]> git.ipfire.org Git - people/ms/linux.git/blob - block/blk-core.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[people/ms/linux.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/block.h>
39
40 #include "blk.h"
41 #include "blk-mq.h"
42
43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
47 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
48
49 DEFINE_IDA(blk_queue_ida);
50
51 /*
52 * For the allocated request tables
53 */
54 struct kmem_cache *request_cachep = NULL;
55
56 /*
57 * For queue allocation
58 */
59 struct kmem_cache *blk_requestq_cachep;
60
61 /*
62 * Controlling structure to kblockd
63 */
64 static struct workqueue_struct *kblockd_workqueue;
65
66 static void blk_clear_congested(struct request_list *rl, int sync)
67 {
68 #ifdef CONFIG_CGROUP_WRITEBACK
69 clear_wb_congested(rl->blkg->wb_congested, sync);
70 #else
71 /*
72 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
73 * flip its congestion state for events on other blkcgs.
74 */
75 if (rl == &rl->q->root_rl)
76 clear_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
77 #endif
78 }
79
80 static void blk_set_congested(struct request_list *rl, int sync)
81 {
82 #ifdef CONFIG_CGROUP_WRITEBACK
83 set_wb_congested(rl->blkg->wb_congested, sync);
84 #else
85 /* see blk_clear_congested() */
86 if (rl == &rl->q->root_rl)
87 set_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
88 #endif
89 }
90
91 void blk_queue_congestion_threshold(struct request_queue *q)
92 {
93 int nr;
94
95 nr = q->nr_requests - (q->nr_requests / 8) + 1;
96 if (nr > q->nr_requests)
97 nr = q->nr_requests;
98 q->nr_congestion_on = nr;
99
100 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
101 if (nr < 1)
102 nr = 1;
103 q->nr_congestion_off = nr;
104 }
105
106 /**
107 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
108 * @bdev: device
109 *
110 * Locates the passed device's request queue and returns the address of its
111 * backing_dev_info. This function can only be called if @bdev is opened
112 * and the return value is never NULL.
113 */
114 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
115 {
116 struct request_queue *q = bdev_get_queue(bdev);
117
118 return &q->backing_dev_info;
119 }
120 EXPORT_SYMBOL(blk_get_backing_dev_info);
121
122 void blk_rq_init(struct request_queue *q, struct request *rq)
123 {
124 memset(rq, 0, sizeof(*rq));
125
126 INIT_LIST_HEAD(&rq->queuelist);
127 INIT_LIST_HEAD(&rq->timeout_list);
128 rq->cpu = -1;
129 rq->q = q;
130 rq->__sector = (sector_t) -1;
131 INIT_HLIST_NODE(&rq->hash);
132 RB_CLEAR_NODE(&rq->rb_node);
133 rq->cmd = rq->__cmd;
134 rq->cmd_len = BLK_MAX_CDB;
135 rq->tag = -1;
136 rq->start_time = jiffies;
137 set_start_time_ns(rq);
138 rq->part = NULL;
139 }
140 EXPORT_SYMBOL(blk_rq_init);
141
142 static void req_bio_endio(struct request *rq, struct bio *bio,
143 unsigned int nbytes, int error)
144 {
145 if (error)
146 bio->bi_error = error;
147
148 if (unlikely(rq->cmd_flags & REQ_QUIET))
149 bio_set_flag(bio, BIO_QUIET);
150
151 bio_advance(bio, nbytes);
152
153 /* don't actually finish bio if it's part of flush sequence */
154 if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
155 bio_endio(bio);
156 }
157
158 void blk_dump_rq_flags(struct request *rq, char *msg)
159 {
160 int bit;
161
162 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
163 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
164 (unsigned long long) rq->cmd_flags);
165
166 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
167 (unsigned long long)blk_rq_pos(rq),
168 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
169 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
170 rq->bio, rq->biotail, blk_rq_bytes(rq));
171
172 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
173 printk(KERN_INFO " cdb: ");
174 for (bit = 0; bit < BLK_MAX_CDB; bit++)
175 printk("%02x ", rq->cmd[bit]);
176 printk("\n");
177 }
178 }
179 EXPORT_SYMBOL(blk_dump_rq_flags);
180
181 static void blk_delay_work(struct work_struct *work)
182 {
183 struct request_queue *q;
184
185 q = container_of(work, struct request_queue, delay_work.work);
186 spin_lock_irq(q->queue_lock);
187 __blk_run_queue(q);
188 spin_unlock_irq(q->queue_lock);
189 }
190
191 /**
192 * blk_delay_queue - restart queueing after defined interval
193 * @q: The &struct request_queue in question
194 * @msecs: Delay in msecs
195 *
196 * Description:
197 * Sometimes queueing needs to be postponed for a little while, to allow
198 * resources to come back. This function will make sure that queueing is
199 * restarted around the specified time. Queue lock must be held.
200 */
201 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
202 {
203 if (likely(!blk_queue_dead(q)))
204 queue_delayed_work(kblockd_workqueue, &q->delay_work,
205 msecs_to_jiffies(msecs));
206 }
207 EXPORT_SYMBOL(blk_delay_queue);
208
209 /**
210 * blk_start_queue - restart a previously stopped queue
211 * @q: The &struct request_queue in question
212 *
213 * Description:
214 * blk_start_queue() will clear the stop flag on the queue, and call
215 * the request_fn for the queue if it was in a stopped state when
216 * entered. Also see blk_stop_queue(). Queue lock must be held.
217 **/
218 void blk_start_queue(struct request_queue *q)
219 {
220 WARN_ON(!irqs_disabled());
221
222 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
223 __blk_run_queue(q);
224 }
225 EXPORT_SYMBOL(blk_start_queue);
226
227 /**
228 * blk_stop_queue - stop a queue
229 * @q: The &struct request_queue in question
230 *
231 * Description:
232 * The Linux block layer assumes that a block driver will consume all
233 * entries on the request queue when the request_fn strategy is called.
234 * Often this will not happen, because of hardware limitations (queue
235 * depth settings). If a device driver gets a 'queue full' response,
236 * or if it simply chooses not to queue more I/O at one point, it can
237 * call this function to prevent the request_fn from being called until
238 * the driver has signalled it's ready to go again. This happens by calling
239 * blk_start_queue() to restart queue operations. Queue lock must be held.
240 **/
241 void blk_stop_queue(struct request_queue *q)
242 {
243 cancel_delayed_work(&q->delay_work);
244 queue_flag_set(QUEUE_FLAG_STOPPED, q);
245 }
246 EXPORT_SYMBOL(blk_stop_queue);
247
248 /**
249 * blk_sync_queue - cancel any pending callbacks on a queue
250 * @q: the queue
251 *
252 * Description:
253 * The block layer may perform asynchronous callback activity
254 * on a queue, such as calling the unplug function after a timeout.
255 * A block device may call blk_sync_queue to ensure that any
256 * such activity is cancelled, thus allowing it to release resources
257 * that the callbacks might use. The caller must already have made sure
258 * that its ->make_request_fn will not re-add plugging prior to calling
259 * this function.
260 *
261 * This function does not cancel any asynchronous activity arising
262 * out of elevator or throttling code. That would require elevator_exit()
263 * and blkcg_exit_queue() to be called with queue lock initialized.
264 *
265 */
266 void blk_sync_queue(struct request_queue *q)
267 {
268 del_timer_sync(&q->timeout);
269
270 if (q->mq_ops) {
271 struct blk_mq_hw_ctx *hctx;
272 int i;
273
274 queue_for_each_hw_ctx(q, hctx, i) {
275 cancel_delayed_work_sync(&hctx->run_work);
276 cancel_delayed_work_sync(&hctx->delay_work);
277 }
278 } else {
279 cancel_delayed_work_sync(&q->delay_work);
280 }
281 }
282 EXPORT_SYMBOL(blk_sync_queue);
283
284 /**
285 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
286 * @q: The queue to run
287 *
288 * Description:
289 * Invoke request handling on a queue if there are any pending requests.
290 * May be used to restart request handling after a request has completed.
291 * This variant runs the queue whether or not the queue has been
292 * stopped. Must be called with the queue lock held and interrupts
293 * disabled. See also @blk_run_queue.
294 */
295 inline void __blk_run_queue_uncond(struct request_queue *q)
296 {
297 if (unlikely(blk_queue_dead(q)))
298 return;
299
300 /*
301 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
302 * the queue lock internally. As a result multiple threads may be
303 * running such a request function concurrently. Keep track of the
304 * number of active request_fn invocations such that blk_drain_queue()
305 * can wait until all these request_fn calls have finished.
306 */
307 q->request_fn_active++;
308 q->request_fn(q);
309 q->request_fn_active--;
310 }
311 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
312
313 /**
314 * __blk_run_queue - run a single device queue
315 * @q: The queue to run
316 *
317 * Description:
318 * See @blk_run_queue. This variant must be called with the queue lock
319 * held and interrupts disabled.
320 */
321 void __blk_run_queue(struct request_queue *q)
322 {
323 if (unlikely(blk_queue_stopped(q)))
324 return;
325
326 __blk_run_queue_uncond(q);
327 }
328 EXPORT_SYMBOL(__blk_run_queue);
329
330 /**
331 * blk_run_queue_async - run a single device queue in workqueue context
332 * @q: The queue to run
333 *
334 * Description:
335 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
336 * of us. The caller must hold the queue lock.
337 */
338 void blk_run_queue_async(struct request_queue *q)
339 {
340 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
341 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
342 }
343 EXPORT_SYMBOL(blk_run_queue_async);
344
345 /**
346 * blk_run_queue - run a single device queue
347 * @q: The queue to run
348 *
349 * Description:
350 * Invoke request handling on this queue, if it has pending work to do.
