]> git.ipfire.org Git - people/ms/linux.git/blame - block/bio.c
target/pscsi: remove pscsi_get_bio
[people/ms/linux.git] / block / bio.c
CommitLineData
8c16567d 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
0fe23479 3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
1da177e4
LT
4 */
5#include <linux/mm.h>
6#include <linux/swap.h>
7#include <linux/bio.h>
8#include <linux/blkdev.h>
a27bb332 9#include <linux/uio.h>
852c788f 10#include <linux/iocontext.h>
1da177e4
LT
11#include <linux/slab.h>
12#include <linux/init.h>
13#include <linux/kernel.h>
630d9c47 14#include <linux/export.h>
1da177e4
LT
15#include <linux/mempool.h>
16#include <linux/workqueue.h>
852c788f 17#include <linux/cgroup.h>
b4c5875d 18#include <linux/highmem.h>
de6a78b6 19#include <linux/sched/sysctl.h>
a892c8d5 20#include <linux/blk-crypto.h>
49d1ec85 21#include <linux/xarray.h>
1da177e4 22
55782138 23#include <trace/events/block.h>
9e234eea 24#include "blk.h"
67b42d0b 25#include "blk-rq-qos.h"
672fdcf0 26#include "blk-cgroup.h"
0bfc2455 27
be4d234d 28struct bio_alloc_cache {
fcade2ce 29 struct bio *free_list;
be4d234d
JA
30 unsigned int nr;
31};
32
de76fd89 33static struct biovec_slab {
6ac0b715
CH
34 int nr_vecs;
35 char *name;
36 struct kmem_cache *slab;
de76fd89
CH
37} bvec_slabs[] __read_mostly = {
38 { .nr_vecs = 16, .name = "biovec-16" },
39 { .nr_vecs = 64, .name = "biovec-64" },
40 { .nr_vecs = 128, .name = "biovec-128" },
a8affc03 41 { .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" },
1da177e4 42};
6ac0b715 43
7a800a20
CH
44static struct biovec_slab *biovec_slab(unsigned short nr_vecs)
45{
46 switch (nr_vecs) {
47 /* smaller bios use inline vecs */
48 case 5 ... 16:
49 return &bvec_slabs[0];
50 case 17 ... 64:
51 return &bvec_slabs[1];
52 case 65 ... 128:
53 return &bvec_slabs[2];
a8affc03 54 case 129 ... BIO_MAX_VECS:
7a800a20
CH
55 return &bvec_slabs[3];
56 default:
57 BUG();
58 return NULL;
59 }
60}
1da177e4 61
1da177e4
LT
62/*
63 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
64 * IO code that does not need private memory pools.
65 */
f4f8154a 66struct bio_set fs_bio_set;
3f86a82a 67EXPORT_SYMBOL(fs_bio_set);
1da177e4 68
bb799ca0
JA
69/*
70 * Our slab pool management
71 */
72struct bio_slab {
73 struct kmem_cache *slab;
74 unsigned int slab_ref;
75 unsigned int slab_size;
76 char name[8];
77};
78static DEFINE_MUTEX(bio_slab_lock);
49d1ec85 79static DEFINE_XARRAY(bio_slabs);
bb799ca0 80
49d1ec85 81static struct bio_slab *create_bio_slab(unsigned int size)
bb799ca0 82{
49d1ec85 83 struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
bb799ca0 84
49d1ec85
ML
85 if (!bslab)
86 return NULL;
bb799ca0 87
49d1ec85
ML
88 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
89 bslab->slab = kmem_cache_create(bslab->name, size,
1a7e76e4
CH
90 ARCH_KMALLOC_MINALIGN,
91 SLAB_HWCACHE_ALIGN | SLAB_TYPESAFE_BY_RCU, NULL);
49d1ec85
ML
92 if (!bslab->slab)
93 goto fail_alloc_slab;
bb799ca0 94
49d1ec85
ML
95 bslab->slab_ref = 1;
96 bslab->slab_size = size;
bb799ca0 97
49d1ec85
ML
98 if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
99 return bslab;
bb799ca0 100
49d1ec85 101 kmem_cache_destroy(bslab->slab);
bb799ca0 102
49d1ec85
ML
103fail_alloc_slab:
104 kfree(bslab);
105 return NULL;
106}
bb799ca0 107
49d1ec85
ML
108static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
109{
9f180e31 110 return bs->front_pad + sizeof(struct bio) + bs->back_pad;
49d1ec85 111}
bb799ca0 112
49d1ec85
ML
113static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
114{
115 unsigned int size = bs_bio_slab_size(bs);
116 struct bio_slab *bslab;
bb799ca0 117
49d1ec85
ML
118 mutex_lock(&bio_slab_lock);
119 bslab = xa_load(&bio_slabs, size);
120 if (bslab)
121 bslab->slab_ref++;
122 else
123 bslab = create_bio_slab(size);
bb799ca0 124 mutex_unlock(&bio_slab_lock);
49d1ec85
ML
125
126 if (bslab)
127 return bslab->slab;
128 return NULL;
bb799ca0
JA
129}
130
131static void bio_put_slab(struct bio_set *bs)
132{
133 struct bio_slab *bslab = NULL;
49d1ec85 134 unsigned int slab_size = bs_bio_slab_size(bs);
bb799ca0
JA
135
136 mutex_lock(&bio_slab_lock);
137
49d1ec85 138 bslab = xa_load(&bio_slabs, slab_size);
bb799ca0
JA
139 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
140 goto out;
141
49d1ec85
ML
142 WARN_ON_ONCE(bslab->slab != bs->bio_slab);
143
bb799ca0
JA
144 WARN_ON(!bslab->slab_ref);
145
146 if (--bslab->slab_ref)
147 goto out;
148
49d1ec85
ML
149 xa_erase(&bio_slabs, slab_size);
150
bb799ca0 151 kmem_cache_destroy(bslab->slab);
49d1ec85 152 kfree(bslab);
bb799ca0
JA
153
154out:
155 mutex_unlock(&bio_slab_lock);
156}
157
7a800a20 158void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs)
7ba1ba12 159{
9e8c0d0d 160 BUG_ON(nr_vecs > BIO_MAX_VECS);
ed996a52 161
a8affc03 162 if (nr_vecs == BIO_MAX_VECS)
9f060e22 163 mempool_free(bv, pool);
7a800a20
CH
164 else if (nr_vecs > BIO_INLINE_VECS)
165 kmem_cache_free(biovec_slab(nr_vecs)->slab, bv);
bb799ca0 166}
bb799ca0 167
f2c3eb9b
CH
168/*
169 * Make the first allocation restricted and don't dump info on allocation
170 * failures, since we'll fall back to the mempool in case of failure.
171 */
172static inline gfp_t bvec_alloc_gfp(gfp_t gfp)
173{
174 return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
175 __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
bb799ca0
JA
176}
177
7a800a20
CH
178struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
179 gfp_t gfp_mask)
1da177e4 180{
7a800a20 181 struct biovec_slab *bvs = biovec_slab(*nr_vecs);
1da177e4 182
7a800a20 183 if (WARN_ON_ONCE(!bvs))
7ff9345f 184 return NULL;
7ff9345f
JA
185
186 /*
7a800a20
CH
187 * Upgrade the nr_vecs request to take full advantage of the allocation.
188 * We also rely on this in the bvec_free path.
7ff9345f 189 */
7a800a20 190 *nr_vecs = bvs->nr_vecs;
7ff9345f 191
7ff9345f 192 /*
f007a3d6
CH
193 * Try a slab allocation first for all smaller allocations. If that
194 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
a8affc03 195 * The mempool is sized to handle up to BIO_MAX_VECS entries.
7ff9345f 196 */
a8affc03 197 if (*nr_vecs < BIO_MAX_VECS) {
f007a3d6 198 struct bio_vec *bvl;
1da177e4 199
f2c3eb9b 200 bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
7a800a20 201 if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM))
f007a3d6 202 return bvl;
a8affc03 203 *nr_vecs = BIO_MAX_VECS;
7ff9345f
JA
204 }
205
f007a3d6 206 return mempool_alloc(pool, gfp_mask);
1da177e4
LT
207}
208
9ae3b3f5 209void bio_uninit(struct bio *bio)
1da177e4 210{
db9819c7
CH
211#ifdef CONFIG_BLK_CGROUP
212 if (bio->bi_blkg) {
213 blkg_put(bio->bi_blkg);
214 bio->bi_blkg = NULL;
215 }
216#endif
ece841ab
JT
217 if (bio_integrity(bio))
218 bio_integrity_free(bio);
a892c8d5
ST
219
220 bio_crypt_free_ctx(bio);
4254bba1 221}
9ae3b3f5 222EXPORT_SYMBOL(bio_uninit);
7ba1ba12 223
4254bba1
KO
224static void bio_free(struct bio *bio)
225{
226 struct bio_set *bs = bio->bi_pool;
227 void *p;
228
9ae3b3f5 229 bio_uninit(bio);
4254bba1
KO
230
231 if (bs) {
7a800a20 232 bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs);
4254bba1
KO
233
234 /*
235 * If we have front padding, adjust the bio pointer before freeing
236 */
237 p = bio;
bb799ca0
JA
238 p -= bs->front_pad;
239
8aa6ba2f 240 mempool_free(p, &bs->bio_pool);
4254bba1
KO
241 } else {
242 /* Bio was allocated by bio_kmalloc() */
243 kfree(bio);
244 }
3676347a
PO
245}
246
9ae3b3f5
JA
247/*
248 * Users of this function have their own bio allocation. Subsequently,
249 * they must remember to pair any call to bio_init() with bio_uninit()
250 * when IO has completed, or when the bio is released.
