]> git.ipfire.org Git - people/ms/linux.git/blame - fs/namespace.c
Some fixes for pstore
[people/ms/linux.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4
LT
11#include <linux/syscalls.h>
12#include <linux/slab.h>
13#include <linux/sched.h>
99b7db7b
NP
14#include <linux/spinlock.h>
15#include <linux/percpu.h>
1da177e4 16#include <linux/init.h>
15a67dd8 17#include <linux/kernel.h>
1da177e4 18#include <linux/acct.h>
16f7e0fe 19#include <linux/capability.h>
3d733633 20#include <linux/cpumask.h>
1da177e4 21#include <linux/module.h>
f20a9ead 22#include <linux/sysfs.h>
1da177e4 23#include <linux/seq_file.h>
6b3286ed 24#include <linux/mnt_namespace.h>
1da177e4 25#include <linux/namei.h>
b43f3cbd 26#include <linux/nsproxy.h>
1da177e4
LT
27#include <linux/security.h>
28#include <linux/mount.h>
07f3f05c 29#include <linux/ramfs.h>
13f14b4d 30#include <linux/log2.h>
73cd49ec 31#include <linux/idr.h>
5ad4e53b 32#include <linux/fs_struct.h>
2504c5d6 33#include <linux/fsnotify.h>
1da177e4
LT
34#include <asm/uaccess.h>
35#include <asm/unistd.h>
07b20889 36#include "pnode.h"
948730b0 37#include "internal.h"
1da177e4 38
13f14b4d
ED
39#define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
40#define HASH_SIZE (1UL << HASH_SHIFT)
41
5addc5dd 42static int event;
73cd49ec 43static DEFINE_IDA(mnt_id_ida);
719f5d7f 44static DEFINE_IDA(mnt_group_ida);
99b7db7b 45static DEFINE_SPINLOCK(mnt_id_lock);
f21f6220
AV
46static int mnt_id_start = 0;
47static int mnt_group_start = 1;
1da177e4 48
fa3536cc 49static struct list_head *mount_hashtable __read_mostly;
e18b890b 50static struct kmem_cache *mnt_cache __read_mostly;
390c6843 51static struct rw_semaphore namespace_sem;
1da177e4 52
f87fd4c2 53/* /sys/fs */
00d26666
GKH
54struct kobject *fs_kobj;
55EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 56
99b7db7b
NP
57/*
58 * vfsmount lock may be taken for read to prevent changes to the
59 * vfsmount hash, ie. during mountpoint lookups or walking back
60 * up the tree.
61 *
62 * It should be taken for write in all cases where the vfsmount
63 * tree or hash is modified or when a vfsmount structure is modified.
64 */
65DEFINE_BRLOCK(vfsmount_lock);
66
1da177e4
LT
67static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
68{
b58fed8b
RP
69 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
70 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
13f14b4d
ED
71 tmp = tmp + (tmp >> HASH_SHIFT);
72 return tmp & (HASH_SIZE - 1);
1da177e4
LT
73}
74
3d733633
DH
75#define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
76
99b7db7b
NP
77/*
78 * allocation is serialized by namespace_sem, but we need the spinlock to
79 * serialize with freeing.
80 */
73cd49ec
MS
81static int mnt_alloc_id(struct vfsmount *mnt)
82{
83 int res;
84
85retry:
86 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
99b7db7b 87 spin_lock(&mnt_id_lock);
f21f6220
AV
88 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
89 if (!res)
90 mnt_id_start = mnt->mnt_id + 1;
99b7db7b 91 spin_unlock(&mnt_id_lock);
73cd49ec
MS
92 if (res == -EAGAIN)
93 goto retry;
94
95 return res;
96}
97
98static void mnt_free_id(struct vfsmount *mnt)
99{
f21f6220 100 int id = mnt->mnt_id;
99b7db7b 101 spin_lock(&mnt_id_lock);
f21f6220
AV
102 ida_remove(&mnt_id_ida, id);
103 if (mnt_id_start > id)
104 mnt_id_start = id;
99b7db7b 105 spin_unlock(&mnt_id_lock);
73cd49ec
MS
106}
107
719f5d7f
MS
108/*
109 * Allocate a new peer group ID
110 *
111 * mnt_group_ida is protected by namespace_sem
112 */
113static int mnt_alloc_group_id(struct vfsmount *mnt)
114{
f21f6220
AV
115 int res;
116
719f5d7f
MS
117 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
118 return -ENOMEM;
119
f21f6220
AV
120 res = ida_get_new_above(&mnt_group_ida,
121 mnt_group_start,
122 &mnt->mnt_group_id);
123 if (!res)
124 mnt_group_start = mnt->mnt_group_id + 1;
125
126 return res;
719f5d7f
MS
127}
128
129/*
130 * Release a peer group ID
131 */
132void mnt_release_group_id(struct vfsmount *mnt)
133{
f21f6220
AV
134 int id = mnt->mnt_group_id;
135 ida_remove(&mnt_group_ida, id);
136 if (mnt_group_start > id)
137 mnt_group_start = id;
719f5d7f
MS
138 mnt->mnt_group_id = 0;
139}
140
b3e19d92
NP
141/*
142 * vfsmount lock must be held for read
143 */
144static inline void mnt_add_count(struct vfsmount *mnt, int n)
145{
146#ifdef CONFIG_SMP
147 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
148#else
149 preempt_disable();
150 mnt->mnt_count += n;
151 preempt_enable();
152#endif
153}
154
155static inline void mnt_set_count(struct vfsmount *mnt, int n)
156{
157#ifdef CONFIG_SMP
158 this_cpu_write(mnt->mnt_pcp->mnt_count, n);
159#else
160 mnt->mnt_count = n;
161#endif
162}
163
164/*
165 * vfsmount lock must be held for read
166 */
167static inline void mnt_inc_count(struct vfsmount *mnt)
168{
169 mnt_add_count(mnt, 1);
170}
171
172/*
173 * vfsmount lock must be held for read
174 */
175static inline void mnt_dec_count(struct vfsmount *mnt)
176{
177 mnt_add_count(mnt, -1);
178}
179
180/*
181 * vfsmount lock must be held for write
182 */
183unsigned int mnt_get_count(struct vfsmount *mnt)
184{
185#ifdef CONFIG_SMP
f03c6599 186 unsigned int count = 0;
b3e19d92
NP
187 int cpu;
188
189 for_each_possible_cpu(cpu) {
190 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
191 }
192
193 return count;
194#else
195 return mnt->mnt_count;
196#endif
197}
198
1da177e4
LT
199struct vfsmount *alloc_vfsmnt(const char *name)
200{
c3762229 201 struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
1da177e4 202 if (mnt) {
73cd49ec
MS
203 int err;
204
205 err = mnt_alloc_id(mnt);
88b38782
LZ
206 if (err)
207 goto out_free_cache;
208
209 if (name) {
210 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
211 if (!mnt->mnt_devname)
212 goto out_free_id;
73cd49ec
MS
213 }
214
b3e19d92
NP
215#ifdef CONFIG_SMP
216 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
217 if (!mnt->mnt_pcp)
218 goto out_free_devname;
219
f03c6599 220 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92
NP
221#else
222 mnt->mnt_count = 1;
223 mnt->mnt_writers = 0;
224#endif
225
1da177e4
LT
226 INIT_LIST_HEAD(&mnt->mnt_hash);
227 INIT_LIST_HEAD(&mnt->mnt_child);
228 INIT_LIST_HEAD(&mnt->mnt_mounts);
229 INIT_LIST_HEAD(&mnt->mnt_list);
55e700b9 230 INIT_LIST_HEAD(&mnt->mnt_expire);
03e06e68 231 INIT_LIST_HEAD(&mnt->mnt_share);
a58b0eb8
RP
232 INIT_LIST_HEAD(&mnt->mnt_slave_list);
233 INIT_LIST_HEAD(&mnt->mnt_slave);
2504c5d6
AG
234#ifdef CONFIG_FSNOTIFY
235 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
d3ef3d73 236#endif
1da177e4
LT
237 }
238 return mnt;
88b38782 239
d3ef3d73
NP
240#ifdef CONFIG_SMP
241out_free_devname:
242 kfree(mnt->mnt_devname);
243#endif
88b38782
LZ
244out_free_id:
245 mnt_free_id(mnt);
246out_free_cache:
247 kmem_cache_free(mnt_cache, mnt);
248 return NULL;
1da177e4
LT
249}
250
3d733633
DH
251/*
252 * Most r/o checks on a fs are for operations that take
253 * discrete amounts of time, like a write() or unlink().
254 * We must keep track of when those operations start
255 * (for permission checks) and when they end, so that
256 * we can determine when writes are able to occur to
257 * a filesystem.
258 */
259/*
260 * __mnt_is_readonly: check whether a mount is read-only
261 * @mnt: the mount to check for its write status
262 *
263 * This shouldn't be used directly ouside of the VFS.
264 * It does not guarantee that the filesystem will stay
265 * r/w, just that it is right *now*. This can not and
266 * should not be used in place of IS_RDONLY(inode).
267 * mnt_want/drop_write() will _keep_ the filesystem
268 * r/w.
269 */
270int __mnt_is_readonly(struct vfsmount *mnt)
271{
2e4b7fcd
DH
272 if (mnt->mnt_flags & MNT_READONLY)
273 return 1;
274 if (mnt->mnt_sb->s_flags & MS_RDONLY)
275 return 1;
276 return 0;
3d733633
DH
277}
278EXPORT_SYMBOL_GPL(__mnt_is_readonly);
279
c6653a83 280static inline void mnt_inc_writers(struct vfsmount *mnt)
d3ef3d73
NP
281{
282#ifdef CONFIG_SMP
b3e19d92 283 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73
NP
284#else
285 mnt->mnt_writers++;
286#endif
287}
3d733633 288
c6653a83 289static inline void mnt_dec_writers(struct vfsmount *mnt)
3d733633 290{
d3ef3d73 291#ifdef CONFIG_SMP
b3e19d92 292 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73
NP
293#else
294 mnt->mnt_writers--;
295#endif
3d733633 296}
3d733633 297
c6653a83 298static unsigned int mnt_get_writers(struct vfsmount *mnt)
3d733633 299{
d3ef3d73
NP
300#ifdef CONFIG_SMP
301 unsigned int count = 0;
3d733633 302 int cpu;
3d733633
DH
303
304 for_each_possible_cpu(cpu) {
b3e19d92 305 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 306 }
3d733633 307
d3ef3d73
NP
308 return count;
309#else
310 return mnt->mnt_writers;
311#endif
3d733633
DH
312}
313
8366025e
DH
314/*
315 * Most r/o checks on a fs are for operations that take
316 * discrete amounts of time, like a write() or unlink().
317 * We must keep track of when those operations start
318 * (for permission checks) and when they end, so that
319 * we can determine when writes are able to occur to
320 * a filesystem.
321 */
322/**
323 * mnt_want_write - get write access to a mount
324 * @mnt: the mount on which to take a write
325 *
326 * This tells the low-level filesystem that a write is
327 * about to be performed to it, and makes sure that
328 * writes are allowed before returning success. When
329 * the write operation is finished, mnt_drop_write()
330 * must be called. This is effectively a refcount.
331 */
332int mnt_want_write(struct vfsmount *mnt)
333{
3d733633 334 int ret = 0;
3d733633 335
d3ef3d73 336 preempt_disable();
c6653a83 337 mnt_inc_writers(mnt);
d3ef3d73 338 /*
c6653a83 339 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73
NP
340 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
341 * incremented count after it has set MNT_WRITE_HOLD.
342 */
343 smp_mb();
344 while (mnt->mnt_flags & MNT_WRITE_HOLD)
345 cpu_relax();
346 /*
347 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
348 * be set to match its requirements. So we must not load that until
349 * MNT_WRITE_HOLD is cleared.
350 */
351 smp_rmb();
3d733633 352 if (__mnt_is_readonly(mnt)) {
c6653a83 353 mnt_dec_writers(mnt);
3d733633
DH
354 ret = -EROFS;
355 goto out;
356 }
3d733633 357out:
d3ef3d73 358 preempt_enable();
3d733633 359 return ret;
8366025e
DH
360}
361EXPORT_SYMBOL_GPL(mnt_want_write);
362
96029c4e
NP
363/**
364 * mnt_clone_write - get write access to a mount
365 * @mnt: the mount on which to take a write
366 *
367 * This is effectively like mnt_want_write, except
368 * it must only be used to take an extra write reference
369 * on a mountpoint that we already know has a write reference
370 * on it. This allows some optimisation.
