]> git.ipfire.org Git - people/arne_f/kernel.git/blob - net/netfilter/nf_conntrack_core.c
netfilter: layer7: ct memory optimization
[people/arne_f/kernel.git] / net / netfilter / nf_conntrack_core.c
1 /* Connection state tracking for netfilter. This is separated from,
2 but required by, the NAT layer; it can also be used by an iptables
3 extension. */
4
5 /* (C) 1999-2001 Paul `Rusty' Russell
6 * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
7 * (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org>
8 * (C) 2005-2012 Patrick McHardy <kaber@trash.net>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/types.h>
18 #include <linux/netfilter.h>
19 #include <linux/module.h>
20 #include <linux/sched.h>
21 #include <linux/skbuff.h>
22 #include <linux/proc_fs.h>
23 #include <linux/vmalloc.h>
24 #include <linux/stddef.h>
25 #include <linux/slab.h>
26 #include <linux/random.h>
27 #include <linux/jhash.h>
28 #include <linux/err.h>
29 #include <linux/percpu.h>
30 #include <linux/moduleparam.h>
31 #include <linux/notifier.h>
32 #include <linux/kernel.h>
33 #include <linux/netdevice.h>
34 #include <linux/socket.h>
35 #include <linux/mm.h>
36 #include <linux/nsproxy.h>
37 #include <linux/rculist_nulls.h>
38
39 #include <net/netfilter/nf_conntrack.h>
40 #include <net/netfilter/nf_conntrack_l3proto.h>
41 #include <net/netfilter/nf_conntrack_l4proto.h>
42 #include <net/netfilter/nf_conntrack_expect.h>
43 #include <net/netfilter/nf_conntrack_helper.h>
44 #include <net/netfilter/nf_conntrack_seqadj.h>
45 #include <net/netfilter/nf_conntrack_core.h>
46 #include <net/netfilter/nf_conntrack_extend.h>
47 #include <net/netfilter/nf_conntrack_acct.h>
48 #include <net/netfilter/nf_conntrack_ecache.h>
49 #include <net/netfilter/nf_conntrack_zones.h>
50 #include <net/netfilter/nf_conntrack_timestamp.h>
51 #include <net/netfilter/nf_conntrack_timeout.h>
52 #include <net/netfilter/nf_conntrack_labels.h>
53 #include <net/netfilter/nf_conntrack_synproxy.h>
54 #include <net/netfilter/nf_nat.h>
55 #include <net/netfilter/nf_nat_core.h>
56 #include <net/netfilter/nf_nat_helper.h>
57 #include <net/netns/hash.h>
58
59 #include "nf_internals.h"
60
61 #define NF_CONNTRACK_VERSION "0.5.0"
62
63 int (*nfnetlink_parse_nat_setup_hook)(struct nf_conn *ct,
64 enum nf_nat_manip_type manip,
65 const struct nlattr *attr) __read_mostly;
66 EXPORT_SYMBOL_GPL(nfnetlink_parse_nat_setup_hook);
67
68 __cacheline_aligned_in_smp spinlock_t nf_conntrack_locks[CONNTRACK_LOCKS];
69 EXPORT_SYMBOL_GPL(nf_conntrack_locks);
70
71 __cacheline_aligned_in_smp DEFINE_SPINLOCK(nf_conntrack_expect_lock);
72 EXPORT_SYMBOL_GPL(nf_conntrack_expect_lock);
73
74 struct hlist_nulls_head *nf_conntrack_hash __read_mostly;
75 EXPORT_SYMBOL_GPL(nf_conntrack_hash);
76
77 struct conntrack_gc_work {
78 struct delayed_work dwork;
79 u32 last_bucket;
80 bool exiting;
81 bool early_drop;
82 long next_gc_run;
83 };
84
85 static __read_mostly struct kmem_cache *nf_conntrack_cachep;
86 static __read_mostly spinlock_t nf_conntrack_locks_all_lock;
87 static __read_mostly DEFINE_SPINLOCK(nf_conntrack_locks_all_lock);
88 static __read_mostly bool nf_conntrack_locks_all;
89
90 /* every gc cycle scans at most 1/GC_MAX_BUCKETS_DIV part of table */
91 #define GC_MAX_BUCKETS_DIV 128u
92 /* upper bound of full table scan */
93 #define GC_MAX_SCAN_JIFFIES (16u * HZ)
94 /* desired ratio of entries found to be expired */
95 #define GC_EVICT_RATIO 50u
96
97 static struct conntrack_gc_work conntrack_gc_work;
98
99 void nf_conntrack_lock(spinlock_t *lock) __acquires(lock)
100 {
101 /* 1) Acquire the lock */
102 spin_lock(lock);
103
104 /* 2) read nf_conntrack_locks_all, with ACQUIRE semantics
105 * It pairs with the smp_store_release() in nf_conntrack_all_unlock()
106 */
107 if (likely(smp_load_acquire(&nf_conntrack_locks_all) == false))
108 return;
109
110 /* fast path failed, unlock */
111 spin_unlock(lock);
112
113 /* Slow path 1) get global lock */
114 spin_lock(&nf_conntrack_locks_all_lock);
115
116 /* Slow path 2) get the lock we want */
117 spin_lock(lock);
118
119 /* Slow path 3) release the global lock */
120 spin_unlock(&nf_conntrack_locks_all_lock);
121 }
122 EXPORT_SYMBOL_GPL(nf_conntrack_lock);
123
124 static void nf_conntrack_double_unlock(unsigned int h1, unsigned int h2)
125 {
126 h1 %= CONNTRACK_LOCKS;
127 h2 %= CONNTRACK_LOCKS;
128 spin_unlock(&nf_conntrack_locks[h1]);
129 if (h1 != h2)
130 spin_unlock(&nf_conntrack_locks[h2]);
131 }
132
133 /* return true if we need to recompute hashes (in case hash table was resized) */
134 static bool nf_conntrack_double_lock(struct net *net, unsigned int h1,
135 unsigned int h2, unsigned int sequence)
136 {
137 h1 %= CONNTRACK_LOCKS;
138 h2 %= CONNTRACK_LOCKS;
139 if (h1 <= h2) {
140 nf_conntrack_lock(&nf_conntrack_locks[h1]);
141 if (h1 != h2)
142 spin_lock_nested(&nf_conntrack_locks[h2],
143 SINGLE_DEPTH_NESTING);
144 } else {
145 nf_conntrack_lock(&nf_conntrack_locks[h2]);
146 spin_lock_nested(&nf_conntrack_locks[h1],
147 SINGLE_DEPTH_NESTING);
148 }
149 if (read_seqcount_retry(&nf_conntrack_generation, sequence)) {
150 nf_conntrack_double_unlock(h1, h2);
151 return true;
152 }
153 return false;
154 }
155
156 static void nf_conntrack_all_lock(void)
157 {
158 int i;
159
160 spin_lock(&nf_conntrack_locks_all_lock);
161
162 nf_conntrack_locks_all = true;
163
164 for (i = 0; i < CONNTRACK_LOCKS; i++) {
165 spin_lock(&nf_conntrack_locks[i]);
166
167 /* This spin_unlock provides the "release" to ensure that
168 * nf_conntrack_locks_all==true is visible to everyone that
169 * acquired spin_lock(&nf_conntrack_locks[]).
170 */
171 spin_unlock(&nf_conntrack_locks[i]);
172 }
173 }
174
175 static void nf_conntrack_all_unlock(void)
176 {
177 /* All prior stores must be complete before we clear
178 * 'nf_conntrack_locks_all'. Otherwise nf_conntrack_lock()
179 * might observe the false value but not the entire
180 * critical section.
181 * It pairs with the smp_load_acquire() in nf_conntrack_lock()
182 */
183 smp_store_release(&nf_conntrack_locks_all, false);
184 spin_unlock(&nf_conntrack_locks_all_lock);
185 }
186
187 unsigned int nf_conntrack_htable_size __read_mostly;
188 EXPORT_SYMBOL_GPL(nf_conntrack_htable_size);
189
190 unsigned int nf_conntrack_max __read_mostly;
191 seqcount_t nf_conntrack_generation __read_mostly;
192 static unsigned int nf_conntrack_hash_rnd __read_mostly;
193
194 static u32 hash_conntrack_raw(const struct nf_conntrack_tuple *tuple,
195 const struct net *net)
196 {
197 unsigned int n;
198 u32 seed;
199
200 get_random_once(&nf_conntrack_hash_rnd, sizeof(nf_conntrack_hash_rnd));
201
202 /* The direction must be ignored, so we hash everything up to the
203 * destination ports (which is a multiple of 4) and treat the last
204 * three bytes manually.