251 */
49add496
CH
252void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table,
253 unsigned short max_vecs, unsigned int opf)
1da177e4 254{
da521626 255 bio->bi_next = NULL;
49add496
CH
256 bio->bi_bdev = bdev;
257 bio->bi_opf = opf;
da521626
JA
258 bio->bi_flags = 0;
259 bio->bi_ioprio = 0;
da521626
JA
260 bio->bi_status = 0;
261 bio->bi_iter.bi_sector = 0;
262 bio->bi_iter.bi_size = 0;
263 bio->bi_iter.bi_idx = 0;
264 bio->bi_iter.bi_bvec_done = 0;
265 bio->bi_end_io = NULL;
266 bio->bi_private = NULL;
267#ifdef CONFIG_BLK_CGROUP
268 bio->bi_blkg = NULL;
269 bio->bi_issue.value = 0;
49add496
CH
270 if (bdev)
271 bio_associate_blkg(bio);
da521626
JA
272#ifdef CONFIG_BLK_CGROUP_IOCOST
273 bio->bi_iocost_cost = 0;
274#endif
275#endif
276#ifdef CONFIG_BLK_INLINE_ENCRYPTION
277 bio->bi_crypt_context = NULL;
278#endif
279#ifdef CONFIG_BLK_DEV_INTEGRITY
280 bio->bi_integrity = NULL;
281#endif
282 bio->bi_vcnt = 0;
283
c4cf5261 284 atomic_set(&bio->__bi_remaining, 1);
dac56212 285 atomic_set(&bio->__bi_cnt, 1);
3e08773c 286 bio->bi_cookie = BLK_QC_T_NONE;
3a83f467 287
3a83f467 288 bio->bi_max_vecs = max_vecs;
da521626
JA
289 bio->bi_io_vec = table;
290 bio->bi_pool = NULL;
1da177e4 291}
a112a71d 292EXPORT_SYMBOL(bio_init);
1da177e4 293
f44b48c7
KO
294/**
295 * bio_reset - reinitialize a bio
296 * @bio: bio to reset
a7c50c94
CH
297 * @bdev: block device to use the bio for
298 * @opf: operation and flags for bio
f44b48c7
KO
299 *
300 * Description:
301 * After calling bio_reset(), @bio will be in the same state as a freshly
302 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
303 * preserved are the ones that are initialized by bio_alloc_bioset(). See
304 * comment in struct bio.
305 */
a7c50c94 306void bio_reset(struct bio *bio, struct block_device *bdev, unsigned int opf)
f44b48c7 307{
9ae3b3f5 308 bio_uninit(bio);
f44b48c7 309 memset(bio, 0, BIO_RESET_BYTES);
c4cf5261 310 atomic_set(&bio->__bi_remaining, 1);
a7c50c94 311 bio->bi_bdev = bdev;
78e34374
CH
312 if (bio->bi_bdev)
313 bio_associate_blkg(bio);
a7c50c94 314 bio->bi_opf = opf;
f44b48c7
KO
315}
316EXPORT_SYMBOL(bio_reset);
317
38f8baae 318static struct bio *__bio_chain_endio(struct bio *bio)
196d38bc 319{
4246a0b6
CH
320 struct bio *parent = bio->bi_private;
321
3edf5346 322 if (bio->bi_status && !parent->bi_status)
4e4cbee9 323 parent->bi_status = bio->bi_status;
196d38bc 324 bio_put(bio);
38f8baae
CH
325 return parent;
326}
327
328static void bio_chain_endio(struct bio *bio)
329{
330 bio_endio(__bio_chain_endio(bio));
196d38bc
KO
331}
332
333/**
334 * bio_chain - chain bio completions
1051a902 335 * @bio: the target bio
5b874af6 336 * @parent: the parent bio of @bio
196d38bc
KO
337 *
338 * The caller won't have a bi_end_io called when @bio completes - instead,
339 * @parent's bi_end_io won't be called until both @parent and @bio have
340 * completed; the chained bio will also be freed when it completes.
341 *
342 * The caller must not set bi_private or bi_end_io in @bio.
343 */
344void bio_chain(struct bio *bio, struct bio *parent)
345{
346 BUG_ON(bio->bi_private || bio->bi_end_io);
347
348 bio->bi_private = parent;
349 bio->bi_end_io = bio_chain_endio;
c4cf5261 350 bio_inc_remaining(parent);
196d38bc
KO
351}
352EXPORT_SYMBOL(bio_chain);
353
0a3140ea
CK
354struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev,
355 unsigned int nr_pages, unsigned int opf, gfp_t gfp)
3b005bf6 356{
07888c66 357 struct bio *new = bio_alloc(bdev, nr_pages, opf, gfp);
0a3140ea 358
3b005bf6
CH
359 if (bio) {
360 bio_chain(bio, new);
361 submit_bio(bio);
362 }
363
364 return new;
365}
366EXPORT_SYMBOL_GPL(blk_next_bio);
367
df2cb6da
KO
368static void bio_alloc_rescue(struct work_struct *work)
369{
370 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
371 struct bio *bio;
372
373 while (1) {
374 spin_lock(&bs->rescue_lock);
375 bio = bio_list_pop(&bs->rescue_list);
376 spin_unlock(&bs->rescue_lock);
377
378 if (!bio)
379 break;
380
ed00aabd 381 submit_bio_noacct(bio);
df2cb6da
KO
382 }
383}
384
385static void punt_bios_to_rescuer(struct bio_set *bs)
386{
387 struct bio_list punt, nopunt;
388 struct bio *bio;
389
47e0fb46
N
390 if (WARN_ON_ONCE(!bs->rescue_workqueue))
391 return;
df2cb6da
KO
392 /*
393 * In order to guarantee forward progress we must punt only bios that
394 * were allocated from this bio_set; otherwise, if there was a bio on
395 * there for a stacking driver higher up in the stack, processing it
396 * could require allocating bios from this bio_set, and doing that from
397 * our own rescuer would be bad.
398 *
399 * Since bio lists are singly linked, pop them all instead of trying to
400 * remove from the middle of the list:
401 */
402
403 bio_list_init(&punt);
404 bio_list_init(&nopunt);
405
f5fe1b51 406 while ((bio = bio_list_pop(&current->bio_list[0])))
df2cb6da 407 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
f5fe1b51 408 current->bio_list[0] = nopunt;
df2cb6da 409
f5fe1b51
N
410 bio_list_init(&nopunt);
411 while ((bio = bio_list_pop(&current->bio_list[1])))
412 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
413 current->bio_list[1] = nopunt;
df2cb6da
KO
414
415 spin_lock(&bs->rescue_lock);
416 bio_list_merge(&bs->rescue_list, &punt);
417 spin_unlock(&bs->rescue_lock);
418
419 queue_work(bs->rescue_workqueue, &bs->rescue_work);
420}
421
0df71650
MS
422static struct bio *bio_alloc_percpu_cache(struct block_device *bdev,
423 unsigned short nr_vecs, unsigned int opf, gfp_t gfp,
424 struct bio_set *bs)
425{
426 struct bio_alloc_cache *cache;
427 struct bio *bio;
428
429 cache = per_cpu_ptr(bs->cache, get_cpu());
430 if (!cache->free_list) {
431 put_cpu();
432 return NULL;
433 }
434 bio = cache->free_list;
435 cache->free_list = bio->bi_next;
436 cache->nr--;
437 put_cpu();
438
439 bio_init(bio, bdev, nr_vecs ? bio->bi_inline_vecs : NULL, nr_vecs, opf);
440 bio->bi_pool = bs;
441 return bio;
442}
443
1da177e4
LT
444/**
445 * bio_alloc_bioset - allocate a bio for I/O
609be106
CH
446 * @bdev: block device to allocate the bio for (can be %NULL)
447 * @nr_vecs: number of bvecs to pre-allocate
448 * @opf: operation and flags for bio
519c8e9f 449 * @gfp_mask: the GFP_* mask given to the slab allocator
db18efac 450 * @bs: the bio_set to allocate from.
1da177e4 451 *
3175199a 452 * Allocate a bio from the mempools in @bs.
3f86a82a 453 *
3175199a
CH
454 * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
455 * allocate a bio. This is due to the mempool guarantees. To make this work,
456 * callers must never allocate more than 1 bio at a time from the general pool.
