA_NSID_NOT_ASSIGNED;
219 }
220
221 /* should be called with nsid_lock held */
222 static int __peernet2id(struct net *net, struct net *peer)
223 {
224 bool no = false;
225
226 return __peernet2id_alloc(net, peer, &no);
227 }
228
229 static void rtnl_net_notifyid(struct net *net, int cmd, int id);
230 /* This function returns the id of a peer netns. If no id is assigned, one will
231 * be allocated and returned.
232 */
233 int peernet2id_alloc(struct net *net, struct net *peer)
234 {
235 bool alloc = false, alive = false;
236 int id;
237
238 if (refcount_read(&net->count) == 0)
239 return NETNSA_NSID_NOT_ASSIGNED;
240 spin_lock_bh(&net->nsid_lock);
241 /*
242 * When peer is obtained from RCU lists, we may race with
243 * its cleanup. Check whether it's alive, and this guarantees
244 * we never hash a peer back to net->netns_ids, after it has
245 * just been idr_remove()'d from there in cleanup_net().
246 */
247 if (maybe_get_net(peer))
248 alive = alloc = true;
249 id = __peernet2id_alloc(net, peer, &alloc);
250 spin_unlock_bh(&net->nsid_lock);
251 if (alloc && id >= 0)
252 rtnl_net_notifyid(net, RTM_NEWNSID, id);
253 if (alive)
254 put_net(peer);
255 return id;
256 }
257 EXPORT_SYMBOL_GPL(peernet2id_alloc);
258
259 /* This function returns, if assigned, the id of a peer netns. */
260 int peernet2id(struct net *net, struct net *peer)
261 {
262 int id;
263
264 spin_lock_bh(&net->nsid_lock);
265 id = __peernet2id(net, peer);
266 spin_unlock_bh(&net->nsid_lock);
267 return id;
268 }
269 EXPORT_SYMBOL(peernet2id);
270
271 /* This function returns true is the peer netns has an id assigned into the
272 * current netns.
273 */
274 bool peernet_has_id(struct net *net, struct net *peer)
275 {
276 return peernet2id(net, peer) >= 0;
277 }
278
279 struct net *get_net_ns_by_id(struct net *net, int id)
280 {
281 struct net *peer;
282
283 if (id < 0)
284 return NULL;
285
286 rcu_read_lock();
287 peer = idr_find(&net->netns_ids, id);
288 if (peer)
289 peer = maybe_get_net(peer);
290 rcu_read_unlock();
291
292 return peer;
293 }
294
295 /*
296 * setup_net runs the initializers for the network namespace object.
297 */
298 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns)
299 {
300 /* Must be called with pernet_ops_rwsem held */
301 const struct pernet_operations *ops, *saved_ops;
302 int error = 0;
303 LIST_HEAD(net_exit_list);
304
305 refcount_set(&net->count, 1);
306 refcount_set(&net->passive, 1);
307 get_random_bytes(&net->hash_mix, sizeof(u32));
308 net->dev_base_seq = 1;
309 net->user_ns = user_ns;
310 idr_init(&net->netns_ids);
311 spin_lock_init(&net->nsid_lock);
312 mutex_init(&net->ipv4.ra_mutex);
313
314 list_for_each_entry(ops, &pernet_list, list) {
315 error = ops_init(ops, net);
316 if (error < 0)
317 goto out_undo;
318 }
319 down_write(&net_rwsem);
320 list_add_tail_rcu(&net->list, &net_namespace_list);
321 up_write(&net_rwsem);
322 out:
323 return error;
324
325 out_undo:
326 /* Walk through the list backwards calling the exit functions
327 * for the pernet modules whose init functions did not fail.