205 */
206 seed = nf_conntrack_hash_rnd ^ net_hash_mix(net);
207 n = (sizeof(tuple->src) + sizeof(tuple->dst.u3)) / sizeof(u32);
208 return jhash2((u32 *)tuple, n, seed ^
209 (((__force __u16)tuple->dst.u.all << 16) |
210 tuple->dst.protonum));
211 }
212
213 static u32 scale_hash(u32 hash)
214 {
215 return reciprocal_scale(hash, nf_conntrack_htable_size);
216 }
217
218 static u32 __hash_conntrack(const struct net *net,
219 const struct nf_conntrack_tuple *tuple,
220 unsigned int size)
221 {
222 return reciprocal_scale(hash_conntrack_raw(tuple, net), size);
223 }
224
225 static u32 hash_conntrack(const struct net *net,
226 const struct nf_conntrack_tuple *tuple)
227 {
228 return scale_hash(hash_conntrack_raw(tuple, net));
229 }
230
231 bool
232 nf_ct_get_tuple(const struct sk_buff *skb,
233 unsigned int nhoff,
234 unsigned int dataoff,
235 u_int16_t l3num,
236 u_int8_t protonum,
237 struct net *net,
238 struct nf_conntrack_tuple *tuple,
239 const struct nf_conntrack_l3proto *l3proto,
240 const struct nf_conntrack_l4proto *l4proto)
241 {
242 memset(tuple, 0, sizeof(*tuple));
243
244 tuple->src.l3num = l3num;
245 if (l3proto->pkt_to_tuple(skb, nhoff, tuple) == 0)
246 return false;
247
248 tuple->dst.protonum = protonum;
249 tuple->dst.dir = IP_CT_DIR_ORIGINAL;
250
251 return l4proto->pkt_to_tuple(skb, dataoff, net, tuple);
252 }
253 EXPORT_SYMBOL_GPL(nf_ct_get_tuple);
254
255 bool nf_ct_get_tuplepr(const struct sk_buff *skb, unsigned int nhoff,
256 u_int16_t l3num,
257 struct net *net, struct nf_conntrack_tuple *tuple)
258 {
259 const struct nf_conntrack_l3proto *l3proto;
260 const struct nf_conntrack_l4proto *l4proto;
261 unsigned int protoff;
262 u_int8_t protonum;
263 int ret;
264
265 rcu_read_lock();
266
267 l3proto = __nf_ct_l3proto_find(l3num);
268 ret = l3proto->get_l4proto(skb, nhoff, &protoff, &protonum);
269 if (ret != NF_ACCEPT) {
270 rcu_read_unlock();
271 return false;
272 }
273
274 l4proto = __nf_ct_l4proto_find(l3num, protonum);
275
276 ret = nf_ct_get_tuple(skb, nhoff, protoff, l3num, protonum, net, tuple,
277 l3proto, l4proto);
278
279 rcu_read_unlock();
280 return ret;
281 }
282 EXPORT_SYMBOL_GPL(nf_ct_get_tuplepr);
283
284 bool
285 nf_ct_invert_tuple(struct nf_conntrack_tuple *inverse,
286 const struct nf_conntrack_tuple *orig,
287 const struct nf_conntrack_l3proto *l3proto,
288 const struct nf_conntrack_l4proto *l4proto)
289 {
290 memset(inverse, 0, sizeof(*inverse));
291
292 inverse->src.l3num = orig->src.l3num;
293 if (l3proto->invert_tuple(inverse, orig) == 0)
294 return false;
295
296 inverse->dst.dir = !orig->dst.dir;
297
298 inverse->dst.protonum = orig->dst.protonum;
299 return l4proto->invert_tuple(inverse, orig);
300 }
301 EXPORT_SYMBOL_GPL(nf_ct_invert_tuple);
302
303 static void
304 clean_from_lists(struct nf_conn *ct)
305 {
306 pr_debug("clean_from_lists(%p)\n", ct);
307 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
308 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode);
309
310 /* Destroy all pending expectations */
311 nf_ct_remove_expectations(ct);
312 }
313
314 /* must be called with local_bh_disable */
315 static void nf_ct_add_to_dying_list(struct nf_conn *ct)
316 {
317 struct ct_pcpu *pcpu;
318
319 /* add this conntrack to the (per cpu) dying list */
320 ct->cpu = smp_processor_id();
321 pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
322
323 spin_lock(&pcpu->lock);
324 hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
325 &pcpu->dying);
326 spin_unlock(&pcpu->lock);
327 }
328
329 /* must be called with local_bh_disable */
330 static void nf_ct_add_to_unconfirmed_list(struct nf_conn *ct)
331 {
332 struct ct_pcpu *pcpu;
333
334 /* add this conntrack to the (per cpu) unconfirmed list */
335 ct->cpu = smp_processor_id();
336 pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
337
338 spin_lock(&pcpu->lock);
339 hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
340 &pcpu->unconfirmed);
341 spin_unlock(&pcpu->lock);
342 }
343
344 /* must be called with local_bh_disable */
345 static void nf_ct_del_from_dying_or_unconfirmed_list(struct nf_conn *ct)
346 {
347 struct ct_pcpu *pcpu;
348
349 /* We overload first tuple to link into unconfirmed or dying list.*/
350 pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
351
352 spin_lock(&pcpu->lock);
353 BUG_ON(hlist_nulls_unhashed(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode));
354 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
355 spin_unlock(&pcpu->lock);
356 }
357
358 #define NFCT_ALIGN(len) (((len) + NFCT_INFOMASK) & ~NFCT_INFOMASK)
359
360 /* Released via destroy_conntrack() */
361 struct nf_conn *nf_ct_tmpl_alloc(struct net *net,
362 const struct nf_conntrack_zone *zone,
363 gfp_t flags)
364 {
365 struct nf_conn *tmpl, *p;
366
367 if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK) {
368 tmpl = kzalloc(sizeof(*tmpl) + NFCT_INFOMASK, flags);
369 if (!tmpl)
370 return NULL;
371
372 p = tmpl;
373 tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
374 if (tmpl != p) {
375 tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
376 tmpl->proto.tmpl_padto = (char *)tmpl - (char *)p;
377 }
378 } else {
379 tmpl = kzalloc(sizeof(*tmpl), flags);
380 if (!tmpl)
381 return NULL;
382 }
383
384 tmpl->status = IPS_TEMPLATE;
385 write_pnet(&tmpl->ct_net, net);
386 nf_ct_zone_add(tmpl, zone);
387 atomic_set(&tmpl->ct_general.use, 0);
388
389 return tmpl;
390 }
391 EXPORT_SYMBOL_GPL(nf_ct_tmpl_alloc);
392
393 void nf_ct_tmpl_free(struct nf_conn *tmpl)
394 {
395 nf_ct_ext_destroy(tmpl);
396 nf_ct_ext_free(tmpl);
397
398 if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK)
399 kfree((char *)tmpl - tmpl->proto.tmpl_padto);
400 else
401 kfree(tmpl);
402 }
403 EXPORT_SYMBOL_GPL(nf_ct_tmpl_free);
404
405 static void
406 destroy_conntrack(struct nf_conntrack *nfct)
407 {
408 struct nf_conn *ct = (struct nf_conn *)nfct;
409 const struct nf_conntrack_l4proto *l4proto;
410
411 pr_debug("destroy_conntrack(%p)\n", ct);
412 WARN_ON(atomic_read(&nfct->use) != 0);
413
414 if (unlikely(nf_ct_is_template(ct))) {
415 nf_ct_tmpl_free(ct);
416 return;
417 }
418 l4proto = __nf_ct_l4proto_find(nf_ct_l3num(ct), nf_ct_protonum(ct));
419 if (l4proto->destroy)
420 l4proto->destroy(ct);
421
422 local_bh_disable();
423 /* Expectations will have been removed in clean_from_lists,
424 * except TFTP can create an expectation on the first packet,
425 * before connection is in the list, so we need to clean here,
426 * too.
427 */
428 nf_ct_remove_expectations(ct);
429
430 #if defined(CONFIG_NETFILTER_XT_MATCH_LAYER7) || defined(CONFIG_NETFILTER_XT_MATCH_LAYER7_MODULE)
431 if(ct->layer7.app_data)
432 kfree(ct->layer7.app_data);
433 #endif
434
435 nf_ct_del_from_dying_or_unconfirmed_list(ct);
436
437 local_bh_enable();
438
439 if (ct->master)
440 nf_ct_put(ct->master);
441
442 pr_debug("destroy_conntrack: returning ct=%p to slab\n", ct);
443 nf_conntrack_free(ct);
444 }
445
446 static void nf_ct_delete_from_lists(struct nf_conn *ct)
447 {
448 struct net *net = nf_ct_net(ct);
449 unsigned int hash, reply_hash;
450 unsigned int sequence;
451
452 nf_ct_helper_destroy(ct);
453
454 local_bh_disable();
455 do {
456 sequence = read_seqcount_begin(&nf_conntrack_generation);
457 hash = hash_conntrack(net,
458 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
459 reply_hash = hash_conntrack(net,
460 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
461 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
462
463 clean_from_lists(ct);
464 nf_conntrack_double_unlock(hash, reply_hash);
465
466 nf_ct_add_to_dying_list(ct);
467
468 local_bh_enable();
469 }
470
471 bool nf_ct_delete(struct nf_conn *ct, u32 portid, int report)
472 {
473 struct nf_conn_tstamp *tstamp;
474
475 if (test_and_set_bit(IPS_DYING_BIT, &ct->status))
476 return false;
477
478 tstamp = nf_conn_tstamp_find(ct);
479 if (tstamp && tstamp->stop == 0)
480 tstamp->stop = ktime_get_real_ns();
481
482 if (nf_conntrack_event_report(IPCT_DESTROY, ct,
483 portid, report) < 0) {
484 /* destroy event was not delivered. nf_ct_put will
485 * be done by event cache worker on redelivery.
486 */
487 nf_ct_delete_from_lists(ct);
488 nf_conntrack_ecache_delayed_work(nf_ct_net(ct));
489 return false;
490 }
491
492 nf_conntrack_ecache_work(nf_ct_net(ct));
493 nf_ct_delete_from_lists(ct);
494 nf_ct_put(ct);
495 return true;
496 }
497 EXPORT_SYMBOL_GPL(nf_ct_delete);
498
499 static inline bool
500 nf_ct_key_equal(struct nf_conntrack_tuple_hash *h,
501 const struct nf_conntrack_tuple *tuple,
502 const struct nf_conntrack_zone *zone,
503 const struct net *net)
504 {
505 struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
506
507 /* A conntrack can be recreated with the equal tuple,
508 * so we need to check that the conntrack is confirmed
509 */
510 return nf_ct_tuple_equal(tuple, &h->tuple) &&
511 nf_ct_zone_equal(ct, zone, NF_CT_DIRECTION(h)) &&
512 nf_ct_is_confirmed(ct) &&
513 net_eq(net, nf_ct_net(ct));
514 }
515
516 /* caller must hold rcu readlock and none of the nf_conntrack_locks */
517 static void nf_ct_gc_expired(struct nf_conn *ct)
518 {
519 if (!atomic_inc_not_zero(&ct->ct_general.use))
520 return;
521
522 if (nf_ct_should_gc(ct))
523 nf_ct_kill(ct);
524
525 nf_ct_put(ct);
526 }
527
528 /*
529 * Warning :
530 * - Caller must take a reference on returned object
531 * and recheck nf_ct_tuple_equal(tuple, &h->tuple)
532 */
533 static struct nf_conntrack_tuple_hash *
534 ____nf_conntrack_find(struct net *net, const struct nf_conntrack_zone *zone,
535 const struct nf_conntrack_tuple *tuple, u32 hash)
536 {
537 struct nf_conntrack_tuple_hash *h;
538 struct hlist_nulls_head *ct_hash;
539 struct hlist_nulls_node *n;
540 unsigned int bucket, hsize;
541
542 begin:
543 nf_conntrack_get_ht(&ct_hash, &hsize);
544 bucket = reciprocal_scale(hash, hsize);
545
546 hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[bucket], hnnode) {
547 struct nf_conn *ct;
548
549 ct = nf_ct_tuplehash_to_ctrack(h);
550 if (nf_ct_is_expired(ct)) {
551 nf_ct_gc_expired(ct);
552 continue;
553 }
554
555 if (nf_ct_is_dying(ct))
556 continue;
557
558 if (nf_ct_key_equal(h, tuple, zone, net))
559 return h;
560 }
561 /*
562 * if the nulls value we got at the end of this lookup is
563 * not the expected one, we must restart lookup.