371 *
372 * After finished, mnt_drop_write must be called as usual to
373 * drop the reference.
374 */
375int mnt_clone_write(struct vfsmount *mnt)
376{
377 /* superblock may be r/o */
378 if (__mnt_is_readonly(mnt))
379 return -EROFS;
380 preempt_disable();
c6653a83 381 mnt_inc_writers(mnt);
96029c4e
NP
382 preempt_enable();
383 return 0;
384}
385EXPORT_SYMBOL_GPL(mnt_clone_write);
386
387/**
388 * mnt_want_write_file - get write access to a file's mount
389 * @file: the file who's mount on which to take a write
390 *
391 * This is like mnt_want_write, but it takes a file and can
392 * do some optimisations if the file is open for write already
393 */
394int mnt_want_write_file(struct file *file)
395{
2d8dd38a
OH
396 struct inode *inode = file->f_dentry->d_inode;
397 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
96029c4e
NP
398 return mnt_want_write(file->f_path.mnt);
399 else
400 return mnt_clone_write(file->f_path.mnt);
401}
402EXPORT_SYMBOL_GPL(mnt_want_write_file);
403
8366025e
DH
404/**
405 * mnt_drop_write - give up write access to a mount
406 * @mnt: the mount on which to give up write access
407 *
408 * Tells the low-level filesystem that we are done
409 * performing writes to it. Must be matched with
410 * mnt_want_write() call above.
411 */
412void mnt_drop_write(struct vfsmount *mnt)
413{
d3ef3d73 414 preempt_disable();
c6653a83 415 mnt_dec_writers(mnt);
d3ef3d73 416 preempt_enable();
8366025e
DH
417}
418EXPORT_SYMBOL_GPL(mnt_drop_write);
419
2e4b7fcd 420static int mnt_make_readonly(struct vfsmount *mnt)
8366025e 421{
3d733633
DH
422 int ret = 0;
423
99b7db7b 424 br_write_lock(vfsmount_lock);
d3ef3d73 425 mnt->mnt_flags |= MNT_WRITE_HOLD;
3d733633 426 /*
d3ef3d73
NP
427 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
428 * should be visible before we do.
3d733633 429 */
d3ef3d73
NP
430 smp_mb();
431
3d733633 432 /*
d3ef3d73
NP
433 * With writers on hold, if this value is zero, then there are
434 * definitely no active writers (although held writers may subsequently
435 * increment the count, they'll have to wait, and decrement it after
436 * seeing MNT_READONLY).
437 *
438 * It is OK to have counter incremented on one CPU and decremented on
439 * another: the sum will add up correctly. The danger would be when we
440 * sum up each counter, if we read a counter before it is incremented,
441 * but then read another CPU's count which it has been subsequently
442 * decremented from -- we would see more decrements than we should.
443 * MNT_WRITE_HOLD protects against this scenario, because
444 * mnt_want_write first increments count, then smp_mb, then spins on
445 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
446 * we're counting up here.
3d733633 447 */
c6653a83 448 if (mnt_get_writers(mnt) > 0)
d3ef3d73
NP
449 ret = -EBUSY;
450 else
2e4b7fcd 451 mnt->mnt_flags |= MNT_READONLY;
d3ef3d73
NP
452 /*
453 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
454 * that become unheld will see MNT_READONLY.
455 */
456 smp_wmb();
457 mnt->mnt_flags &= ~MNT_WRITE_HOLD;
99b7db7b 458 br_write_unlock(vfsmount_lock);
3d733633 459 return ret;
8366025e 460}
8366025e 461
2e4b7fcd
DH
462static void __mnt_unmake_readonly(struct vfsmount *mnt)
463{
99b7db7b 464 br_write_lock(vfsmount_lock);
2e4b7fcd 465 mnt->mnt_flags &= ~MNT_READONLY;
99b7db7b 466 br_write_unlock(vfsmount_lock);
2e4b7fcd
DH
467}
468
1da177e4
LT
469void free_vfsmnt(struct vfsmount *mnt)
470{
471 kfree(mnt->mnt_devname);
73cd49ec 472 mnt_free_id(mnt);
d3ef3d73 473#ifdef CONFIG_SMP
b3e19d92 474 free_percpu(mnt->mnt_pcp);
d3ef3d73 475#endif
1da177e4
LT
476 kmem_cache_free(mnt_cache, mnt);
477}
478
479/*
a05964f3
RP
480 * find the first or last mount at @dentry on vfsmount @mnt depending on
481 * @dir. If @dir is set return the first mount else return the last mount.
99b7db7b 482 * vfsmount_lock must be held for read or write.
1da177e4 483 */
a05964f3
RP
484struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
485 int dir)
1da177e4 486{
b58fed8b
RP
487 struct list_head *head = mount_hashtable + hash(mnt, dentry);
488 struct list_head *tmp = head;
1da177e4
LT
489 struct vfsmount *p, *found = NULL;
490
1da177e4 491 for (;;) {
a05964f3 492 tmp = dir ? tmp->next : tmp->prev;
1da177e4
LT
493 p = NULL;
494 if (tmp == head)
495 break;
496 p = list_entry(tmp, struct vfsmount, mnt_hash);
497 if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
a05964f3 498 found = p;
1da177e4
LT
499 break;
500 }
501 }
1da177e4
LT
502 return found;
503}
504
a05964f3
RP
505/*
506 * lookup_mnt increments the ref count before returning
507 * the vfsmount struct.
508 */
1c755af4 509struct vfsmount *lookup_mnt(struct path *path)
a05964f3
RP
510{
511 struct vfsmount *child_mnt;
99b7db7b
NP
512
513 br_read_lock(vfsmount_lock);
1c755af4 514 if ((child_mnt = __lookup_mnt(path->mnt, path->dentry, 1)))
a05964f3 515 mntget(child_mnt);
99b7db7b 516 br_read_unlock(vfsmount_lock);
a05964f3
RP
517 return child_mnt;
518}
519
1da177e4
LT
520static inline int check_mnt(struct vfsmount *mnt)
521{
6b3286ed 522 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
523}
524
99b7db7b
NP
525/*
526 * vfsmount lock must be held for write
527 */
6b3286ed 528static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
529{
530 if (ns) {
531 ns->event = ++event;
532 wake_up_interruptible(&ns->poll);
533 }
534}
535
99b7db7b
NP
536/*
537 * vfsmount lock must be held for write
538 */
6b3286ed 539static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
540{
541 if (ns && ns->event != event) {
542 ns->event = event;
543 wake_up_interruptible(&ns->poll);
544 }
545}
546
5f57cbcc
NP
547/*
548 * Clear dentry's mounted state if it has no remaining mounts.
549 * vfsmount_lock must be held for write.
550 */
551static void dentry_reset_mounted(struct vfsmount *mnt, struct dentry *dentry)
552{
553 unsigned u;
554
555 for (u = 0; u < HASH_SIZE; u++) {
556 struct vfsmount *p;
557
558 list_for_each_entry(p, &mount_hashtable[u], mnt_hash) {
559 if (p->mnt_mountpoint == dentry)
560 return;
561 }
562 }
563 spin_lock(&dentry->d_lock);
564 dentry->d_flags &= ~DCACHE_MOUNTED;
565 spin_unlock(&dentry->d_lock);
566}
567
99b7db7b
NP
568/*
569 * vfsmount lock must be held for write
570 */
1a390689 571static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
1da177e4 572{
1a390689
AV
573 old_path->dentry = mnt->mnt_mountpoint;
574 old_path->mnt = mnt->mnt_parent;
1da177e4
LT
575 mnt->mnt_parent = mnt;
576 mnt->mnt_mountpoint = mnt->mnt_root;
577 list_del_init(&mnt->mnt_child);
578 list_del_init(&mnt->mnt_hash);
5f57cbcc 579 dentry_reset_mounted(old_path->mnt, old_path->dentry);
1da177e4
LT
580}
581
99b7db7b
NP
582/*
583 * vfsmount lock must be held for write
584 */
b90fa9ae
RP
585void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
586 struct vfsmount *child_mnt)
587{
588 child_mnt->mnt_parent = mntget(mnt);
589 child_mnt->mnt_mountpoint = dget(dentry);
5f57cbcc
NP
590 spin_lock(&dentry->d_lock);
591 dentry->d_flags |= DCACHE_MOUNTED;
592 spin_unlock(&dentry->d_lock);
b90fa9ae
RP
593}
594
99b7db7b
NP
595/*
596 * vfsmount lock must be held for write
597 */
1a390689 598static void attach_mnt(struct vfsmount *mnt, struct path *path)
1da177e4 599{
1a390689 600 mnt_set_mountpoint(path->mnt, path->dentry, mnt);
b90fa9ae 601 list_add_tail(&mnt->mnt_hash, mount_hashtable +
1a390689
AV
602 hash(path->mnt, path->dentry));
603 list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
b90fa9ae
RP
604}
605
7e3d0eb0
AV
606static inline void __mnt_make_longterm(struct vfsmount *mnt)
607{
608#ifdef CONFIG_SMP
609 atomic_inc(&mnt->mnt_longterm);
610#endif
611}
612
613/* needs vfsmount lock for write */
614static inline void __mnt_make_shortterm(struct vfsmount *mnt)
615{
616#ifdef CONFIG_SMP
617 atomic_dec(&mnt->mnt_longterm);
618#endif
619}
620
b90fa9ae 621/*
99b7db7b 622 * vfsmount lock must be held for write
b90fa9ae
RP
623 */
624static void commit_tree(struct vfsmount *mnt)
625{
626 struct vfsmount *parent = mnt->mnt_parent;
627 struct vfsmount *m;
628 LIST_HEAD(head);
6b3286ed 629 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae
RP
630
631 BUG_ON(parent == mnt);
632
633 list_add_tail(&head, &mnt->mnt_list);
f03c6599 634 list_for_each_entry(m, &head, mnt_list) {
6b3286ed 635 m->mnt_ns = n;
7e3d0eb0 636 __mnt_make_longterm(m);
f03c6599
AV
637 }
638
b90fa9ae
RP
639 list_splice(&head, n->list.prev);
640
641 list_add_tail(&mnt->mnt_hash, mount_hashtable +
642 hash(parent, mnt->mnt_mountpoint));
643 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
6b3286ed 644 touch_mnt_namespace(n);
1da177e4
LT
645}
646
647static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
648{
649 struct list_head *next = p->mnt_mounts.next;
650 if (next == &p->mnt_mounts) {
651 while (1) {
652 if (p == root)
653 return NULL;
654 next = p->mnt_child.next;
655 if (next != &p->mnt_parent->mnt_mounts)
656 break;
657 p = p->mnt_parent;
658 }
659 }
660 return list_entry(next, struct vfsmount, mnt_child);
661}
662
9676f0c6
RP
663static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
664{
665 struct list_head *prev = p->mnt_mounts.prev;
666 while (prev != &p->mnt_mounts) {
667 p = list_entry(prev, struct vfsmount, mnt_child);
668 prev = p->mnt_mounts.prev;
669 }
670 return p;
671}
672
36341f64
RP
673static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
674 int flag)
1da177e4
LT
675{
676 struct super_block *sb = old->mnt_sb;
677 struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
678
679 if (mnt) {
719f5d7f
MS
680 if (flag & (CL_SLAVE | CL_PRIVATE))
681 mnt->mnt_group_id = 0; /* not a peer of original */
682 else
683 mnt->mnt_group_id = old->mnt_group_id;
684
685 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
686 int err = mnt_alloc_group_id(mnt);
687 if (err)
688 goto out_free;
689 }
690
be1a16a0 691 mnt->mnt_flags = old->mnt_flags & ~MNT_WRITE_HOLD;
1da177e4
LT
692 atomic_inc(&sb->s_active);
693 mnt->mnt_sb = sb;
694 mnt->mnt_root = dget(root);
695 mnt->mnt_mountpoint = mnt->mnt_root;
696 mnt->mnt_parent = mnt;
b90fa9ae 697
5afe0022
RP
698 if (flag & CL_SLAVE) {
699 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
700 mnt->mnt_master = old;
701 CLEAR_MNT_SHARED(mnt);
8aec0809 702 } else if (!(flag & CL_PRIVATE)) {
796a6b52 703 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
5afe0022
RP
704 list_add(&mnt->mnt_share, &old->mnt_share);
705 if (IS_MNT_SLAVE(old))
706 list_add(&mnt->mnt_slave, &old->mnt_slave);
707 mnt->mnt_master = old->mnt_master;
708 }
b90fa9ae
RP
709 if (flag & CL_MAKE_SHARED)
710 set_mnt_shared(mnt);
1da177e4
LT
711
712 /* stick the duplicate mount on the same expiry list
713 * as the original if that was on one */
36341f64 714 if (flag & CL_EXPIRE) {
36341f64
RP
715 if (!list_empty(&old->mnt_expire))
716 list_add(&mnt->mnt_expire, &old->mnt_expire);
36341f64 717 }
1da177e4
LT
718 }
719 return mnt;
719f5d7f
MS
720
721 out_free:
722 free_vfsmnt(mnt);
723 return NULL;
1da177e4
LT
724}
725
b3e19d92 726static inline void mntfree(struct vfsmount *mnt)
1da177e4
LT
727{
728 struct super_block *sb = mnt->mnt_sb;
b3e19d92 729
3d733633
DH
730 /*
731 * This probably indicates that somebody messed
732 * up a mnt_want/drop_write() pair. If this
733 * happens, the filesystem was probably unable
734 * to make r/w->r/o transitions.