351 * May be used to restart queueing when a request has completed.
352 */
353 void blk_run_queue(struct request_queue *q)
354 {
355 unsigned long flags;
356
357 spin_lock_irqsave(q->queue_lock, flags);
358 __blk_run_queue(q);
359 spin_unlock_irqrestore(q->queue_lock, flags);
360 }
361 EXPORT_SYMBOL(blk_run_queue);
362
363 void blk_put_queue(struct request_queue *q)
364 {
365 kobject_put(&q->kobj);
366 }
367 EXPORT_SYMBOL(blk_put_queue);
368
369 /**
370 * __blk_drain_queue - drain requests from request_queue
371 * @q: queue to drain
372 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
373 *
374 * Drain requests from @q. If @drain_all is set, all requests are drained.
375 * If not, only ELVPRIV requests are drained. The caller is responsible
376 * for ensuring that no new requests which need to be drained are queued.
377 */
378 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
379 __releases(q->queue_lock)
380 __acquires(q->queue_lock)
381 {
382 int i;
383
384 lockdep_assert_held(q->queue_lock);
385
386 while (true) {
387 bool drain = false;
388
389 /*
390 * The caller might be trying to drain @q before its
391 * elevator is initialized.
392 */
393 if (q->elevator)
394 elv_drain_elevator(q);
395
396 blkcg_drain_queue(q);
397
398 /*
399 * This function might be called on a queue which failed
400 * driver init after queue creation or is not yet fully
401 * active yet. Some drivers (e.g. fd and loop) get unhappy
402 * in such cases. Kick queue iff dispatch queue has
403 * something on it and @q has request_fn set.
404 */
405 if (!list_empty(&q->queue_head) && q->request_fn)
406 __blk_run_queue(q);
407
408 drain |= q->nr_rqs_elvpriv;
409 drain |= q->request_fn_active;
410
411 /*
412 * Unfortunately, requests are queued at and tracked from
413 * multiple places and there's no single counter which can
414 * be drained. Check all the queues and counters.
415 */
416 if (drain_all) {
417 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
418 drain |= !list_empty(&q->queue_head);
419 for (i = 0; i < 2; i++) {
420 drain |= q->nr_rqs[i];
421 drain |= q->in_flight[i];
422 if (fq)
423 drain |= !list_empty(&fq->flush_queue[i]);
424 }
425 }
426
427 if (!drain)
428 break;
429
430 spin_unlock_irq(q->queue_lock);
431
432 msleep(10);
433
434 spin_lock_irq(q->queue_lock);
435 }
436
437 /*
438 * With queue marked dead, any woken up waiter will fail the
439 * allocation path, so the wakeup chaining is lost and we're
440 * left with hung waiters. We need to wake up those waiters.
441 */
442 if (q->request_fn) {
443 struct request_list *rl;
444
445 blk_queue_for_each_rl(rl, q)
446 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
447 wake_up_all(&rl->wait[i]);
448 }
449 }
450
451 /**
452 * blk_queue_bypass_start - enter queue bypass mode
453 * @q: queue of interest
454 *
455 * In bypass mode, only the dispatch FIFO queue of @q is used. This
456 * function makes @q enter bypass mode and drains all requests which were
457 * throttled or issued before. On return, it's guaranteed that no request
458 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
459 * inside queue or RCU read lock.
460 */
461 void blk_queue_bypass_start(struct request_queue *q)
462 {
463 spin_lock_irq(q->queue_lock);
464 q->bypass_depth++;
465 queue_flag_set(QUEUE_FLAG_BYPASS, q);
466 spin_unlock_irq(q->queue_lock);
467
468 /*
469 * Queues start drained. Skip actual draining till init is
470 * complete. This avoids lenghty delays during queue init which
471 * can happen many times during boot.
472 */
473 if (blk_queue_init_done(q)) {
474 spin_lock_irq(q->queue_lock);
475 __blk_drain_queue(q, false);
476 spin_unlock_irq(q->queue_lock);
477
478 /* ensure blk_queue_bypass() is %true inside RCU read lock */
479 synchronize_rcu();
480 }
481 }
482 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
483
484 /**
485 * blk_queue_bypass_end - leave queue bypass mode
486 * @q: queue of interest
487 *
488 * Leave bypass mode and restore the normal queueing behavior.
489 */
490 void blk_queue_bypass_end(struct request_queue *q)
491 {
492 spin_lock_irq(q->queue_lock);
493 if (!--q->bypass_depth)
494 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
495 WARN_ON_ONCE(q->bypass_depth < 0);
496 spin_unlock_irq(q->queue_lock);
497 }
498 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
499
500 void blk_set_queue_dying(struct request_queue *q)
501 {
502 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
503
504 if (q->mq_ops)
505 blk_mq_wake_waiters(q);
506 else {
507 struct request_list *rl;
508
509 blk_queue_for_each_rl(rl, q) {
510 if (rl->rq_pool) {
511 wake_up(&rl->wait[BLK_RW_SYNC]);
512 wake_up(&rl->wait[BLK_RW_ASYNC]);
513 }
514 }
515 }
516 }
517 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
518
519 /**
520 * blk_cleanup_queue - shutdown a request queue
521 * @q: request queue to shutdown
522 *
523 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
524 * put it. All future requests will be failed immediately with -ENODEV.
525 */
526 void blk_cleanup_queue(struct request_queue *q)
527 {
528 spinlock_t *lock = q->queue_lock;
529
530 /* mark @q DYING, no new request or merges will be allowed afterwards */
531 mutex_lock(&q->sysfs_lock);
532 blk_set_queue_dying(q);
533 spin_lock_irq(lock);
534
535 /*
536 * A dying queue is permanently in bypass mode till released. Note
537 * that, unlike blk_queue_bypass_start(), we aren't performing
538 * synchronize_rcu() after entering bypass mode to avoid the delay
539 * as some drivers create and destroy a lot of queues while
540 * probing. This is still safe because blk_release_queue() will be
541 * called only after the queue refcnt drops to zero and nothing,
542 * RCU or not, would be traversing the queue by then.
543 */
544 q->bypass_depth++;
545 queue_flag_set(QUEUE_FLAG_BYPASS, q);
546
547 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
548 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
549 queue_flag_set(QUEUE_FLAG_DYING, q);
550 spin_unlock_irq(lock);
551 mutex_unlock(&q->sysfs_lock);
552
553 /*
554 * Drain all requests queued before DYING marking. Set DEAD flag to
555 * prevent that q->request_fn() gets invoked after draining finished.
556 */
557 blk_freeze_queue(q);
558 spin_lock_irq(lock);
559 if (!q->mq_ops)
560 __blk_drain_queue(q, true);
561 queue_flag_set(QUEUE_FLAG_DEAD, q);
562 spin_unlock_irq(lock);
563
564 /* for synchronous bio-based driver finish in-flight integrity i/o */
565 blk_flush_integrity();
566
567 /* @q won't process any more request, flush async actions */
568 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
569 blk_sync_queue(q);
570
571 if (q->mq_ops)
572 blk_mq_free_queue(q);
573 percpu_ref_exit(&q->q_usage_counter);
574
575 spin_lock_irq(lock);
576 if (q->queue_lock != &q->__queue_lock)
577 q->queue_lock = &q->__queue_lock;
578 spin_unlock_irq(lock);
579
580 bdi_unregister(&q->backing_dev_info);
581
582 /* @q is and will stay empty, shutdown and put */
583 blk_put_queue(q);
584 }
585 EXPORT_SYMBOL(blk_cleanup_queue);
586
587 /* Allocate memory local to the request queue */
588 static void *alloc_request_struct(gfp_t gfp_mask, void *data)
589 {
590 int nid = (int)(long)data;
591 return kmem_cache_alloc_node(request_cachep, gfp_mask, nid);
592 }
593
594 static void free_request_struct(void *element, void *unused)
595 {
596 kmem_cache_free(request_cachep, element);
597 }
598
599 int blk_init_rl(struct request_list *rl, struct request_queue *q,
600 gfp_t gfp_mask)
601 {
602 if (unlikely(rl->rq_pool))
603 return 0;
604
605 rl->q = q;
606 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
607 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
608 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
609 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
610
611 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, alloc_request_struct,
612 free_request_struct,
613 (void *)(long)q->node, gfp_mask,
614 q->node);
615 if (!rl->rq_pool)
616 return -ENOMEM;
617
618 return 0;
619 }
620
621 void blk_exit_rl(struct request_list *rl)
622 {
623 if (rl->rq_pool)
624 mempool_destroy(rl->rq_pool);
625 }
626
627 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
628 {
629 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
630 }
631 EXPORT_SYMBOL(blk_alloc_queue);
632
633 int blk_queue_enter(struct request_queue *q, gfp_t gfp)
634 {
635 while (true) {
636 int ret;
637
638 if (percpu_ref_tryget_live(&q->q_usage_counter))
639 return 0;
640
641 if (!gfpflags_allow_blocking(gfp))
642 return -EBUSY;
643
644 ret = wait_event_interruptible(q->mq_freeze_wq,
645 !atomic_read(&q->mq_freeze_depth) ||
646 blk_queue_dying(q));
647 if (blk_queue_dying(q))
648 return -ENODEV;
649 if (ret)
650 return ret;
651 }
652 }
653
654 void blk_queue_exit(struct request_queue *q)
655 {
656 percpu_ref_put(&q->q_usage_counter);
657 }
658
659 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
660 {
661 struct request_queue *q =
662 container_of(ref, struct request_queue, q_usage_counter);
663
664 wake_up_all(&q->mq_freeze_wq);
665 }
666
667 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
668 {
669 struct request_queue *q;
670 int err;
671
672 q = kmem_cache_alloc_node(blk_requestq_cachep,
673 gfp_mask | __GFP_ZERO, node_id);
674 if (!q)
675 return NULL;
676
677 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
678 if (q->id < 0)
679 goto fail_q;
680
681 q->bio_split = bioset_create(BIO_POOL_SIZE, 0);
682 if (!q->bio_split)
683 goto fail_id;
684
685 q->backing_dev_info.ra_pages =
686 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
687 q->backing_dev_info.capabilities = BDI_CAP_CGROUP_WRITEBACK;
688 q->backing_dev_info.name = "block";
689 q->node = node_id;
690
691 err = bdi_init(&q->backing_dev_info);
692 if (err)
693 goto fail_split;
694
695 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
696 laptop_mode_timer_fn, (unsigned long) q);
697 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
698 INIT_LIST_HEAD(&q->queue_head);
699 INIT_LIST_HEAD(&q->timeout_list);
700 INIT_LIST_HEAD(&q->icq_list);
701 #ifdef CONFIG_BLK_CGROUP
702 INIT_LIST_HEAD(&q->blkg_list);
703 #endif
704 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
705
706 kobject_init(&q->kobj, &blk_queue_ktype);
707
708 mutex_init(&q->sysfs_lock);
709 spin_lock_init(&q->__queue_lock);
710
711 /*
712 * By default initialize queue_lock to internal lock and driver can
713 * override it later if need be.