564 * We probably met an item that was moved to another chain.
565 */
566 if (get_nulls_value(n) != bucket) {
567 NF_CT_STAT_INC_ATOMIC(net, search_restart);
568 goto begin;
569 }
570
571 return NULL;
572 }
573
574 /* Find a connection corresponding to a tuple. */
575 static struct nf_conntrack_tuple_hash *
576 __nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
577 const struct nf_conntrack_tuple *tuple, u32 hash)
578 {
579 struct nf_conntrack_tuple_hash *h;
580 struct nf_conn *ct;
581
582 rcu_read_lock();
583 begin:
584 h = ____nf_conntrack_find(net, zone, tuple, hash);
585 if (h) {
586 ct = nf_ct_tuplehash_to_ctrack(h);
587 if (unlikely(nf_ct_is_dying(ct) ||
588 !atomic_inc_not_zero(&ct->ct_general.use)))
589 h = NULL;
590 else {
591 if (unlikely(!nf_ct_key_equal(h, tuple, zone, net))) {
592 nf_ct_put(ct);
593 goto begin;
594 }
595 }
596 }
597 rcu_read_unlock();
598
599 return h;
600 }
601
602 struct nf_conntrack_tuple_hash *
603 nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
604 const struct nf_conntrack_tuple *tuple)
605 {
606 return __nf_conntrack_find_get(net, zone, tuple,
607 hash_conntrack_raw(tuple, net));
608 }
609 EXPORT_SYMBOL_GPL(nf_conntrack_find_get);
610
611 static void __nf_conntrack_hash_insert(struct nf_conn *ct,
612 unsigned int hash,
613 unsigned int reply_hash)
614 {
615 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
616 &nf_conntrack_hash[hash]);
617 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
618 &nf_conntrack_hash[reply_hash]);
619 }
620
621 int
622 nf_conntrack_hash_check_insert(struct nf_conn *ct)
623 {
624 const struct nf_conntrack_zone *zone;
625 struct net *net = nf_ct_net(ct);
626 unsigned int hash, reply_hash;
627 struct nf_conntrack_tuple_hash *h;
628 struct hlist_nulls_node *n;
629 unsigned int sequence;
630
631 zone = nf_ct_zone(ct);
632
633 local_bh_disable();
634 do {
635 sequence = read_seqcount_begin(&nf_conntrack_generation);
636 hash = hash_conntrack(net,
637 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
638 reply_hash = hash_conntrack(net,
639 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
640 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
641
642 /* See if there's one in the list already, including reverse */
643 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode)
644 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
645 zone, net))
646 goto out;
647
648 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode)
649 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
650 zone, net))
651 goto out;
652
653 smp_wmb();
654 /* The caller holds a reference to this object */
655 atomic_set(&ct->ct_general.use, 2);
656 __nf_conntrack_hash_insert(ct, hash, reply_hash);
657 nf_conntrack_double_unlock(hash, reply_hash);
658 NF_CT_STAT_INC(net, insert);
659 local_bh_enable();
660 return 0;
661
662 out:
663 nf_conntrack_double_unlock(hash, reply_hash);
664 NF_CT_STAT_INC(net, insert_failed);
665 local_bh_enable();
666 return -EEXIST;
667 }
668 EXPORT_SYMBOL_GPL(nf_conntrack_hash_check_insert);
669
670 static inline void nf_ct_acct_update(struct nf_conn *ct,
671 enum ip_conntrack_info ctinfo,
672 unsigned int len)
673 {
674 struct nf_conn_acct *acct;
675
676 acct = nf_conn_acct_find(ct);
677 if (acct) {
678 struct nf_conn_counter *counter = acct->counter;
679
680 atomic64_inc(&counter[CTINFO2DIR(ctinfo)].packets);
681 atomic64_add(len, &counter[CTINFO2DIR(ctinfo)].bytes);
682 }
683 }
684
685 static void nf_ct_acct_merge(struct nf_conn *ct, enum ip_conntrack_info ctinfo,
686 const struct nf_conn *loser_ct)
687 {
688 struct nf_conn_acct *acct;
689
690 acct = nf_conn_acct_find(loser_ct);
691 if (acct) {
692 struct nf_conn_counter *counter = acct->counter;
693 unsigned int bytes;
694
695 /* u32 should be fine since we must have seen one packet. */
696 bytes = atomic64_read(&counter[CTINFO2DIR(ctinfo)].bytes);
697 nf_ct_acct_update(ct, ctinfo, bytes);
698 }
699 }
700
701 /* Resolve race on insertion if this protocol allows this. */
702 static int nf_ct_resolve_clash(struct net *net, struct sk_buff *skb,
703 enum ip_conntrack_info ctinfo,
704 struct nf_conntrack_tuple_hash *h)
705 {
706 /* This is the conntrack entry already in hashes that won race. */
707 struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
708 const struct nf_conntrack_l4proto *l4proto;
709
710 l4proto = __nf_ct_l4proto_find(nf_ct_l3num(ct), nf_ct_protonum(ct));
711 if (l4proto->allow_clash &&
712 ((ct->status & IPS_NAT_DONE_MASK) == 0) &&
713 !nf_ct_is_dying(ct) &&
714 atomic_inc_not_zero(&ct->ct_general.use)) {
715 enum ip_conntrack_info oldinfo;
716 struct nf_conn *loser_ct = nf_ct_get(skb, &oldinfo);
717
718 nf_ct_acct_merge(ct, ctinfo, loser_ct);
719 nf_conntrack_put(&loser_ct->ct_general);
720 nf_ct_set(skb, ct, oldinfo);
721 return NF_ACCEPT;
722 }
723 NF_CT_STAT_INC(net, drop);
724 return NF_DROP;
725 }
726
727 /* Confirm a connection given skb; places it in hash table */
728 int
729 __nf_conntrack_confirm(struct sk_buff *skb)
730 {
731 const struct nf_conntrack_zone *zone;
732 unsigned int hash, reply_hash;
733 struct nf_conntrack_tuple_hash *h;
734 struct nf_conn *ct;
735 struct nf_conn_help *help;
736 struct nf_conn_tstamp *tstamp;
737 struct hlist_nulls_node *n;
738 enum ip_conntrack_info ctinfo;
739 struct net *net;
740 unsigned int sequence;
741 int ret = NF_DROP;
742
743 ct = nf_ct_get(skb, &ctinfo);
744 net = nf_ct_net(ct);
745
746 /* ipt_REJECT uses nf_conntrack_attach to attach related
747 ICMP/TCP RST packets in other direction. Actual packet
748 which created connection will be IP_CT_NEW or for an
749 expected connection, IP_CT_RELATED. */
750 if (CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL)
751 return NF_ACCEPT;
752
753 zone = nf_ct_zone(ct);
754 local_bh_disable();
755
756 do {
757 sequence = read_seqcount_begin(&nf_conntrack_generation);
758 /* reuse the hash saved before */
759 hash = *(unsigned long *)&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev;
760 hash = scale_hash(hash);
761 reply_hash = hash_conntrack(net,
762 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
763
764 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
765
766 /* We're not in hash table, and we refuse to set up related
767 * connections for unconfirmed conns. But packet copies and
768 * REJECT will give spurious warnings here.
769 */
770
771 /* No external references means no one else could have
772 * confirmed us.
773 */
774 WARN_ON(nf_ct_is_confirmed(ct));
775 pr_debug("Confirming conntrack %p\n", ct);
776 /* We have to check the DYING flag after unlink to prevent
777 * a race against nf_ct_get_next_corpse() possibly called from
778 * user context, else we insert an already 'dead' hash, blocking
779 * further use of that particular connection -JM.
780 */
781 nf_ct_del_from_dying_or_unconfirmed_list(ct);
782
783 if (unlikely(nf_ct_is_dying(ct))) {
784 nf_ct_add_to_dying_list(ct);
785 goto dying;
786 }
787
788 /* See if there's one in the list already, including reverse:
789 NAT could have grabbed it without realizing, since we're
790 not in the hash. If there is, we lost race. */
791 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode)
792 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
793 zone, net))
794 goto out;
795
796 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode)
797 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
798 zone, net))
799 goto out;
800
801 /* Timer relative to confirmation time, not original
802 setting time, otherwise we'd get timer wrap in
803 weird delay cases. */
804 ct->timeout += nfct_time_stamp;
805 atomic_inc(&ct->ct_general.use);
806 ct->status |= IPS_CONFIRMED;
807
808 /* set conntrack timestamp, if enabled. */
809 tstamp = nf_conn_tstamp_find(ct);
810 if (tstamp) {
811 if (skb->tstamp == 0)
812 __net_timestamp(skb);
813
814 tstamp->start = ktime_to_ns(skb->tstamp);
815 }
816 /* Since the lookup is lockless, hash insertion must be done after
817 * starting the timer and setting the CONFIRMED bit. The RCU barriers
818 * guarantee that no other CPU can find the conntrack before the above
819 * stores are visible.
820 */
821 __nf_conntrack_hash_insert(ct, hash, reply_hash);
822 nf_conntrack_double_unlock(hash, reply_hash);
823 local_bh_enable();
824
825 help = nfct_help(ct);
826 if (help && help->helper)
827 nf_conntrack_event_cache(IPCT_HELPER, ct);
828
829 nf_conntrack_event_cache(master_ct(ct) ?