735 */
d3ef3d73 736 /*
b3e19d92
NP
737 * The locking used to deal with mnt_count decrement provides barriers,
738 * so mnt_get_writers() below is safe.
d3ef3d73 739 */
c6653a83 740 WARN_ON(mnt_get_writers(mnt));
ca9c726e 741 fsnotify_vfsmount_delete(mnt);
1da177e4
LT
742 dput(mnt->mnt_root);
743 free_vfsmnt(mnt);
744 deactivate_super(sb);
745}
746
f03c6599 747static void mntput_no_expire(struct vfsmount *mnt)
b3e19d92 748{
b3e19d92 749put_again:
f03c6599
AV
750#ifdef CONFIG_SMP
751 br_read_lock(vfsmount_lock);
752 if (likely(atomic_read(&mnt->mnt_longterm))) {
753 mnt_dec_count(mnt);
b3e19d92 754 br_read_unlock(vfsmount_lock);
f03c6599 755 return;
b3e19d92 756 }
f03c6599 757 br_read_unlock(vfsmount_lock);
b3e19d92 758
99b7db7b 759 br_write_lock(vfsmount_lock);
f03c6599 760 mnt_dec_count(mnt);
b3e19d92 761 if (mnt_get_count(mnt)) {
99b7db7b
NP
762 br_write_unlock(vfsmount_lock);
763 return;
764 }
b3e19d92 765#else
b3e19d92
NP
766 mnt_dec_count(mnt);
767 if (likely(mnt_get_count(mnt)))
99b7db7b 768 return;
b3e19d92 769 br_write_lock(vfsmount_lock);
f03c6599 770#endif
b3e19d92
NP
771 if (unlikely(mnt->mnt_pinned)) {
772 mnt_add_count(mnt, mnt->mnt_pinned + 1);
773 mnt->mnt_pinned = 0;
774 br_write_unlock(vfsmount_lock);
775 acct_auto_close_mnt(mnt);
776 goto put_again;
7b7b1ace 777 }
99b7db7b 778 br_write_unlock(vfsmount_lock);
b3e19d92
NP
779 mntfree(mnt);
780}
b3e19d92
NP
781
782void mntput(struct vfsmount *mnt)
783{
784 if (mnt) {
785 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
786 if (unlikely(mnt->mnt_expiry_mark))
787 mnt->mnt_expiry_mark = 0;
f03c6599 788 mntput_no_expire(mnt);
b3e19d92
NP
789 }
790}
791EXPORT_SYMBOL(mntput);
792
793struct vfsmount *mntget(struct vfsmount *mnt)
794{
795 if (mnt)
796 mnt_inc_count(mnt);
797 return mnt;
798}
799EXPORT_SYMBOL(mntget);
800
7b7b1ace
AV
801void mnt_pin(struct vfsmount *mnt)
802{
99b7db7b 803 br_write_lock(vfsmount_lock);
7b7b1ace 804 mnt->mnt_pinned++;
99b7db7b 805 br_write_unlock(vfsmount_lock);
7b7b1ace 806}
7b7b1ace
AV
807EXPORT_SYMBOL(mnt_pin);
808
809void mnt_unpin(struct vfsmount *mnt)
810{
99b7db7b 811 br_write_lock(vfsmount_lock);
7b7b1ace 812 if (mnt->mnt_pinned) {
b3e19d92 813 mnt_inc_count(mnt);
7b7b1ace
AV
814 mnt->mnt_pinned--;
815 }
99b7db7b 816 br_write_unlock(vfsmount_lock);
7b7b1ace 817}
7b7b1ace 818EXPORT_SYMBOL(mnt_unpin);
1da177e4 819
b3b304a2
MS
820static inline void mangle(struct seq_file *m, const char *s)
821{
822 seq_escape(m, s, " \t\n\\");
823}
824
825/*
826 * Simple .show_options callback for filesystems which don't want to
827 * implement more complex mount option showing.
828 *
829 * See also save_mount_options().
830 */
831int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
832{
2a32cebd
AV
833 const char *options;
834
835 rcu_read_lock();
836 options = rcu_dereference(mnt->mnt_sb->s_options);
b3b304a2
MS
837
838 if (options != NULL && options[0]) {
839 seq_putc(m, ',');
840 mangle(m, options);
841 }
2a32cebd 842 rcu_read_unlock();
b3b304a2
MS
843
844 return 0;
845}
846EXPORT_SYMBOL(generic_show_options);
847
848/*
849 * If filesystem uses generic_show_options(), this function should be
850 * called from the fill_super() callback.
851 *
852 * The .remount_fs callback usually needs to be handled in a special
853 * way, to make sure, that previous options are not overwritten if the
854 * remount fails.
855 *
856 * Also note, that if the filesystem's .remount_fs function doesn't
857 * reset all options to their default value, but changes only newly
858 * given options, then the displayed options will not reflect reality
859 * any more.
860 */
861void save_mount_options(struct super_block *sb, char *options)
862{
2a32cebd
AV
863 BUG_ON(sb->s_options);
864 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
b3b304a2
MS
865}
866EXPORT_SYMBOL(save_mount_options);
867
2a32cebd
AV
868void replace_mount_options(struct super_block *sb, char *options)
869{
870 char *old = sb->s_options;
871 rcu_assign_pointer(sb->s_options, options);
872 if (old) {
873 synchronize_rcu();
874 kfree(old);
875 }
876}
877EXPORT_SYMBOL(replace_mount_options);
878
a1a2c409 879#ifdef CONFIG_PROC_FS
1da177e4
LT
880/* iterator */
881static void *m_start(struct seq_file *m, loff_t *pos)
882{
a1a2c409 883 struct proc_mounts *p = m->private;
1da177e4 884
390c6843 885 down_read(&namespace_sem);
a1a2c409 886 return seq_list_start(&p->ns->list, *pos);
1da177e4
LT
887}
888
889static void *m_next(struct seq_file *m, void *v, loff_t *pos)
890{
a1a2c409 891 struct proc_mounts *p = m->private;
b0765fb8 892
a1a2c409 893 return seq_list_next(v, &p->ns->list, pos);
1da177e4
LT
894}
895
896static void m_stop(struct seq_file *m, void *v)
897{
390c6843 898 up_read(&namespace_sem);
1da177e4
LT
899}
900
9f5596af
AV
901int mnt_had_events(struct proc_mounts *p)
902{
903 struct mnt_namespace *ns = p->ns;
904 int res = 0;
905
99b7db7b 906 br_read_lock(vfsmount_lock);
9f5596af
AV
907 if (p->event != ns->event) {
908 p->event = ns->event;
909 res = 1;
910 }
99b7db7b 911 br_read_unlock(vfsmount_lock);
9f5596af
AV
912
913 return res;
914}
915
2d4d4864
RP
916struct proc_fs_info {
917 int flag;
918 const char *str;
919};
920
2069f457 921static int show_sb_opts(struct seq_file *m, struct super_block *sb)
1da177e4 922{
2d4d4864 923 static const struct proc_fs_info fs_info[] = {
1da177e4
LT
924 { MS_SYNCHRONOUS, ",sync" },
925 { MS_DIRSYNC, ",dirsync" },
926 { MS_MANDLOCK, ",mand" },
1da177e4
LT
927 { 0, NULL }
928 };
2d4d4864
RP
929 const struct proc_fs_info *fs_infop;
930
931 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
932 if (sb->s_flags & fs_infop->flag)
933 seq_puts(m, fs_infop->str);
934 }
2069f457
EP
935
936 return security_sb_show_options(m, sb);
2d4d4864
RP
937}
938
939static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
940{
941 static const struct proc_fs_info mnt_info[] = {
1da177e4
LT
942 { MNT_NOSUID, ",nosuid" },
943 { MNT_NODEV, ",nodev" },
944 { MNT_NOEXEC, ",noexec" },
fc33a7bb
CH
945 { MNT_NOATIME, ",noatime" },
946 { MNT_NODIRATIME, ",nodiratime" },
47ae32d6 947 { MNT_RELATIME, ",relatime" },
1da177e4
LT
948 { 0, NULL }
949 };
2d4d4864
RP
950 const struct proc_fs_info *fs_infop;
951
952 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
953 if (mnt->mnt_flags & fs_infop->flag)
954 seq_puts(m, fs_infop->str);
955 }
956}
957
958static void show_type(struct seq_file *m, struct super_block *sb)
959{
960 mangle(m, sb->s_type->name);
961 if (sb->s_subtype && sb->s_subtype[0]) {
962 seq_putc(m, '.');
963 mangle(m, sb->s_subtype);
964 }
965}
966
967static int show_vfsmnt(struct seq_file *m, void *v)
968{
969 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
970 int err = 0;
c32c2f63 971 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
1da177e4 972
c7f404b4
AV
973 if (mnt->mnt_sb->s_op->show_devname) {
974 err = mnt->mnt_sb->s_op->show_devname(m, mnt);
975 if (err)
976 goto out;
977 } else {
978 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
979 }
1da177e4 980 seq_putc(m, ' ');
c32c2f63 981 seq_path(m, &mnt_path, " \t\n\\");
1da177e4 982 seq_putc(m, ' ');
2d4d4864 983 show_type(m, mnt->mnt_sb);
2e4b7fcd 984 seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
2069f457
EP
985 err = show_sb_opts(m, mnt->mnt_sb);
986 if (err)
987 goto out;
2d4d4864 988 show_mnt_opts(m, mnt);
1da177e4
LT
989 if (mnt->mnt_sb->s_op->show_options)
990 err = mnt->mnt_sb->s_op->show_options(m, mnt);
991 seq_puts(m, " 0 0\n");
2069f457 992out:
1da177e4
LT
993 return err;
994}
995
a1a2c409 996const struct seq_operations mounts_op = {
1da177e4
LT
997 .start = m_start,
998 .next = m_next,
999 .stop = m_stop,
1000 .show = show_vfsmnt
1001};
1002
93f1c20b
AK
1003static int uuid_is_nil(u8 *uuid)
1004{
1005 int i;
1006 u8 *cp = (u8 *)uuid;
1007
1008 for (i = 0; i < 16; i++) {
1009 if (*cp++)
1010 return 0;
1011 }
1012 return 1;
1013}
1014
2d4d4864
RP
1015static int show_mountinfo(struct seq_file *m, void *v)
1016{
1017 struct proc_mounts *p = m->private;
1018 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
1019 struct super_block *sb = mnt->mnt_sb;
1020 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
1021 struct path root = p->root;
1022 int err = 0;
1023
1024 seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id,
1025 MAJOR(sb->s_dev), MINOR(sb->s_dev));
c7f404b4
AV
1026 if (sb->s_op->show_path)
1027 err = sb->s_op->show_path(m, mnt);
1028 else
1029 seq_dentry(m, mnt->mnt_root, " \t\n\\");
1030 if (err)
1031 goto out;
2d4d4864
RP
1032 seq_putc(m, ' ');
1033 seq_path_root(m, &mnt_path, &root, " \t\n\\");
1034 if (root.mnt != p->root.mnt || root.dentry != p->root.dentry) {
1035 /*
1036 * Mountpoint is outside root, discard that one. Ugly,
1037 * but less so than trying to do that in iterator in a
1038 * race-free way (due to renames).