328 */
329 list_add(&net->exit_list, &net_exit_list);
330 saved_ops = ops;
331 list_for_each_entry_continue_reverse(ops, &pernet_list, list)
332 ops_exit_list(ops, &net_exit_list);
333
334 ops = saved_ops;
335 list_for_each_entry_continue_reverse(ops, &pernet_list, list)
336 ops_free_list(ops, &net_exit_list);
337
338 rcu_barrier();
339 goto out;
340 }
341
342 static int __net_init net_defaults_init_net(struct net *net)
343 {
344 net->core.sysctl_somaxconn = SOMAXCONN;
345 return 0;
346 }
347
348 static struct pernet_operations net_defaults_ops = {
349 .init = net_defaults_init_net,
350 };
351
352 static __init int net_defaults_init(void)
353 {
354 if (register_pernet_subsys(&net_defaults_ops))
355 panic("Cannot initialize net default settings");
356
357 return 0;
358 }
359
360 core_initcall(net_defaults_init);
361
362 #ifdef CONFIG_NET_NS
363 static struct ucounts *inc_net_namespaces(struct user_namespace *ns)
364 {
365 return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES);
366 }
367
368 static void dec_net_namespaces(struct ucounts *ucounts)
369 {
370 dec_ucount(ucounts, UCOUNT_NET_NAMESPACES);
371 }
372
373 static struct kmem_cache *net_cachep __ro_after_init;
374 static struct workqueue_struct *netns_wq;
375
376 static struct net *net_alloc(void)
377 {
378 struct net *net = NULL;
379 struct net_generic *ng;
380
381 ng = net_alloc_generic();
382 if (!ng)
383 goto out;
384
385 net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
386 if (!net)
387 goto out_free;
388
389 rcu_assign_pointer(net->gen, ng);
390 out:
391 return net;
392
393 out_free:
394 kfree(ng);
395 goto out;
396 }
397
398 static void net_free(struct net *net)
399 {
400 kfree(rcu_access_pointer(net->gen));
401 kmem_cache_free(net_cachep, net);
402 }
403
404 void net_drop_ns(void *p)
405 {
406 struct net *ns = p;
407 if (ns && refcount_dec_and_test(&ns->passive))
408 net_free(ns);
409 }
410
411 struct net *copy_net_ns(unsigned long flags,
412 struct user_namespace *user_ns, struct net *old_net)
413 {
414 struct ucounts *ucounts;
415 struct net *net;
416 int rv;
417
418 if (!(flags & CLONE_NEWNET))
419 return get_net(old_net);
420
421 ucounts = inc_net_namespaces(user_ns);
422 if (!ucounts)
423 return ERR_PTR(-ENOSPC);
424
425 net = net_alloc();
426 if (!net) {
427 rv = -ENOMEM;
428 goto dec_ucounts;
429 }
430 refcount_set(&net->passive, 1);
431 net->ucounts = ucounts;
432 get_user_ns(user_ns);
433
434 rv = down_read_killable(&pernet_ops_rwsem);
435 if (rv < 0)
436 goto put_userns;
437
438 rv = setup_net(net, user_ns);
439
440 up_read(&pernet_ops_rwsem);
441
442 if (rv < 0) {
443 put_userns:
444 put_user_ns(user_ns);
445 net_drop_ns(net);
446 dec_ucounts:
447 dec_net_namespaces(ucounts);
448 return ERR_PTR(rv);
449 }
450 return net;
451 }
452
453 /**
454 * net_ns_get_ownership - get sysfs ownership data for @net
455 * @net: network namespace in question (can be NULL)
456 * @uid: kernel user ID for sysfs objects
457 * @gid: kernel group ID for sysfs objects
458 *
459 * Returns the uid/gid pair of root in the user namespace associated with the
460 * given network namespace.
461 */
462 void net_ns_get_ownership(const struct net *net, kuid_t *uid, kgid_t *gid)
463 {
464 if (net) {
465 kuid_t ns_root_uid = make_kuid(net->user_ns, 0);
466 kgid_t ns_root_gid = make_kgid(net->user_ns, 0);
467
468 if (uid_valid(ns_root_uid))
469 *uid = ns_root_uid;
470
471 if (gid_valid(ns_root_gid))
472 *gid = ns_root_gid;
473 } else {
474 *uid = GLOBAL_ROOT_UID;
475 *gid = GLOBAL_ROOT_GID;
476 }
477 }
478 EXPORT_SYMBOL_GPL(net_ns_get_ownership);
479
480 static void unhash_nsid(struct net *net, struct net *last)
481 {
482 struct net *tmp;
483 /* This function is only called from cleanup_net() work,
484 * and this work is the only process, that may delete
485 * a net from net_namespace_list. So, when the below
486 * is executing, the list may only grow. Thus, we do not
487 * use for_each_net_rcu() or net_rwsem.