714 */
715 q->queue_lock = &q->__queue_lock;
716
717 /*
718 * A queue starts its life with bypass turned on to avoid
719 * unnecessary bypass on/off overhead and nasty surprises during
720 * init. The initial bypass will be finished when the queue is
721 * registered by blk_register_queue().
722 */
723 q->bypass_depth = 1;
724 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
725
726 init_waitqueue_head(&q->mq_freeze_wq);
727
728 /*
729 * Init percpu_ref in atomic mode so that it's faster to shutdown.
730 * See blk_register_queue() for details.
731 */
732 if (percpu_ref_init(&q->q_usage_counter,
733 blk_queue_usage_counter_release,
734 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
735 goto fail_bdi;
736
737 if (blkcg_init_queue(q))
738 goto fail_ref;
739
740 return q;
741
742 fail_ref:
743 percpu_ref_exit(&q->q_usage_counter);
744 fail_bdi:
745 bdi_destroy(&q->backing_dev_info);
746 fail_split:
747 bioset_free(q->bio_split);
748 fail_id:
749 ida_simple_remove(&blk_queue_ida, q->id);
750 fail_q:
751 kmem_cache_free(blk_requestq_cachep, q);
752 return NULL;
753 }
754 EXPORT_SYMBOL(blk_alloc_queue_node);
755
756 /**
757 * blk_init_queue - prepare a request queue for use with a block device
758 * @rfn: The function to be called to process requests that have been
759 * placed on the queue.
760 * @lock: Request queue spin lock
761 *
762 * Description:
763 * If a block device wishes to use the standard request handling procedures,
764 * which sorts requests and coalesces adjacent requests, then it must
765 * call blk_init_queue(). The function @rfn will be called when there
766 * are requests on the queue that need to be processed. If the device
767 * supports plugging, then @rfn may not be called immediately when requests
768 * are available on the queue, but may be called at some time later instead.
769 * Plugged queues are generally unplugged when a buffer belonging to one
770 * of the requests on the queue is needed, or due to memory pressure.
771 *
772 * @rfn is not required, or even expected, to remove all requests off the
773 * queue, but only as many as it can handle at a time. If it does leave
774 * requests on the queue, it is responsible for arranging that the requests
775 * get dealt with eventually.
776 *
777 * The queue spin lock must be held while manipulating the requests on the
778 * request queue; this lock will be taken also from interrupt context, so irq
779 * disabling is needed for it.
780 *
781 * Function returns a pointer to the initialized request queue, or %NULL if
782 * it didn't succeed.
783 *
784 * Note:
785 * blk_init_queue() must be paired with a blk_cleanup_queue() call
786 * when the block device is deactivated (such as at module unload).
787 **/
788
789 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
790 {
791 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
792 }
793 EXPORT_SYMBOL(blk_init_queue);
794
795 struct request_queue *
796 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
797 {
798 struct request_queue *uninit_q, *q;
799
800 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
801 if (!uninit_q)
802 return NULL;
803
804 q = blk_init_allocated_queue(uninit_q, rfn, lock);
805 if (!q)
806 blk_cleanup_queue(uninit_q);
807
808 return q;
809 }
810 EXPORT_SYMBOL(blk_init_queue_node);
811
812 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
813
814 struct request_queue *
815 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
816 spinlock_t *lock)
817 {
818 if (!q)
819 return NULL;
820
821 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0);
822 if (!q->fq)
823 return NULL;
824
825 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
826 goto fail;
827
828 q->request_fn = rfn;
829 q->prep_rq_fn = NULL;
830 q->unprep_rq_fn = NULL;
831 q->queue_flags |= QUEUE_FLAG_DEFAULT;
832
833 /* Override internal queue lock with supplied lock pointer */
834 if (lock)
835 q->queue_lock = lock;
836
837 /*
838 * This also sets hw/phys segments, boundary and size
839 */
840 blk_queue_make_request(q, blk_queue_bio);
841
842 q->sg_reserved_size = INT_MAX;
843
844 /* Protect q->elevator from elevator_change */
845 mutex_lock(&q->sysfs_lock);
846
847 /* init elevator */
848 if (elevator_init(q, NULL)) {
849 mutex_unlock(&q->sysfs_lock);
850 goto fail;
851 }
852
853 mutex_unlock(&q->sysfs_lock);
854
855 return q;
856
857 fail:
858 blk_free_flush_queue(q->fq);
859 return NULL;
860 }
861 EXPORT_SYMBOL(blk_init_allocated_queue);
862
863 bool blk_get_queue(struct request_queue *q)
864 {
865 if (likely(!blk_queue_dying(q))) {
866 __blk_get_queue(q);
867 return true;
868 }
869
870 return false;
871 }
872 EXPORT_SYMBOL(blk_get_queue);
873
874 static inline void blk_free_request(struct request_list *rl, struct request *rq)
875 {
876 if (rq->cmd_flags & REQ_ELVPRIV) {
877 elv_put_request(rl->q, rq);
878 if (rq->elv.icq)
879 put_io_context(rq->elv.icq->ioc);
880 }
881
882 mempool_free(rq, rl->rq_pool);
883 }
884
885 /*
886 * ioc_batching returns true if the ioc is a valid batching request and
887 * should be given priority access to a request.
888 */
889 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
890 {
891 if (!ioc)
892 return 0;
893
894 /*
895 * Make sure the process is able to allocate at least 1 request
896 * even if the batch times out, otherwise we could theoretically
897 * lose wakeups.
898 */
899 return ioc->nr_batch_requests == q->nr_batching ||
900 (ioc->nr_batch_requests > 0
901 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
902 }
903
904 /*
905 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
906 * will cause the process to be a "batcher" on all queues in the system. This
907 * is the behaviour we want though - once it gets a wakeup it should be given
908 * a nice run.
909 */
910 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
911 {
912 if (!ioc || ioc_batching(q, ioc))
913 return;
914
915 ioc->nr_batch_requests = q->nr_batching;
916 ioc->last_waited = jiffies;
917 }
918
919 static void __freed_request(struct request_list *rl, int sync)
920 {
921 struct request_queue *q = rl->q;
922
923 if (rl->count[sync] < queue_congestion_off_threshold(q))
924 blk_clear_congested(rl, sync);
925
926 if (rl->count[sync] + 1 <= q->nr_requests) {
927 if (waitqueue_active(&rl->wait[sync]))
928 wake_up(&rl->wait[sync]);
929
930 blk_clear_rl_full(rl, sync);
931 }
932 }
933
934 /*
935 * A request has just been released. Account for it, update the full and
936 * congestion status, wake up any waiters. Called under q->queue_lock.
937 */
938 static void freed_request(struct request_list *rl, unsigned int flags)
939 {
940 struct request_queue *q = rl->q;
941 int sync = rw_is_sync(flags);
942
943 q->nr_rqs[sync]--;
944 rl->count[sync]--;
945 if (flags & REQ_ELVPRIV)
946 q->nr_rqs_elvpriv--;
947
948 __freed_request(rl, sync);
949
950 if (unlikely(rl->starved[sync ^ 1]))
951 __freed_request(rl, sync ^ 1);
952 }
953
954 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
955 {
956 struct request_list *rl;
957 int on_thresh, off_thresh;
958
959 spin_lock_irq(q->queue_lock);
960 q->nr_requests = nr;
961 blk_queue_congestion_threshold(q);
962 on_thresh = queue_congestion_on_threshold(q);
963 off_thresh = queue_congestion_off_threshold(q);
964
965 blk_queue_for_each_rl(rl, q) {
966 if (rl->count[BLK_RW_SYNC] >= on_thresh)
967 blk_set_congested(rl, BLK_RW_SYNC);
968 else if (rl->count[BLK_RW_SYNC] < off_thresh)
969 blk_clear_congested(rl, BLK_RW_SYNC);
970
971 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
972 blk_set_congested(rl, BLK_RW_ASYNC);
973 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
974 blk_clear_congested(rl, BLK_RW_ASYNC);
975
976 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
977 blk_set_rl_full(rl, BLK_RW_SYNC);
978 } else {
979 blk_clear_rl_full(rl, BLK_RW_SYNC);
980 wake_up(&rl->wait[BLK_RW_SYNC]);
981 }
982
983 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
984 blk_set_rl_full(rl, BLK_RW_ASYNC);
985 } else {
986 blk_clear_rl_full(rl, BLK_RW_ASYNC);
987 wake_up(&rl->wait[BLK_RW_ASYNC]);
988 }
989 }
990
991 spin_unlock_irq(q->queue_lock);
992 return 0;
993 }
994
995 /*
996 * Determine if elevator data should be initialized when allocating the
997 * request associated with @bio.