1039 */
1040 return SEQ_SKIP;
1041 }
1042 seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
1043 show_mnt_opts(m, mnt);
1044
1045 /* Tagged fields ("foo:X" or "bar") */
1046 if (IS_MNT_SHARED(mnt))
1047 seq_printf(m, " shared:%i", mnt->mnt_group_id);
97e7e0f7
MS
1048 if (IS_MNT_SLAVE(mnt)) {
1049 int master = mnt->mnt_master->mnt_group_id;
1050 int dom = get_dominating_id(mnt, &p->root);
1051 seq_printf(m, " master:%i", master);
1052 if (dom && dom != master)
1053 seq_printf(m, " propagate_from:%i", dom);
1054 }
2d4d4864
RP
1055 if (IS_MNT_UNBINDABLE(mnt))
1056 seq_puts(m, " unbindable");
1057
93f1c20b
AK
1058 if (!uuid_is_nil(mnt->mnt_sb->s_uuid))
1059 /* print the uuid */
1060 seq_printf(m, " uuid:%pU", mnt->mnt_sb->s_uuid);
1061
2d4d4864
RP
1062 /* Filesystem specific data */
1063 seq_puts(m, " - ");
1064 show_type(m, sb);
1065 seq_putc(m, ' ');
c7f404b4
AV
1066 if (sb->s_op->show_devname)
1067 err = sb->s_op->show_devname(m, mnt);
1068 else
1069 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
1070 if (err)
1071 goto out;
2d4d4864 1072 seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
2069f457
EP
1073 err = show_sb_opts(m, sb);
1074 if (err)
1075 goto out;
2d4d4864
RP
1076 if (sb->s_op->show_options)
1077 err = sb->s_op->show_options(m, mnt);
1078 seq_putc(m, '\n');
2069f457 1079out:
2d4d4864
RP
1080 return err;
1081}
1082
1083const struct seq_operations mountinfo_op = {
1084 .start = m_start,
1085 .next = m_next,
1086 .stop = m_stop,
1087 .show = show_mountinfo,
1088};
1089
b4629fe2
CL
1090static int show_vfsstat(struct seq_file *m, void *v)
1091{
b0765fb8 1092 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
c32c2f63 1093 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
b4629fe2
CL
1094 int err = 0;
1095
1096 /* device */
c7f404b4
AV
1097 if (mnt->mnt_sb->s_op->show_devname) {
1098 err = mnt->mnt_sb->s_op->show_devname(m, mnt);
1099 } else {
1100 if (mnt->mnt_devname) {
1101 seq_puts(m, "device ");
1102 mangle(m, mnt->mnt_devname);
1103 } else
1104 seq_puts(m, "no device");
1105 }
b4629fe2
CL
1106
1107 /* mount point */
1108 seq_puts(m, " mounted on ");
c32c2f63 1109 seq_path(m, &mnt_path, " \t\n\\");
b4629fe2
CL
1110 seq_putc(m, ' ');
1111
1112 /* file system type */
1113 seq_puts(m, "with fstype ");
2d4d4864 1114 show_type(m, mnt->mnt_sb);
b4629fe2
CL
1115
1116 /* optional statistics */
1117 if (mnt->mnt_sb->s_op->show_stats) {
1118 seq_putc(m, ' ');
c7f404b4
AV
1119 if (!err)
1120 err = mnt->mnt_sb->s_op->show_stats(m, mnt);
b4629fe2
CL
1121 }
1122
1123 seq_putc(m, '\n');
1124 return err;
1125}
1126
a1a2c409 1127const struct seq_operations mountstats_op = {
b4629fe2
CL
1128 .start = m_start,
1129 .next = m_next,
1130 .stop = m_stop,
1131 .show = show_vfsstat,
1132};
a1a2c409 1133#endif /* CONFIG_PROC_FS */
b4629fe2 1134
1da177e4
LT
1135/**
1136 * may_umount_tree - check if a mount tree is busy
1137 * @mnt: root of mount tree
1138 *
1139 * This is called to check if a tree of mounts has any
1140 * open files, pwds, chroots or sub mounts that are
1141 * busy.
1142 */
1143int may_umount_tree(struct vfsmount *mnt)
1144{
36341f64
RP
1145 int actual_refs = 0;
1146 int minimum_refs = 0;
1147 struct vfsmount *p;
1da177e4 1148
b3e19d92
NP
1149 /* write lock needed for mnt_get_count */
1150 br_write_lock(vfsmount_lock);
36341f64 1151 for (p = mnt; p; p = next_mnt(p, mnt)) {
b3e19d92 1152 actual_refs += mnt_get_count(p);
1da177e4 1153 minimum_refs += 2;
1da177e4 1154 }
b3e19d92 1155 br_write_unlock(vfsmount_lock);
1da177e4
LT
1156
1157 if (actual_refs > minimum_refs)
e3474a8e 1158 return 0;
1da177e4 1159
e3474a8e 1160 return 1;
1da177e4
LT
1161}
1162
1163EXPORT_SYMBOL(may_umount_tree);
1164
1165/**
1166 * may_umount - check if a mount point is busy
1167 * @mnt: root of mount
1168 *
1169 * This is called to check if a mount point has any
1170 * open files, pwds, chroots or sub mounts. If the
1171 * mount has sub mounts this will return busy
1172 * regardless of whether the sub mounts are busy.
1173 *
1174 * Doesn't take quota and stuff into account. IOW, in some cases it will
1175 * give false negatives. The main reason why it's here is that we need
1176 * a non-destructive way to look for easily umountable filesystems.
1177 */
1178int may_umount(struct vfsmount *mnt)
1179{
e3474a8e 1180 int ret = 1;
8ad08d8a 1181 down_read(&namespace_sem);
b3e19d92 1182 br_write_lock(vfsmount_lock);
a05964f3 1183 if (propagate_mount_busy(mnt, 2))
e3474a8e 1184 ret = 0;
b3e19d92 1185 br_write_unlock(vfsmount_lock);
8ad08d8a 1186 up_read(&namespace_sem);
a05964f3 1187 return ret;
1da177e4
LT
1188}
1189
1190EXPORT_SYMBOL(may_umount);
1191
b90fa9ae 1192void release_mounts(struct list_head *head)
70fbcdf4
RP
1193{
1194 struct vfsmount *mnt;
bf066c7d 1195 while (!list_empty(head)) {
b5e61818 1196 mnt = list_first_entry(head, struct vfsmount, mnt_hash);
70fbcdf4
RP
1197 list_del_init(&mnt->mnt_hash);
1198 if (mnt->mnt_parent != mnt) {
1199 struct dentry *dentry;
1200 struct vfsmount *m;
99b7db7b
NP
1201
1202 br_write_lock(vfsmount_lock);
70fbcdf4
RP
1203 dentry = mnt->mnt_mountpoint;
1204 m = mnt->mnt_parent;
1205 mnt->mnt_mountpoint = mnt->mnt_root;
1206 mnt->mnt_parent = mnt;
7c4b93d8 1207 m->mnt_ghosts--;
99b7db7b 1208 br_write_unlock(vfsmount_lock);
70fbcdf4
RP
1209 dput(dentry);
1210 mntput(m);
1211 }
f03c6599 1212 mntput(mnt);
70fbcdf4
RP
1213 }
1214}
1215
99b7db7b
NP
1216/*
1217 * vfsmount lock must be held for write
1218 * namespace_sem must be held for write
1219 */
a05964f3 1220void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
1da177e4 1221{
7b8a53fd 1222 LIST_HEAD(tmp_list);
1da177e4 1223 struct vfsmount *p;
1da177e4 1224
1bfba4e8 1225 for (p = mnt; p; p = next_mnt(p, mnt))
7b8a53fd 1226 list_move(&p->mnt_hash, &tmp_list);
1da177e4 1227
a05964f3 1228 if (propagate)
7b8a53fd 1229 propagate_umount(&tmp_list);
a05964f3 1230
7b8a53fd 1231 list_for_each_entry(p, &tmp_list, mnt_hash) {
70fbcdf4
RP
1232 list_del_init(&p->mnt_expire);
1233 list_del_init(&p->mnt_list);
6b3286ed
KK
1234 __touch_mnt_namespace(p->mnt_ns);
1235 p->mnt_ns = NULL;
7e3d0eb0 1236 __mnt_make_shortterm(p);
70fbcdf4 1237 list_del_init(&p->mnt_child);
7c4b93d8
AV
1238 if (p->mnt_parent != p) {
1239 p->mnt_parent->mnt_ghosts++;
5f57cbcc 1240 dentry_reset_mounted(p->mnt_parent, p->mnt_mountpoint);
7c4b93d8 1241 }
a05964f3 1242 change_mnt_propagation(p, MS_PRIVATE);
1da177e4 1243 }
7b8a53fd 1244 list_splice(&tmp_list, kill);
1da177e4
LT
1245}
1246
c35038be
AV
1247static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
1248
1da177e4
LT
1249static int do_umount(struct vfsmount *mnt, int flags)
1250{
b58fed8b 1251 struct super_block *sb = mnt->mnt_sb;
1da177e4 1252 int retval;
70fbcdf4 1253 LIST_HEAD(umount_list);
1da177e4
LT
1254
1255 retval = security_sb_umount(mnt, flags);
1256 if (retval)
1257 return retval;
1258
1259 /*
1260 * Allow userspace to request a mountpoint be expired rather than
1261 * unmounting unconditionally. Unmount only happens if:
1262 * (1) the mark is already set (the mark is cleared by mntput())
1263 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1264 */
1265 if (flags & MNT_EXPIRE) {
6ac08c39 1266 if (mnt == current->fs->root.mnt ||
1da177e4
LT
1267 flags & (MNT_FORCE | MNT_DETACH))
1268 return -EINVAL;
1269
b3e19d92
NP
1270 /*
1271 * probably don't strictly need the lock here if we examined
1272 * all race cases, but it's a slowpath.
1273 */
1274 br_write_lock(vfsmount_lock);
1275 if (mnt_get_count(mnt) != 2) {
bf9faa2a 1276 br_write_unlock(vfsmount_lock);
1da177e4 1277 return -EBUSY;
b3e19d92
NP
1278 }
1279 br_write_unlock(vfsmount_lock);
1da177e4
LT
1280
1281 if (!xchg(&mnt->mnt_expiry_mark, 1))
1282 return -EAGAIN;
1283 }
1284
1285 /*
1286 * If we may have to abort operations to get out of this
1287 * mount, and they will themselves hold resources we must
1288 * allow the fs to do things. In the Unix tradition of
1289 * 'Gee thats tricky lets do it in userspace' the umount_begin
1290 * might fail to complete on the first run through as other tasks
1291 * must return, and the like. Thats for the mount program to worry
1292 * about for the moment.
1293 */
1294
42faad99 1295 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1296 sb->s_op->umount_begin(sb);
42faad99 1297 }
1da177e4
LT
1298
1299 /*
1300 * No sense to grab the lock for this test, but test itself looks
1301 * somewhat bogus. Suggestions for better replacement?
1302 * Ho-hum... In principle, we might treat that as umount + switch
1303 * to rootfs. GC would eventually take care of the old vfsmount.
1304 * Actually it makes sense, especially if rootfs would contain a
1305 * /reboot - static binary that would close all descriptors and
1306 * call reboot(9). Then init(8) could umount root and exec /reboot.
1307 */
6ac08c39 1308 if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1309 /*
1310 * Special case for "unmounting" root ...
1311 * we just try to remount it readonly.
1312 */
1313 down_write(&sb->s_umount);
4aa98cf7 1314 if (!(sb->s_flags & MS_RDONLY))
1da177e4 1315 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1da177e4
LT
1316 up_write(&sb->s_umount);
1317 return retval;
1318 }
1319
390c6843 1320 down_write(&namespace_sem);
99b7db7b 1321 br_write_lock(vfsmount_lock);
5addc5dd 1322 event++;
1da177e4 1323
c35038be
AV
1324 if (!(flags & MNT_DETACH))
1325 shrink_submounts(mnt, &umount_list);
1326
1da177e4 1327 retval = -EBUSY;
a05964f3 1328 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1da177e4 1329 if (!list_empty(&mnt->mnt_list))
a05964f3 1330 umount_tree(mnt, 1, &umount_list);
1da177e4
LT
1331 retval = 0;
1332 }
99b7db7b 1333 br_write_unlock(vfsmount_lock);
390c6843 1334 up_write(&namespace_sem);
70fbcdf4 1335 release_mounts(&umount_list);
1da177e4
LT
1336 return retval;
1337}
1338
1339/*
1340 * Now umount can handle mount points as well as block devices.
1341 * This is important for filesystems which use unnamed block devices.