488 */
489 for_each_net(tmp) {
490 int id;
491
492 spin_lock_bh(&tmp->nsid_lock);
493 id = __peernet2id(tmp, net);
494 if (id >= 0)
495 idr_remove(&tmp->netns_ids, id);
496 spin_unlock_bh(&tmp->nsid_lock);
497 if (id >= 0)
498 rtnl_net_notifyid(tmp, RTM_DELNSID, id);
499 if (tmp == last)
500 break;
501 }
502 spin_lock_bh(&net->nsid_lock);
503 idr_destroy(&net->netns_ids);
504 spin_unlock_bh(&net->nsid_lock);
505 }
506
507 static LLIST_HEAD(cleanup_list);
508
509 static void cleanup_net(struct work_struct *work)
510 {
511 const struct pernet_operations *ops;
512 struct net *net, *tmp, *last;
513 struct llist_node *net_kill_list;
514 LIST_HEAD(net_exit_list);
515
516 /* Atomically snapshot the list of namespaces to cleanup */
517 net_kill_list = llist_del_all(&cleanup_list);
518
519 down_read(&pernet_ops_rwsem);
520
521 /* Don't let anyone else find us. */
522 down_write(&net_rwsem);
523 llist_for_each_entry(net, net_kill_list, cleanup_list)
524 list_del_rcu(&net->list);
525 /* Cache last net. After we unlock rtnl, no one new net
526 * added to net_namespace_list can assign nsid pointer
527 * to a net from net_kill_list (see peernet2id_alloc()).
528 * So, we skip them in unhash_nsid().
529 *
530 * Note, that unhash_nsid() does not delete nsid links
531 * between net_kill_list's nets, as they've already
532 * deleted from net_namespace_list. But, this would be
533 * useless anyway, as netns_ids are destroyed there.
534 */
535 last = list_last_entry(&net_namespace_list, struct net, list);
536 up_write(&net_rwsem);
537
538 llist_for_each_entry(net, net_kill_list, cleanup_list) {
539 unhash_nsid(net, last);
540 list_add_tail(&net->exit_list, &net_exit_list);
541 }
542
543 /*
544 * Another CPU might be rcu-iterating the list, wait for it.
545 * This needs to be before calling the exit() notifiers, so
546 * the rcu_barrier() below isn't sufficient alone.
547 */
548 synchronize_rcu();
549
550 /* Run all of the network namespace exit methods */
551 list_for_each_entry_reverse(ops, &pernet_list, list)
552 ops_exit_list(ops, &net_exit_list);
553
554 /* Free the net generic variables */
555 list_for_each_entry_reverse(ops, &pernet_list, list)
556 ops_free_list(ops, &net_exit_list);
557
558 up_read(&pernet_ops_rwsem);
559
560 /* Ensure there are no outstanding rcu callbacks using this
561 * network namespace.
562 */
563 rcu_barrier();
564
565 /* Finally it is safe to free my network namespace structure */
566 list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
567 list_del_init(&net->exit_list);
568 dec_net_namespaces(net->ucounts);
569 put_user_ns(net->user_ns);
570 net_drop_ns(net);
571 }
572 }
573
574 /**
575 * net_ns_barrier - wait until concurrent net_cleanup_work is done
576 *
577 * cleanup_net runs from work queue and will first remove namespaces
578 * from the global list, then run net exit functions.
579 *
580 * Call this in module exit path to make sure that all netns
581 * ->exit ops have been invoked before the function is removed.
582 */
583 void net_ns_barrier(void)
584 {
585 down_write(&pernet_ops_rwsem);
586 up_write(&pernet_ops_rwsem);
587 }
588 EXPORT_SYMBOL(net_ns_barrier);
589
590 static DECLARE_WORK(net_cleanup_work, cleanup_net);
591
592 void __put_net(struct net *net)
593 {
594 /* Cleanup the network namespace in process context */
595 if (llist_add(&net->cleanup_list, &cleanup_list))
596 queue_work(netns_wq, &net_cleanup_work);
597 }
598 EXPORT_SYMBOL_GPL(__put_net);
599
600 struct net *get_net_ns_by_fd(int fd)
601 {
602 struct file *file;
603 struct ns_common *ns;
604 struct net *net;
605
606 file = proc_ns_fget(fd);
607 if (IS_ERR(file))
608 return ERR_CAST(file);
609
610 ns = get_proc_ns(file_inode(file));
611 if (ns->ops == &netns_operations)
612 net = get_net(container_of(ns, struct net, ns));
613 else
614 net = ERR_PTR(-EINVAL);
615
616 fput(file);
617 return net;
618 }
619
620 #else
621 struct net *get_net_ns_by_fd(int fd)
622 {
623 return ERR_PTR(-EINVAL);
624 }