457 * Callers that need to allocate more than 1 bio must always submit the
458 * previously allocated bio for IO before attempting to allocate a new one.
459 * Failure to do so can cause deadlocks under memory pressure.
3f86a82a 460 *
3175199a
CH
461 * Note that when running under submit_bio_noacct() (i.e. any block driver),
462 * bios are not submitted until after you return - see the code in
463 * submit_bio_noacct() that converts recursion into iteration, to prevent
464 * stack overflows.
df2cb6da 465 *
3175199a
CH
466 * This would normally mean allocating multiple bios under submit_bio_noacct()
467 * would be susceptible to deadlocks, but we have
468 * deadlock avoidance code that resubmits any blocked bios from a rescuer
469 * thread.
df2cb6da 470 *
3175199a
CH
471 * However, we do not guarantee forward progress for allocations from other
472 * mempools. Doing multiple allocations from the same mempool under
473 * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
474 * for per bio allocations.
df2cb6da 475 *
0df71650
MS
476 * If REQ_ALLOC_CACHE is set, the final put of the bio MUST be done from process
477 * context, not hard/soft IRQ.
478 *
3175199a 479 * Returns: Pointer to new bio on success, NULL on failure.
3f86a82a 480 */
609be106
CH
481struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs,
482 unsigned int opf, gfp_t gfp_mask,
7a88fa19 483 struct bio_set *bs)
1da177e4 484{
df2cb6da 485 gfp_t saved_gfp = gfp_mask;
451a9ebf
TH
486 struct bio *bio;
487 void *p;
488
609be106
CH
489 /* should not use nobvec bioset for nr_vecs > 0 */
490 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_vecs > 0))
3175199a 491 return NULL;
df2cb6da 492
0df71650
MS
493 if (opf & REQ_ALLOC_CACHE) {
494 if (bs->cache && nr_vecs <= BIO_INLINE_VECS) {
495 bio = bio_alloc_percpu_cache(bdev, nr_vecs, opf,
496 gfp_mask, bs);
497 if (bio)
498 return bio;
499 /*
500 * No cached bio available, bio returned below marked with
501 * REQ_ALLOC_CACHE to particpate in per-cpu alloc cache.
502 */
503 } else {
504 opf &= ~REQ_ALLOC_CACHE;
505 }
506 }
507
3175199a
CH
508 /*
509 * submit_bio_noacct() converts recursion to iteration; this means if
510 * we're running beneath it, any bios we allocate and submit will not be
511 * submitted (and thus freed) until after we return.
512 *
513 * This exposes us to a potential deadlock if we allocate multiple bios
514 * from the same bio_set() while running underneath submit_bio_noacct().
515 * If we were to allocate multiple bios (say a stacking block driver
516 * that was splitting bios), we would deadlock if we exhausted the
517 * mempool's reserve.
518 *
519 * We solve this, and guarantee forward progress, with a rescuer
520 * workqueue per bio_set. If we go to allocate and there are bios on
521 * current->bio_list, we first try the allocation without
522 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
523 * blocking to the rescuer workqueue before we retry with the original
524 * gfp_flags.
525 */
526 if (current->bio_list &&
527 (!bio_list_empty(&current->bio_list[0]) ||
528 !bio_list_empty(&current->bio_list[1])) &&
529 bs->rescue_workqueue)
530 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
531
532 p = mempool_alloc(&bs->bio_pool, gfp_mask);
533 if (!p && gfp_mask != saved_gfp) {
534 punt_bios_to_rescuer(bs);
535 gfp_mask = saved_gfp;
8aa6ba2f 536 p = mempool_alloc(&bs->bio_pool, gfp_mask);
3f86a82a 537 }
451a9ebf
TH
538 if (unlikely(!p))
539 return NULL;
1da177e4 540
3175199a 541 bio = p + bs->front_pad;
609be106 542 if (nr_vecs > BIO_INLINE_VECS) {
3175199a 543 struct bio_vec *bvl = NULL;
34053979 544
609be106 545 bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
df2cb6da
KO
546 if (!bvl && gfp_mask != saved_gfp) {
547 punt_bios_to_rescuer(bs);
548 gfp_mask = saved_gfp;
609be106 549 bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
df2cb6da 550 }
34053979
IM
551 if (unlikely(!bvl))
552 goto err_free;
a38352e0 553
49add496 554 bio_init(bio, bdev, bvl, nr_vecs, opf);
609be106 555 } else if (nr_vecs) {
49add496 556 bio_init(bio, bdev, bio->bi_inline_vecs, BIO_INLINE_VECS, opf);
3175199a 557 } else {
49add496 558 bio_init(bio, bdev, NULL, 0, opf);
1da177e4 559 }
3f86a82a
KO
560
561 bio->bi_pool = bs;
1da177e4 562 return bio;
34053979
IM
563
564err_free:
8aa6ba2f 565 mempool_free(p, &bs->bio_pool);
34053979 566 return NULL;
1da177e4 567}
a112a71d 568EXPORT_SYMBOL(bio_alloc_bioset);
1da177e4 569
3175199a
CH
570/**
571 * bio_kmalloc - kmalloc a bio for I/O
572 * @gfp_mask: the GFP_* mask given to the slab allocator
573 * @nr_iovecs: number of iovecs to pre-allocate
574 *
575 * Use kmalloc to allocate and initialize a bio.
576 *
577 * Returns: Pointer to new bio on success, NULL on failure.
578 */
0f2e6ab8 579struct bio *bio_kmalloc(gfp_t gfp_mask, unsigned short nr_iovecs)
3175199a
CH
580{
581 struct bio *bio;
582
583 if (nr_iovecs > UIO_MAXIOV)
584 return NULL;
585
586 bio = kmalloc(struct_size(bio, bi_inline_vecs, nr_iovecs), gfp_mask);
587 if (unlikely(!bio))
588 return NULL;
49add496
CH
589 bio_init(bio, NULL, nr_iovecs ? bio->bi_inline_vecs : NULL, nr_iovecs,
590 0);
3175199a
CH
591 bio->bi_pool = NULL;
592 return bio;
593}
594EXPORT_SYMBOL(bio_kmalloc);
595
6f822e1b 596void zero_fill_bio(struct bio *bio)
1da177e4 597{
7988613b
KO
598 struct bio_vec bv;
599 struct bvec_iter iter;
1da177e4 600
ab6c340e
CH
601 bio_for_each_segment(bv, bio, iter)
602 memzero_bvec(&bv);
1da177e4 603}
6f822e1b 604EXPORT_SYMBOL(zero_fill_bio);
1da177e4 605
83c9c547
ML
606/**
607 * bio_truncate - truncate the bio to small size of @new_size
608 * @bio: the bio to be truncated
609 * @new_size: new size for truncating the bio
610 *
611 * Description:
612 * Truncate the bio to new size of @new_size. If bio_op(bio) is
613 * REQ_OP_READ, zero the truncated part. This function should only
614 * be used for handling corner cases, such as bio eod.
615 */
4f7ab09a 616static void bio_truncate(struct bio *bio, unsigned new_size)
85a8ce62
ML
617{
618 struct bio_vec bv;
619 struct bvec_iter iter;
620 unsigned int done = 0;
621 bool truncated = false;
622
623 if (new_size >= bio->bi_iter.bi_size)
624 return;
625
83c9c547 626 if (bio_op(bio) != REQ_OP_READ)
85a8ce62
ML
627 goto exit;
628
629 bio_for_each_segment(bv, bio, iter) {
630 if (done + bv.bv_len > new_size) {
631 unsigned offset;
632
633 if (!truncated)
634 offset = new_size - done;
635 else
636 offset = 0;
3ee859e3
OH
637 zero_user(bv.bv_page, bv.bv_offset + offset,
638 bv.bv_len - offset);
85a8ce62
ML
639 truncated = true;
640 }
641 done += bv.bv_len;
642 }
643
644 exit:
645 /*
646 * Don't touch bvec table here and make it really immutable, since
647 * fs bio user has to retrieve all pages via bio_for_each_segment_all
648 * in its .end_bio() callback.
649 *
650 * It is enough to truncate bio by updating .bi_size since we can make
651 * correct bvec with the updated .bi_size for drivers.
652 */
653 bio->bi_iter.bi_size = new_size;
654}
655
29125ed6
CH
656/**
657 * guard_bio_eod - truncate a BIO to fit the block device
658 * @bio: bio to truncate
659 *
660 * This allows us to do IO even on the odd last sectors of a device, even if the
661 * block size is some multiple of the physical sector size.
662 *
663 * We'll just truncate the bio to the size of the device, and clear the end of
664 * the buffer head manually. Truly out-of-range accesses will turn into actual
665 * I/O errors, this only handles the "we need to be able to do I/O at the final
666 * sector" case.
667 */
668void guard_bio_eod(struct bio *bio)
669{
309dca30 670 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
29125ed6
CH
671
672 if (!maxsector)
673 return;
674
675 /*
676 * If the *whole* IO is past the end of the device,
677 * let it through, and the IO layer will turn it into
678 * an EIO.