1342 *
1343 * We now support a flag for forced unmount like the other 'big iron'
1344 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1345 */
1346
bdc480e3 1347SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1da177e4 1348{
2d8f3038 1349 struct path path;
1da177e4 1350 int retval;
db1f05bb 1351 int lookup_flags = 0;
1da177e4 1352
db1f05bb
MS
1353 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1354 return -EINVAL;
1355
1356 if (!(flags & UMOUNT_NOFOLLOW))
1357 lookup_flags |= LOOKUP_FOLLOW;
1358
1359 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1360 if (retval)
1361 goto out;
1362 retval = -EINVAL;
2d8f3038 1363 if (path.dentry != path.mnt->mnt_root)
1da177e4 1364 goto dput_and_out;
2d8f3038 1365 if (!check_mnt(path.mnt))
1da177e4
LT
1366 goto dput_and_out;
1367
1368 retval = -EPERM;
1369 if (!capable(CAP_SYS_ADMIN))
1370 goto dput_and_out;
1371
2d8f3038 1372 retval = do_umount(path.mnt, flags);
1da177e4 1373dput_and_out:
429731b1 1374 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038
AV
1375 dput(path.dentry);
1376 mntput_no_expire(path.mnt);
1da177e4
LT
1377out:
1378 return retval;
1379}
1380
1381#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1382
1383/*
b58fed8b 1384 * The 2.0 compatible umount. No flags.
1da177e4 1385 */
bdc480e3 1386SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1387{
b58fed8b 1388 return sys_umount(name, 0);
1da177e4
LT
1389}
1390
1391#endif
1392
2d92ab3c 1393static int mount_is_safe(struct path *path)
1da177e4
LT
1394{
1395 if (capable(CAP_SYS_ADMIN))
1396 return 0;
1397 return -EPERM;
1398#ifdef notyet
2d92ab3c 1399 if (S_ISLNK(path->dentry->d_inode->i_mode))
1da177e4 1400 return -EPERM;
2d92ab3c 1401 if (path->dentry->d_inode->i_mode & S_ISVTX) {
da9592ed 1402 if (current_uid() != path->dentry->d_inode->i_uid)
1da177e4
LT
1403 return -EPERM;
1404 }
2d92ab3c 1405 if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1da177e4
LT
1406 return -EPERM;
1407 return 0;
1408#endif
1409}
1410
b90fa9ae 1411struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
36341f64 1412 int flag)
1da177e4
LT
1413{
1414 struct vfsmount *res, *p, *q, *r, *s;
1a390689 1415 struct path path;
1da177e4 1416
9676f0c6
RP
1417 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1418 return NULL;
1419
36341f64 1420 res = q = clone_mnt(mnt, dentry, flag);
1da177e4
LT
1421 if (!q)
1422 goto Enomem;
1423 q->mnt_mountpoint = mnt->mnt_mountpoint;
1424
1425 p = mnt;
fdadd65f 1426 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
7ec02ef1 1427 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1428 continue;
1429
1430 for (s = r; s; s = next_mnt(s, r)) {
9676f0c6
RP
1431 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1432 s = skip_mnt_tree(s);
1433 continue;
1434 }
1da177e4
LT
1435 while (p != s->mnt_parent) {
1436 p = p->mnt_parent;
1437 q = q->mnt_parent;
1438 }
1439 p = s;
1a390689
AV
1440 path.mnt = q;
1441 path.dentry = p->mnt_mountpoint;
36341f64 1442 q = clone_mnt(p, p->mnt_root, flag);
1da177e4
LT
1443 if (!q)
1444 goto Enomem;
99b7db7b 1445 br_write_lock(vfsmount_lock);
1da177e4 1446 list_add_tail(&q->mnt_list, &res->mnt_list);
1a390689 1447 attach_mnt(q, &path);
99b7db7b 1448 br_write_unlock(vfsmount_lock);
1da177e4
LT
1449 }
1450 }
1451 return res;
b58fed8b 1452Enomem:
1da177e4 1453 if (res) {
70fbcdf4 1454 LIST_HEAD(umount_list);
99b7db7b 1455 br_write_lock(vfsmount_lock);
a05964f3 1456 umount_tree(res, 0, &umount_list);
99b7db7b 1457 br_write_unlock(vfsmount_lock);
70fbcdf4 1458 release_mounts(&umount_list);
1da177e4
LT
1459 }
1460 return NULL;
1461}
1462
589ff870 1463struct vfsmount *collect_mounts(struct path *path)
8aec0809
AV
1464{
1465 struct vfsmount *tree;
1a60a280 1466 down_write(&namespace_sem);
589ff870 1467 tree = copy_tree(path->mnt, path->dentry, CL_COPY_ALL | CL_PRIVATE);
1a60a280 1468 up_write(&namespace_sem);
8aec0809
AV
1469 return tree;
1470}
1471
1472void drop_collected_mounts(struct vfsmount *mnt)
1473{
1474 LIST_HEAD(umount_list);
1a60a280 1475 down_write(&namespace_sem);
99b7db7b 1476 br_write_lock(vfsmount_lock);
8aec0809 1477 umount_tree(mnt, 0, &umount_list);
99b7db7b 1478 br_write_unlock(vfsmount_lock);
1a60a280 1479 up_write(&namespace_sem);
8aec0809
AV
1480 release_mounts(&umount_list);
1481}
1482
1f707137
AV
1483int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1484 struct vfsmount *root)
1485{
1486 struct vfsmount *mnt;
1487 int res = f(root, arg);
1488 if (res)
1489 return res;
1490 list_for_each_entry(mnt, &root->mnt_list, mnt_list) {
1491 res = f(mnt, arg);
1492 if (res)
1493 return res;
1494 }
1495 return 0;
1496}
1497
719f5d7f
MS
1498static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end)
1499{
1500 struct vfsmount *p;
1501
1502 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1503 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1504 mnt_release_group_id(p);
1505 }
1506}
1507
1508static int invent_group_ids(struct vfsmount *mnt, bool recurse)
1509{
1510 struct vfsmount *p;
1511
1512 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1513 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1514 int err = mnt_alloc_group_id(p);
1515 if (err) {
1516 cleanup_group_ids(mnt, p);
1517 return err;
1518 }
1519 }
1520 }
1521
1522 return 0;
1523}
1524
b90fa9ae
RP
1525/*
1526 * @source_mnt : mount tree to be attached
21444403
RP
1527 * @nd : place the mount tree @source_mnt is attached
1528 * @parent_nd : if non-null, detach the source_mnt from its parent and
1529 * store the parent mount and mountpoint dentry.
1530 * (done when source_mnt is moved)
b90fa9ae
RP
1531 *
1532 * NOTE: in the table below explains the semantics when a source mount
1533 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1534 * ---------------------------------------------------------------------------
1535 * | BIND MOUNT OPERATION |
1536 * |**************************************************************************
1537 * | source-->| shared | private | slave | unbindable |
1538 * | dest | | | | |
1539 * | | | | | | |
1540 * | v | | | | |
1541 * |**************************************************************************
1542 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1543 * | | | | | |
1544 * |non-shared| shared (+) | private | slave (*) | invalid |
1545 * ***************************************************************************
b90fa9ae
RP
1546 * A bind operation clones the source mount and mounts the clone on the
1547 * destination mount.
1548 *
1549 * (++) the cloned mount is propagated to all the mounts in the propagation
1550 * tree of the destination mount and the cloned mount is added to
1551 * the peer group of the source mount.
1552 * (+) the cloned mount is created under the destination mount and is marked
1553 * as shared. The cloned mount is added to the peer group of the source
1554 * mount.
5afe0022
RP
1555 * (+++) the mount is propagated to all the mounts in the propagation tree
1556 * of the destination mount and the cloned mount is made slave
1557 * of the same master as that of the source mount. The cloned mount
1558 * is marked as 'shared and slave'.
1559 * (*) the cloned mount is made a slave of the same master as that of the
1560 * source mount.
1561 *
9676f0c6
RP
1562 * ---------------------------------------------------------------------------
1563 * | MOVE MOUNT OPERATION |
1564 * |**************************************************************************
1565 * | source-->| shared | private | slave | unbindable |
1566 * | dest | | | | |
1567 * | | | | | | |
1568 * | v | | | | |
1569 * |**************************************************************************
1570 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1571 * | | | | | |
1572 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1573 * ***************************************************************************
5afe0022
RP
1574 *
1575 * (+) the mount is moved to the destination. And is then propagated to
1576 * all the mounts in the propagation tree of the destination mount.
21444403 1577 * (+*) the mount is moved to the destination.
5afe0022
RP
1578 * (+++) the mount is moved to the destination and is then propagated to
1579 * all the mounts belonging to the destination mount's propagation tree.
1580 * the mount is marked as 'shared and slave'.
1581 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1582 *
1583 * if the source mount is a tree, the operations explained above is
1584 * applied to each mount in the tree.
1585 * Must be called without spinlocks held, since this function can sleep
1586 * in allocations.
1587 */
1588static int attach_recursive_mnt(struct vfsmount *source_mnt,
1a390689 1589 struct path *path, struct path *parent_path)
b90fa9ae
RP
1590{
1591 LIST_HEAD(tree_list);
1a390689
AV
1592 struct vfsmount *dest_mnt = path->mnt;
1593 struct dentry *dest_dentry = path->dentry;
b90fa9ae 1594 struct vfsmount *child, *p;
719f5d7f 1595 int err;
b90fa9ae 1596
719f5d7f
MS
1597 if (IS_MNT_SHARED(dest_mnt)) {
1598 err = invent_group_ids(source_mnt, true);
1599 if (err)
1600 goto out;
1601 }
1602 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
1603 if (err)
1604 goto out_cleanup_ids;
b90fa9ae 1605
99b7db7b 1606 br_write_lock(vfsmount_lock);
df1a1ad2 1607
b90fa9ae
RP
1608 if (IS_MNT_SHARED(dest_mnt)) {
1609 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1610 set_mnt_shared(p);
1611 }
1a390689
AV
1612 if (parent_path) {
1613 detach_mnt(source_mnt, parent_path);
1614 attach_mnt(source_mnt, path);
e5d67f07 1615 touch_mnt_namespace(parent_path->mnt->mnt_ns);
21444403
RP
1616 } else {
1617 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1618 commit_tree(source_mnt);
1619 }
b90fa9ae
RP
1620
1621 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1622 list_del_init(&child->mnt_hash);
1623 commit_tree(child);
1624 }
99b7db7b
NP
1625 br_write_unlock(vfsmount_lock);
1626
b90fa9ae 1627 return 0;
719f5d7f
MS
1628
1629 out_cleanup_ids:
1630 if (IS_MNT_SHARED(dest_mnt))
1631 cleanup_group_ids(source_mnt, NULL);
1632 out:
1633 return err;
b90fa9ae
RP
1634}
1635
8c3ee42e 1636static int graft_tree(struct vfsmount *mnt, struct path *path)
1da177e4
LT
1637{
1638 int err;
1639 if (mnt->mnt_sb->s_flags & MS_NOUSER)
1640 return -EINVAL;
1641
8c3ee42e 1642 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1da177e4
LT
1643 S_ISDIR(mnt->mnt_root->d_inode->i_mode))
1644 return -ENOTDIR;
1645
1646 err = -ENOENT;
8c3ee42e 1647 mutex_lock(&path->dentry->d_inode->i_mutex);
d83c49f3 1648 if (cant_mount(path->dentry))
1da177e4
LT
1649 goto out_unlock;
1650
f3da392e 1651 if (!d_unlinked(path->dentry))
8c3ee42e 1652 err = attach_recursive_mnt(mnt, path, NULL);
1da177e4 1653out_unlock:
8c3ee42e 1654 mutex_unlock(&path->dentry->d_inode->i_mutex);
1da177e4
LT
1655 return err;
1656}
1657
7a2e8a8f
VA
1658/*
1659 * Sanity check the flags to change_mnt_propagation.
1660 */
1661
1662static int flags_to_propagation_type(int flags)
1663{
1664 int type = flags & ~MS_REC;
1665
1666 /* Fail if any non-propagation flags are set */
1667 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1668 return 0;
1669 /* Only one propagation flag should be set */
1670 if (!is_power_of_2(type))
1671 return 0;
1672 return type;
1673}
1674
07b20889
RP
1675/*
1676 * recursively change the type of the mountpoint.