625 #endif
626 EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
627
628 struct net *get_net_ns_by_pid(pid_t pid)
629 {
630 struct task_struct *tsk;
631 struct net *net;
632
633 /* Lookup the network namespace */
634 net = ERR_PTR(-ESRCH);
635 rcu_read_lock();
636 tsk = find_task_by_vpid(pid);
637 if (tsk) {
638 struct nsproxy *nsproxy;
639 task_lock(tsk);
640 nsproxy = tsk->nsproxy;
641 if (nsproxy)
642 net = get_net(nsproxy->net_ns);
643 task_unlock(tsk);
644 }
645 rcu_read_unlock();
646 return net;
647 }
648 EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
649
650 static __net_init int net_ns_net_init(struct net *net)
651 {
652 #ifdef CONFIG_NET_NS
653 net->ns.ops = &netns_operations;
654 #endif
655 return ns_alloc_inum(&net->ns);
656 }
657
658 static __net_exit void net_ns_net_exit(struct net *net)
659 {
660 ns_free_inum(&net->ns);
661 }
662
663 static struct pernet_operations __net_initdata net_ns_ops = {
664 .init = net_ns_net_init,
665 .exit = net_ns_net_exit,
666 };
667
668 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
669 [NETNSA_NONE] = { .type = NLA_UNSPEC },
670 [NETNSA_NSID] = { .type = NLA_S32 },
671 [NETNSA_PID] = { .type = NLA_U32 },
672 [NETNSA_FD] = { .type = NLA_U32 },
673 [NETNSA_TARGET_NSID] = { .type = NLA_S32 },
674 };
675
676 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh,
677 struct netlink_ext_ack *extack)
678 {
679 struct net *net = sock_net(skb->sk);
680 struct nlattr *tb[NETNSA_MAX + 1];
681 struct nlattr *nla;
682 struct net *peer;
683 int nsid, err;
684
685 err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
686 rtnl_net_policy, extack);
687 if (err < 0)
688 return err;
689 if (!tb[NETNSA_NSID]) {
690 NL_SET_ERR_MSG(extack, "nsid is missing");
691 return -EINVAL;
692 }
693 nsid = nla_get_s32(tb[NETNSA_NSID]);
694
695 if (tb[NETNSA_PID]) {
696 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
697 nla = tb[NETNSA_PID];
698 } else if (tb[NETNSA_FD]) {
699 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
700 nla = tb[NETNSA_FD];
701 } else {
702 NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
703 return -EINVAL;
704 }
705 if (IS_ERR(peer)) {
706 NL_SET_BAD_ATTR(extack, nla);
707 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
708 return PTR_ERR(peer);
709 }
710
711 spin_lock_bh(&net->nsid_lock);
712 if (__peernet2id(net, peer) >= 0) {
713 spin_unlock_bh(&net->nsid_lock);
714 err = -EEXIST;
715 NL_SET_BAD_ATTR(extack, nla);
716 NL_SET_ERR_MSG(extack,
717 "Peer netns already has a nsid assigned");
718 goto out;
719 }
720
721 err = alloc_netid(net, peer, nsid);
722 spin_unlock_bh(&net->nsid_lock);
723 if (err >= 0) {
724 rtnl_net_notifyid(net, RTM_NEWNSID, err);
725 err = 0;
726 } else if (err == -ENOSPC && nsid >= 0) {
727 err = -EEXIST;
728 NL_SET_BAD_ATTR(extack, tb[NETNSA_NSID]);
729 NL_SET_ERR_MSG(extack, "The specified nsid is already used");
730 }
731 out:
732 put_net(peer);
733 return err;
734 }
735
736 static int rtnl_net_get_size(void)
737 {
738 return NLMSG_ALIGN(sizeof(struct rtgenmsg))
739 + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
740 + nla_total_size(sizeof(s32)) /* NETNSA_CURRENT_NSID */
741 ;
742 }
743
744 struct net_fill_args {
745 u32 portid;
746 u32 seq;
747 int flags;
748 int cmd;
749 int nsid;
750 bool add_ref;
751 int ref_nsid;
752 };
753
754 static int rtnl_net_fill(struct sk_buff *skb, struct net_fill_args *args)
755 {
756 struct nlmsghdr *nlh;
757 struct rtgenmsg *rth;
758
759 nlh = nlmsg_put(skb, args->portid, args->seq, args->cmd, sizeof(*rth),
760 args->flags);
761 if (!nlh)
762 return -EMSGSIZE;
763
764 rth = nlmsg_data(nlh);
765 rth->rtgen_family = AF_UNSPEC;
766
767 if (nla_put_s32(skb, NETNSA_NSID, args->nsid))
768 goto nla_put_failure;
769
770 if (args->add_ref &&
771 nla_put_s32(skb, NETNSA_CURRENT_NSID, args->ref_nsid))
772 goto nla_put_failure;
773
774 nlmsg_end(skb, nlh);
775 return 0;
776
777 nla_put_failure:
778 nlmsg_cancel(skb, nlh);
779 return -EMSGSIZE;