830 IPCT_RELATED : IPCT_NEW, ct);
831 return NF_ACCEPT;
832
833 out:
834 nf_ct_add_to_dying_list(ct);
835 ret = nf_ct_resolve_clash(net, skb, ctinfo, h);
836 dying:
837 nf_conntrack_double_unlock(hash, reply_hash);
838 NF_CT_STAT_INC(net, insert_failed);
839 local_bh_enable();
840 return ret;
841 }
842 EXPORT_SYMBOL_GPL(__nf_conntrack_confirm);
843
844 /* Returns true if a connection correspondings to the tuple (required
845 for NAT). */
846 int
847 nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple,
848 const struct nf_conn *ignored_conntrack)
849 {
850 struct net *net = nf_ct_net(ignored_conntrack);
851 const struct nf_conntrack_zone *zone;
852 struct nf_conntrack_tuple_hash *h;
853 struct hlist_nulls_head *ct_hash;
854 unsigned int hash, hsize;
855 struct hlist_nulls_node *n;
856 struct nf_conn *ct;
857
858 zone = nf_ct_zone(ignored_conntrack);
859
860 rcu_read_lock();
861 begin:
862 nf_conntrack_get_ht(&ct_hash, &hsize);
863 hash = __hash_conntrack(net, tuple, hsize);
864
865 hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[hash], hnnode) {
866 ct = nf_ct_tuplehash_to_ctrack(h);
867
868 if (ct == ignored_conntrack)
869 continue;
870
871 if (nf_ct_is_expired(ct)) {
872 nf_ct_gc_expired(ct);
873 continue;
874 }
875
876 if (nf_ct_key_equal(h, tuple, zone, net)) {
877 NF_CT_STAT_INC_ATOMIC(net, found);
878 rcu_read_unlock();
879 return 1;
880 }
881 }
882
883 if (get_nulls_value(n) != hash) {
884 NF_CT_STAT_INC_ATOMIC(net, search_restart);
885 goto begin;
886 }
887
888 rcu_read_unlock();
889
890 return 0;
891 }
892 EXPORT_SYMBOL_GPL(nf_conntrack_tuple_taken);
893
894 #define NF_CT_EVICTION_RANGE 8
895
896 /* There's a small race here where we may free a just-assured
897 connection. Too bad: we're in trouble anyway. */
898 static unsigned int early_drop_list(struct net *net,
899 struct hlist_nulls_head *head)
900 {
901 struct nf_conntrack_tuple_hash *h;
902 struct hlist_nulls_node *n;
903 unsigned int drops = 0;
904 struct nf_conn *tmp;
905
906 hlist_nulls_for_each_entry_rcu(h, n, head, hnnode) {
907 tmp = nf_ct_tuplehash_to_ctrack(h);
908
909 if (nf_ct_is_expired(tmp)) {
910 nf_ct_gc_expired(tmp);
911 continue;
912 }
913
914 if (test_bit(IPS_ASSURED_BIT, &tmp->status) ||
915 !net_eq(nf_ct_net(tmp), net) ||
916 nf_ct_is_dying(tmp))
917 continue;
918
919 if (!atomic_inc_not_zero(&tmp->ct_general.use))
920 continue;
921
922 /* kill only if still in same netns -- might have moved due to
923 * SLAB_TYPESAFE_BY_RCU rules.
924 *
925 * We steal the timer reference. If that fails timer has
926 * already fired or someone else deleted it. Just drop ref
927 * and move to next entry.
928 */
929 if (net_eq(nf_ct_net(tmp), net) &&
930 nf_ct_is_confirmed(tmp) &&
931 nf_ct_delete(tmp, 0, 0))
932 drops++;
933
934 nf_ct_put(tmp);
935 }
936
937 return drops;
938 }
939
940 static noinline int early_drop(struct net *net, unsigned int _hash)
941 {
942 unsigned int i;
943
944 for (i = 0; i < NF_CT_EVICTION_RANGE; i++) {
945 struct hlist_nulls_head *ct_hash;
946 unsigned int hash, hsize, drops;
947
948 rcu_read_lock();
949 nf_conntrack_get_ht(&ct_hash, &hsize);
950 hash = reciprocal_scale(_hash++, hsize);
951
952 drops = early_drop_list(net, &ct_hash[hash]);
953 rcu_read_unlock();
954
955 if (drops) {
956 NF_CT_STAT_ADD_ATOMIC(net, early_drop, drops);
957 return true;
958 }
959 }
960
961 return false;
962 }
963
964 static bool gc_worker_skip_ct(const struct nf_conn *ct)
965 {
966 return !nf_ct_is_confirmed(ct) || nf_ct_is_dying(ct);
967 }
968
969 static bool gc_worker_can_early_drop(const struct nf_conn *ct)
970 {
971 const struct nf_conntrack_l4proto *l4proto;
972
973 if (!test_bit(IPS_ASSURED_BIT, &ct->status))
974 return true;
975
976 l4proto = __nf_ct_l4proto_find(nf_ct_l3num(ct), nf_ct_protonum(ct));
977 if (l4proto->can_early_drop && l4proto->can_early_drop(ct))
978 return true;
979
980 return false;
981 }
982
983 static void gc_worker(struct work_struct *work)
984 {
985 unsigned int min_interval = max(HZ / GC_MAX_BUCKETS_DIV, 1u);
986 unsigned int i, goal, buckets = 0, expired_count = 0;
987 unsigned int nf_conntrack_max95 = 0;
988 struct conntrack_gc_work *gc_work;
989 unsigned int ratio, scanned = 0;
990 unsigned long next_run;
991
992 gc_work = container_of(work, struct conntrack_gc_work, dwork.work);
993
994 goal = nf_conntrack_htable_size / GC_MAX_BUCKETS_DIV;
995 i = gc_work->last_bucket;
996 if (gc_work->early_drop)
997 nf_conntrack_max95 = nf_conntrack_max / 100u * 95u;
998
999 do {
1000 struct nf_conntrack_tuple_hash *h;
1001 struct hlist_nulls_head *ct_hash;
1002 struct hlist_nulls_node *n;
1003 unsigned int hashsz;
1004 struct nf_conn *tmp;
1005
1006 i++;
1007 rcu_read_lock();
1008
1009 nf_conntrack_get_ht(&ct_hash, &hashsz);
1010 if (i >= hashsz)
1011 i = 0;
1012
1013 hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[i], hnnode) {
1014 struct net *net;
1015
1016 tmp = nf_ct_tuplehash_to_ctrack(h);
1017
1018 scanned++;
1019 if (nf_ct_is_expired(tmp)) {
1020 nf_ct_gc_expired(tmp);
1021 expired_count++;
1022 continue;
1023 }
1024
1025 if (nf_conntrack_max95 == 0 || gc_worker_skip_ct(tmp))
1026 continue;
1027
1028 net = nf_ct_net(tmp);
1029 if (atomic_read(&net->ct.count) < nf_conntrack_max95)
1030 continue;
1031
1032 /* need to take reference to avoid possible races */
1033 if (!atomic_inc_not_zero(&tmp->ct_general.use))
1034 continue;
1035
1036 if (gc_worker_skip_ct(tmp)) {
1037 nf_ct_put(tmp);
1038 continue;
1039 }
1040
1041 if (gc_worker_can_early_drop(tmp))
1042 nf_ct_kill(tmp);
1043
1044 nf_ct_put(tmp);
1045 }
1046
1047 /* could check get_nulls_value() here and restart if ct
1048 * was moved to another chain. But given gc is best-effort
1049 * we will just continue with next hash slot.
1050 */
1051 rcu_read_unlock();
1052 cond_resched_rcu_qs();
1053 } while (++buckets < goal);
1054
1055 if (gc_work->exiting)
1056 return;
1057
1058 /*
1059 * Eviction will normally happen from the packet path, and not
1060 * from this gc worker.
1061 *
1062 * This worker is only here to reap expired entries when system went
1063 * idle after a busy period.
1064 *
1065 * The heuristics below are supposed to balance conflicting goals:
1066 *
1067 * 1. Minimize time until we notice a stale entry
1068 * 2. Maximize scan intervals to not waste cycles
1069 *
1070 * Normally, expire ratio will be close to 0.
1071 *
1072 * As soon as a sizeable fraction of the entries have expired
1073 * increase scan frequency.
1074 */
1075 ratio = scanned ? expired_count * 100 / scanned : 0;
1076 if (ratio > GC_EVICT_RATIO) {
1077 gc_work->next_gc_run = min_interval;
1078 } else {
1079 unsigned int max = GC_MAX_SCAN_JIFFIES / GC_MAX_BUCKETS_DIV;
1080
1081 BUILD_BUG_ON((GC_MAX_SCAN_JIFFIES / GC_MAX_BUCKETS_DIV) == 0);
1082
1083 gc_work->next_gc_run += min_interval;
1084 if (gc_work->next_gc_run > max)
1085 gc_work->next_gc_run = max;
1086 }
1087
1088 next_run = gc_work->next_gc_run;
1089 gc_work->last_bucket = i;
1090 gc_work->early_drop = false;
1091 queue_delayed_work(system_long_wq, &gc_work->dwork, next_run);
1092 }
1093
1094 static void conntrack_gc_work_init(struct conntrack_gc_work *gc_work)
1095 {
1096 INIT_DEFERRABLE_WORK(&gc_work->dwork, gc_worker);
1097 gc_work->next_gc_run = HZ;
1098 gc_work->exiting = false;
1099 }
1100
1101 static struct nf_conn *
1102 __nf_conntrack_alloc(struct net *net,
1103 const struct nf_conntrack_zone *zone,
1104 const struct nf_conntrack_tuple *orig,
1105 const struct nf_conntrack_tuple *repl,
1106 gfp_t gfp, u32 hash)
1107 {
1108 struct nf_conn *ct;
1109
1110 /* We don't want any race condition at early drop stage */
1111 atomic_inc(&net->ct.count);
1112
1113 if (nf_conntrack_max &&
1114 unlikely(atomic_read(&net->ct.count) > nf_conntrack_max)) {
1115 if (!early_drop(net, hash)) {
1116 if (!conntrack_gc_work.early_drop)
1117 conntrack_gc_work.early_drop = true;
1118 atomic_dec(&net->ct.count);
1119 net_warn_ratelimited("nf_conntrack: table full, dropping packet\n");
1120 return ERR_PTR(-ENOMEM);
1121 }
1122 }
1123
1124 /*
1125 * Do not use kmem_cache_zalloc(), as this cache uses
1126 * SLAB_TYPESAFE_BY_RCU.
1127 */
1128 ct = kmem_cache_alloc(nf_conntrack_cachep, gfp);
1129 if (ct == NULL)
1130 goto out;
1131
1132 spin_lock_init(&ct->lock);
1133 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig;
1134 ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode.pprev = NULL;
1135 ct->tuplehash[IP_CT_DIR_REPLY].tuple = *repl;
1136 /* save hash for reusing when confirming */
1137 *(unsigned long *)(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev) = hash;
1138 ct->status = 0;
1139 write_pnet(&ct->ct_net, net);
1140 memset(&ct->__nfct_init_offset[0], 0,
1141 offsetof(struct nf_conn, proto) -
1142 offsetof(struct nf_conn, __nfct_init_offset[0]));
1143
1144 nf_ct_zone_add(ct, zone);
1145
1146 /* Because we use RCU lookups, we set ct_general.use to zero before
1147 * this is inserted in any list.