679 */
680 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
681 return;
682
683 maxsector -= bio->bi_iter.bi_sector;
684 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
685 return;
686
687 bio_truncate(bio, maxsector << 9);
688}
689
be4d234d
JA
690#define ALLOC_CACHE_MAX 512
691#define ALLOC_CACHE_SLACK 64
692
693static void bio_alloc_cache_prune(struct bio_alloc_cache *cache,
694 unsigned int nr)
695{
696 unsigned int i = 0;
697 struct bio *bio;
698
fcade2ce
JA
699 while ((bio = cache->free_list) != NULL) {
700 cache->free_list = bio->bi_next;
be4d234d
JA
701 cache->nr--;
702 bio_free(bio);
703 if (++i == nr)
704 break;
705 }
706}
707
708static int bio_cpu_dead(unsigned int cpu, struct hlist_node *node)
709{
710 struct bio_set *bs;
711
712 bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead);
713 if (bs->cache) {
714 struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu);
715
716 bio_alloc_cache_prune(cache, -1U);
717 }
718 return 0;
719}
720
721static void bio_alloc_cache_destroy(struct bio_set *bs)
722{
723 int cpu;
724
725 if (!bs->cache)
726 return;
727
728 cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
729 for_each_possible_cpu(cpu) {
730 struct bio_alloc_cache *cache;
731
732 cache = per_cpu_ptr(bs->cache, cpu);
733 bio_alloc_cache_prune(cache, -1U);
734 }
735 free_percpu(bs->cache);
736}
737
1da177e4
LT
738/**
739 * bio_put - release a reference to a bio
740 * @bio: bio to release reference to
741 *
742 * Description:
743 * Put a reference to a &struct bio, either one you have gotten with
9b10f6a9 744 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
1da177e4
LT
745 **/
746void bio_put(struct bio *bio)
747{
be4d234d 748 if (unlikely(bio_flagged(bio, BIO_REFFED))) {
9e8c0d0d 749 BUG_ON(!atomic_read(&bio->__bi_cnt));
be4d234d
JA
750 if (!atomic_dec_and_test(&bio->__bi_cnt))
751 return;
752 }
dac56212 753
0df71650 754 if (bio->bi_opf & REQ_ALLOC_CACHE) {
be4d234d
JA
755 struct bio_alloc_cache *cache;
756
757 bio_uninit(bio);
758 cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu());
fcade2ce
JA
759 bio->bi_next = cache->free_list;
760 cache->free_list = bio;
be4d234d
JA
761 if (++cache->nr > ALLOC_CACHE_MAX + ALLOC_CACHE_SLACK)
762 bio_alloc_cache_prune(cache, ALLOC_CACHE_SLACK);
763 put_cpu();
764 } else {
765 bio_free(bio);
dac56212 766 }
1da177e4 767}
a112a71d 768EXPORT_SYMBOL(bio_put);
1da177e4 769
a0e8de79 770static int __bio_clone(struct bio *bio, struct bio *bio_src, gfp_t gfp)
59d276fe 771{
b7c44ed9 772 bio_set_flag(bio, BIO_CLONED);
111be883
SL
773 if (bio_flagged(bio_src, BIO_THROTTLED))
774 bio_set_flag(bio, BIO_THROTTLED);
abfc426d
CH
775 if (bio->bi_bdev == bio_src->bi_bdev &&
776 bio_flagged(bio_src, BIO_REMAPPED))
46bbf653 777 bio_set_flag(bio, BIO_REMAPPED);
ca474b73 778 bio->bi_ioprio = bio_src->bi_ioprio;
59d276fe 779 bio->bi_iter = bio_src->bi_iter;
20bd723e 780
db6638d7 781 bio_clone_blkg_association(bio, bio_src);
e439bedf 782 blkcg_bio_issue_init(bio);
56b4b5ab
CH
783
784 if (bio_crypt_clone(bio, bio_src, gfp) < 0)
785 return -ENOMEM;
786 if (bio_integrity(bio_src) &&
787 bio_integrity_clone(bio, bio_src, gfp) < 0)
788 return -ENOMEM;
789 return 0;
59d276fe 790}
59d276fe
KO
791
792/**
abfc426d
CH
793 * bio_alloc_clone - clone a bio that shares the original bio's biovec
794 * @bdev: block_device to clone onto
a0e8de79
CH
795 * @bio_src: bio to clone from
796 * @gfp: allocation priority
797 * @bs: bio_set to allocate from
59d276fe 798 *
a0e8de79
CH
799 * Allocate a new bio that is a clone of @bio_src. The caller owns the returned
800 * bio, but not the actual data it points to.
801 *
802 * The caller must ensure that the return bio is not freed before @bio_src.
59d276fe 803 */
abfc426d
CH
804struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src,
805 gfp_t gfp, struct bio_set *bs)
59d276fe 806{
a0e8de79 807 struct bio *bio;
59d276fe 808
abfc426d 809 bio = bio_alloc_bioset(bdev, 0, bio_src->bi_opf, gfp, bs);
a0e8de79 810 if (!bio)
59d276fe
KO
811 return NULL;
812
a0e8de79
CH
813 if (__bio_clone(bio, bio_src, gfp) < 0) {
814 bio_put(bio);
56b4b5ab
CH
815 return NULL;
816 }
a0e8de79 817 bio->bi_io_vec = bio_src->bi_io_vec;
59d276fe 818
a0e8de79 819 return bio;
59d276fe 820}
abfc426d 821EXPORT_SYMBOL(bio_alloc_clone);
59d276fe 822
a0e8de79 823/**
abfc426d
CH
824 * bio_init_clone - clone a bio that shares the original bio's biovec
825 * @bdev: block_device to clone onto
a0e8de79
CH
826 * @bio: bio to clone into
827 * @bio_src: bio to clone from
828 * @gfp: allocation priority
829 *
830 * Initialize a new bio in caller provided memory that is a clone of @bio_src.
831 * The caller owns the returned bio, but not the actual data it points to.
832 *
833 * The caller must ensure that @bio_src is not freed before @bio.
834 */
abfc426d
CH
835int bio_init_clone(struct block_device *bdev, struct bio *bio,
836 struct bio *bio_src, gfp_t gfp)
a0e8de79
CH
837{
838 int ret;
839
abfc426d 840 bio_init(bio, bdev, bio_src->bi_io_vec, 0, bio_src->bi_opf);
a0e8de79
CH
841 ret = __bio_clone(bio, bio_src, gfp);
842 if (ret)
843 bio_uninit(bio);
844 return ret;
845}
abfc426d 846EXPORT_SYMBOL(bio_init_clone);
a0e8de79 847
9a6083be
CH
848/**
849 * bio_full - check if the bio is full
850 * @bio: bio to check
851 * @len: length of one segment to be added
852 *
853 * Return true if @bio is full and one segment with @len bytes can't be
854 * added to the bio, otherwise return false
855 */
856static inline bool bio_full(struct bio *bio, unsigned len)
857{
858 if (bio->bi_vcnt >= bio->bi_max_vecs)
859 return true;
860 if (bio->bi_iter.bi_size > UINT_MAX - len)
861 return true;
862 return false;
863}
864
5919482e
ML
865static inline bool page_is_mergeable(const struct bio_vec *bv,
866 struct page *page, unsigned int len, unsigned int off,
ff896738 867 bool *same_page)
5919482e 868{
d8166519
MWO
869 size_t bv_end = bv->bv_offset + bv->bv_len;
870 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
5919482e
ML
871 phys_addr_t page_addr = page_to_phys(page);
872
873 if (vec_end_addr + 1 != page_addr + off)
874 return false;
875 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
876 return false;
52d52d1c 877
ff896738 878 *same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
d8166519
MWO
879 if (*same_page)
880 return true;
881 return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE);
5919482e
ML
882}
883
9774b391
CH
884/**
885 * __bio_try_merge_page - try appending data to an existing bvec.
886 * @bio: destination bio
887 * @page: start page to add
888 * @len: length of the data to add
889 * @off: offset of the data relative to @page
890 * @same_page: return if the segment has been merged inside the same page
891 *
892 * Try to add the data at @page + @off to the last bvec of @bio. This is a
893 * useful optimisation for file systems with a block size smaller than the
894 * page size.
895 *
896 * Warn if (@len, @off) crosses pages in case that @same_page is true.
897 *
898 * Return %true on success or %false on failure.
899 */
900static bool __bio_try_merge_page(struct bio *bio, struct page *page,
901 unsigned int len, unsigned int off, bool *same_page)
902{
903 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
904 return false;
905
906 if (bio->bi_vcnt > 0) {
907 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
908
909 if (page_is_mergeable(bv, page, len, off, same_page)) {
910 if (bio->bi_iter.bi_size > UINT_MAX - len) {
911 *same_page = false;
912 return false;
913 }
914 bv->bv_len += len;
915 bio->bi_iter.bi_size += len;
916 return true;
917 }
918 }
919 return false;
920}
921
e4581105
CH
922/*
923 * Try to merge a page into a segment, while obeying the hardware segment
924 * size limit. This is not for normal read/write bios, but for passthrough
925 * or Zone Append operations that we can't split.