998 */
999 static bool blk_rq_should_init_elevator(struct bio *bio)
1000 {
1001 if (!bio)
1002 return true;
1003
1004 /*
1005 * Flush requests do not use the elevator so skip initialization.
1006 * This allows a request to share the flush and elevator data.
1007 */
1008 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
1009 return false;
1010
1011 return true;
1012 }
1013
1014 /**
1015 * rq_ioc - determine io_context for request allocation
1016 * @bio: request being allocated is for this bio (can be %NULL)
1017 *
1018 * Determine io_context to use for request allocation for @bio. May return
1019 * %NULL if %current->io_context doesn't exist.
1020 */
1021 static struct io_context *rq_ioc(struct bio *bio)
1022 {
1023 #ifdef CONFIG_BLK_CGROUP
1024 if (bio && bio->bi_ioc)
1025 return bio->bi_ioc;
1026 #endif
1027 return current->io_context;
1028 }
1029
1030 /**
1031 * __get_request - get a free request
1032 * @rl: request list to allocate from
1033 * @rw_flags: RW and SYNC flags
1034 * @bio: bio to allocate request for (can be %NULL)
1035 * @gfp_mask: allocation mask
1036 *
1037 * Get a free request from @q. This function may fail under memory
1038 * pressure or if @q is dead.
1039 *
1040 * Must be called with @q->queue_lock held and,
1041 * Returns ERR_PTR on failure, with @q->queue_lock held.
1042 * Returns request pointer on success, with @q->queue_lock *not held*.
1043 */
1044 static struct request *__get_request(struct request_list *rl, int rw_flags,
1045 struct bio *bio, gfp_t gfp_mask)
1046 {
1047 struct request_queue *q = rl->q;
1048 struct request *rq;
1049 struct elevator_type *et = q->elevator->type;
1050 struct io_context *ioc = rq_ioc(bio);
1051 struct io_cq *icq = NULL;
1052 const bool is_sync = rw_is_sync(rw_flags) != 0;
1053 int may_queue;
1054
1055 if (unlikely(blk_queue_dying(q)))
1056 return ERR_PTR(-ENODEV);
1057
1058 may_queue = elv_may_queue(q, rw_flags);
1059 if (may_queue == ELV_MQUEUE_NO)
1060 goto rq_starved;
1061
1062 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1063 if (rl->count[is_sync]+1 >= q->nr_requests) {
1064 /*
1065 * The queue will fill after this allocation, so set
1066 * it as full, and mark this process as "batching".
1067 * This process will be allowed to complete a batch of
1068 * requests, others will be blocked.
1069 */
1070 if (!blk_rl_full(rl, is_sync)) {
1071 ioc_set_batching(q, ioc);
1072 blk_set_rl_full(rl, is_sync);
1073 } else {
1074 if (may_queue != ELV_MQUEUE_MUST
1075 && !ioc_batching(q, ioc)) {
1076 /*
1077 * The queue is full and the allocating
1078 * process is not a "batcher", and not
1079 * exempted by the IO scheduler
1080 */
1081 return ERR_PTR(-ENOMEM);
1082 }
1083 }
1084 }
1085 blk_set_congested(rl, is_sync);
1086 }
1087
1088 /*
1089 * Only allow batching queuers to allocate up to 50% over the defined
1090 * limit of requests, otherwise we could have thousands of requests
1091 * allocated with any setting of ->nr_requests
1092 */
1093 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1094 return ERR_PTR(-ENOMEM);
1095
1096 q->nr_rqs[is_sync]++;
1097 rl->count[is_sync]++;
1098 rl->starved[is_sync] = 0;
1099
1100 /*
1101 * Decide whether the new request will be managed by elevator. If
1102 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
1103 * prevent the current elevator from being destroyed until the new
1104 * request is freed. This guarantees icq's won't be destroyed and
1105 * makes creating new ones safe.
1106 *
1107 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1108 * it will be created after releasing queue_lock.
1109 */
1110 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
1111 rw_flags |= REQ_ELVPRIV;
1112 q->nr_rqs_elvpriv++;
1113 if (et->icq_cache && ioc)
1114 icq = ioc_lookup_icq(ioc, q);
1115 }
1116
1117 if (blk_queue_io_stat(q))
1118 rw_flags |= REQ_IO_STAT;
1119 spin_unlock_irq(q->queue_lock);
1120
1121 /* allocate and init request */
1122 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1123 if (!rq)
1124 goto fail_alloc;
1125
1126 blk_rq_init(q, rq);
1127 blk_rq_set_rl(rq, rl);
1128 rq->cmd_flags = rw_flags | REQ_ALLOCED;
1129
1130 /* init elvpriv */
1131 if (rw_flags & REQ_ELVPRIV) {
1132 if (unlikely(et->icq_cache && !icq)) {
1133 if (ioc)
1134 icq = ioc_create_icq(ioc, q, gfp_mask);
1135 if (!icq)
1136 goto fail_elvpriv;
1137 }
1138
1139 rq->elv.icq = icq;
1140 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1141 goto fail_elvpriv;
1142
1143 /* @rq->elv.icq holds io_context until @rq is freed */
1144 if (icq)
1145 get_io_context(icq->ioc);
1146 }
1147 out:
1148 /*
1149 * ioc may be NULL here, and ioc_batching will be false. That's
1150 * OK, if the queue is under the request limit then requests need
1151 * not count toward the nr_batch_requests limit. There will always
1152 * be some limit enforced by BLK_BATCH_TIME.
1153 */
1154 if (ioc_batching(q, ioc))
1155 ioc->nr_batch_requests--;
1156
1157 trace_block_getrq(q, bio, rw_flags & 1);
1158 return rq;
1159
1160 fail_elvpriv:
1161 /*
1162 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1163 * and may fail indefinitely under memory pressure and thus
1164 * shouldn't stall IO. Treat this request as !elvpriv. This will
1165 * disturb iosched and blkcg but weird is bettern than dead.
1166 */
1167 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1168 __func__, dev_name(q->backing_dev_info.dev));
1169
1170 rq->cmd_flags &= ~REQ_ELVPRIV;
1171 rq->elv.icq = NULL;
1172
1173 spin_lock_irq(q->queue_lock);
1174 q->nr_rqs_elvpriv--;
1175 spin_unlock_irq(q->queue_lock);
1176 goto out;
1177
1178 fail_alloc:
1179 /*
1180 * Allocation failed presumably due to memory. Undo anything we
1181 * might have messed up.
1182 *
1183 * Allocating task should really be put onto the front of the wait
1184 * queue, but this is pretty rare.
1185 */
1186 spin_lock_irq(q->queue_lock);
1187 freed_request(rl, rw_flags);
1188
1189 /*
1190 * in the very unlikely event that allocation failed and no
1191 * requests for this direction was pending, mark us starved so that
1192 * freeing of a request in the other direction will notice
1193 * us. another possible fix would be to split the rq mempool into
1194 * READ and WRITE
1195 */
1196 rq_starved:
1197 if (unlikely(rl->count[is_sync] == 0))
1198 rl->starved[is_sync] = 1;
1199 return ERR_PTR(-ENOMEM);
1200 }
1201
1202 /**
1203 * get_request - get a free request
1204 * @q: request_queue to allocate request from
1205 * @rw_flags: RW and SYNC flags
1206 * @bio: bio to allocate request for (can be %NULL)
1207 * @gfp_mask: allocation mask
1208 *
1209 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1210 * this function keeps retrying under memory pressure and fails iff @q is dead.
1211 *
1212 * Must be called with @q->queue_lock held and,
1213 * Returns ERR_PTR on failure, with @q->queue_lock held.
1214 * Returns request pointer on success, with @q->queue_lock *not held*.
1215 */
1216 static struct request *get_request(struct request_queue *q, int rw_flags,
1217 struct bio *bio, gfp_t gfp_mask)
1218 {
1219 const bool is_sync = rw_is_sync(rw_flags) != 0;
1220 DEFINE_WAIT(wait);
1221 struct request_list *rl;
1222 struct request *rq;
1223
1224 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1225 retry:
1226 rq = __get_request(rl, rw_flags, bio, gfp_mask);
1227 if (!IS_ERR(rq))
1228 return rq;
1229
1230 if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
1231 blk_put_rl(rl);
1232 return rq;
1233 }
1234
1235 /* wait on @rl and retry */
1236 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1237 TASK_UNINTERRUPTIBLE);
1238
1239 trace_block_sleeprq(q, bio, rw_flags & 1);
1240
1241 spin_unlock_irq(q->queue_lock);
1242 io_schedule();
1243
1244 /*
1245 * After sleeping, we become a "batching" process and will be able
1246 * to allocate at least one request, and up to a big batch of them
1247 * for a small period time. See ioc_batching, ioc_set_batching
1248 */
1249 ioc_set_batching(q, current->io_context);
1250
1251 spin_lock_irq(q->queue_lock);
1252 finish_wait(&rl->wait[is_sync], &wait);
1253
1254 goto retry;
1255 }
1256
1257 static struct request *blk_old_get_request(struct request_queue *q, int rw,
1258 gfp_t gfp_mask)
1259 {
1260 struct request *rq;
1261
1262 BUG_ON(rw != READ && rw != WRITE);
1263
1264 /* create ioc upfront */
1265 create_io_context(gfp_mask, q->node);
1266
1267 spin_lock_irq(q->queue_lock);
1268 rq = get_request(q, rw, NULL, gfp_mask);
1269 if (IS_ERR(rq))
1270 spin_unlock_irq(q->queue_lock);
1271 /* q->queue_lock is unlocked at this point */
1272
1273 return rq;
1274 }
1275
1276 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1277 {
1278 if (q->mq_ops)
1279 return blk_mq_alloc_request(q, rw, gfp_mask, false);
1280 else
1281 return blk_old_get_request(q, rw, gfp_mask);
1282 }
1283 EXPORT_SYMBOL(blk_get_request);
1284
1285 /**
1286 * blk_make_request - given a bio, allocate a corresponding struct request.