1677 */
0a0d8a46 1678static int do_change_type(struct path *path, int flag)
07b20889 1679{
2d92ab3c 1680 struct vfsmount *m, *mnt = path->mnt;
07b20889 1681 int recurse = flag & MS_REC;
7a2e8a8f 1682 int type;
719f5d7f 1683 int err = 0;
07b20889 1684
ee6f9582
MS
1685 if (!capable(CAP_SYS_ADMIN))
1686 return -EPERM;
1687
2d92ab3c 1688 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
1689 return -EINVAL;
1690
7a2e8a8f
VA
1691 type = flags_to_propagation_type(flag);
1692 if (!type)
1693 return -EINVAL;
1694
07b20889 1695 down_write(&namespace_sem);
719f5d7f
MS
1696 if (type == MS_SHARED) {
1697 err = invent_group_ids(mnt, recurse);
1698 if (err)
1699 goto out_unlock;
1700 }
1701
99b7db7b 1702 br_write_lock(vfsmount_lock);
07b20889
RP
1703 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1704 change_mnt_propagation(m, type);
99b7db7b 1705 br_write_unlock(vfsmount_lock);
719f5d7f
MS
1706
1707 out_unlock:
07b20889 1708 up_write(&namespace_sem);
719f5d7f 1709 return err;
07b20889
RP
1710}
1711
1da177e4
LT
1712/*
1713 * do loopback mount.
1714 */
0a0d8a46 1715static int do_loopback(struct path *path, char *old_name,
2dafe1c4 1716 int recurse)
1da177e4 1717{
2d92ab3c 1718 struct path old_path;
1da177e4 1719 struct vfsmount *mnt = NULL;
2d92ab3c 1720 int err = mount_is_safe(path);
1da177e4
LT
1721 if (err)
1722 return err;
1723 if (!old_name || !*old_name)
1724 return -EINVAL;
2d92ab3c 1725 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
1726 if (err)
1727 return err;
1728
390c6843 1729 down_write(&namespace_sem);
1da177e4 1730 err = -EINVAL;
2d92ab3c 1731 if (IS_MNT_UNBINDABLE(old_path.mnt))
4ac91378 1732 goto out;
9676f0c6 1733
2d92ab3c 1734 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
ccd48bc7 1735 goto out;
1da177e4 1736
ccd48bc7
AV
1737 err = -ENOMEM;
1738 if (recurse)
2d92ab3c 1739 mnt = copy_tree(old_path.mnt, old_path.dentry, 0);
ccd48bc7 1740 else
2d92ab3c 1741 mnt = clone_mnt(old_path.mnt, old_path.dentry, 0);
ccd48bc7
AV
1742
1743 if (!mnt)
1744 goto out;
1745
2d92ab3c 1746 err = graft_tree(mnt, path);
ccd48bc7 1747 if (err) {
70fbcdf4 1748 LIST_HEAD(umount_list);
99b7db7b
NP
1749
1750 br_write_lock(vfsmount_lock);
a05964f3 1751 umount_tree(mnt, 0, &umount_list);
99b7db7b 1752 br_write_unlock(vfsmount_lock);
70fbcdf4 1753 release_mounts(&umount_list);
5b83d2c5 1754 }
1da177e4 1755
ccd48bc7 1756out:
390c6843 1757 up_write(&namespace_sem);
2d92ab3c 1758 path_put(&old_path);
1da177e4
LT
1759 return err;
1760}
1761
2e4b7fcd
DH
1762static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1763{
1764 int error = 0;
1765 int readonly_request = 0;
1766
1767 if (ms_flags & MS_RDONLY)
1768 readonly_request = 1;
1769 if (readonly_request == __mnt_is_readonly(mnt))
1770 return 0;
1771
1772 if (readonly_request)
1773 error = mnt_make_readonly(mnt);
1774 else
1775 __mnt_unmake_readonly(mnt);
1776 return error;
1777}
1778
1da177e4
LT
1779/*
1780 * change filesystem flags. dir should be a physical root of filesystem.
1781 * If you've mounted a non-root directory somewhere and want to do remount
1782 * on it - tough luck.
1783 */
0a0d8a46 1784static int do_remount(struct path *path, int flags, int mnt_flags,
1da177e4
LT
1785 void *data)
1786{
1787 int err;
2d92ab3c 1788 struct super_block *sb = path->mnt->mnt_sb;
1da177e4
LT
1789
1790 if (!capable(CAP_SYS_ADMIN))
1791 return -EPERM;
1792
2d92ab3c 1793 if (!check_mnt(path->mnt))
1da177e4
LT
1794 return -EINVAL;
1795
2d92ab3c 1796 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
1797 return -EINVAL;
1798
ff36fe2c
EP
1799 err = security_sb_remount(sb, data);
1800 if (err)
1801 return err;
1802
1da177e4 1803 down_write(&sb->s_umount);
2e4b7fcd 1804 if (flags & MS_BIND)
2d92ab3c 1805 err = change_mount_flags(path->mnt, flags);
4aa98cf7 1806 else
2e4b7fcd 1807 err = do_remount_sb(sb, flags, data, 0);
7b43a79f 1808 if (!err) {
99b7db7b 1809 br_write_lock(vfsmount_lock);
495d6c9c 1810 mnt_flags |= path->mnt->mnt_flags & MNT_PROPAGATION_MASK;
2d92ab3c 1811 path->mnt->mnt_flags = mnt_flags;
99b7db7b 1812 br_write_unlock(vfsmount_lock);
7b43a79f 1813 }
1da177e4 1814 up_write(&sb->s_umount);
0e55a7cc 1815 if (!err) {
99b7db7b 1816 br_write_lock(vfsmount_lock);
0e55a7cc 1817 touch_mnt_namespace(path->mnt->mnt_ns);
99b7db7b 1818 br_write_unlock(vfsmount_lock);
0e55a7cc 1819 }
1da177e4
LT
1820 return err;
1821}
1822
9676f0c6
RP
1823static inline int tree_contains_unbindable(struct vfsmount *mnt)
1824{
1825 struct vfsmount *p;
1826 for (p = mnt; p; p = next_mnt(p, mnt)) {
1827 if (IS_MNT_UNBINDABLE(p))
1828 return 1;
1829 }
1830 return 0;
1831}
1832
0a0d8a46 1833static int do_move_mount(struct path *path, char *old_name)
1da177e4 1834{
2d92ab3c 1835 struct path old_path, parent_path;
1da177e4
LT
1836 struct vfsmount *p;
1837 int err = 0;
1838 if (!capable(CAP_SYS_ADMIN))
1839 return -EPERM;
1840 if (!old_name || !*old_name)
1841 return -EINVAL;
2d92ab3c 1842 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
1843 if (err)
1844 return err;
1845
390c6843 1846 down_write(&namespace_sem);
cc53ce53
DH
1847 err = follow_down(path, true);
1848 if (err < 0)
1849 goto out;
1850
1da177e4 1851 err = -EINVAL;
2d92ab3c 1852 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1da177e4
LT
1853 goto out;
1854
1855 err = -ENOENT;
2d92ab3c 1856 mutex_lock(&path->dentry->d_inode->i_mutex);
d83c49f3 1857 if (cant_mount(path->dentry))
1da177e4
LT
1858 goto out1;
1859
f3da392e 1860 if (d_unlinked(path->dentry))
21444403 1861 goto out1;
1da177e4
LT
1862
1863 err = -EINVAL;
2d92ab3c 1864 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 1865 goto out1;
1da177e4 1866
2d92ab3c 1867 if (old_path.mnt == old_path.mnt->mnt_parent)
21444403 1868 goto out1;
1da177e4 1869
2d92ab3c
AV
1870 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1871 S_ISDIR(old_path.dentry->d_inode->i_mode))
21444403
RP
1872 goto out1;
1873 /*
1874 * Don't move a mount residing in a shared parent.
1875 */
2d92ab3c
AV
1876 if (old_path.mnt->mnt_parent &&
1877 IS_MNT_SHARED(old_path.mnt->mnt_parent))
21444403 1878 goto out1;
9676f0c6
RP
1879 /*
1880 * Don't move a mount tree containing unbindable mounts to a destination
1881 * mount which is shared.
1882 */
2d92ab3c
AV
1883 if (IS_MNT_SHARED(path->mnt) &&
1884 tree_contains_unbindable(old_path.mnt))
9676f0c6 1885 goto out1;
1da177e4 1886 err = -ELOOP;
2d92ab3c
AV
1887 for (p = path->mnt; p->mnt_parent != p; p = p->mnt_parent)
1888 if (p == old_path.mnt)
21444403 1889 goto out1;
1da177e4 1890
2d92ab3c 1891 err = attach_recursive_mnt(old_path.mnt, path, &parent_path);
4ac91378 1892 if (err)
21444403 1893 goto out1;
1da177e4
LT
1894
1895 /* if the mount is moved, it should no longer be expire
1896 * automatically */
2d92ab3c 1897 list_del_init(&old_path.mnt->mnt_expire);
1da177e4 1898out1:
2d92ab3c 1899 mutex_unlock(&path->dentry->d_inode->i_mutex);
1da177e4 1900out:
390c6843 1901 up_write(&namespace_sem);
1da177e4 1902 if (!err)
1a390689 1903 path_put(&parent_path);
2d92ab3c 1904 path_put(&old_path);
1da177e4
LT
1905 return err;
1906}
1907
b1e75df4
AV
1908static int do_add_mount(struct vfsmount *, struct path *, int);
1909
1da177e4
LT
1910/*
1911 * create a new mount for userspace and request it to be added into the
1912 * namespace's tree
1913 */
0a0d8a46 1914static int do_new_mount(struct path *path, char *type, int flags,
1da177e4
LT
1915 int mnt_flags, char *name, void *data)
1916{
1917 struct vfsmount *mnt;
15f9a3f3 1918 int err;
1da177e4 1919
eca6f534 1920 if (!type)
1da177e4
LT
1921 return -EINVAL;
1922
1923 /* we need capabilities... */
1924 if (!capable(CAP_SYS_ADMIN))
1925 return -EPERM;
1926
1927 mnt = do_kern_mount(type, flags, name, data);
1928 if (IS_ERR(mnt))
1929 return PTR_ERR(mnt);
1930
15f9a3f3
AV
1931 err = do_add_mount(mnt, path, mnt_flags);
1932 if (err)
1933 mntput(mnt);
1934 return err;
1da177e4
LT
1935}
1936
19a167af
AV
1937int finish_automount(struct vfsmount *m, struct path *path)
1938{
1939 int err;
1940 /* The new mount record should have at least 2 refs to prevent it being
1941 * expired before we get a chance to add it
1942 */
1943 BUG_ON(mnt_get_count(m) < 2);
1944
1945 if (m->mnt_sb == path->mnt->mnt_sb &&
1946 m->mnt_root == path->dentry) {
b1e75df4
AV
1947 err = -ELOOP;
1948 goto fail;
19a167af
AV
1949 }
1950
19a167af 1951 err = do_add_mount(m, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
b1e75df4
AV
1952 if (!err)
1953 return 0;
1954fail:
1955 /* remove m from any expiration list it may be on */
1956 if (!list_empty(&m->mnt_expire)) {
1957 down_write(&namespace_sem);
1958 br_write_lock(vfsmount_lock);
1959 list_del_init(&m->mnt_expire);
1960 br_write_unlock(vfsmount_lock);
1961 up_write(&namespace_sem);
19a167af 1962 }
b1e75df4
AV
1963 mntput(m);
1964 mntput(m);
19a167af
AV
1965 return err;
1966}
1967
1da177e4
LT
1968/*
1969 * add a mount into a namespace's mount tree
1da177e4 1970 */
b1e75df4 1971static int do_add_mount(struct vfsmount *newmnt, struct path *path, int mnt_flags)
1da177e4
LT
1972{
1973 int err;
1974
8089352a 1975 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
27d55f1f 1976
390c6843 1977 down_write(&namespace_sem);
1da177e4 1978 /* Something was mounted here while we slept */
cc53ce53
DH
1979 err = follow_down(path, true);
1980 if (err < 0)
1981 goto unlock;
1982
1da177e4 1983 err = -EINVAL;
dd5cae6e 1984 if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(path->mnt))
1da177e4
LT
1985 goto unlock;
1986
1987 /* Refuse the same filesystem on the same mount point */
1988 err = -EBUSY;
8d66bf54
AV
1989 if (path->mnt->mnt_sb == newmnt->mnt_sb &&
1990 path->mnt->mnt_root == path->dentry)
1da177e4
LT
1991 goto unlock;
1992
1993 err = -EINVAL;
1994 if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1995 goto unlock;
1996
1997 newmnt->mnt_flags = mnt_flags;
b1e75df4 1998 err = graft_tree(newmnt, path);
1da177e4
LT
1999
2000unlock:
390c6843 2001 up_write(&namespace_sem);
1da177e4
LT
2002 return err;
2003}
2004
ea5b778a
DH
2005/**
2006 * mnt_set_expiry - Put a mount on an expiration list
2007 * @mnt: The mount to list.
2008 * @expiry_list: The list to add the mount to.