780 }
781
782 static int rtnl_net_valid_getid_req(struct sk_buff *skb,
783 const struct nlmsghdr *nlh,
784 struct nlattr **tb,
785 struct netlink_ext_ack *extack)
786 {
787 int i, err;
788
789 if (!netlink_strict_get_check(skb))
790 return nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
791 rtnl_net_policy, extack);
792
793 err = nlmsg_parse_strict(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
794 rtnl_net_policy, extack);
795 if (err)
796 return err;
797
798 for (i = 0; i <= NETNSA_MAX; i++) {
799 if (!tb[i])
800 continue;
801
802 switch (i) {
803 case NETNSA_PID:
804 case NETNSA_FD:
805 case NETNSA_NSID:
806 case NETNSA_TARGET_NSID:
807 break;
808 default:
809 NL_SET_ERR_MSG(extack, "Unsupported attribute in peer netns getid request");
810 return -EINVAL;
811 }
812 }
813
814 return 0;
815 }
816
817 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh,
818 struct netlink_ext_ack *extack)
819 {
820 struct net *net = sock_net(skb->sk);
821 struct nlattr *tb[NETNSA_MAX + 1];
822 struct net_fill_args fillargs = {
823 .portid = NETLINK_CB(skb).portid,
824 .seq = nlh->nlmsg_seq,
825 .cmd = RTM_NEWNSID,
826 };
827 struct net *peer, *target = net;
828 struct nlattr *nla;
829 struct sk_buff *msg;
830 int err;
831
832 err = rtnl_net_valid_getid_req(skb, nlh, tb, extack);
833 if (err < 0)
834 return err;
835 if (tb[NETNSA_PID]) {
836 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
837 nla = tb[NETNSA_PID];
838 } else if (tb[NETNSA_FD]) {
839 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
840 nla = tb[NETNSA_FD];
841 } else if (tb[NETNSA_NSID]) {
842 peer = get_net_ns_by_id(net, nla_get_u32(tb[NETNSA_NSID]));
843 if (!peer)
844 peer = ERR_PTR(-ENOENT);
845 nla = tb[NETNSA_NSID];
846 } else {
847 NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
848 return -EINVAL;
849 }
850
851 if (IS_ERR(peer)) {
852 NL_SET_BAD_ATTR(extack, nla);
853 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
854 return PTR_ERR(peer);
855 }
856
857 if (tb[NETNSA_TARGET_NSID]) {
858 int id = nla_get_s32(tb[NETNSA_TARGET_NSID]);
859
860 target = rtnl_get_net_ns_capable(NETLINK_CB(skb).sk, id);
861 if (IS_ERR(target)) {
862 NL_SET_BAD_ATTR(extack, tb[NETNSA_TARGET_NSID]);
863 NL_SET_ERR_MSG(extack,
864 "Target netns reference is invalid");
865 err = PTR_ERR(target);
866 goto out;
867 }
868 fillargs.add_ref = true;
869 fillargs.ref_nsid = peernet2id(net, peer);
870 }
871
872 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
873 if (!msg) {
874 err = -ENOMEM;
875 goto out;
876 }
877
878 fillargs.nsid = peernet2id(target, peer);
879 err = rtnl_net_fill(msg, &fillargs);
880 if (err < 0)
881 goto err_out;
882
883 err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
884 goto out;
885
886 err_out:
887 nlmsg_free(msg);
888 out:
889 if (fillargs.add_ref)
890 put_net(target);
891 put_net(peer);
892 return err;
893 }
894
895 struct rtnl_net_dump_cb {
896 struct net *tgt_net;
897 struct net *ref_net;
898 struct sk_buff *skb;
899 struct net_fill_args fillargs;
900 int idx;
901 int s_idx;
902 };
903
904 static int rtnl_net_dumpid_one(int id, void *peer, void *data)
905 {
906 struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data;
907 int ret;
908
909 if (net_cb->idx < net_cb->s_idx)
910 goto cont;
911
912 net_cb->fillargs.nsid = id;
913 if (net_cb->fillargs.add_ref)
914 net_cb->fillargs.ref_nsid = __peernet2id(net_cb->ref_net, peer);
915 ret = rtnl_net_fill(net_cb->skb, &net_cb->fillargs);
916 if (ret < 0)
917 return ret;
918
919 cont:
920 net_cb->idx++;
921 return 0;
922 }
923
924 static int rtnl_valid_dump_net_req(const struct nlmsghdr *nlh, struct sock *sk,
925 struct rtnl_net_dump_cb *net_cb,
926 struct netlink_callback *cb)
927 {
928 struct netlink_ext_ack *extack = cb->extack;
929 struct nlattr *tb[NETNSA_MAX + 1];
930 int err, i;
931
932 err = nlmsg_parse_strict(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
933 rtnl_net_policy, extack);
934 if (err < 0)
935 return err;