1287 * @q: target request queue
1288 * @bio: The bio describing the memory mappings that will be submitted for IO.
1289 * It may be a chained-bio properly constructed by block/bio layer.
1290 * @gfp_mask: gfp flags to be used for memory allocation
1291 *
1292 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1293 * type commands. Where the struct request needs to be farther initialized by
1294 * the caller. It is passed a &struct bio, which describes the memory info of
1295 * the I/O transfer.
1296 *
1297 * The caller of blk_make_request must make sure that bi_io_vec
1298 * are set to describe the memory buffers. That bio_data_dir() will return
1299 * the needed direction of the request. (And all bio's in the passed bio-chain
1300 * are properly set accordingly)
1301 *
1302 * If called under none-sleepable conditions, mapped bio buffers must not
1303 * need bouncing, by calling the appropriate masked or flagged allocator,
1304 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1305 * BUG.
1306 *
1307 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1308 * given to how you allocate bios. In particular, you cannot use
1309 * __GFP_DIRECT_RECLAIM for anything but the first bio in the chain. Otherwise
1310 * you risk waiting for IO completion of a bio that hasn't been submitted yet,
1311 * thus resulting in a deadlock. Alternatively bios should be allocated using
1312 * bio_kmalloc() instead of bio_alloc(), as that avoids the mempool deadlock.
1313 * If possible a big IO should be split into smaller parts when allocation
1314 * fails. Partial allocation should not be an error, or you risk a live-lock.
1315 */
1316 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1317 gfp_t gfp_mask)
1318 {
1319 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1320
1321 if (IS_ERR(rq))
1322 return rq;
1323
1324 blk_rq_set_block_pc(rq);
1325
1326 for_each_bio(bio) {
1327 struct bio *bounce_bio = bio;
1328 int ret;
1329
1330 blk_queue_bounce(q, &bounce_bio);
1331 ret = blk_rq_append_bio(q, rq, bounce_bio);
1332 if (unlikely(ret)) {
1333 blk_put_request(rq);
1334 return ERR_PTR(ret);
1335 }
1336 }
1337
1338 return rq;
1339 }
1340 EXPORT_SYMBOL(blk_make_request);
1341
1342 /**
1343 * blk_rq_set_block_pc - initialize a request to type BLOCK_PC
1344 * @rq: request to be initialized
1345 *
1346 */
1347 void blk_rq_set_block_pc(struct request *rq)
1348 {
1349 rq->cmd_type = REQ_TYPE_BLOCK_PC;
1350 rq->__data_len = 0;
1351 rq->__sector = (sector_t) -1;
1352 rq->bio = rq->biotail = NULL;
1353 memset(rq->__cmd, 0, sizeof(rq->__cmd));
1354 }
1355 EXPORT_SYMBOL(blk_rq_set_block_pc);
1356
1357 /**
1358 * blk_requeue_request - put a request back on queue
1359 * @q: request queue where request should be inserted
1360 * @rq: request to be inserted
1361 *
1362 * Description:
1363 * Drivers often keep queueing requests until the hardware cannot accept
1364 * more, when that condition happens we need to put the request back
1365 * on the queue. Must be called with queue lock held.
1366 */
1367 void blk_requeue_request(struct request_queue *q, struct request *rq)
1368 {
1369 blk_delete_timer(rq);
1370 blk_clear_rq_complete(rq);
1371 trace_block_rq_requeue(q, rq);
1372
1373 if (rq->cmd_flags & REQ_QUEUED)
1374 blk_queue_end_tag(q, rq);
1375
1376 BUG_ON(blk_queued_rq(rq));
1377
1378 elv_requeue_request(q, rq);
1379 }
1380 EXPORT_SYMBOL(blk_requeue_request);
1381
1382 static void add_acct_request(struct request_queue *q, struct request *rq,
1383 int where)
1384 {
1385 blk_account_io_start(rq, true);
1386 __elv_add_request(q, rq, where);
1387 }
1388
1389 static void part_round_stats_single(int cpu, struct hd_struct *part,
1390 unsigned long now)
1391 {
1392 int inflight;
1393
1394 if (now == part->stamp)
1395 return;
1396
1397 inflight = part_in_flight(part);
1398 if (inflight) {
1399 __part_stat_add(cpu, part, time_in_queue,
1400 inflight * (now - part->stamp));
1401 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1402 }
1403 part->stamp = now;
1404 }
1405
1406 /**
1407 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1408 * @cpu: cpu number for stats access
1409 * @part: target partition
1410 *
1411 * The average IO queue length and utilisation statistics are maintained
1412 * by observing the current state of the queue length and the amount of
1413 * time it has been in this state for.
1414 *
1415 * Normally, that accounting is done on IO completion, but that can result
1416 * in more than a second's worth of IO being accounted for within any one
1417 * second, leading to >100% utilisation. To deal with that, we call this
1418 * function to do a round-off before returning the results when reading
1419 * /proc/diskstats. This accounts immediately for all queue usage up to
1420 * the current jiffies and restarts the counters again.
1421 */
1422 void part_round_stats(int cpu, struct hd_struct *part)
1423 {
1424 unsigned long now = jiffies;
1425
1426 if (part->partno)
1427 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1428 part_round_stats_single(cpu, part, now);
1429 }
1430 EXPORT_SYMBOL_GPL(part_round_stats);
1431
1432 #ifdef CONFIG_PM
1433 static void blk_pm_put_request(struct request *rq)
1434 {
1435 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1436 pm_runtime_mark_last_busy(rq->q->dev);
1437 }
1438 #else
1439 static inline void blk_pm_put_request(struct request *rq) {}
1440 #endif
1441
1442 /*
1443 * queue lock must be held
1444 */
1445 void __blk_put_request(struct request_queue *q, struct request *req)
1446 {
1447 if (unlikely(!q))
1448 return;
1449
1450 if (q->mq_ops) {
1451 blk_mq_free_request(req);
1452 return;
1453 }
1454
1455 blk_pm_put_request(req);
1456
1457 elv_completed_request(q, req);
1458
1459 /* this is a bio leak */
1460 WARN_ON(req->bio != NULL);
1461
1462 /*
1463 * Request may not have originated from ll_rw_blk. if not,
1464 * it didn't come out of our reserved rq pools
1465 */
1466 if (req->cmd_flags & REQ_ALLOCED) {
1467 unsigned int flags = req->cmd_flags;
1468 struct request_list *rl = blk_rq_rl(req);
1469
1470 BUG_ON(!list_empty(&req->queuelist));
1471 BUG_ON(ELV_ON_HASH(req));
1472
1473 blk_free_request(rl, req);
1474 freed_request(rl, flags);
1475 blk_put_rl(rl);
1476 }
1477 }
1478 EXPORT_SYMBOL_GPL(__blk_put_request);
1479
1480 void blk_put_request(struct request *req)
1481 {
1482 struct request_queue *q = req->q;
1483
1484 if (q->mq_ops)
1485 blk_mq_free_request(req);
1486 else {
1487 unsigned long flags;
1488
1489 spin_lock_irqsave(q->queue_lock, flags);
1490 __blk_put_request(q, req);
1491 spin_unlock_irqrestore(q->queue_lock, flags);
1492 }
1493 }
1494 EXPORT_SYMBOL(blk_put_request);
1495
1496 /**
1497 * blk_add_request_payload - add a payload to a request
1498 * @rq: request to update
1499 * @page: page backing the payload
1500 * @len: length of the payload.
1501 *
1502 * This allows to later add a payload to an already submitted request by
1503 * a block driver. The driver needs to take care of freeing the payload
1504 * itself.
1505 *
1506 * Note that this is a quite horrible hack and nothing but handling of
1507 * discard requests should ever use it.