2009 */
2010void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2011{
2012 down_write(&namespace_sem);
2013 br_write_lock(vfsmount_lock);
2014
2015 list_add_tail(&mnt->mnt_expire, expiry_list);
2016
2017 br_write_unlock(vfsmount_lock);
2018 up_write(&namespace_sem);
2019}
2020EXPORT_SYMBOL(mnt_set_expiry);
2021
1da177e4
LT
2022/*
2023 * process a list of expirable mountpoints with the intent of discarding any
2024 * mountpoints that aren't in use and haven't been touched since last we came
2025 * here
2026 */
2027void mark_mounts_for_expiry(struct list_head *mounts)
2028{
1da177e4
LT
2029 struct vfsmount *mnt, *next;
2030 LIST_HEAD(graveyard);
bcc5c7d2 2031 LIST_HEAD(umounts);
1da177e4
LT
2032
2033 if (list_empty(mounts))
2034 return;
2035
bcc5c7d2 2036 down_write(&namespace_sem);
99b7db7b 2037 br_write_lock(vfsmount_lock);
1da177e4
LT
2038
2039 /* extract from the expiration list every vfsmount that matches the
2040 * following criteria:
2041 * - only referenced by its parent vfsmount
2042 * - still marked for expiry (marked on the last call here; marks are
2043 * cleared by mntput())
2044 */
55e700b9 2045 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1da177e4 2046 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
bcc5c7d2 2047 propagate_mount_busy(mnt, 1))
1da177e4 2048 continue;
55e700b9 2049 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 2050 }
bcc5c7d2
AV
2051 while (!list_empty(&graveyard)) {
2052 mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
2053 touch_mnt_namespace(mnt->mnt_ns);
2054 umount_tree(mnt, 1, &umounts);
2055 }
99b7db7b 2056 br_write_unlock(vfsmount_lock);
bcc5c7d2
AV
2057 up_write(&namespace_sem);
2058
2059 release_mounts(&umounts);
5528f911
TM
2060}
2061
2062EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2063
2064/*
2065 * Ripoff of 'select_parent()'
2066 *
2067 * search the list of submounts for a given mountpoint, and move any
2068 * shrinkable submounts to the 'graveyard' list.
2069 */
2070static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
2071{
2072 struct vfsmount *this_parent = parent;
2073 struct list_head *next;
2074 int found = 0;
2075
2076repeat:
2077 next = this_parent->mnt_mounts.next;
2078resume:
2079 while (next != &this_parent->mnt_mounts) {
2080 struct list_head *tmp = next;
2081 struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
2082
2083 next = tmp->next;
2084 if (!(mnt->mnt_flags & MNT_SHRINKABLE))
1da177e4 2085 continue;
5528f911
TM
2086 /*
2087 * Descend a level if the d_mounts list is non-empty.
2088 */
2089 if (!list_empty(&mnt->mnt_mounts)) {
2090 this_parent = mnt;
2091 goto repeat;
2092 }
1da177e4 2093
5528f911 2094 if (!propagate_mount_busy(mnt, 1)) {
5528f911
TM
2095 list_move_tail(&mnt->mnt_expire, graveyard);
2096 found++;
2097 }
1da177e4 2098 }
5528f911
TM
2099 /*
2100 * All done at this level ... ascend and resume the search
2101 */
2102 if (this_parent != parent) {
2103 next = this_parent->mnt_child.next;
2104 this_parent = this_parent->mnt_parent;
2105 goto resume;
2106 }
2107 return found;
2108}
2109
2110/*
2111 * process a list of expirable mountpoints with the intent of discarding any
2112 * submounts of a specific parent mountpoint
99b7db7b
NP
2113 *
2114 * vfsmount_lock must be held for write
5528f911 2115 */
c35038be 2116static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
5528f911
TM
2117{
2118 LIST_HEAD(graveyard);
c35038be 2119 struct vfsmount *m;
5528f911 2120
5528f911 2121 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 2122 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 2123 while (!list_empty(&graveyard)) {
c35038be 2124 m = list_first_entry(&graveyard, struct vfsmount,
bcc5c7d2 2125 mnt_expire);
afef80b3
EB
2126 touch_mnt_namespace(m->mnt_ns);
2127 umount_tree(m, 1, umounts);
bcc5c7d2
AV
2128 }
2129 }
1da177e4
LT
2130}
2131
1da177e4
LT
2132/*
2133 * Some copy_from_user() implementations do not return the exact number of
2134 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2135 * Note that this function differs from copy_from_user() in that it will oops
2136 * on bad values of `to', rather than returning a short copy.
2137 */
b58fed8b
RP
2138static long exact_copy_from_user(void *to, const void __user * from,
2139 unsigned long n)
1da177e4
LT
2140{
2141 char *t = to;
2142 const char __user *f = from;
2143 char c;
2144
2145 if (!access_ok(VERIFY_READ, from, n))
2146 return n;
2147
2148 while (n) {
2149 if (__get_user(c, f)) {
2150 memset(t, 0, n);
2151 break;
2152 }
2153 *t++ = c;
2154 f++;
2155 n--;
2156 }
2157 return n;
2158}
2159
b58fed8b 2160int copy_mount_options(const void __user * data, unsigned long *where)
1da177e4
LT
2161{
2162 int i;
2163 unsigned long page;
2164 unsigned long size;
b58fed8b 2165
1da177e4
LT
2166 *where = 0;
2167 if (!data)
2168 return 0;
2169
2170 if (!(page = __get_free_page(GFP_KERNEL)))
2171 return -ENOMEM;
2172
2173 /* We only care that *some* data at the address the user
2174 * gave us is valid. Just in case, we'll zero
2175 * the remainder of the page.
2176 */
2177 /* copy_from_user cannot cross TASK_SIZE ! */
2178 size = TASK_SIZE - (unsigned long)data;
2179 if (size > PAGE_SIZE)
2180 size = PAGE_SIZE;
2181
2182 i = size - exact_copy_from_user((void *)page, data, size);
2183 if (!i) {
b58fed8b 2184 free_page(page);
1da177e4
LT
2185 return -EFAULT;
2186 }
2187 if (i != PAGE_SIZE)
2188 memset((char *)page + i, 0, PAGE_SIZE - i);
2189 *where = page;
2190 return 0;
2191}
2192
eca6f534
VN
2193int copy_mount_string(const void __user *data, char **where)
2194{
2195 char *tmp;
2196
2197 if (!data) {
2198 *where = NULL;
2199 return 0;
2200 }
2201
2202 tmp = strndup_user(data, PAGE_SIZE);
2203 if (IS_ERR(tmp))
2204 return PTR_ERR(tmp);
2205
2206 *where = tmp;
2207 return 0;
2208}
2209
1da177e4
LT
2210/*
2211 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2212 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2213 *
2214 * data is a (void *) that can point to any structure up to
2215 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2216 * information (or be NULL).
2217 *
2218 * Pre-0.97 versions of mount() didn't have a flags word.
2219 * When the flags word was introduced its top half was required
2220 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2221 * Therefore, if this magic number is present, it carries no information
2222 * and must be discarded.
2223 */
b58fed8b 2224long do_mount(char *dev_name, char *dir_name, char *type_page,
1da177e4
LT
2225 unsigned long flags, void *data_page)
2226{
2d92ab3c 2227 struct path path;
1da177e4
LT
2228 int retval = 0;
2229 int mnt_flags = 0;
2230
2231 /* Discard magic */
2232 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2233 flags &= ~MS_MGC_MSK;
2234
2235 /* Basic sanity checks */
2236
2237 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2238 return -EINVAL;
1da177e4
LT
2239
2240 if (data_page)
2241 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2242
a27ab9f2
TH
2243 /* ... and get the mountpoint */
2244 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2245 if (retval)
2246 return retval;
2247
2248 retval = security_sb_mount(dev_name, &path,
2249 type_page, flags, data_page);
2250 if (retval)
2251 goto dput_out;
2252
613cbe3d
AK
2253 /* Default to relatime unless overriden */
2254 if (!(flags & MS_NOATIME))
2255 mnt_flags |= MNT_RELATIME;
0a1c01c9 2256
1da177e4
LT
2257 /* Separate the per-mountpoint flags */
2258 if (flags & MS_NOSUID)
2259 mnt_flags |= MNT_NOSUID;
2260 if (flags & MS_NODEV)
2261 mnt_flags |= MNT_NODEV;
2262 if (flags & MS_NOEXEC)
2263 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
2264 if (flags & MS_NOATIME)
2265 mnt_flags |= MNT_NOATIME;
2266 if (flags & MS_NODIRATIME)
2267 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
2268 if (flags & MS_STRICTATIME)
2269 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2e4b7fcd
DH
2270 if (flags & MS_RDONLY)
2271 mnt_flags |= MNT_READONLY;
fc33a7bb 2272
7a4dec53 2273 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
d0adde57
MG
2274 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2275 MS_STRICTATIME);
1da177e4 2276
1da177e4 2277 if (flags & MS_REMOUNT)
2d92ab3c 2278 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1da177e4
LT
2279 data_page);
2280 else if (flags & MS_BIND)
2d92ab3c 2281 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 2282 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 2283 retval = do_change_type(&path, flags);
1da177e4 2284 else if (flags & MS_MOVE)
2d92ab3c 2285 retval = do_move_mount(&path, dev_name);
1da177e4 2286 else
2d92ab3c 2287 retval = do_new_mount(&path, type_page, flags, mnt_flags,
1da177e4
LT
2288 dev_name, data_page);
2289dput_out:
2d92ab3c 2290 path_put(&path);
1da177e4
LT
2291 return retval;
2292}
2293
cf8d2c11
TM
2294static struct mnt_namespace *alloc_mnt_ns(void)
2295{
2296 struct mnt_namespace *new_ns;
2297
2298 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2299 if (!new_ns)
2300 return ERR_PTR(-ENOMEM);
2301 atomic_set(&new_ns->count, 1);
2302 new_ns->root = NULL;
2303 INIT_LIST_HEAD(&new_ns->list);
2304 init_waitqueue_head(&new_ns->poll);
2305 new_ns->event = 0;
2306 return new_ns;
2307}
2308
f03c6599
AV
2309void mnt_make_longterm(struct vfsmount *mnt)
2310{
7e3d0eb0 2311 __mnt_make_longterm(mnt);
f03c6599
AV
2312}
2313
2314void mnt_make_shortterm(struct vfsmount *mnt)
2315{
7e3d0eb0 2316#ifdef CONFIG_SMP
f03c6599
AV
2317 if (atomic_add_unless(&mnt->mnt_longterm, -1, 1))
2318 return;
2319 br_write_lock(vfsmount_lock);
2320 atomic_dec(&mnt->mnt_longterm);
2321 br_write_unlock(vfsmount_lock);
7e3d0eb0 2322#endif
f03c6599
AV
2323}
2324
741a2951
JD
2325/*
2326 * Allocate a new namespace structure and populate it with contents
2327 * copied from the namespace of the passed in task structure.
2328 */
e3222c4e 2329static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
6b3286ed 2330 struct fs_struct *fs)
1da177e4 2331{
6b3286ed 2332 struct mnt_namespace *new_ns;
7f2da1e7 2333 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
1da177e4
LT
2334 struct vfsmount *p, *q;
2335
cf8d2c11
TM
2336 new_ns = alloc_mnt_ns();
2337 if (IS_ERR(new_ns))
2338 return new_ns;
1da177e4 2339
390c6843 2340 down_write(&namespace_sem);
1da177e4 2341 /* First pass: copy the tree topology */
6b3286ed 2342 new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
9676f0c6 2343 CL_COPY_ALL | CL_EXPIRE);
1da177e4 2344 if (!new_ns->root) {
390c6843 2345 up_write(&namespace_sem);
1da177e4 2346 kfree(new_ns);
5cc4a034 2347 return ERR_PTR(-ENOMEM);
1da177e4 2348 }
99b7db7b 2349 br_write_lock(vfsmount_lock);
1da177e4 2350 list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
99b7db7b 2351 br_write_unlock(vfsmount_lock);
1da177e4
LT
2352
2353 /*
2354 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2355 * as belonging to new namespace. We have already acquired a private
2356 * fs_struct, so tsk->fs->lock is not needed.