926 */
927static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio,
928 struct page *page, unsigned len,
929 unsigned offset, bool *same_page)
489fbbcb 930{
384209cd 931 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
489fbbcb
ML
932 unsigned long mask = queue_segment_boundary(q);
933 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
934 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
935
936 if ((addr1 | mask) != (addr2 | mask))
937 return false;
489fbbcb
ML
938 if (bv->bv_len + len > queue_max_segment_size(q))
939 return false;
384209cd 940 return __bio_try_merge_page(bio, page, len, offset, same_page);
489fbbcb
ML
941}
942
1da177e4 943/**
e4581105
CH
944 * bio_add_hw_page - attempt to add a page to a bio with hw constraints
945 * @q: the target queue
946 * @bio: destination bio
947 * @page: page to add
948 * @len: vec entry length
949 * @offset: vec entry offset
950 * @max_sectors: maximum number of sectors that can be added
951 * @same_page: return if the segment has been merged inside the same page
c66a14d0 952 *
e4581105
CH
953 * Add a page to a bio while respecting the hardware max_sectors, max_segment
954 * and gap limitations.
1da177e4 955 */
e4581105 956int bio_add_hw_page(struct request_queue *q, struct bio *bio,
19047087 957 struct page *page, unsigned int len, unsigned int offset,
e4581105 958 unsigned int max_sectors, bool *same_page)
1da177e4 959{
1da177e4
LT
960 struct bio_vec *bvec;
961
e4581105 962 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
1da177e4
LT
963 return 0;
964
e4581105 965 if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
1da177e4
LT
966 return 0;
967
80cfd548 968 if (bio->bi_vcnt > 0) {
e4581105 969 if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page))
384209cd 970 return len;
320ea869
CH
971
972 /*
973 * If the queue doesn't support SG gaps and adding this segment
974 * would create a gap, disallow it.
975 */
384209cd 976 bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
320ea869
CH
977 if (bvec_gap_to_prev(q, bvec, offset))
978 return 0;
80cfd548
JA
979 }
980
79d08f89 981 if (bio_full(bio, len))
1da177e4
LT
982 return 0;
983
14ccb66b 984 if (bio->bi_vcnt >= queue_max_segments(q))
489fbbcb
ML
985 return 0;
986
fcbf6a08
ML
987 bvec = &bio->bi_io_vec[bio->bi_vcnt];
988 bvec->bv_page = page;
989 bvec->bv_len = len;
990 bvec->bv_offset = offset;
991 bio->bi_vcnt++;
dcdca753 992 bio->bi_iter.bi_size += len;
1da177e4
LT
993 return len;
994}
19047087 995
e4581105
CH
996/**
997 * bio_add_pc_page - attempt to add page to passthrough bio
998 * @q: the target queue
999 * @bio: destination bio
1000 * @page: page to add
1001 * @len: vec entry length
1002 * @offset: vec entry offset
1003 *
1004 * Attempt to add a page to the bio_vec maplist. This can fail for a
1005 * number of reasons, such as the bio being full or target block device
1006 * limitations. The target block device must allow bio's up to PAGE_SIZE,
1007 * so it is always possible to add a single page to an empty bio.
1008 *
1009 * This should only be used by passthrough bios.
1010 */
19047087
ML
1011int bio_add_pc_page(struct request_queue *q, struct bio *bio,
1012 struct page *page, unsigned int len, unsigned int offset)
1013{
d1916c86 1014 bool same_page = false;
e4581105
CH
1015 return bio_add_hw_page(q, bio, page, len, offset,
1016 queue_max_hw_sectors(q), &same_page);
19047087 1017}
a112a71d 1018EXPORT_SYMBOL(bio_add_pc_page);
6e68af66 1019
ae29333f
JT
1020/**
1021 * bio_add_zone_append_page - attempt to add page to zone-append bio
1022 * @bio: destination bio
1023 * @page: page to add
1024 * @len: vec entry length
1025 * @offset: vec entry offset
1026 *
1027 * Attempt to add a page to the bio_vec maplist of a bio that will be submitted
1028 * for a zone-append request. This can fail for a number of reasons, such as the
1029 * bio being full or the target block device is not a zoned block device or
1030 * other limitations of the target block device. The target block device must
1031 * allow bio's up to PAGE_SIZE, so it is always possible to add a single page
1032 * to an empty bio.
1033 *
1034 * Returns: number of bytes added to the bio, or 0 in case of a failure.
1035 */
1036int bio_add_zone_append_page(struct bio *bio, struct page *page,
1037 unsigned int len, unsigned int offset)
1038{
3caee463 1039 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
ae29333f
JT
1040 bool same_page = false;
1041
1042 if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_ZONE_APPEND))
1043 return 0;
1044
1045 if (WARN_ON_ONCE(!blk_queue_is_zoned(q)))
1046 return 0;
1047
1048 return bio_add_hw_page(q, bio, page, len, offset,
1049 queue_max_zone_append_sectors(q), &same_page);
1050}
1051EXPORT_SYMBOL_GPL(bio_add_zone_append_page);
1052
0aa69fd3 1053/**
551879a4 1054 * __bio_add_page - add page(s) to a bio in a new segment
0aa69fd3 1055 * @bio: destination bio
551879a4
ML
1056 * @page: start page to add
1057 * @len: length of the data to add, may cross pages
1058 * @off: offset of the data relative to @page, may cross pages
0aa69fd3
CH
1059 *
1060 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
1061 * that @bio has space for another bvec.
1062 */
1063void __bio_add_page(struct bio *bio, struct page *page,
1064 unsigned int len, unsigned int off)
1065{
1066 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
c66a14d0 1067
0aa69fd3 1068 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
79d08f89 1069 WARN_ON_ONCE(bio_full(bio, len));
0aa69fd3
CH
1070
1071 bv->bv_page = page;
1072 bv->bv_offset = off;
1073 bv->bv_len = len;
c66a14d0 1074
c66a14d0 1075 bio->bi_iter.bi_size += len;
0aa69fd3 1076 bio->bi_vcnt++;
b8e24a93
JW
1077
1078 if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
1079 bio_set_flag(bio, BIO_WORKINGSET);
0aa69fd3
CH
1080}
1081EXPORT_SYMBOL_GPL(__bio_add_page);
1082
1083/**
551879a4 1084 * bio_add_page - attempt to add page(s) to bio
0aa69fd3 1085 * @bio: destination bio
551879a4
ML
1086 * @page: start page to add
1087 * @len: vec entry length, may cross pages
1088 * @offset: vec entry offset relative to @page, may cross pages
0aa69fd3 1089 *
551879a4 1090 * Attempt to add page(s) to the bio_vec maplist. This will only fail
0aa69fd3
CH
1091 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
1092 */
1093int bio_add_page(struct bio *bio, struct page *page,
1094 unsigned int len, unsigned int offset)
1095{
ff896738
CH
1096 bool same_page = false;
1097
1098 if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
79d08f89 1099 if (bio_full(bio, len))
0aa69fd3
CH
1100 return 0;
1101 __bio_add_page(bio, page, len, offset);
1102 }
c66a14d0 1103 return len;
1da177e4 1104}
a112a71d 1105EXPORT_SYMBOL(bio_add_page);
1da177e4 1106
85f5a74c
MWO
1107/**
1108 * bio_add_folio - Attempt to add part of a folio to a bio.
1109 * @bio: BIO to add to.
1110 * @folio: Folio to add.
1111 * @len: How many bytes from the folio to add.
1112 * @off: First byte in this folio to add.
1113 *
1114 * Filesystems that use folios can call this function instead of calling
1115 * bio_add_page() for each page in the folio. If @off is bigger than
1116 * PAGE_SIZE, this function can create a bio_vec that starts in a page
1117 * after the bv_page. BIOs do not support folios that are 4GiB or larger.
1118 *
1119 * Return: Whether the addition was successful.