936
937 for (i = 0; i <= NETNSA_MAX; i++) {
938 if (!tb[i])
939 continue;
940
941 if (i == NETNSA_TARGET_NSID) {
942 struct net *net;
943
944 net = rtnl_get_net_ns_capable(sk, nla_get_s32(tb[i]));
945 if (IS_ERR(net)) {
946 NL_SET_BAD_ATTR(extack, tb[i]);
947 NL_SET_ERR_MSG(extack,
948 "Invalid target network namespace id");
949 return PTR_ERR(net);
950 }
951 net_cb->fillargs.add_ref = true;
952 net_cb->ref_net = net_cb->tgt_net;
953 net_cb->tgt_net = net;
954 } else {
955 NL_SET_BAD_ATTR(extack, tb[i]);
956 NL_SET_ERR_MSG(extack,
957 "Unsupported attribute in dump request");
958 return -EINVAL;
959 }
960 }
961
962 return 0;
963 }
964
965 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb)
966 {
967 struct rtnl_net_dump_cb net_cb = {
968 .tgt_net = sock_net(skb->sk),
969 .skb = skb,
970 .fillargs = {
971 .portid = NETLINK_CB(cb->skb).portid,
972 .seq = cb->nlh->nlmsg_seq,
973 .flags = NLM_F_MULTI,
974 .cmd = RTM_NEWNSID,
975 },
976 .idx = 0,
977 .s_idx = cb->args[0],
978 };
979 int err = 0;
980
981 if (cb->strict_check) {
982 err = rtnl_valid_dump_net_req(cb->nlh, skb->sk, &net_cb, cb);
983 if (err < 0)
984 goto end;
985 }
986
987 spin_lock_bh(&net_cb.tgt_net->nsid_lock);
988 if (net_cb.fillargs.add_ref &&
989 !net_eq(net_cb.ref_net, net_cb.tgt_net) &&
990 !spin_trylock_bh(&net_cb.ref_net->nsid_lock)) {
991 spin_unlock_bh(&net_cb.tgt_net->nsid_lock);
992 err = -EAGAIN;
993 goto end;
994 }
995 idr_for_each(&net_cb.tgt_net->netns_ids, rtnl_net_dumpid_one, &net_cb);
996 if (net_cb.fillargs.add_ref &&
997 !net_eq(net_cb.ref_net, net_cb.tgt_net))
998 spin_unlock_bh(&net_cb.ref_net->nsid_lock);
999 spin_unlock_bh(&net_cb.tgt_net->nsid_lock);
1000
1001 cb->args[0] = net_cb.idx;
1002 end:
1003 if (net_cb.fillargs.add_ref)
1004 put_net(net_cb.tgt_net);
1005 return err < 0 ? err : skb->len;
1006 }
1007
1008 static void rtnl_net_notifyid(struct net *net, int cmd, int id)
1009 {
1010 struct net_fill_args fillargs = {
1011 .cmd = cmd,
1012 .nsid = id,
1013 };
1014 struct sk_buff *msg;
1015 int err = -ENOMEM;
1016
1017 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
1018 if (!msg)
1019 goto out;
1020
1021 err = rtnl_net_fill(msg, &fillargs);
1022 if (err < 0)
1023 goto err_out;
1024
1025 rtnl_notify(msg, net, 0, RTNLGRP_NSID, NULL, 0);
1026 return;
1027
1028 err_out:
1029 nlmsg_free(msg);
1030 out:
1031 rtnl_set_sk_err(net, RTNLGRP_NSID, err);
1032 }
1033
1034 static int __init net_ns_init(void)
1035 {
1036 struct net_generic *ng;
1037
1038 #ifdef CONFIG_NET_NS
1039 net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
1040 SMP_CACHE_BYTES,
1041 SLAB_PANIC|SLAB_ACCOUNT, NULL);
1042
1043 /* Create workqueue for cleanup */
1044 netns_wq = create_singlethread_workqueue("netns");
1045 if (!netns_wq)
1046 panic("Could not create netns workq");
1047 #endif
1048
1049 ng = net_alloc_generic();
1050 if (!ng)
1051 panic("Could not allocate generic netns");
1052
1053 rcu_assign_pointer(init_net.gen, ng);
1054
1055 down_write(&pernet_ops_rwsem);
1056 if (setup_net(&init_net, &init_user_ns))
1057 panic("Could not setup the initial network namespace");
1058
1059 init_net_initialized = true;
1060 up_write(&pernet_ops_rwsem);
1061
1062 if (register_pernet_subsys(&net_ns_ops))
1063 panic("Could not register network namespace subsystems");
1064
1065 rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL,
1066 RTNL_FLAG_DOIT_UNLOCKED);
1067 rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid,
1068 RTNL_FLAG_DOIT_UNLOCKED);
1069
1070 return 0;
1071 }
1072
1073 pure_initcall(net_ns_init);
1074
1075 #ifdef CONFIG_NET_NS
1076 static int __register_pernet_operations(struct list_head *list,
1077 struct pernet_operations *ops)
1078 {
1079 struct net *net;
1080 int error;
1081 LIST_HEAD(net_exit_list);
1082
1083 list_add_tail(&ops->list, list);
1084 if (ops->init || (ops->id && ops->size)) {
1085 /* We held write locked pernet_ops_rwsem, and parallel
1086 * setup_net() and cleanup_net() are not possible.