1508 */
1509 void blk_add_request_payload(struct request *rq, struct page *page,
1510 unsigned int len)
1511 {
1512 struct bio *bio = rq->bio;
1513
1514 bio->bi_io_vec->bv_page = page;
1515 bio->bi_io_vec->bv_offset = 0;
1516 bio->bi_io_vec->bv_len = len;
1517
1518 bio->bi_iter.bi_size = len;
1519 bio->bi_vcnt = 1;
1520 bio->bi_phys_segments = 1;
1521
1522 rq->__data_len = rq->resid_len = len;
1523 rq->nr_phys_segments = 1;
1524 }
1525 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1526
1527 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1528 struct bio *bio)
1529 {
1530 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1531
1532 if (!ll_back_merge_fn(q, req, bio))
1533 return false;
1534
1535 trace_block_bio_backmerge(q, req, bio);
1536
1537 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1538 blk_rq_set_mixed_merge(req);
1539
1540 req->biotail->bi_next = bio;
1541 req->biotail = bio;
1542 req->__data_len += bio->bi_iter.bi_size;
1543 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1544
1545 blk_account_io_start(req, false);
1546 return true;
1547 }
1548
1549 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1550 struct bio *bio)
1551 {
1552 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1553
1554 if (!ll_front_merge_fn(q, req, bio))
1555 return false;
1556
1557 trace_block_bio_frontmerge(q, req, bio);
1558
1559 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1560 blk_rq_set_mixed_merge(req);
1561
1562 bio->bi_next = req->bio;
1563 req->bio = bio;
1564
1565 req->__sector = bio->bi_iter.bi_sector;
1566 req->__data_len += bio->bi_iter.bi_size;
1567 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1568
1569 blk_account_io_start(req, false);
1570 return true;
1571 }
1572
1573 /**
1574 * blk_attempt_plug_merge - try to merge with %current's plugged list
1575 * @q: request_queue new bio is being queued at
1576 * @bio: new bio being queued
1577 * @request_count: out parameter for number of traversed plugged requests
1578 * @same_queue_rq: pointer to &struct request that gets filled in when
1579 * another request associated with @q is found on the plug list
1580 * (optional, may be %NULL)
1581 *
1582 * Determine whether @bio being queued on @q can be merged with a request
1583 * on %current's plugged list. Returns %true if merge was successful,
1584 * otherwise %false.
1585 *
1586 * Plugging coalesces IOs from the same issuer for the same purpose without
1587 * going through @q->queue_lock. As such it's more of an issuing mechanism
1588 * than scheduling, and the request, while may have elvpriv data, is not
1589 * added on the elevator at this point. In addition, we don't have
1590 * reliable access to the elevator outside queue lock. Only check basic
1591 * merging parameters without querying the elevator.
1592 *
1593 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1594 */
1595 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1596 unsigned int *request_count,
1597 struct request **same_queue_rq)
1598 {
1599 struct blk_plug *plug;
1600 struct request *rq;
1601 bool ret = false;
1602 struct list_head *plug_list;
1603
1604 plug = current->plug;
1605 if (!plug)
1606 goto out;
1607 *request_count = 0;
1608
1609 if (q->mq_ops)
1610 plug_list = &plug->mq_list;
1611 else
1612 plug_list = &plug->list;
1613
1614 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1615 int el_ret;
1616
1617 if (rq->q == q) {
1618 (*request_count)++;
1619 /*
1620 * Only blk-mq multiple hardware queues case checks the
1621 * rq in the same queue, there should be only one such
1622 * rq in a queue
1623 **/
1624 if (same_queue_rq)
1625 *same_queue_rq = rq;
1626 }
1627
1628 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1629 continue;
1630
1631 el_ret = blk_try_merge(rq, bio);
1632 if (el_ret == ELEVATOR_BACK_MERGE) {
1633 ret = bio_attempt_back_merge(q, rq, bio);
1634 if (ret)
1635 break;
1636 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1637 ret = bio_attempt_front_merge(q, rq, bio);
1638 if (ret)
1639 break;
1640 }
1641 }
1642 out:
1643 return ret;
1644 }
1645
1646 unsigned int blk_plug_queued_count(struct request_queue *q)
1647 {
1648 struct blk_plug *plug;
1649 struct request *rq;
1650 struct list_head *plug_list;
1651 unsigned int ret = 0;
1652
1653 plug = current->plug;
1654 if (!plug)
1655 goto out;
1656
1657 if (q->mq_ops)
1658 plug_list = &plug->mq_list;
1659 else
1660 plug_list = &plug->list;
1661
1662 list_for_each_entry(rq, plug_list, queuelist) {
1663 if (rq->q == q)
1664 ret++;
1665 }
1666 out:
1667 return ret;
1668 }
1669
1670 void init_request_from_bio(struct request *req, struct bio *bio)
1671 {
1672 req->cmd_type = REQ_TYPE_FS;
1673
1674 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1675 if (bio->bi_rw & REQ_RAHEAD)
1676 req->cmd_flags |= REQ_FAILFAST_MASK;
1677
1678 req->errors = 0;
1679 req->__sector = bio->bi_iter.bi_sector;
1680 req->ioprio = bio_prio(bio);
1681 blk_rq_bio_prep(req->q, req, bio);
1682 }
1683
1684 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1685 {
1686 const bool sync = !!(bio->bi_rw & REQ_SYNC);
1687 struct blk_plug *plug;
1688 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1689 struct request *req;
1690 unsigned int request_count = 0;
1691
1692 blk_queue_split(q, &bio, q->bio_split);
1693
1694 /*
1695 * low level driver can indicate that it wants pages above a
1696 * certain limit bounced to low memory (ie for highmem, or even
1697 * ISA dma in theory)
1698 */
1699 blk_queue_bounce(q, &bio);
1700
1701 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1702 bio->bi_error = -EIO;
1703 bio_endio(bio);
1704 return BLK_QC_T_NONE;
1705 }
1706
1707 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1708 spin_lock_irq(q->queue_lock);
1709 where = ELEVATOR_INSERT_FLUSH;
1710 goto get_rq;
1711 }
1712
1713 /*
1714 * Check if we can merge with the plugged list before grabbing
1715 * any locks.
1716 */
1717 if (!blk_queue_nomerges(q)) {
1718 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1719 return BLK_QC_T_NONE;
1720 } else
1721 request_count = blk_plug_queued_count(q);
1722
1723 spin_lock_irq(q->queue_lock);
1724
1725 el_ret = elv_merge(q, &req, bio);
1726 if (el_ret == ELEVATOR_BACK_MERGE) {
1727 if (bio_attempt_back_merge(q, req, bio)) {
1728 elv_bio_merged(q, req, bio);
1729 if (!attempt_back_merge(q, req))
1730 elv_merged_request(q, req, el_ret);
1731 goto out_unlock;
1732 }
1733 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1734 if (bio_attempt_front_merge(q, req, bio)) {
1735 elv_bio_merged(q, req, bio);
1736 if (!attempt_front_merge(q, req))
1737 elv_merged_request(q, req, el_ret);
1738 goto out_unlock;
1739 }
1740 }
1741
1742 get_rq:
1743 /*
1744 * This sync check and mask will be re-done in init_request_from_bio(),
1745 * but we need to set it earlier to expose the sync flag to the
1746 * rq allocator and io schedulers.
1747 */
1748 rw_flags = bio_data_dir(bio);
1749 if (sync)
1750 rw_flags |= REQ_SYNC;
1751
1752 /*
1753 * Grab a free request. This is might sleep but can not fail.
1754 * Returns with the queue unlocked.
1755 */
1756 req = get_request(q, rw_flags, bio, GFP_NOIO);
1757 if (IS_ERR(req)) {
1758 bio->bi_error = PTR_ERR(req);
1759 bio_endio(bio);
1760 goto out_unlock;
1761 }
1762
1763 /*
1764 * After dropping the lock and possibly sleeping here, our request
1765 * may now be mergeable after it had proven unmergeable (above).
1766 * We don't worry about that case for efficiency. It won't happen
1767 * often, and the elevators are able to handle it.
1768 */
1769 init_request_from_bio(req, bio);
1770
1771 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1772 req->cpu = raw_smp_processor_id();
1773
1774 plug = current->plug;
1775 if (plug) {
1776 /*
1777 * If this is the first request added after a plug, fire
1778 * of a plug trace.
1779 */
1780 if (!request_count)
1781 trace_block_plug(q);
1782 else {
1783 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1784 blk_flush_plug_list(plug, false);
1785 trace_block_plug(q);
1786 }
1787 }
1788 list_add_tail(&req->queuelist, &plug->list);
1789 blk_account_io_start(req, true);
1790 } else {
1791 spin_lock_irq(q->queue_lock);
1792 add_acct_request(q, req, where);
1793 __blk_run_queue(q);
1794 out_unlock:
1795 spin_unlock_irq(q->queue_lock);
1796 }
1797
1798 return BLK_QC_T_NONE;
1799 }
1800
1801 /*
1802 * If bio->bi_dev is a partition, remap the location
1803 */
1804 static inline void blk_partition_remap(struct bio *bio)
1805 {
1806 struct block_device *bdev = bio->bi_bdev;
1807
1808 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1809 struct hd_struct *p = bdev->bd_part;
1810
1811 bio->bi_iter.bi_sector += p->start_sect;
1812 bio->bi_bdev = bdev->bd_contains;
1813
1814 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1815 bdev->bd_dev,
1816 bio->bi_iter.bi_sector - p->start_sect);
1817 }
1818 }
1819
1820 static void handle_bad_sector(struct bio *bio)
1821 {
1822 char b[BDEVNAME_SIZE];
1823
1824 printk(KERN_INFO "attempt to access beyond end of device\n");
1825 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1826 bdevname(bio->bi_bdev, b),
1827 bio->bi_rw,
1828 (unsigned long long)bio_end_sector(bio),
1829 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1830 }
1831
1832 #ifdef CONFIG_FAIL_MAKE_REQUEST
1833
1834 static DECLARE_FAULT_ATTR(fail_make_request);
1835
1836 static int __init setup_fail_make_request(char *str)
1837 {
1838 return setup_fault_attr(&fail_make_request, str);
1839 }
1840 __setup("fail_make_request=", setup_fail_make_request);
1841
1842 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1843 {
1844 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1845 }
1846
1847 static int __init fail_make_request_debugfs(void)
1848 {
1849 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1850 NULL, &fail_make_request);
1851
1852 return PTR_ERR_OR_ZERO(dir);
1853 }
1854
1855 late_initcall(fail_make_request_debugfs);
1856
1857 #else /* CONFIG_FAIL_MAKE_REQUEST */
1858
1859 static inline bool should_fail_request(struct hd_struct *part,
1860 unsigned int bytes)
1861 {
1862 return false;
1863 }
1864
1865 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1866
1867 /*
1868 * Check whether this bio extends beyond the end of the device.