2357 */
6b3286ed 2358 p = mnt_ns->root;
1da177e4
LT
2359 q = new_ns->root;
2360 while (p) {
6b3286ed 2361 q->mnt_ns = new_ns;
7e3d0eb0 2362 __mnt_make_longterm(q);
1da177e4 2363 if (fs) {
6ac08c39 2364 if (p == fs->root.mnt) {
f03c6599 2365 fs->root.mnt = mntget(q);
7e3d0eb0 2366 __mnt_make_longterm(q);
f03c6599 2367 mnt_make_shortterm(p);
1da177e4 2368 rootmnt = p;
1da177e4 2369 }
6ac08c39 2370 if (p == fs->pwd.mnt) {
f03c6599 2371 fs->pwd.mnt = mntget(q);
7e3d0eb0 2372 __mnt_make_longterm(q);
f03c6599 2373 mnt_make_shortterm(p);
1da177e4 2374 pwdmnt = p;
1da177e4 2375 }
1da177e4 2376 }
6b3286ed 2377 p = next_mnt(p, mnt_ns->root);
1da177e4
LT
2378 q = next_mnt(q, new_ns->root);
2379 }
390c6843 2380 up_write(&namespace_sem);
1da177e4 2381
1da177e4 2382 if (rootmnt)
f03c6599 2383 mntput(rootmnt);
1da177e4 2384 if (pwdmnt)
f03c6599 2385 mntput(pwdmnt);
1da177e4 2386
741a2951
JD
2387 return new_ns;
2388}
2389
213dd266 2390struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
e3222c4e 2391 struct fs_struct *new_fs)
741a2951 2392{
6b3286ed 2393 struct mnt_namespace *new_ns;
741a2951 2394
e3222c4e 2395 BUG_ON(!ns);
6b3286ed 2396 get_mnt_ns(ns);
741a2951
JD
2397
2398 if (!(flags & CLONE_NEWNS))
e3222c4e 2399 return ns;
741a2951 2400
e3222c4e 2401 new_ns = dup_mnt_ns(ns, new_fs);
741a2951 2402
6b3286ed 2403 put_mnt_ns(ns);
e3222c4e 2404 return new_ns;
1da177e4
LT
2405}
2406
cf8d2c11
TM
2407/**
2408 * create_mnt_ns - creates a private namespace and adds a root filesystem
2409 * @mnt: pointer to the new root filesystem mountpoint
2410 */
a2770d86 2411struct mnt_namespace *create_mnt_ns(struct vfsmount *mnt)
cf8d2c11
TM
2412{
2413 struct mnt_namespace *new_ns;
2414
2415 new_ns = alloc_mnt_ns();
2416 if (!IS_ERR(new_ns)) {
2417 mnt->mnt_ns = new_ns;
7e3d0eb0 2418 __mnt_make_longterm(mnt);
cf8d2c11
TM
2419 new_ns->root = mnt;
2420 list_add(&new_ns->list, &new_ns->root->mnt_list);
2421 }
2422 return new_ns;
2423}
a2770d86 2424EXPORT_SYMBOL(create_mnt_ns);
cf8d2c11 2425
bdc480e3
HC
2426SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2427 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4 2428{
eca6f534
VN
2429 int ret;
2430 char *kernel_type;
2431 char *kernel_dir;
2432 char *kernel_dev;
1da177e4 2433 unsigned long data_page;
1da177e4 2434
eca6f534
VN
2435 ret = copy_mount_string(type, &kernel_type);
2436 if (ret < 0)
2437 goto out_type;
1da177e4 2438
eca6f534
VN
2439 kernel_dir = getname(dir_name);
2440 if (IS_ERR(kernel_dir)) {
2441 ret = PTR_ERR(kernel_dir);
2442 goto out_dir;
2443 }
1da177e4 2444
eca6f534
VN
2445 ret = copy_mount_string(dev_name, &kernel_dev);
2446 if (ret < 0)
2447 goto out_dev;
1da177e4 2448
eca6f534
VN
2449 ret = copy_mount_options(data, &data_page);
2450 if (ret < 0)
2451 goto out_data;
1da177e4 2452
eca6f534
VN
2453 ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags,
2454 (void *) data_page);
1da177e4 2455
eca6f534
VN
2456 free_page(data_page);
2457out_data:
2458 kfree(kernel_dev);
2459out_dev:
2460 putname(kernel_dir);
2461out_dir:
2462 kfree(kernel_type);
2463out_type:
2464 return ret;
1da177e4
LT
2465}
2466
1da177e4
LT
2467/*
2468 * pivot_root Semantics:
2469 * Moves the root file system of the current process to the directory put_old,
2470 * makes new_root as the new root file system of the current process, and sets
2471 * root/cwd of all processes which had them on the current root to new_root.
2472 *
2473 * Restrictions:
2474 * The new_root and put_old must be directories, and must not be on the
2475 * same file system as the current process root. The put_old must be
2476 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2477 * pointed to by put_old must yield the same directory as new_root. No other
2478 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2479 *
4a0d11fa
NB
2480 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2481 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2482 * in this situation.
2483 *
1da177e4
LT
2484 * Notes:
2485 * - we don't move root/cwd if they are not at the root (reason: if something
2486 * cared enough to change them, it's probably wrong to force them elsewhere)
2487 * - it's okay to pick a root that isn't the root of a file system, e.g.
2488 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2489 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2490 * first.
2491 */
3480b257
HC
2492SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2493 const char __user *, put_old)
1da177e4
LT
2494{
2495 struct vfsmount *tmp;
2d8f3038 2496 struct path new, old, parent_path, root_parent, root;
1da177e4
LT
2497 int error;
2498
2499 if (!capable(CAP_SYS_ADMIN))
2500 return -EPERM;
2501
2d8f3038 2502 error = user_path_dir(new_root, &new);
1da177e4
LT
2503 if (error)
2504 goto out0;
2505 error = -EINVAL;
2d8f3038 2506 if (!check_mnt(new.mnt))
1da177e4
LT
2507 goto out1;
2508
2d8f3038 2509 error = user_path_dir(put_old, &old);
1da177e4
LT
2510 if (error)
2511 goto out1;
2512
2d8f3038 2513 error = security_sb_pivotroot(&old, &new);
1da177e4 2514 if (error) {
2d8f3038 2515 path_put(&old);
1da177e4
LT
2516 goto out1;
2517 }
2518
f7ad3c6b 2519 get_fs_root(current->fs, &root);
390c6843 2520 down_write(&namespace_sem);
2d8f3038 2521 mutex_lock(&old.dentry->d_inode->i_mutex);
1da177e4 2522 error = -EINVAL;
2d8f3038
AV
2523 if (IS_MNT_SHARED(old.mnt) ||
2524 IS_MNT_SHARED(new.mnt->mnt_parent) ||
8c3ee42e 2525 IS_MNT_SHARED(root.mnt->mnt_parent))
21444403 2526 goto out2;
8c3ee42e 2527 if (!check_mnt(root.mnt))
1da177e4
LT
2528 goto out2;
2529 error = -ENOENT;
d83c49f3 2530 if (cant_mount(old.dentry))
1da177e4 2531 goto out2;
f3da392e 2532 if (d_unlinked(new.dentry))
1da177e4 2533 goto out2;
f3da392e 2534 if (d_unlinked(old.dentry))
1da177e4
LT
2535 goto out2;
2536 error = -EBUSY;
2d8f3038
AV
2537 if (new.mnt == root.mnt ||
2538 old.mnt == root.mnt)
1da177e4
LT
2539 goto out2; /* loop, on the same file system */
2540 error = -EINVAL;
8c3ee42e 2541 if (root.mnt->mnt_root != root.dentry)
1da177e4 2542 goto out2; /* not a mountpoint */
8c3ee42e 2543 if (root.mnt->mnt_parent == root.mnt)
0bb6fcc1 2544 goto out2; /* not attached */
2d8f3038 2545 if (new.mnt->mnt_root != new.dentry)
1da177e4 2546 goto out2; /* not a mountpoint */
2d8f3038 2547 if (new.mnt->mnt_parent == new.mnt)
0bb6fcc1 2548 goto out2; /* not attached */
4ac91378 2549 /* make sure we can reach put_old from new_root */
2d8f3038 2550 tmp = old.mnt;
99b7db7b 2551 br_write_lock(vfsmount_lock);
2d8f3038 2552 if (tmp != new.mnt) {
1da177e4
LT
2553 for (;;) {
2554 if (tmp->mnt_parent == tmp)
2555 goto out3; /* already mounted on put_old */
2d8f3038 2556 if (tmp->mnt_parent == new.mnt)
1da177e4
LT
2557 break;
2558 tmp = tmp->mnt_parent;
2559 }
2d8f3038 2560 if (!is_subdir(tmp->mnt_mountpoint, new.dentry))
1da177e4 2561 goto out3;
2d8f3038 2562 } else if (!is_subdir(old.dentry, new.dentry))
1da177e4 2563 goto out3;
2d8f3038 2564 detach_mnt(new.mnt, &parent_path);
8c3ee42e 2565 detach_mnt(root.mnt, &root_parent);
4ac91378 2566 /* mount old root on put_old */
2d8f3038 2567 attach_mnt(root.mnt, &old);
4ac91378 2568 /* mount new_root on / */
2d8f3038 2569 attach_mnt(new.mnt, &root_parent);
6b3286ed 2570 touch_mnt_namespace(current->nsproxy->mnt_ns);
99b7db7b 2571 br_write_unlock(vfsmount_lock);
2d8f3038 2572 chroot_fs_refs(&root, &new);
b3e19d92 2573
1da177e4 2574 error = 0;
1a390689
AV
2575 path_put(&root_parent);
2576 path_put(&parent_path);
1da177e4 2577out2:
2d8f3038 2578 mutex_unlock(&old.dentry->d_inode->i_mutex);
390c6843 2579 up_write(&namespace_sem);
8c3ee42e 2580 path_put(&root);
2d8f3038 2581 path_put(&old);
1da177e4 2582out1:
2d8f3038 2583 path_put(&new);
1da177e4 2584out0:
1da177e4
LT
2585 return error;
2586out3:
99b7db7b 2587 br_write_unlock(vfsmount_lock);
1da177e4
LT
2588 goto out2;
2589}
2590
2591static void __init init_mount_tree(void)
2592{
2593 struct vfsmount *mnt;
6b3286ed 2594 struct mnt_namespace *ns;
ac748a09 2595 struct path root;
1da177e4
LT
2596
2597 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2598 if (IS_ERR(mnt))
2599 panic("Can't create rootfs");
b3e19d92 2600
3b22edc5
TM
2601 ns = create_mnt_ns(mnt);
2602 if (IS_ERR(ns))
1da177e4 2603 panic("Can't allocate initial namespace");
6b3286ed
KK
2604
2605 init_task.nsproxy->mnt_ns = ns;
2606 get_mnt_ns(ns);
2607
ac748a09
JB
2608 root.mnt = ns->root;
2609 root.dentry = ns->root->mnt_root;
2610
2611 set_fs_pwd(current->fs, &root);
2612 set_fs_root(current->fs, &root);
1da177e4
LT
2613}
2614
74bf17cf 2615void __init mnt_init(void)
1da177e4 2616{
13f14b4d 2617 unsigned u;
15a67dd8 2618 int err;
1da177e4 2619
390c6843
RP
2620 init_rwsem(&namespace_sem);
2621
1da177e4 2622 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
20c2df83 2623 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 2624
b58fed8b 2625 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
1da177e4
LT
2626
2627 if (!mount_hashtable)
2628 panic("Failed to allocate mount hash table\n");
2629
13f14b4d
ED
2630 printk("Mount-cache hash table entries: %lu\n", HASH_SIZE);
2631
2632 for (u = 0; u < HASH_SIZE; u++)
2633 INIT_LIST_HEAD(&mount_hashtable[u]);
1da177e4 2634
99b7db7b
NP
2635 br_lock_init(vfsmount_lock);
2636
15a67dd8
RD
2637 err = sysfs_init();
2638 if (err)
2639 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 2640 __func__, err);
00d26666
GKH
2641 fs_kobj = kobject_create_and_add("fs", NULL);
2642 if (!fs_kobj)
8e24eea7 2643 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
2644 init_rootfs();
2645 init_mount_tree();
2646}
2647
616511d0 2648void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 2649{
70fbcdf4 2650 LIST_HEAD(umount_list);
616511d0 2651
d498b25a 2652 if (!atomic_dec_and_test(&ns->count))
616511d0 2653 return;
390c6843 2654 down_write(&namespace_sem);
99b7db7b 2655 br_write_lock(vfsmount_lock);
d498b25a 2656 umount_tree(ns->root, 0, &umount_list);
99b7db7b 2657 br_write_unlock(vfsmount_lock);
390c6843 2658 up_write(&namespace_sem);
70fbcdf4 2659 release_mounts(&umount_list);
6b3286ed 2660 kfree(ns);
1da177e4 2661}
cf8d2c11 2662EXPORT_SYMBOL(put_mnt_ns);