1148 */
1149 atomic_set(&ct->ct_general.use, 0);
1150 return ct;
1151 out:
1152 atomic_dec(&net->ct.count);
1153 return ERR_PTR(-ENOMEM);
1154 }
1155
1156 struct nf_conn *nf_conntrack_alloc(struct net *net,
1157 const struct nf_conntrack_zone *zone,
1158 const struct nf_conntrack_tuple *orig,
1159 const struct nf_conntrack_tuple *repl,
1160 gfp_t gfp)
1161 {
1162 return __nf_conntrack_alloc(net, zone, orig, repl, gfp, 0);
1163 }
1164 EXPORT_SYMBOL_GPL(nf_conntrack_alloc);
1165
1166 void nf_conntrack_free(struct nf_conn *ct)
1167 {
1168 struct net *net = nf_ct_net(ct);
1169
1170 /* A freed object has refcnt == 0, that's
1171 * the golden rule for SLAB_TYPESAFE_BY_RCU
1172 */
1173 WARN_ON(atomic_read(&ct->ct_general.use) != 0);
1174
1175 nf_ct_ext_destroy(ct);
1176 nf_ct_ext_free(ct);
1177 kmem_cache_free(nf_conntrack_cachep, ct);
1178 smp_mb__before_atomic();
1179 atomic_dec(&net->ct.count);
1180 }
1181 EXPORT_SYMBOL_GPL(nf_conntrack_free);
1182
1183
1184 /* Allocate a new conntrack: we return -ENOMEM if classification
1185 failed due to stress. Otherwise it really is unclassifiable. */
1186 static noinline struct nf_conntrack_tuple_hash *
1187 init_conntrack(struct net *net, struct nf_conn *tmpl,
1188 const struct nf_conntrack_tuple *tuple,
1189 const struct nf_conntrack_l3proto *l3proto,
1190 const struct nf_conntrack_l4proto *l4proto,
1191 struct sk_buff *skb,
1192 unsigned int dataoff, u32 hash)
1193 {
1194 struct nf_conn *ct;
1195 struct nf_conn_help *help;
1196 struct nf_conntrack_tuple repl_tuple;
1197 struct nf_conntrack_ecache *ecache;
1198 struct nf_conntrack_expect *exp = NULL;
1199 const struct nf_conntrack_zone *zone;
1200 struct nf_conn_timeout *timeout_ext;
1201 struct nf_conntrack_zone tmp;
1202 unsigned int *timeouts;
1203
1204 if (!nf_ct_invert_tuple(&repl_tuple, tuple, l3proto, l4proto)) {
1205 pr_debug("Can't invert tuple.\n");
1206 return NULL;
1207 }
1208
1209 zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1210 ct = __nf_conntrack_alloc(net, zone, tuple, &repl_tuple, GFP_ATOMIC,
1211 hash);
1212 if (IS_ERR(ct))
1213 return (struct nf_conntrack_tuple_hash *)ct;
1214
1215 if (!nf_ct_add_synproxy(ct, tmpl)) {
1216 nf_conntrack_free(ct);
1217 return ERR_PTR(-ENOMEM);
1218 }
1219
1220 timeout_ext = tmpl ? nf_ct_timeout_find(tmpl) : NULL;
1221 if (timeout_ext) {
1222 timeouts = nf_ct_timeout_data(timeout_ext);
1223 if (unlikely(!timeouts))
1224 timeouts = l4proto->get_timeouts(net);
1225 } else {
1226 timeouts = l4proto->get_timeouts(net);
1227 }
1228
1229 if (!l4proto->new(ct, skb, dataoff, timeouts)) {
1230 nf_conntrack_free(ct);
1231 pr_debug("can't track with proto module\n");
1232 return NULL;
1233 }
1234
1235 if (timeout_ext)
1236 nf_ct_timeout_ext_add(ct, rcu_dereference(timeout_ext->timeout),
1237 GFP_ATOMIC);
1238
1239 nf_ct_acct_ext_add(ct, GFP_ATOMIC);
1240 nf_ct_tstamp_ext_add(ct, GFP_ATOMIC);
1241 nf_ct_labels_ext_add(ct);
1242
1243 ecache = tmpl ? nf_ct_ecache_find(tmpl) : NULL;
1244 nf_ct_ecache_ext_add(ct, ecache ? ecache->ctmask : 0,
1245 ecache ? ecache->expmask : 0,
1246 GFP_ATOMIC);
1247
1248 local_bh_disable();
1249 if (net->ct.expect_count) {
1250 spin_lock(&nf_conntrack_expect_lock);
1251 exp = nf_ct_find_expectation(net, zone, tuple);
1252 if (exp) {
1253 pr_debug("expectation arrives ct=%p exp=%p\n",
1254 ct, exp);
1255 /* Welcome, Mr. Bond. We've been expecting you... */
1256 __set_bit(IPS_EXPECTED_BIT, &ct->status);
1257 /* exp->master safe, refcnt bumped in nf_ct_find_expectation */
1258 ct->master = exp->master;
1259 if (exp->helper) {
1260 help = nf_ct_helper_ext_add(ct, exp->helper,
1261 GFP_ATOMIC);
1262 if (help)
1263 rcu_assign_pointer(help->helper, exp->helper);
1264 }
1265
1266 #ifdef CONFIG_NF_CONNTRACK_MARK
1267 ct->mark = exp->master->mark;
1268 #endif
1269 #ifdef CONFIG_NF_CONNTRACK_SECMARK
1270 ct->secmark = exp->master->secmark;
1271 #endif
1272 NF_CT_STAT_INC(net, expect_new);
1273 }
1274 spin_unlock(&nf_conntrack_expect_lock);
1275 }
1276 if (!exp)
1277 __nf_ct_try_assign_helper(ct, tmpl, GFP_ATOMIC);
1278
1279 /* Now it is inserted into the unconfirmed list, bump refcount */
1280 nf_conntrack_get(&ct->ct_general);
1281 nf_ct_add_to_unconfirmed_list(ct);
1282
1283 local_bh_enable();
1284
1285 if (exp) {
1286 if (exp->expectfn)
1287 exp->expectfn(ct, exp);
1288 nf_ct_expect_put(exp);
1289 }
1290
1291 return &ct->tuplehash[IP_CT_DIR_ORIGINAL];
1292 }
1293
1294 /* On success, returns 0, sets skb->_nfct | ctinfo */
1295 static int
1296 resolve_normal_ct(struct net *net, struct nf_conn *tmpl,
1297 struct sk_buff *skb,
1298 unsigned int dataoff,
1299 u_int16_t l3num,
1300 u_int8_t protonum,
1301 const struct nf_conntrack_l3proto *l3proto,
1302 const struct nf_conntrack_l4proto *l4proto)
1303 {
1304 const struct nf_conntrack_zone *zone;
1305 struct nf_conntrack_tuple tuple;
1306 struct nf_conntrack_tuple_hash *h;
1307 enum ip_conntrack_info ctinfo;
1308 struct nf_conntrack_zone tmp;
1309 struct nf_conn *ct;
1310 u32 hash;
1311
1312 if (!nf_ct_get_tuple(skb, skb_network_offset(skb),
1313 dataoff, l3num, protonum, net, &tuple, l3proto,
1314 l4proto)) {
1315 pr_debug("Can't get tuple\n");
1316 return 0;
1317 }
1318
1319 /* look for tuple match */
1320 zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1321 hash = hash_conntrack_raw(&tuple, net);
1322 h = __nf_conntrack_find_get(net, zone, &tuple, hash);
1323 if (!h) {
1324 h = init_conntrack(net, tmpl, &tuple, l3proto, l4proto,
1325 skb, dataoff, hash);
1326 if (!h)
1327 return 0;
1328 if (IS_ERR(h))
1329 return PTR_ERR(h);
1330 }
1331 ct = nf_ct_tuplehash_to_ctrack(h);
1332
1333 /* It exists; we have (non-exclusive) reference. */
1334 if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) {
1335 ctinfo = IP_CT_ESTABLISHED_REPLY;
1336 } else {
1337 /* Once we've had two way comms, always ESTABLISHED. */
1338 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) {
1339 pr_debug("normal packet for %p\n", ct);
1340 ctinfo = IP_CT_ESTABLISHED;
1341 } else if (test_bit(IPS_EXPECTED_BIT, &ct->status)) {
1342 pr_debug("related packet for %p\n", ct);
1343 ctinfo = IP_CT_RELATED;
1344 } else {
1345 pr_debug("new packet for %p\n", ct);
1346 ctinfo = IP_CT_NEW;
1347 }
1348 }
1349 nf_ct_set(skb, ct, ctinfo);
1350 return 0;
1351 }
1352
1353 unsigned int
1354 nf_conntrack_in(struct net *net, u_int8_t pf, unsigned int hooknum,
1355 struct sk_buff *skb)
1356 {
1357 const struct nf_conntrack_l3proto *l3proto;
1358 const struct nf_conntrack_l4proto *l4proto;
1359 struct nf_conn *ct, *tmpl;
1360 enum ip_conntrack_info ctinfo;
1361 unsigned int *timeouts;
1362 unsigned int dataoff;
1363 u_int8_t protonum;
1364 int ret;
1365
1366 tmpl = nf_ct_get(skb, &ctinfo);
1367 if (tmpl || ctinfo == IP_CT_UNTRACKED) {
1368 /* Previously seen (loopback or untracked)? Ignore. */
1369 if ((tmpl && !nf_ct_is_template(tmpl)) ||
1370 ctinfo == IP_CT_UNTRACKED) {
1371 NF_CT_STAT_INC_ATOMIC(net, ignore);
1372 return NF_ACCEPT;
1373 }
1374 skb->_nfct = 0;
1375 }
1376
1377 /* rcu_read_lock()ed by nf_hook_thresh */
1378 l3proto = __nf_ct_l3proto_find(pf);
1379 ret = l3proto->get_l4proto(skb, skb_network_offset(skb),
1380 &dataoff, &protonum);
1381 if (ret <= 0) {
1382 pr_debug("not prepared to track yet or error occurred\n");
1383 NF_CT_STAT_INC_ATOMIC(net, error);
1384 NF_CT_STAT_INC_ATOMIC(net, invalid);
1385 ret = -ret;
1386 goto out;
1387 }
1388
1389 l4proto = __nf_ct_l4proto_find(pf, protonum);
1390
1391 /* It may be an special packet, error, unclean...