1869 */
1870 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1871 {
1872 sector_t maxsector;
1873
1874 if (!nr_sectors)
1875 return 0;
1876
1877 /* Test device or partition size, when known. */
1878 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1879 if (maxsector) {
1880 sector_t sector = bio->bi_iter.bi_sector;
1881
1882 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1883 /*
1884 * This may well happen - the kernel calls bread()
1885 * without checking the size of the device, e.g., when
1886 * mounting a device.
1887 */
1888 handle_bad_sector(bio);
1889 return 1;
1890 }
1891 }
1892
1893 return 0;
1894 }
1895
1896 static noinline_for_stack bool
1897 generic_make_request_checks(struct bio *bio)
1898 {
1899 struct request_queue *q;
1900 int nr_sectors = bio_sectors(bio);
1901 int err = -EIO;
1902 char b[BDEVNAME_SIZE];
1903 struct hd_struct *part;
1904
1905 might_sleep();
1906
1907 if (bio_check_eod(bio, nr_sectors))
1908 goto end_io;
1909
1910 q = bdev_get_queue(bio->bi_bdev);
1911 if (unlikely(!q)) {
1912 printk(KERN_ERR
1913 "generic_make_request: Trying to access "
1914 "nonexistent block-device %s (%Lu)\n",
1915 bdevname(bio->bi_bdev, b),
1916 (long long) bio->bi_iter.bi_sector);
1917 goto end_io;
1918 }
1919
1920 part = bio->bi_bdev->bd_part;
1921 if (should_fail_request(part, bio->bi_iter.bi_size) ||
1922 should_fail_request(&part_to_disk(part)->part0,
1923 bio->bi_iter.bi_size))
1924 goto end_io;
1925
1926 /*
1927 * If this device has partitions, remap block n
1928 * of partition p to block n+start(p) of the disk.
1929 */
1930 blk_partition_remap(bio);
1931
1932 if (bio_check_eod(bio, nr_sectors))
1933 goto end_io;
1934
1935 /*
1936 * Filter flush bio's early so that make_request based
1937 * drivers without flush support don't have to worry
1938 * about them.
1939 */
1940 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1941 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1942 if (!nr_sectors) {
1943 err = 0;
1944 goto end_io;
1945 }
1946 }
1947
1948 if ((bio->bi_rw & REQ_DISCARD) &&
1949 (!blk_queue_discard(q) ||
1950 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
1951 err = -EOPNOTSUPP;
1952 goto end_io;
1953 }
1954
1955 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
1956 err = -EOPNOTSUPP;
1957 goto end_io;
1958 }
1959
1960 /*
1961 * Various block parts want %current->io_context and lazy ioc
1962 * allocation ends up trading a lot of pain for a small amount of
1963 * memory. Just allocate it upfront. This may fail and block
1964 * layer knows how to live with it.
1965 */
1966 create_io_context(GFP_ATOMIC, q->node);
1967
1968 if (!blkcg_bio_issue_check(q, bio))
1969 return false;
1970
1971 trace_block_bio_queue(q, bio);
1972 return true;
1973
1974 end_io:
1975 bio->bi_error = err;
1976 bio_endio(bio);
1977 return false;
1978 }
1979
1980 /**
1981 * generic_make_request - hand a buffer to its device driver for I/O
1982 * @bio: The bio describing the location in memory and on the device.
1983 *
1984 * generic_make_request() is used to make I/O requests of block
1985 * devices. It is passed a &struct bio, which describes the I/O that needs
1986 * to be done.
1987 *
1988 * generic_make_request() does not return any status. The
1989 * success/failure status of the request, along with notification of
1990 * completion, is delivered asynchronously through the bio->bi_end_io
1991 * function described (one day) else where.
1992 *
1993 * The caller of generic_make_request must make sure that bi_io_vec
1994 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1995 * set to describe the device address, and the
1996 * bi_end_io and optionally bi_private are set to describe how
1997 * completion notification should be signaled.
1998 *
1999 * generic_make_request and the drivers it calls may use bi_next if this
2000 * bio happens to be merged with someone else, and may resubmit the bio to
2001 * a lower device by calling into generic_make_request recursively, which
2002 * means the bio should NOT be touched after the call to ->make_request_fn.
2003 */
2004 blk_qc_t generic_make_request(struct bio *bio)
2005 {
2006 struct bio_list bio_list_on_stack;
2007 blk_qc_t ret = BLK_QC_T_NONE;
2008
2009 if (!generic_make_request_checks(bio))
2010 goto out;
2011
2012 /*
2013 * We only want one ->make_request_fn to be active at a time, else
2014 * stack usage with stacked devices could be a problem. So use
2015 * current->bio_list to keep a list of requests submited by a
2016 * make_request_fn function. current->bio_list is also used as a
2017 * flag to say if generic_make_request is currently active in this
2018 * task or not. If it is NULL, then no make_request is active. If
2019 * it is non-NULL, then a make_request is active, and new requests
2020 * should be added at the tail
2021 */
2022 if (current->bio_list) {
2023 bio_list_add(current->bio_list, bio);
2024 goto out;
2025 }
2026
2027 /* following loop may be a bit non-obvious, and so deserves some
2028 * explanation.
2029 * Before entering the loop, bio->bi_next is NULL (as all callers
2030 * ensure that) so we have a list with a single bio.
2031 * We pretend that we have just taken it off a longer list, so
2032 * we assign bio_list to a pointer to the bio_list_on_stack,
2033 * thus initialising the bio_list of new bios to be
2034 * added. ->make_request() may indeed add some more bios
2035 * through a recursive call to generic_make_request. If it
2036 * did, we find a non-NULL value in bio_list and re-enter the loop
2037 * from the top. In this case we really did just take the bio
2038 * of the top of the list (no pretending) and so remove it from
2039 * bio_list, and call into ->make_request() again.
2040 */
2041 BUG_ON(bio->bi_next);
2042 bio_list_init(&bio_list_on_stack);
2043 current->bio_list = &bio_list_on_stack;
2044 do {
2045 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2046
2047 if (likely(blk_queue_enter(q, __GFP_DIRECT_RECLAIM) == 0)) {
2048
2049 ret = q->make_request_fn(q, bio);
2050
2051 blk_queue_exit(q);
2052
2053 bio = bio_list_pop(current->bio_list);
2054 } else {
2055 struct bio *bio_next = bio_list_pop(current->bio_list);
2056
2057 bio_io_error(bio);
2058 bio = bio_next;
2059 }
2060 } while (bio);
2061 current->bio_list = NULL; /* deactivate */
2062
2063 out:
2064 return ret;
2065 }
2066 EXPORT_SYMBOL(generic_make_request);
2067
2068 /**
2069 * submit_bio - submit a bio to the block device layer for I/O
2070 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
2071 * @bio: The &struct bio which describes the I/O
2072 *
2073 * submit_bio() is very similar in purpose to generic_make_request(), and
2074 * uses that function to do most of the work. Both are fairly rough
2075 * interfaces; @bio must be presetup and ready for I/O.
2076 *
2077 */
2078 blk_qc_t submit_bio(int rw, struct bio *bio)
2079 {
2080 bio->bi_rw |= rw;
2081
2082 /*
2083 * If it's a regular read/write or a barrier with data attached,
2084 * go through the normal accounting stuff before submission.
2085 */
2086 if (bio_has_data(bio)) {
2087 unsigned int count;
2088
2089 if (unlikely(rw & REQ_WRITE_SAME))
2090 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2091 else
2092 count = bio_sectors(bio);
2093
2094 if (rw & WRITE) {
2095 count_vm_events(PGPGOUT, count);
2096 } else {
2097 task_io_account_read(bio->bi_iter.bi_size);
2098 count_vm_events(PGPGIN, count);
2099 }
2100
2101 if (unlikely(block_dump)) {
2102 char b[BDEVNAME_SIZE];
2103 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2104 current->comm, task_pid_nr(current),
2105 (rw & WRITE) ? "WRITE" : "READ",
2106 (unsigned long long)bio->bi_iter.bi_sector,
2107 bdevname(bio->bi_bdev, b),
2108 count);
2109 }
2110 }
2111
2112 return generic_make_request(bio);
2113 }
2114 EXPORT_SYMBOL(submit_bio);
2115
2116 /**
2117 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2118 * for new the queue limits
2119 * @q: the queue
2120 * @rq: the request being checked
2121 *
2122 * Description:
2123 * @rq may have been made based on weaker limitations of upper-level queues
2124 * in request stacking drivers, and it may violate the limitation of @q.
2125 * Since the block layer and the underlying device driver trust @rq
2126 * after it is inserted to @q, it should be checked against @q before
2127 * the insertion using this generic function.
2128 *
2129 * Request stacking drivers like request-based dm may change the queue
2130 * limits when retrying requests on other queues. Those requests need
2131 * to be checked against the new queue limits again during dispatch.
2132 */
2133 static int blk_cloned_rq_check_limits(struct request_queue *q,
2134 struct request *rq)
2135 {
2136 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
2137 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2138 return -EIO;
2139 }
2140
2141 /*
2142 * queue's settings related to segment counting like q->bounce_pfn
2143 * may differ from that of other stacking queues.
2144 * Recalculate it to check the request correctly on this queue's
2145 * limitation.