1087 */
1088 for_each_net(net) {
1089 error = ops_init(ops, net);
1090 if (error)
1091 goto out_undo;
1092 list_add_tail(&net->exit_list, &net_exit_list);
1093 }
1094 }
1095 return 0;
1096
1097 out_undo:
1098 /* If I have an error cleanup all namespaces I initialized */
1099 list_del(&ops->list);
1100 ops_exit_list(ops, &net_exit_list);
1101 ops_free_list(ops, &net_exit_list);
1102 return error;
1103 }
1104
1105 static void __unregister_pernet_operations(struct pernet_operations *ops)
1106 {
1107 struct net *net;
1108 LIST_HEAD(net_exit_list);
1109
1110 list_del(&ops->list);
1111 /* See comment in __register_pernet_operations() */
1112 for_each_net(net)
1113 list_add_tail(&net->exit_list, &net_exit_list);
1114 ops_exit_list(ops, &net_exit_list);
1115 ops_free_list(ops, &net_exit_list);
1116 }
1117
1118 #else
1119
1120 static int __register_pernet_operations(struct list_head *list,
1121 struct pernet_operations *ops)
1122 {
1123 if (!init_net_initialized) {
1124 list_add_tail(&ops->list, list);
1125 return 0;
1126 }
1127
1128 return ops_init(ops, &init_net);
1129 }
1130
1131 static void __unregister_pernet_operations(struct pernet_operations *ops)
1132 {
1133 if (!init_net_initialized) {
1134 list_del(&ops->list);
1135 } else {
1136 LIST_HEAD(net_exit_list);
1137 list_add(&init_net.exit_list, &net_exit_list);
1138 ops_exit_list(ops, &net_exit_list);
1139 ops_free_list(ops, &net_exit_list);
1140 }
1141 }
1142
1143 #endif /* CONFIG_NET_NS */
1144
1145 static DEFINE_IDA(net_generic_ids);
1146
1147 static int register_pernet_operations(struct list_head *list,
1148 struct pernet_operations *ops)
1149 {
1150 int error;
1151
1152 if (ops->id) {
1153 error = ida_alloc_min(&net_generic_ids, MIN_PERNET_OPS_ID,
1154 GFP_KERNEL);
1155 if (error < 0)
1156 return error;
1157 *ops->id = error;
1158 max_gen_ptrs = max(max_gen_ptrs, *ops->id + 1);
1159 }
1160 error = __register_pernet_operations(list, ops);
1161 if (error) {
1162 rcu_barrier();
1163 if (ops->id)
1164 ida_free(&net_generic_ids, *ops->id);
1165 }
1166
1167 return error;
1168 }
1169
1170 static void unregister_pernet_operations(struct pernet_operations *ops)
1171 {
1172 __unregister_pernet_operations(ops);
1173 rcu_barrier();
1174 if (ops->id)
1175 ida_free(&net_generic_ids, *ops->id);
1176 }
1177
1178 /**
1179 * register_pernet_subsys - register a network namespace subsystem
1180 * @ops: pernet operations structure for the subsystem
1181 *
1182 * Register a subsystem which has init and exit functions
1183 * that are called when network namespaces are created and
1184 * destroyed respectively.
1185 *
1186 * When registered all network namespace init functions are
1187 * called for every existing network namespace. Allowing kernel
1188 * modules to have a race free view of the set of network namespaces.
1189 *
1190 * When a new network namespace is created all of the init
1191 * methods are called in the order in which they were registered.