1392 * inverse of the return code tells to the netfilter
1393 * core what to do with the packet. */
1394 if (l4proto->error != NULL) {
1395 ret = l4proto->error(net, tmpl, skb, dataoff, pf, hooknum);
1396 if (ret <= 0) {
1397 NF_CT_STAT_INC_ATOMIC(net, error);
1398 NF_CT_STAT_INC_ATOMIC(net, invalid);
1399 ret = -ret;
1400 goto out;
1401 }
1402 /* ICMP[v6] protocol trackers may assign one conntrack. */
1403 if (skb->_nfct)
1404 goto out;
1405 }
1406 repeat:
1407 ret = resolve_normal_ct(net, tmpl, skb, dataoff, pf, protonum,
1408 l3proto, l4proto);
1409 if (ret < 0) {
1410 /* Too stressed to deal. */
1411 NF_CT_STAT_INC_ATOMIC(net, drop);
1412 ret = NF_DROP;
1413 goto out;
1414 }
1415
1416 ct = nf_ct_get(skb, &ctinfo);
1417 if (!ct) {
1418 /* Not valid part of a connection */
1419 NF_CT_STAT_INC_ATOMIC(net, invalid);
1420 ret = NF_ACCEPT;
1421 goto out;
1422 }
1423
1424 /* Decide what timeout policy we want to apply to this flow. */
1425 timeouts = nf_ct_timeout_lookup(net, ct, l4proto);
1426
1427 ret = l4proto->packet(ct, skb, dataoff, ctinfo, pf, timeouts);
1428 if (ret <= 0) {
1429 /* Invalid: inverse of the return code tells
1430 * the netfilter core what to do */
1431 pr_debug("nf_conntrack_in: Can't track with proto module\n");
1432 nf_conntrack_put(&ct->ct_general);
1433 skb->_nfct = 0;
1434 NF_CT_STAT_INC_ATOMIC(net, invalid);
1435 if (ret == -NF_DROP)
1436 NF_CT_STAT_INC_ATOMIC(net, drop);
1437 /* Special case: TCP tracker reports an attempt to reopen a
1438 * closed/aborted connection. We have to go back and create a
1439 * fresh conntrack.
1440 */
1441 if (ret == -NF_REPEAT)
1442 goto repeat;
1443 ret = -ret;
1444 goto out;
1445 }
1446
1447 if (ctinfo == IP_CT_ESTABLISHED_REPLY &&
1448 !test_and_set_bit(IPS_SEEN_REPLY_BIT, &ct->status))
1449 nf_conntrack_event_cache(IPCT_REPLY, ct);
1450 out:
1451 if (tmpl)
1452 nf_ct_put(tmpl);
1453
1454 return ret;
1455 }
1456 EXPORT_SYMBOL_GPL(nf_conntrack_in);
1457
1458 bool nf_ct_invert_tuplepr(struct nf_conntrack_tuple *inverse,
1459 const struct nf_conntrack_tuple *orig)
1460 {
1461 bool ret;
1462
1463 rcu_read_lock();
1464 ret = nf_ct_invert_tuple(inverse, orig,
1465 __nf_ct_l3proto_find(orig->src.l3num),
1466 __nf_ct_l4proto_find(orig->src.l3num,
1467 orig->dst.protonum));
1468 rcu_read_unlock();
1469 return ret;
1470 }
1471 EXPORT_SYMBOL_GPL(nf_ct_invert_tuplepr);
1472
1473 /* Alter reply tuple (maybe alter helper). This is for NAT, and is
1474 implicitly racy: see __nf_conntrack_confirm */
1475 void nf_conntrack_alter_reply(struct nf_conn *ct,
1476 const struct nf_conntrack_tuple *newreply)
1477 {
1478 struct nf_conn_help *help = nfct_help(ct);
1479
1480 /* Should be unconfirmed, so not in hash table yet */
1481 WARN_ON(nf_ct_is_confirmed(ct));
1482
1483 pr_debug("Altering reply tuple of %p to ", ct);
1484 nf_ct_dump_tuple(newreply);
1485
1486 ct->tuplehash[IP_CT_DIR_REPLY].tuple = *newreply;
1487 if (ct->master || (help && !hlist_empty(&help->expectations)))
1488 return;
1489
1490 rcu_read_lock();
1491 __nf_ct_try_assign_helper(ct, NULL, GFP_ATOMIC);
1492 rcu_read_unlock();
1493 }
1494 EXPORT_SYMBOL_GPL(nf_conntrack_alter_reply);
1495
1496 /* Refresh conntrack for this many jiffies and do accounting if do_acct is 1 */
1497 void __nf_ct_refresh_acct(struct nf_conn *ct,
1498 enum ip_conntrack_info ctinfo,
1499 const struct sk_buff *skb,
1500 unsigned long extra_jiffies,
1501 int do_acct)
1502 {
1503 WARN_ON(!skb);
1504
1505 /* Only update if this is not a fixed timeout */
1506 if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status))
1507 goto acct;
1508
1509 /* If not in hash table, timer will not be active yet */
1510 if (nf_ct_is_confirmed(ct))
1511 extra_jiffies += nfct_time_stamp;
1512
1513 ct->timeout = extra_jiffies;
1514 acct:
1515 if (do_acct)
1516 nf_ct_acct_update(ct, ctinfo, skb->len);
1517 }
1518 EXPORT_SYMBOL_GPL(__nf_ct_refresh_acct);
1519
1520 bool nf_ct_kill_acct(struct nf_conn *ct,
1521 enum ip_conntrack_info ctinfo,
1522 const struct sk_buff *skb)
1523 {
1524 nf_ct_acct_update(ct, ctinfo, skb->len);
1525
1526 return nf_ct_delete(ct, 0, 0);
1527 }
1528 EXPORT_SYMBOL_GPL(nf_ct_kill_acct);
1529
1530 #if IS_ENABLED(CONFIG_NF_CT_NETLINK)
1531
1532 #include <linux/netfilter/nfnetlink.h>
1533 #include <linux/netfilter/nfnetlink_conntrack.h>
1534 #include <linux/mutex.h>
1535
1536 /* Generic function for tcp/udp/sctp/dccp and alike. This needs to be
1537 * in ip_conntrack_core, since we don't want the protocols to autoload
1538 * or depend on ctnetlink */
1539 int nf_ct_port_tuple_to_nlattr(struct sk_buff *skb,
1540 const struct nf_conntrack_tuple *tuple)
1541 {
1542 if (nla_put_be16(skb, CTA_PROTO_SRC_PORT, tuple->src.u.tcp.port) ||
1543 nla_put_be16(skb, CTA_PROTO_DST_PORT, tuple->dst.u.tcp.port))
1544 goto nla_put_failure;
1545 return 0;
1546
1547 nla_put_failure:
1548 return -1;
1549 }
1550 EXPORT_SYMBOL_GPL(nf_ct_port_tuple_to_nlattr);
1551
1552 const struct nla_policy nf_ct_port_nla_policy[CTA_PROTO_MAX+1] = {
1553 [CTA_PROTO_SRC_PORT] = { .type = NLA_U16 },
1554 [CTA_PROTO_DST_PORT] = { .type = NLA_U16 },
1555 };
1556 EXPORT_SYMBOL_GPL(nf_ct_port_nla_policy);
1557
1558 int nf_ct_port_nlattr_to_tuple(struct nlattr *tb[],
1559 struct nf_conntrack_tuple *t)
1560 {
1561 if (!tb[CTA_PROTO_SRC_PORT] || !tb[CTA_PROTO_DST_PORT])
1562 return -EINVAL;
1563
1564 t->src.u.tcp.port = nla_get_be16(tb[CTA_PROTO_SRC_PORT]);
1565 t->dst.u.tcp.port = nla_get_be16(tb[CTA_PROTO_DST_PORT]);
1566
1567 return 0;
1568 }
1569 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_to_tuple);
1570
1571 int nf_ct_port_nlattr_tuple_size(void)
1572 {
1573 return nla_policy_len(nf_ct_port_nla_policy, CTA_PROTO_MAX + 1);
1574 }
1575 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_tuple_size);
1576 #endif
1577
1578 /* Used by ipt_REJECT and ip6t_REJECT. */
1579 static void nf_conntrack_attach(struct sk_buff *nskb, const struct sk_buff *skb)
1580 {
1581 struct nf_conn *ct;
1582 enum ip_conntrack_info ctinfo;
1583
1584 /* This ICMP is in reverse direction to the packet which caused it */
1585 ct = nf_ct_get(skb, &ctinfo);
1586 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL)
1587 ctinfo = IP_CT_RELATED_REPLY;
1588 else
1589 ctinfo = IP_CT_RELATED;
1590
1591 /* Attach to new skbuff, and increment count */
1592 nf_ct_set(nskb, ct, ctinfo);
1593 nf_conntrack_get(skb_nfct(nskb));
1594 }
1595
1596 /* Bring out ya dead! */
1597 static struct nf_conn *
1598 get_next_corpse(int (*iter)(struct nf_conn *i, void *data),
1599 void *data, unsigned int *bucket)
1600 {
1601 struct nf_conntrack_tuple_hash *h;
1602 struct nf_conn *ct;
1603 struct hlist_nulls_node *n;
1604 spinlock_t *lockp;
1605
1606 for (; *bucket < nf_conntrack_htable_size; (*bucket)++) {
1607 lockp = &nf_conntrack_locks[*bucket % CONNTRACK_LOCKS];
1608 local_bh_disable();
1609 nf_conntrack_lock(lockp);
1610 if (*bucket < nf_conntrack_htable_size) {
1611 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[*bucket], hnnode) {
1612 if (NF_CT_DIRECTION(h) != IP_CT_DIR_ORIGINAL)
1613 continue;
1614 ct = nf_ct_tuplehash_to_ctrack(h);
1615 if (iter(ct, data))
1616 goto found;
1617 }
1618 }
1619 spin_unlock(lockp);
1620 local_bh_enable();
1621 cond_resched();
1622 }
1623
1624 return NULL;
1625 found:
1626 atomic_inc(&ct->ct_general.use);
1627 spin_unlock(lockp);
1628 local_bh_enable();
1629 return ct;
1630 }
1631
1632 static void nf_ct_iterate_cleanup(int (*iter)(struct nf_conn *i, void *data),
1633 void *data, u32 portid, int report)
1634 {
1635 unsigned int bucket = 0, sequence;
1636 struct nf_conn *ct;
1637
1638 might_sleep();
1639
1640 for (;;) {
1641 sequence = read_seqcount_begin(&nf_conntrack_generation);
1642
1643 while ((ct = get_next_corpse(iter, data, &bucket)) != NULL) {
1644 /* Time to push up daises... */
1645
1646 nf_ct_delete(ct, portid, report);
1647 nf_ct_put(ct);
1648 cond_resched();
1649 }
1650
1651 if (!read_seqcount_retry(&nf_conntrack_generation, sequence))
1652 break;
1653 bucket = 0;
1654 }
1655 }
1656
1657 struct iter_data {
1658 int (*iter)(struct nf_conn *i, void *data);
1659 void *data;
1660 struct net *net;
1661 };
1662
1663 static int iter_net_only(struct nf_conn *i, void *data)
1664 {
1665 struct iter_data *d = data;
1666
1667 if (!net_eq(d->net, nf_ct_net(i)))
1668 return 0;
1669
1670 return d->iter(i, d->data);
1671 }
1672
1673 static void
1674 __nf_ct_unconfirmed_destroy(struct net *net)
1675 {
1676 int cpu;
1677
1678 for_each_possible_cpu(cpu) {
1679 struct nf_conntrack_tuple_hash *h;
1680 struct hlist_nulls_node *n;
1681 struct ct_pcpu *pcpu;
1682
1683 pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
1684
1685 spin_lock_bh(&pcpu->lock);
1686 hlist_nulls_for_each_entry(h, n, &pcpu->unconfirmed, hnnode) {
1687 struct nf_conn *ct;
1688
1689 ct = nf_ct_tuplehash_to_ctrack(h);
1690
1691 /* we cannot call iter() on unconfirmed list, the
1692 * owning cpu can reallocate ct->ext at any time.