1120 */
1121bool bio_add_folio(struct bio *bio, struct folio *folio, size_t len,
1122 size_t off)
1123{
1124 if (len > UINT_MAX || off > UINT_MAX)
455a844d 1125 return false;
85f5a74c
MWO
1126 return bio_add_page(bio, &folio->page, len, off) > 0;
1127}
1128
c809084a 1129void __bio_release_pages(struct bio *bio, bool mark_dirty)
7321ecbf
CH
1130{
1131 struct bvec_iter_all iter_all;
1132 struct bio_vec *bvec;
7321ecbf 1133
d241a95f
CH
1134 bio_for_each_segment_all(bvec, bio, iter_all) {
1135 if (mark_dirty && !PageCompound(bvec->bv_page))
1136 set_page_dirty_lock(bvec->bv_page);
7321ecbf 1137 put_page(bvec->bv_page);
d241a95f 1138 }
7321ecbf 1139}
c809084a 1140EXPORT_SYMBOL_GPL(__bio_release_pages);
7321ecbf 1141
1bb6b810 1142void bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
6d0c48ae 1143{
fa5fa8ec
PB
1144 size_t size = iov_iter_count(iter);
1145
7a800a20 1146 WARN_ON_ONCE(bio->bi_max_vecs);
c42bca92 1147
fa5fa8ec
PB
1148 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
1149 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1150 size_t max_sectors = queue_max_zone_append_sectors(q);
1151
1152 size = min(size, max_sectors << SECTOR_SHIFT);
1153 }
1154
c42bca92 1155 bio->bi_vcnt = iter->nr_segs;
c42bca92
PB
1156 bio->bi_io_vec = (struct bio_vec *)iter->bvec;
1157 bio->bi_iter.bi_bvec_done = iter->iov_offset;
fa5fa8ec 1158 bio->bi_iter.bi_size = size;
ed97ce5e 1159 bio_set_flag(bio, BIO_NO_PAGE_REF);
977be012 1160 bio_set_flag(bio, BIO_CLONED);
7de55b7d 1161}
c42bca92 1162
d9cf3bd5
PB
1163static void bio_put_pages(struct page **pages, size_t size, size_t off)
1164{
1165 size_t i, nr = DIV_ROUND_UP(size + (off & ~PAGE_MASK), PAGE_SIZE);
1166
1167 for (i = 0; i < nr; i++)
1168 put_page(pages[i]);
1169}
1170
576ed913
CH
1171#define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
1172
2cefe4db 1173/**
17d51b10 1174 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
2cefe4db
KO
1175 * @bio: bio to add pages to
1176 * @iter: iov iterator describing the region to be mapped
1177 *
17d51b10 1178 * Pins pages from *iter and appends them to @bio's bvec array. The
2cefe4db 1179 * pages will have to be released using put_page() when done.
17d51b10 1180 * For multi-segment *iter, this function only adds pages from the
3cf14889 1181 * next non-empty segment of the iov iterator.
2cefe4db 1182 */
17d51b10 1183static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
2cefe4db 1184{
576ed913
CH
1185 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1186 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
2cefe4db
KO
1187 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1188 struct page **pages = (struct page **)bv;
45691804 1189 bool same_page = false;
576ed913
CH
1190 ssize_t size, left;
1191 unsigned len, i;
b403ea24 1192 size_t offset;
576ed913
CH
1193
1194 /*
1195 * Move page array up in the allocated memory for the bio vecs as far as
1196 * possible so that we can start filling biovecs from the beginning
1197 * without overwriting the temporary page array.
1198 */
1199 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1200 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
2cefe4db 1201
35c820e7 1202 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
2cefe4db
KO
1203 if (unlikely(size <= 0))
1204 return size ? size : -EFAULT;
2cefe4db 1205
576ed913
CH
1206 for (left = size, i = 0; left > 0; left -= len, i++) {
1207 struct page *page = pages[i];
2cefe4db 1208
576ed913 1209 len = min_t(size_t, PAGE_SIZE - offset, left);
45691804
CH
1210
1211 if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1212 if (same_page)
1213 put_page(page);
1214 } else {
d9cf3bd5
PB
1215 if (WARN_ON_ONCE(bio_full(bio, len))) {
1216 bio_put_pages(pages + i, left, offset);
1217 return -EINVAL;
1218 }
45691804
CH
1219 __bio_add_page(bio, page, len, offset);
1220 }
576ed913 1221 offset = 0;
2cefe4db
KO
1222 }
1223
2cefe4db
KO
1224 iov_iter_advance(iter, size);
1225 return 0;
1226}
17d51b10 1227
0512a75b
KB
1228static int __bio_iov_append_get_pages(struct bio *bio, struct iov_iter *iter)
1229{
1230 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1231 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
3caee463 1232 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
0512a75b
KB
1233 unsigned int max_append_sectors = queue_max_zone_append_sectors(q);
1234 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1235 struct page **pages = (struct page **)bv;
1236 ssize_t size, left;
1237 unsigned len, i;
1238 size_t offset;
4977d121 1239 int ret = 0;
0512a75b
KB
1240
1241 if (WARN_ON_ONCE(!max_append_sectors))
1242 return 0;
1243
1244 /*
1245 * Move page array up in the allocated memory for the bio vecs as far as
1246 * possible so that we can start filling biovecs from the beginning
1247 * without overwriting the temporary page array.
1248 */
1249 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1250 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1251
1252 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1253 if (unlikely(size <= 0))
1254 return size ? size : -EFAULT;
1255
1256 for (left = size, i = 0; left > 0; left -= len, i++) {
1257 struct page *page = pages[i];
1258 bool same_page = false;
1259
1260 len = min_t(size_t, PAGE_SIZE - offset, left);
1261 if (bio_add_hw_page(q, bio, page, len, offset,
4977d121 1262 max_append_sectors, &same_page) != len) {
d9cf3bd5 1263 bio_put_pages(pages + i, left, offset);
4977d121
NA
1264 ret = -EINVAL;
1265 break;
1266 }
0512a75b
KB
1267 if (same_page)
1268 put_page(page);
1269 offset = 0;
1270 }
1271
4977d121
NA
1272 iov_iter_advance(iter, size - left);
1273 return ret;
0512a75b
KB
1274}
1275
17d51b10 1276/**
6d0c48ae 1277 * bio_iov_iter_get_pages - add user or kernel pages to a bio
17d51b10 1278 * @bio: bio to add pages to
6d0c48ae
JA
1279 * @iter: iov iterator describing the region to be added
1280 *
1281 * This takes either an iterator pointing to user memory, or one pointing to
1282 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1283 * map them into the kernel. On IO completion, the caller should put those
c42bca92
PB
1284 * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
1285 * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
1286 * to ensure the bvecs and pages stay referenced until the submitted I/O is
1287 * completed by a call to ->ki_complete() or returns with an error other than
1288 * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
1289 * on IO completion. If it isn't, then pages should be released.
17d51b10 1290 *
17d51b10 1291 * The function tries, but does not guarantee, to pin as many pages as
5cd3ddc1 1292 * fit into the bio, or are requested in @iter, whatever is smaller. If
6d0c48ae
JA
1293 * MM encounters an error pinning the requested pages, it stops. Error
1294 * is returned only if 0 pages could be pinned.
0cf41e5e
PB
1295 *
1296 * It's intended for direct IO, so doesn't do PSI tracking, the caller is
1297 * responsible for setting BIO_WORKINGSET if necessary.
17d51b10
MW
1298 */
1299int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1300{
c42bca92 1301 int ret = 0;
14eacf12 1302
c42bca92 1303 if (iov_iter_is_bvec(iter)) {
fa5fa8ec
PB
1304 bio_iov_bvec_set(bio, iter);
1305 iov_iter_advance(iter, bio->bi_iter.bi_size);
1306 return 0;
c42bca92 1307 }
17d51b10
MW
1308
1309 do {
86004515 1310 if (bio_op(bio) == REQ_OP_ZONE_APPEND)
0512a75b 1311 ret = __bio_iov_append_get_pages(bio, iter);
86004515
CH
1312 else
1313 ret = __bio_iov_iter_get_pages(bio, iter);
79d08f89 1314 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
17d51b10 1315
0cf41e5e
PB
1316 /* don't account direct I/O as memory stall */
1317 bio_clear_flag(bio, BIO_WORKINGSET);
14eacf12 1318 return bio->bi_vcnt ? 0 : ret;
17d51b10 1319}
29b2a3aa 1320EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
2cefe4db 1321
4246a0b6 1322static void submit_bio_wait_endio(struct bio *bio)
9e882242 1323{
65e53aab 1324 complete(bio->bi_private);
9e882242
KO
1325}
1326
1327/**
1328 * submit_bio_wait - submit a bio, and wait until it completes
9e882242
KO
1329 * @bio: The &struct bio which describes the I/O
1330 *
1331 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1332 * bio_endio() on failure.
3d289d68
JK
1333 *
1334 * WARNING: Unlike to how submit_bio() is usually used, this function does not
1335 * result in bio reference to be consumed. The caller must drop the reference
1336 * on his own.