1192 *
1193 * When a network namespace is destroyed all of the exit methods
1194 * are called in the reverse of the order with which they were
1195 * registered.
1196 */
1197 int register_pernet_subsys(struct pernet_operations *ops)
1198 {
1199 int error;
1200 down_write(&pernet_ops_rwsem);
1201 error = register_pernet_operations(first_device, ops);
1202 up_write(&pernet_ops_rwsem);
1203 return error;
1204 }
1205 EXPORT_SYMBOL_GPL(register_pernet_subsys);
1206
1207 /**
1208 * unregister_pernet_subsys - unregister a network namespace subsystem
1209 * @ops: pernet operations structure to manipulate
1210 *
1211 * Remove the pernet operations structure from the list to be
1212 * used when network namespaces are created or destroyed. In
1213 * addition run the exit method for all existing network
1214 * namespaces.
1215 */
1216 void unregister_pernet_subsys(struct pernet_operations *ops)
1217 {
1218 down_write(&pernet_ops_rwsem);
1219 unregister_pernet_operations(ops);
1220 up_write(&pernet_ops_rwsem);
1221 }
1222 EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
1223
1224 /**
1225 * register_pernet_device - register a network namespace device
1226 * @ops: pernet operations structure for the subsystem
1227 *
1228 * Register a device which has init and exit functions
1229 * that are called when network namespaces are created and
1230 * destroyed respectively.
1231 *
1232 * When registered all network namespace init functions are
1233 * called for every existing network namespace. Allowing kernel
1234 * modules to have a race free view of the set of network namespaces.
1235 *
1236 * When a new network namespace is created all of the init
1237 * methods are called in the order in which they were registered.
1238 *
1239 * When a network namespace is destroyed all of the exit methods
1240 * are called in the reverse of the order with which they were
1241 * registered.
1242 */
1243 int register_pernet_device(struct pernet_operations *ops)
1244 {
1245 int error;
1246 down_write(&pernet_ops_rwsem);
1247 error = register_pernet_operations(&pernet_list, ops);
1248 if (!error && (first_device == &pernet_list))
1249 first_device = &ops->list;
1250 up_write(&pernet_ops_rwsem);
1251 return error;
1252 }
1253 EXPORT_SYMBOL_GPL(register_pernet_device);
1254
1255 /**
1256 * unregister_pernet_device - unregister a network namespace netdevice
1257 * @ops: pernet operations structure to manipulate
1258 *
1259 * Remove the pernet operations structure from the list to be
1260 * used when network namespaces are created or destroyed. In
1261 * addition run the exit method for all existing network
1262 * namespaces.
1263 */
1264 void unregister_pernet_device(struct pernet_operations *ops)
1265 {
1266 down_write(&pernet_ops_rwsem);
1267 if (&ops->list == first_device)
1268 first_device = first_device->next;
1269 unregister_pernet_operations(ops);
1270 up_write(&pernet_ops_rwsem);
1271 }
1272 EXPORT_SYMBOL_GPL(unregister_pernet_device);
1273
1274 #ifdef CONFIG_NET_NS
1275 static struct ns_common *netns_get(struct task_struct *task)
1276 {
1277 struct net *net = NULL;
1278 struct nsproxy *nsproxy;
1279
1280 task_lock(task);
1281 nsproxy = task->nsproxy;
1282 if (nsproxy)
1283 net = get_net(nsproxy->net_ns);
1284 task_unlock(task);
1285
1286 return net ? &net->ns : NULL;
1287 }
1288
1289 static inline struct net *to_net_ns(struct ns_common *ns)
1290 {
1291 return container_of(ns, struct net, ns);
1292 }
1293
1294 static void netns_put(struct ns_common *ns)
1295 {
1296 put_net(to_net_ns(ns));
1297 }
1298
1299 static int netns_install(struct nsproxy *nsproxy, struct ns_common *ns)
1300 {
1301 struct net *net = to_net_ns(ns);
1302
1303 if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
1304 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
1305 return -EPERM;
1306
1307 put_net(nsproxy->net_ns);
1308 nsproxy->net_ns = get_net(net);
1309 return 0;
1310 }
1311
1312 static struct user_namespace *netns_owner(struct ns_common *ns)
1313 {
1314 return to_net_ns(ns)->user_ns;
1315 }
1316
1317 const struct proc_ns_operations netns_operations = {
1318 .name = "net",
1319 .type = CLONE_NEWNET,
1320 .get = netns_get,
1321 .put = netns_put,
1322 .install = netns_install,
1323 .owner = netns_owner,
1324 };
1325 #endif