1693 */
1694 set_bit(IPS_DYING_BIT, &ct->status);
1695 }
1696 spin_unlock_bh(&pcpu->lock);
1697 cond_resched();
1698 }
1699 }
1700
1701 void nf_ct_unconfirmed_destroy(struct net *net)
1702 {
1703 might_sleep();
1704
1705 if (atomic_read(&net->ct.count) > 0) {
1706 __nf_ct_unconfirmed_destroy(net);
1707 nf_queue_nf_hook_drop(net);
1708 synchronize_net();
1709 }
1710 }
1711 EXPORT_SYMBOL_GPL(nf_ct_unconfirmed_destroy);
1712
1713 void nf_ct_iterate_cleanup_net(struct net *net,
1714 int (*iter)(struct nf_conn *i, void *data),
1715 void *data, u32 portid, int report)
1716 {
1717 struct iter_data d;
1718
1719 might_sleep();
1720
1721 if (atomic_read(&net->ct.count) == 0)
1722 return;
1723
1724 d.iter = iter;
1725 d.data = data;
1726 d.net = net;
1727
1728 nf_ct_iterate_cleanup(iter_net_only, &d, portid, report);
1729 }
1730 EXPORT_SYMBOL_GPL(nf_ct_iterate_cleanup_net);
1731
1732 /**
1733 * nf_ct_iterate_destroy - destroy unconfirmed conntracks and iterate table
1734 * @iter: callback to invoke for each conntrack
1735 * @data: data to pass to @iter
1736 *
1737 * Like nf_ct_iterate_cleanup, but first marks conntracks on the
1738 * unconfirmed list as dying (so they will not be inserted into
1739 * main table).
1740 *
1741 * Can only be called in module exit path.
1742 */
1743 void
1744 nf_ct_iterate_destroy(int (*iter)(struct nf_conn *i, void *data), void *data)
1745 {
1746 struct net *net;
1747
1748 rtnl_lock();
1749 for_each_net(net) {
1750 if (atomic_read(&net->ct.count) == 0)
1751 continue;
1752 __nf_ct_unconfirmed_destroy(net);
1753 nf_queue_nf_hook_drop(net);
1754 }
1755 rtnl_unlock();
1756
1757 /* Need to wait for netns cleanup worker to finish, if its
1758 * running -- it might have deleted a net namespace from
1759 * the global list, so our __nf_ct_unconfirmed_destroy() might
1760 * not have affected all namespaces.
1761 */
1762 net_ns_barrier();
1763
1764 /* a conntrack could have been unlinked from unconfirmed list
1765 * before we grabbed pcpu lock in __nf_ct_unconfirmed_destroy().
1766 * This makes sure its inserted into conntrack table.
1767 */
1768 synchronize_net();
1769
1770 nf_ct_iterate_cleanup(iter, data, 0, 0);
1771 }
1772 EXPORT_SYMBOL_GPL(nf_ct_iterate_destroy);
1773
1774 static int kill_all(struct nf_conn *i, void *data)
1775 {
1776 return net_eq(nf_ct_net(i), data);
1777 }
1778
1779 void nf_ct_free_hashtable(void *hash, unsigned int size)
1780 {
1781 if (is_vmalloc_addr(hash))
1782 vfree(hash);
1783 else
1784 free_pages((unsigned long)hash,
1785 get_order(sizeof(struct hlist_head) * size));
1786 }
1787 EXPORT_SYMBOL_GPL(nf_ct_free_hashtable);
1788
1789 void nf_conntrack_cleanup_start(void)
1790 {
1791 conntrack_gc_work.exiting = true;
1792 RCU_INIT_POINTER(ip_ct_attach, NULL);
1793 }
1794
1795 void nf_conntrack_cleanup_end(void)
1796 {
1797 RCU_INIT_POINTER(nf_ct_destroy, NULL);
1798
1799 cancel_delayed_work_sync(&conntrack_gc_work.dwork);
1800 nf_ct_free_hashtable(nf_conntrack_hash, nf_conntrack_htable_size);
1801
1802 nf_conntrack_proto_fini();
1803 nf_conntrack_seqadj_fini();
1804 nf_conntrack_labels_fini();
1805 nf_conntrack_helper_fini();
1806 nf_conntrack_timeout_fini();
1807 nf_conntrack_ecache_fini();
1808 nf_conntrack_tstamp_fini();
1809 nf_conntrack_acct_fini();
1810 nf_conntrack_expect_fini();
1811
1812 kmem_cache_destroy(nf_conntrack_cachep);
1813 }
1814
1815 /*
1816 * Mishearing the voices in his head, our hero wonders how he's
1817 * supposed to kill the mall.
1818 */
1819 void nf_conntrack_cleanup_net(struct net *net)
1820 {
1821 LIST_HEAD(single);
1822
1823 list_add(&net->exit_list, &single);
1824 nf_conntrack_cleanup_net_list(&single);
1825 }
1826
1827 void nf_conntrack_cleanup_net_list(struct list_head *net_exit_list)
1828 {
1829 int busy;
1830 struct net *net;
1831
1832 /*
1833 * This makes sure all current packets have passed through
1834 * netfilter framework. Roll on, two-stage module
1835 * delete...
1836 */
1837 synchronize_net();
1838 i_see_dead_people:
1839 busy = 0;
1840 list_for_each_entry(net, net_exit_list, exit_list) {
1841 nf_ct_iterate_cleanup(kill_all, net, 0, 0);
1842 if (atomic_read(&net->ct.count) != 0)
1843 busy = 1;
1844 }
1845 if (busy) {
1846 schedule();
1847 goto i_see_dead_people;
1848 }
1849
1850 list_for_each_entry(net, net_exit_list, exit_list) {
1851 nf_conntrack_proto_pernet_fini(net);
1852 nf_conntrack_helper_pernet_fini(net);
1853 nf_conntrack_ecache_pernet_fini(net);
1854 nf_conntrack_tstamp_pernet_fini(net);
1855 nf_conntrack_acct_pernet_fini(net);
1856 nf_conntrack_expect_pernet_fini(net);
1857 free_percpu(net->ct.stat);
1858 free_percpu(net->ct.pcpu_lists);
1859 }
1860 }
1861
1862 void *nf_ct_alloc_hashtable(unsigned int *sizep, int nulls)
1863 {
1864 struct hlist_nulls_head *hash;
1865 unsigned int nr_slots, i;
1866 size_t sz;
1867
1868 if (*sizep > (UINT_MAX / sizeof(struct hlist_nulls_head)))
1869 return NULL;
1870
1871 BUILD_BUG_ON(sizeof(struct hlist_nulls_head) != sizeof(struct hlist_head));
1872 nr_slots = *sizep = roundup(*sizep, PAGE_SIZE / sizeof(struct hlist_nulls_head));
1873
1874 if (nr_slots > (UINT_MAX / sizeof(struct hlist_nulls_head)))
1875 return NULL;
1876
1877 sz = nr_slots * sizeof(struct hlist_nulls_head);
1878 hash = (void *)__get_free_pages(GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO,
1879 get_order(sz));
1880 if (!hash)
1881 hash = vzalloc(sz);
1882
1883 if (hash && nulls)
1884 for (i = 0; i < nr_slots; i++)
1885 INIT_HLIST_NULLS_HEAD(&hash[i], i);
1886
1887 return hash;
1888 }
1889 EXPORT_SYMBOL_GPL(nf_ct_alloc_hashtable);
1890
1891 int nf_conntrack_hash_resize(unsigned int hashsize)
1892 {
1893 int i, bucket;
1894 unsigned int old_size;
1895 struct hlist_nulls_head *hash, *old_hash;
1896 struct nf_conntrack_tuple_hash *h;
1897 struct nf_conn *ct;
1898
1899 if (!hashsize)
1900 return -EINVAL;
1901
1902 hash = nf_ct_alloc_hashtable(&hashsize, 1);
1903 if (!hash)
1904 return -ENOMEM;
1905
1906 old_size = nf_conntrack_htable_size;
1907 if (old_size == hashsize) {
1908 nf_ct_free_hashtable(hash, hashsize);
1909 return 0;
1910 }
1911
1912 local_bh_disable();
1913 nf_conntrack_all_lock();
1914 write_seqcount_begin(&nf_conntrack_generation);
1915
1916 /* Lookups in the old hash might happen in parallel, which means we
1917 * might get false negatives during connection lookup. New connections
1918 * created because of a false negative won't make it into the hash
1919 * though since that required taking the locks.