9e882242 1337 */
4e49ea4a 1338int submit_bio_wait(struct bio *bio)
9e882242 1339{
309dca30
CH
1340 DECLARE_COMPLETION_ONSTACK_MAP(done,
1341 bio->bi_bdev->bd_disk->lockdep_map);
de6a78b6 1342 unsigned long hang_check;
9e882242 1343
65e53aab 1344 bio->bi_private = &done;
9e882242 1345 bio->bi_end_io = submit_bio_wait_endio;
1eff9d32 1346 bio->bi_opf |= REQ_SYNC;
4e49ea4a 1347 submit_bio(bio);
de6a78b6
ML
1348
1349 /* Prevent hang_check timer from firing at us during very long I/O */
1350 hang_check = sysctl_hung_task_timeout_secs;
1351 if (hang_check)
1352 while (!wait_for_completion_io_timeout(&done,
1353 hang_check * (HZ/2)))
1354 ;
1355 else
1356 wait_for_completion_io(&done);
9e882242 1357
65e53aab 1358 return blk_status_to_errno(bio->bi_status);
9e882242
KO
1359}
1360EXPORT_SYMBOL(submit_bio_wait);
1361
d4aa57a1 1362void __bio_advance(struct bio *bio, unsigned bytes)
054bdf64
KO
1363{
1364 if (bio_integrity(bio))
1365 bio_integrity_advance(bio, bytes);
1366
a892c8d5 1367 bio_crypt_advance(bio, bytes);
4550dd6c 1368 bio_advance_iter(bio, &bio->bi_iter, bytes);
054bdf64 1369}
d4aa57a1 1370EXPORT_SYMBOL(__bio_advance);
054bdf64 1371
45db54d5
KO
1372void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1373 struct bio *src, struct bvec_iter *src_iter)
16ac3d63 1374{
45db54d5 1375 while (src_iter->bi_size && dst_iter->bi_size) {
f8b679a0
CH
1376 struct bio_vec src_bv = bio_iter_iovec(src, *src_iter);
1377 struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter);
1378 unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len);
1379 void *src_buf;
1380
1381 src_buf = bvec_kmap_local(&src_bv);
1382 memcpy_to_bvec(&dst_bv, src_buf);
1383 kunmap_local(src_buf);
6e6e811d 1384
22b56c29
PB
1385 bio_advance_iter_single(src, src_iter, bytes);
1386 bio_advance_iter_single(dst, dst_iter, bytes);
16ac3d63
KO
1387 }
1388}
38a72dac
KO
1389EXPORT_SYMBOL(bio_copy_data_iter);
1390
1391/**
45db54d5
KO
1392 * bio_copy_data - copy contents of data buffers from one bio to another
1393 * @src: source bio
1394 * @dst: destination bio
38a72dac
KO
1395 *
1396 * Stops when it reaches the end of either @src or @dst - that is, copies
1397 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1398 */
1399void bio_copy_data(struct bio *dst, struct bio *src)
1400{
45db54d5
KO
1401 struct bvec_iter src_iter = src->bi_iter;
1402 struct bvec_iter dst_iter = dst->bi_iter;
1403
1404 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
38a72dac 1405}
16ac3d63
KO
1406EXPORT_SYMBOL(bio_copy_data);
1407
491221f8 1408void bio_free_pages(struct bio *bio)
1dfa0f68
CH
1409{
1410 struct bio_vec *bvec;
6dc4f100 1411 struct bvec_iter_all iter_all;
1dfa0f68 1412
2b070cfe 1413 bio_for_each_segment_all(bvec, bio, iter_all)
1dfa0f68
CH
1414 __free_page(bvec->bv_page);
1415}
491221f8 1416EXPORT_SYMBOL(bio_free_pages);
1dfa0f68 1417
1da177e4
LT
1418/*
1419 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1420 * for performing direct-IO in BIOs.
1421 *
1422 * The problem is that we cannot run set_page_dirty() from interrupt context
1423 * because the required locks are not interrupt-safe. So what we can do is to
1424 * mark the pages dirty _before_ performing IO. And in interrupt context,
1425 * check that the pages are still dirty. If so, fine. If not, redirty them
1426 * in process context.
1427 *
1428 * We special-case compound pages here: normally this means reads into hugetlb
1429 * pages. The logic in here doesn't really work right for compound pages
1430 * because the VM does not uniformly chase down the head page in all cases.
1431 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1432 * handle them at all. So we skip compound pages here at an early stage.
1433 *
1434 * Note that this code is very hard to test under normal circumstances because
1435 * direct-io pins the pages with get_user_pages(). This makes
1436 * is_page_cache_freeable return false, and the VM will not clean the pages.
0d5c3eba 1437 * But other code (eg, flusher threads) could clean the pages if they are mapped
1da177e4
LT
1438 * pagecache.
1439 *
1440 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1441 * deferred bio dirtying paths.
1442 */
1443
1444/*
1445 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1446 */
1447void bio_set_pages_dirty(struct bio *bio)
1448{
cb34e057 1449 struct bio_vec *bvec;
6dc4f100 1450 struct bvec_iter_all iter_all;
1da177e4 1451
2b070cfe 1452 bio_for_each_segment_all(bvec, bio, iter_all) {
3bb50983
CH
1453 if (!PageCompound(bvec->bv_page))
1454 set_page_dirty_lock(bvec->bv_page);
1da177e4
LT
1455 }
1456}
1457
1da177e4
LT
1458/*
1459 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1460 * If they are, then fine. If, however, some pages are clean then they must
1461 * have been written out during the direct-IO read. So we take another ref on
24d5493f 1462 * the BIO and re-dirty the pages in process context.
1da177e4
LT
1463 *
1464 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
ea1754a0
KS
1465 * here on. It will run one put_page() against each page and will run one
1466 * bio_put() against the BIO.
1da177e4
LT
1467 */
1468
65f27f38 1469static void bio_dirty_fn(struct work_struct *work);
1da177e4 1470
65f27f38 1471static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1da177e4
LT
1472static DEFINE_SPINLOCK(bio_dirty_lock);
1473static struct bio *bio_dirty_list;
1474
1475/*
1476 * This runs in process context
1477 */
65f27f38 1478static void bio_dirty_fn(struct work_struct *work)
1da177e4 1479{
24d5493f 1480 struct bio *bio, *next;
1da177e4 1481
24d5493f
CH
1482 spin_lock_irq(&bio_dirty_lock);
1483 next = bio_dirty_list;
1da177e4 1484 bio_dirty_list = NULL;
24d5493f 1485 spin_unlock_irq(&bio_dirty_lock);
1da177e4 1486
24d5493f
CH
1487 while ((bio = next) != NULL) {
1488 next = bio->bi_private;
1da177e4 1489
d241a95f 1490 bio_release_pages(bio, true);
1da177e4 1491 bio_put(bio);
1da177e4
LT
1492 }
1493}
1494
1495void bio_check_pages_dirty(struct bio *bio)
1496{
cb34e057 1497 struct bio_vec *bvec;
24d5493f 1498 unsigned long flags;
6dc4f100 1499 struct bvec_iter_all iter_all;
1da177e4 1500
2b070cfe 1501 bio_for_each_segment_all(bvec, bio, iter_all) {
24d5493f
CH
1502 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1503 goto defer;
1da177e4
LT
1504 }
1505
d241a95f 1506 bio_release_pages(bio, false);
24d5493f
CH
1507 bio_put(bio);
1508 return;
1509defer:
1510 spin_lock_irqsave(&bio_dirty_lock, flags);
1511 bio->bi_private = bio_dirty_list;
1512 bio_dirty_list = bio;
1513 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1514 schedule_work(&bio_dirty_work);
1da177e4
LT
1515}
1516
c4cf5261
JA
1517static inline bool bio_remaining_done(struct bio *bio)
1518{
1519 /*
1520 * If we're not chaining, then ->__bi_remaining is always 1 and
1521 * we always end io on the first invocation.
1522 */
1523 if (!bio_flagged(bio, BIO_CHAIN))
1524 return true;
1525
1526 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1527
326e1dbb 1528 if (atomic_dec_and_test(&bio->__bi_remaining)) {
b7c44ed9 1529 bio_clear_flag(bio, BIO_CHAIN);
c4cf5261 1530 return true;
326e1dbb 1531 }
c4cf5261
JA
1532
1533 return false;
1534}
1535
1da177e4
LT
1536/**
1537 * bio_endio - end I/O on a bio
1538 * @bio: bio
1da177e4
LT
1539 *
1540 * Description:
4246a0b6
CH
1541 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1542 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1543 * bio unless they own it and thus know that it has an end_io function.
fbbaf700
N
1544 *
1545 * bio_endio() can be called several times on a bio that has been chained
1546 * using bio_chain(). The ->bi_end_io() function will only be called the
60b6a7e6 1547 * last time.
1da177e4 1548 **/
4246a0b6 1549void bio_endio(struct bio *bio)
1da177e4 1550{
ba8c6967 1551again:
2b885517 1552 if (!bio_remaining_done(bio))
ba8c6967 1553 return;
7c20f116
CH
1554 if (!bio_integrity_endio(bio))
1555 return;
1da177e4 1556
aa1b46dc 1557 rq_qos_done_bio(bio);
67b42d0b 1558
60b6a7e6 1559 if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
3caee463 1560 trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio);
60b6a7e6
EH
1561 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1562 }
1563
ba8c6967
CH
1564 /*
1565 * Need to have a real endio function for chained bios, otherwise
1566 * various corner cases will break (like stacking block devices that
1567 * save/restore bi_end_io) - however, we want to avoid unbounded
1568 * recursion and blowing the stack. Tail call optimization would
1569 * handle this, but compiling with frame pointers also disables
1570 * gcc's sibling call optimization.