1920 */
1921
1922 for (i = 0; i < nf_conntrack_htable_size; i++) {
1923 while (!hlist_nulls_empty(&nf_conntrack_hash[i])) {
1924 h = hlist_nulls_entry(nf_conntrack_hash[i].first,
1925 struct nf_conntrack_tuple_hash, hnnode);
1926 ct = nf_ct_tuplehash_to_ctrack(h);
1927 hlist_nulls_del_rcu(&h->hnnode);
1928 bucket = __hash_conntrack(nf_ct_net(ct),
1929 &h->tuple, hashsize);
1930 hlist_nulls_add_head_rcu(&h->hnnode, &hash[bucket]);
1931 }
1932 }
1933 old_size = nf_conntrack_htable_size;
1934 old_hash = nf_conntrack_hash;
1935
1936 nf_conntrack_hash = hash;
1937 nf_conntrack_htable_size = hashsize;
1938
1939 write_seqcount_end(&nf_conntrack_generation);
1940 nf_conntrack_all_unlock();
1941 local_bh_enable();
1942
1943 synchronize_net();
1944 nf_ct_free_hashtable(old_hash, old_size);
1945 return 0;
1946 }
1947
1948 int nf_conntrack_set_hashsize(const char *val, struct kernel_param *kp)
1949 {
1950 unsigned int hashsize;
1951 int rc;
1952
1953 if (current->nsproxy->net_ns != &init_net)
1954 return -EOPNOTSUPP;
1955
1956 /* On boot, we can set this without any fancy locking. */
1957 if (!nf_conntrack_htable_size)
1958 return param_set_uint(val, kp);
1959
1960 rc = kstrtouint(val, 0, &hashsize);
1961 if (rc)
1962 return rc;
1963
1964 return nf_conntrack_hash_resize(hashsize);
1965 }
1966 EXPORT_SYMBOL_GPL(nf_conntrack_set_hashsize);
1967
1968 module_param_call(hashsize, nf_conntrack_set_hashsize, param_get_uint,
1969 &nf_conntrack_htable_size, 0600);
1970
1971 static __always_inline unsigned int total_extension_size(void)
1972 {
1973 /* remember to add new extensions below */
1974 BUILD_BUG_ON(NF_CT_EXT_NUM > 9);
1975
1976 return sizeof(struct nf_ct_ext) +
1977 sizeof(struct nf_conn_help)
1978 #if IS_ENABLED(CONFIG_NF_NAT)
1979 + sizeof(struct nf_conn_nat)
1980 #endif
1981 + sizeof(struct nf_conn_seqadj)
1982 + sizeof(struct nf_conn_acct)
1983 #ifdef CONFIG_NF_CONNTRACK_EVENTS
1984 + sizeof(struct nf_conntrack_ecache)
1985 #endif
1986 #ifdef CONFIG_NF_CONNTRACK_TIMESTAMP
1987 + sizeof(struct nf_conn_tstamp)
1988 #endif
1989 #ifdef CONFIG_NF_CONNTRACK_TIMEOUT
1990 + sizeof(struct nf_conn_timeout)
1991 #endif
1992 #ifdef CONFIG_NF_CONNTRACK_LABELS
1993 + sizeof(struct nf_conn_labels)
1994 #endif
1995 #if IS_ENABLED(CONFIG_NETFILTER_SYNPROXY)
1996 + sizeof(struct nf_conn_synproxy)
1997 #endif
1998 ;
1999 };
2000
2001 int nf_conntrack_init_start(void)
2002 {
2003 int max_factor = 8;
2004 int ret = -ENOMEM;
2005 int i;
2006
2007 /* struct nf_ct_ext uses u8 to store offsets/size */
2008 BUILD_BUG_ON(total_extension_size() > 255u);
2009
2010 seqcount_init(&nf_conntrack_generation);
2011
2012 for (i = 0; i < CONNTRACK_LOCKS; i++)
2013 spin_lock_init(&nf_conntrack_locks[i]);
2014
2015 if (!nf_conntrack_htable_size) {
2016 /* Idea from tcp.c: use 1/16384 of memory.
2017 * On i386: 32MB machine has 512 buckets.
2018 * >= 1GB machines have 16384 buckets.
2019 * >= 4GB machines have 65536 buckets.
2020 */
2021 nf_conntrack_htable_size
2022 = (((totalram_pages << PAGE_SHIFT) / 16384)
2023 / sizeof(struct hlist_head));
2024 if (totalram_pages > (4 * (1024 * 1024 * 1024 / PAGE_SIZE)))
2025 nf_conntrack_htable_size = 65536;
2026 else if (totalram_pages > (1024 * 1024 * 1024 / PAGE_SIZE))
2027 nf_conntrack_htable_size = 16384;
2028 if (nf_conntrack_htable_size < 32)
2029 nf_conntrack_htable_size = 32;
2030
2031 /* Use a max. factor of four by default to get the same max as
2032 * with the old struct list_heads. When a table size is given
2033 * we use the old value of 8 to avoid reducing the max.
2034 * entries. */
2035 max_factor = 4;
2036 }
2037
2038 nf_conntrack_hash = nf_ct_alloc_hashtable(&nf_conntrack_htable_size, 1);
2039 if (!nf_conntrack_hash)
2040 return -ENOMEM;
2041
2042 nf_conntrack_max = max_factor * nf_conntrack_htable_size;
2043
2044 nf_conntrack_cachep = kmem_cache_create("nf_conntrack",
2045 sizeof(struct nf_conn),
2046 NFCT_INFOMASK + 1,
2047 SLAB_TYPESAFE_BY_RCU | SLAB_HWCACHE_ALIGN, NULL);
2048 if (!nf_conntrack_cachep)
2049 goto err_cachep;
2050
2051 printk(KERN_INFO "nf_conntrack version %s (%u buckets, %d max)\n",
2052 NF_CONNTRACK_VERSION, nf_conntrack_htable_size,
2053 nf_conntrack_max);
2054
2055 ret = nf_conntrack_expect_init();
2056 if (ret < 0)
2057 goto err_expect;
2058
2059 ret = nf_conntrack_acct_init();
2060 if (ret < 0)
2061 goto err_acct;
2062
2063 ret = nf_conntrack_tstamp_init();
2064 if (ret < 0)
2065 goto err_tstamp;
2066
2067 ret = nf_conntrack_ecache_init();
2068 if (ret < 0)
2069 goto err_ecache;
2070
2071 ret = nf_conntrack_timeout_init();
2072 if (ret < 0)
2073 goto err_timeout;
2074
2075 ret = nf_conntrack_helper_init();
2076 if (ret < 0)
2077 goto err_helper;
2078
2079 ret = nf_conntrack_labels_init();
2080 if (ret < 0)
2081 goto err_labels;
2082
2083 ret = nf_conntrack_seqadj_init();
2084 if (ret < 0)
2085 goto err_seqadj;
2086
2087 ret = nf_conntrack_proto_init();
2088 if (ret < 0)
2089 goto err_proto;
2090
2091 conntrack_gc_work_init(&conntrack_gc_work);
2092 queue_delayed_work(system_long_wq, &conntrack_gc_work.dwork, HZ);
2093
2094 return 0;
2095
2096 err_proto:
2097 nf_conntrack_seqadj_fini();
2098 err_seqadj:
2099 nf_conntrack_labels_fini();
2100 err_labels:
2101 nf_conntrack_helper_fini();
2102 err_helper:
2103 nf_conntrack_timeout_fini();
2104 err_timeout:
2105 nf_conntrack_ecache_fini();
2106 err_ecache:
2107 nf_conntrack_tstamp_fini();
2108 err_tstamp:
2109 nf_conntrack_acct_fini();
2110 err_acct:
2111 nf_conntrack_expect_fini();
2112 err_expect:
2113 kmem_cache_destroy(nf_conntrack_cachep);
2114 err_cachep:
2115 nf_ct_free_hashtable(nf_conntrack_hash, nf_conntrack_htable_size);
2116 return ret;
2117 }
2118
2119 void nf_conntrack_init_end(void)
2120 {
2121 /* For use by REJECT target */
2122 RCU_INIT_POINTER(ip_ct_attach, nf_conntrack_attach);
2123 RCU_INIT_POINTER(nf_ct_destroy, destroy_conntrack);
2124 }
2125
2126 /*
2127 * We need to use special "null" values, not used in hash table
2128 */
2129 #define UNCONFIRMED_NULLS_VAL ((1<<30)+0)
2130 #define DYING_NULLS_VAL ((1<<30)+1)
2131 #define TEMPLATE_NULLS_VAL ((1<<30)+2)
2132
2133 int nf_conntrack_init_net(struct net *net)
2134 {
2135 int ret = -ENOMEM;
2136 int cpu;
2137
2138 BUILD_BUG_ON(IP_CT_UNTRACKED == IP_CT_NUMBER);
2139 atomic_set(&net->ct.count, 0);
2140
2141 net->ct.pcpu_lists = alloc_percpu(struct ct_pcpu);
2142 if (!net->ct.pcpu_lists)
2143 goto err_stat;
2144
2145 for_each_possible_cpu(cpu) {
2146 struct ct_pcpu *pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
2147
2148 spin_lock_init(&pcpu->lock);
2149 INIT_HLIST_NULLS_HEAD(&pcpu->unconfirmed, UNCONFIRMED_NULLS_VAL);
2150 INIT_HLIST_NULLS_HEAD(&pcpu->dying, DYING_NULLS_VAL);
2151 }
2152
2153 net->ct.stat = alloc_percpu(struct ip_conntrack_stat);
2154 if (!net->ct.stat)
2155 goto err_pcpu_lists;
2156
2157 ret = nf_conntrack_expect_pernet_init(net);
2158 if (ret < 0)
2159 goto err_expect;
2160 ret = nf_conntrack_acct_pernet_init(net);
2161 if (ret < 0)
2162 goto err_acct;
2163 ret = nf_conntrack_tstamp_pernet_init(net);
2164 if (ret < 0)
2165 goto err_tstamp;
2166 ret = nf_conntrack_ecache_pernet_init(net);
2167 if (ret < 0)
2168 goto err_ecache;
2169 ret = nf_conntrack_helper_pernet_init(net);
2170 if (ret < 0)
2171 goto err_helper;
2172 ret = nf_conntrack_proto_pernet_init(net);
2173 if (ret < 0)
2174 goto err_proto;
2175 return 0;
2176
2177 err_proto:
2178 nf_conntrack_helper_pernet_fini(net);
2179 err_helper:
2180 nf_conntrack_ecache_pernet_fini(net);
2181 err_ecache:
2182 nf_conntrack_tstamp_pernet_fini(net);
2183 err_tstamp:
2184 nf_conntrack_acct_pernet_fini(net);
2185 err_acct:
2186 nf_conntrack_expect_pernet_fini(net);
2187 err_expect:
2188 free_percpu(net->ct.stat);
2189 err_pcpu_lists:
2190 free_percpu(net->ct.pcpu_lists);
2191 err_stat:
2192 return ret;
2193 }