1571 */
1572 if (bio->bi_end_io == bio_chain_endio) {
1573 bio = __bio_chain_endio(bio);
1574 goto again;
196d38bc 1575 }
ba8c6967 1576
9e234eea 1577 blk_throtl_bio_endio(bio);
b222dd2f
SL
1578 /* release cgroup info */
1579 bio_uninit(bio);
ba8c6967
CH
1580 if (bio->bi_end_io)
1581 bio->bi_end_io(bio);
1da177e4 1582}
a112a71d 1583EXPORT_SYMBOL(bio_endio);
1da177e4 1584
20d0189b
KO
1585/**
1586 * bio_split - split a bio
1587 * @bio: bio to split
1588 * @sectors: number of sectors to split from the front of @bio
1589 * @gfp: gfp mask
1590 * @bs: bio set to allocate from
1591 *
1592 * Allocates and returns a new bio which represents @sectors from the start of
1593 * @bio, and updates @bio to represent the remaining sectors.
1594 *
f3f5da62 1595 * Unless this is a discard request the newly allocated bio will point
dad77584
BVA
1596 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1597 * neither @bio nor @bs are freed before the split bio.
20d0189b
KO
1598 */
1599struct bio *bio_split(struct bio *bio, int sectors,
1600 gfp_t gfp, struct bio_set *bs)
1601{
f341a4d3 1602 struct bio *split;
20d0189b
KO
1603
1604 BUG_ON(sectors <= 0);
1605 BUG_ON(sectors >= bio_sectors(bio));
1606
0512a75b
KB
1607 /* Zone append commands cannot be split */
1608 if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1609 return NULL;
1610
abfc426d 1611 split = bio_alloc_clone(bio->bi_bdev, bio, gfp, bs);
20d0189b
KO
1612 if (!split)
1613 return NULL;
1614
1615 split->bi_iter.bi_size = sectors << 9;
1616
1617 if (bio_integrity(split))
fbd08e76 1618 bio_integrity_trim(split);
20d0189b
KO
1619
1620 bio_advance(bio, split->bi_iter.bi_size);
1621
fbbaf700 1622 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
20d59023 1623 bio_set_flag(split, BIO_TRACE_COMPLETION);
fbbaf700 1624
20d0189b
KO
1625 return split;
1626}
1627EXPORT_SYMBOL(bio_split);
1628
6678d83f
KO
1629/**
1630 * bio_trim - trim a bio
1631 * @bio: bio to trim
1632 * @offset: number of sectors to trim from the front of @bio
1633 * @size: size we want to trim @bio to, in sectors
e83502ca
CK
1634 *
1635 * This function is typically used for bios that are cloned and submitted
1636 * to the underlying device in parts.
6678d83f 1637 */
e83502ca 1638void bio_trim(struct bio *bio, sector_t offset, sector_t size)
6678d83f 1639{
e83502ca 1640 if (WARN_ON_ONCE(offset > BIO_MAX_SECTORS || size > BIO_MAX_SECTORS ||
8535c018 1641 offset + size > bio_sectors(bio)))
e83502ca 1642 return;
6678d83f
KO
1643
1644 size <<= 9;
4f024f37 1645 if (offset == 0 && size == bio->bi_iter.bi_size)
6678d83f
KO
1646 return;
1647
6678d83f 1648 bio_advance(bio, offset << 9);
4f024f37 1649 bio->bi_iter.bi_size = size;
376a78ab
DM
1650
1651 if (bio_integrity(bio))
fbd08e76 1652 bio_integrity_trim(bio);
6678d83f
KO
1653}
1654EXPORT_SYMBOL_GPL(bio_trim);
1655
1da177e4
LT
1656/*
1657 * create memory pools for biovec's in a bio_set.
1658 * use the global biovec slabs created for general use.
1659 */
8aa6ba2f 1660int biovec_init_pool(mempool_t *pool, int pool_entries)
1da177e4 1661{
7a800a20 1662 struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1;
1da177e4 1663
8aa6ba2f 1664 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1da177e4
LT
1665}
1666
917a38c7
KO
1667/*
1668 * bioset_exit - exit a bioset initialized with bioset_init()
1669 *
1670 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1671 * kzalloc()).
1672 */
1673void bioset_exit(struct bio_set *bs)
1da177e4 1674{
be4d234d 1675 bio_alloc_cache_destroy(bs);
df2cb6da
KO
1676 if (bs->rescue_workqueue)
1677 destroy_workqueue(bs->rescue_workqueue);
917a38c7 1678 bs->rescue_workqueue = NULL;
df2cb6da 1679
8aa6ba2f
KO
1680 mempool_exit(&bs->bio_pool);
1681 mempool_exit(&bs->bvec_pool);
9f060e22 1682
7878cba9 1683 bioset_integrity_free(bs);
917a38c7
KO
1684 if (bs->bio_slab)
1685 bio_put_slab(bs);
1686 bs->bio_slab = NULL;
1687}
1688EXPORT_SYMBOL(bioset_exit);
1da177e4 1689
917a38c7
KO
1690/**
1691 * bioset_init - Initialize a bio_set
dad08527 1692 * @bs: pool to initialize
917a38c7
KO
1693 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1694 * @front_pad: Number of bytes to allocate in front of the returned bio
1695 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1696 * and %BIOSET_NEED_RESCUER
1697 *
dad08527
KO
1698 * Description:
1699 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1700 * to ask for a number of bytes to be allocated in front of the bio.
1701 * Front pad allocation is useful for embedding the bio inside
1702 * another structure, to avoid allocating extra data to go with the bio.
1703 * Note that the bio must be embedded at the END of that structure always,
1704 * or things will break badly.
1705 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
abfc426d
CH
1706 * for allocating iovecs. This pool is not needed e.g. for bio_init_clone().
1707 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used
1708 * to dispatch queued requests when the mempool runs out of space.
dad08527 1709 *
917a38c7
KO
1710 */
1711int bioset_init(struct bio_set *bs,
1712 unsigned int pool_size,
1713 unsigned int front_pad,
1714 int flags)
1715{
917a38c7 1716 bs->front_pad = front_pad;
9f180e31
ML
1717 if (flags & BIOSET_NEED_BVECS)
1718 bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1719 else
1720 bs->back_pad = 0;
917a38c7
KO
1721
1722 spin_lock_init(&bs->rescue_lock);
1723 bio_list_init(&bs->rescue_list);
1724 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1725
49d1ec85 1726 bs->bio_slab = bio_find_or_create_slab(bs);
917a38c7
KO
1727 if (!bs->bio_slab)
1728 return -ENOMEM;
1729
1730 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1731 goto bad;
1732
1733 if ((flags & BIOSET_NEED_BVECS) &&
1734 biovec_init_pool(&bs->bvec_pool, pool_size))
1735 goto bad;
1736
be4d234d
JA
1737 if (flags & BIOSET_NEED_RESCUER) {
1738 bs->rescue_workqueue = alloc_workqueue("bioset",
1739 WQ_MEM_RECLAIM, 0);
1740 if (!bs->rescue_workqueue)
1741 goto bad;
1742 }
1743 if (flags & BIOSET_PERCPU_CACHE) {
1744 bs->cache = alloc_percpu(struct bio_alloc_cache);
1745 if (!bs->cache)
1746 goto bad;
1747 cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
1748 }
917a38c7
KO
1749
1750 return 0;
1751bad:
1752 bioset_exit(bs);
1753 return -ENOMEM;
1754}
1755EXPORT_SYMBOL(bioset_init);
1756
28e89fd9
JA
1757/*
1758 * Initialize and setup a new bio_set, based on the settings from
1759 * another bio_set.
1760 */
1761int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
1762{
1763 int flags;
1764
1765 flags = 0;
1766 if (src->bvec_pool.min_nr)
1767 flags |= BIOSET_NEED_BVECS;
1768 if (src->rescue_workqueue)
1769 flags |= BIOSET_NEED_RESCUER;
b53f3dcd
MS
1770 if (src->cache)
1771 flags |= BIOSET_PERCPU_CACHE;
28e89fd9
JA
1772
1773 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
1774}
1775EXPORT_SYMBOL(bioset_init_from_src);
1776
de76fd89 1777static int __init init_bio(void)
1da177e4
LT
1778{
1779 int i;
1780
7878cba9 1781 bio_integrity_init();
1da177e4 1782
de76fd89
CH
1783 for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) {
1784 struct biovec_slab *bvs = bvec_slabs + i;
a7fcd37c 1785
de76fd89
CH
1786 bvs->slab = kmem_cache_create(bvs->name,
1787 bvs->nr_vecs * sizeof(struct bio_vec), 0,
1788 SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 1789 }
1da177e4 1790
be4d234d
JA
1791 cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL,
1792 bio_cpu_dead);
1793
f4f8154a 1794 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
1da177e4
LT
1795 panic("bio: can't allocate bios\n");
1796
f4f8154a 1797 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
a91a2785
MP
1798 panic("bio: can't create integrity pool\n");
1799
1da177e4
LT
1800 return 0;
1801}
1da177e4 1802subsys_initcall(init_bio);