2146 */
2147 blk_recalc_rq_segments(rq);
2148 if (rq->nr_phys_segments > queue_max_segments(q)) {
2149 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2150 return -EIO;
2151 }
2152
2153 return 0;
2154 }
2155
2156 /**
2157 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2158 * @q: the queue to submit the request
2159 * @rq: the request being queued
2160 */
2161 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2162 {
2163 unsigned long flags;
2164 int where = ELEVATOR_INSERT_BACK;
2165
2166 if (blk_cloned_rq_check_limits(q, rq))
2167 return -EIO;
2168
2169 if (rq->rq_disk &&
2170 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2171 return -EIO;
2172
2173 if (q->mq_ops) {
2174 if (blk_queue_io_stat(q))
2175 blk_account_io_start(rq, true);
2176 blk_mq_insert_request(rq, false, true, true);
2177 return 0;
2178 }
2179
2180 spin_lock_irqsave(q->queue_lock, flags);
2181 if (unlikely(blk_queue_dying(q))) {
2182 spin_unlock_irqrestore(q->queue_lock, flags);
2183 return -ENODEV;
2184 }
2185
2186 /*
2187 * Submitting request must be dequeued before calling this function
2188 * because it will be linked to another request_queue
2189 */
2190 BUG_ON(blk_queued_rq(rq));
2191
2192 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
2193 where = ELEVATOR_INSERT_FLUSH;
2194
2195 add_acct_request(q, rq, where);
2196 if (where == ELEVATOR_INSERT_FLUSH)
2197 __blk_run_queue(q);
2198 spin_unlock_irqrestore(q->queue_lock, flags);
2199
2200 return 0;
2201 }
2202 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2203
2204 /**
2205 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2206 * @rq: request to examine
2207 *
2208 * Description:
2209 * A request could be merge of IOs which require different failure
2210 * handling. This function determines the number of bytes which
2211 * can be failed from the beginning of the request without
2212 * crossing into area which need to be retried further.
2213 *
2214 * Return:
2215 * The number of bytes to fail.
2216 *
2217 * Context:
2218 * queue_lock must be held.
2219 */
2220 unsigned int blk_rq_err_bytes(const struct request *rq)
2221 {
2222 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2223 unsigned int bytes = 0;
2224 struct bio *bio;
2225
2226 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2227 return blk_rq_bytes(rq);
2228
2229 /*
2230 * Currently the only 'mixing' which can happen is between
2231 * different fastfail types. We can safely fail portions
2232 * which have all the failfast bits that the first one has -
2233 * the ones which are at least as eager to fail as the first
2234 * one.
2235 */
2236 for (bio = rq->bio; bio; bio = bio->bi_next) {
2237 if ((bio->bi_rw & ff) != ff)
2238 break;
2239 bytes += bio->bi_iter.bi_size;
2240 }
2241
2242 /* this could lead to infinite loop */
2243 BUG_ON(blk_rq_bytes(rq) && !bytes);
2244 return bytes;
2245 }
2246 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2247
2248 void blk_account_io_completion(struct request *req, unsigned int bytes)
2249 {
2250 if (blk_do_io_stat(req)) {
2251 const int rw = rq_data_dir(req);
2252 struct hd_struct *part;
2253 int cpu;
2254
2255 cpu = part_stat_lock();
2256 part = req->part;
2257 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2258 part_stat_unlock();
2259 }
2260 }
2261
2262 void blk_account_io_done(struct request *req)
2263 {
2264 /*
2265 * Account IO completion. flush_rq isn't accounted as a
2266 * normal IO on queueing nor completion. Accounting the
2267 * containing request is enough.
2268 */
2269 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2270 unsigned long duration = jiffies - req->start_time;
2271 const int rw = rq_data_dir(req);
2272 struct hd_struct *part;
2273 int cpu;
2274
2275 cpu = part_stat_lock();
2276 part = req->part;
2277
2278 part_stat_inc(cpu, part, ios[rw]);
2279 part_stat_add(cpu, part, ticks[rw], duration);
2280 part_round_stats(cpu, part);
2281 part_dec_in_flight(part, rw);
2282
2283 hd_struct_put(part);
2284 part_stat_unlock();
2285 }
2286 }
2287
2288 #ifdef CONFIG_PM
2289 /*
2290 * Don't process normal requests when queue is suspended
2291 * or in the process of suspending/resuming
2292 */
2293 static struct request *blk_pm_peek_request(struct request_queue *q,
2294 struct request *rq)
2295 {
2296 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2297 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2298 return NULL;
2299 else
2300 return rq;
2301 }
2302 #else
2303 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2304 struct request *rq)
2305 {
2306 return rq;
2307 }
2308 #endif
2309
2310 void blk_account_io_start(struct request *rq, bool new_io)
2311 {
2312 struct hd_struct *part;
2313 int rw = rq_data_dir(rq);
2314 int cpu;
2315
2316 if (!blk_do_io_stat(rq))
2317 return;
2318
2319 cpu = part_stat_lock();
2320
2321 if (!new_io) {
2322 part = rq->part;
2323 part_stat_inc(cpu, part, merges[rw]);
2324 } else {
2325 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2326 if (!hd_struct_try_get(part)) {
2327 /*
2328 * The partition is already being removed,
2329 * the request will be accounted on the disk only
2330 *
2331 * We take a reference on disk->part0 although that
2332 * partition will never be deleted, so we can treat
2333 * it as any other partition.
2334 */
2335 part = &rq->rq_disk->part0;
2336 hd_struct_get(part);
2337 }
2338 part_round_stats(cpu, part);
2339 part_inc_in_flight(part, rw);
2340 rq->part = part;
2341 }
2342
2343 part_stat_unlock();
2344 }
2345
2346 /**
2347 * blk_peek_request - peek at the top of a request queue
2348 * @q: request queue to peek at
2349 *
2350 * Description:
2351 * Return the request at the top of @q. The returned request
2352 * should be started using blk_start_request() before LLD starts
2353 * processing it.
2354 *
2355 * Return:
2356 * Pointer to the request at the top of @q if available. Null
2357 * otherwise.
2358 *
2359 * Context:
2360 * queue_lock must be held.
2361 */
2362 struct request *blk_peek_request(struct request_queue *q)
2363 {
2364 struct request *rq;
2365 int ret;
2366
2367 while ((rq = __elv_next_request(q)) != NULL) {
2368
2369 rq = blk_pm_peek_request(q, rq);
2370 if (!rq)
2371 break;
2372
2373 if (!(rq->cmd_flags & REQ_STARTED)) {
2374 /*
2375 * This is the first time the device driver
2376 * sees this request (possibly after
2377 * requeueing). Notify IO scheduler.
2378 */
2379 if (rq->cmd_flags & REQ_SORTED)
2380 elv_activate_rq(q, rq);
2381
2382 /*
2383 * just mark as started even if we don't start
2384 * it, a request that has been delayed should
2385 * not be passed by new incoming requests
2386 */
2387 rq->cmd_flags |= REQ_STARTED;
2388 trace_block_rq_issue(q, rq);
2389 }
2390
2391 if (!q->boundary_rq || q->boundary_rq == rq) {
2392 q->end_sector = rq_end_sector(rq);
2393 q->boundary_rq = NULL;
2394 }
2395
2396 if (rq->cmd_flags & REQ_DONTPREP)
2397 break;
2398
2399 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2400 /*
2401 * make sure space for the drain appears we
2402 * know we can do this because max_hw_segments
2403 * has been adjusted to be one fewer than the
2404 * device can handle
2405 */
2406 rq->nr_phys_segments++;
2407 }
2408
2409 if (!q->prep_rq_fn)
2410 break;
2411
2412 ret = q->prep_rq_fn(q, rq);
2413 if (ret == BLKPREP_OK) {
2414 break;
2415 } else if (ret == BLKPREP_DEFER) {
2416 /*
2417 * the request may have been (partially) prepped.
2418 * we need to keep this request in the front to
2419 * avoid resource deadlock. REQ_STARTED will
2420 * prevent other fs requests from passing this one.
2421 */
2422 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2423 !(rq->cmd_flags & REQ_DONTPREP)) {
2424 /*
2425 * remove the space for the drain we added
2426 * so that we don't add it again
2427 */
2428 --rq->nr_phys_segments;
2429 }
2430
2431 rq = NULL;
2432 break;
2433 } else if (ret == BLKPREP_KILL) {
2434 rq->cmd_flags |= REQ_QUIET;
2435 /*
2436 * Mark this request as started so we don't trigger
2437 * any debug logic in the end I/O path.
2438 */
2439 blk_start_request(rq);
2440 __blk_end_request_all(rq, -EIO);
2441 } else {
2442 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2443 break;
2444 }
2445 }
2446
2447 return rq;
2448 }
2449 EXPORT_SYMBOL(blk_peek_request);
2450
2451 void blk_dequeue_request(struct request *rq)
2452 {
2453 struct request_queue *q = rq->q;
2454
2455 BUG_ON(list_empty(&rq->queuelist));
2456 BUG_ON(ELV_ON_HASH(rq));
2457
2458 list_del_init(&rq->queuelist);
2459
2460 /*
2461 * the time frame between a request being removed from the lists
2462 * and to it is freed is accounted as io that is in progress at
2463 * the driver side.
2464 */
2465 if (blk_account_rq(rq)) {
2466 q->in_flight[rq_is_sync(rq)]++;
2467 set_io_start_time_ns(rq);
2468 }
2469 }
2470
2471 /**
2472 * blk_start_request - start request processing on the driver
2473 * @req: request to dequeue
2474 *
2475 * Description:
2476 * Dequeue @req and start timeout timer on it. This hands off the
2477 * request to the driver.
2478 *
2479 * Block internal functions which don't want to start timer should
2480 * call blk_dequeue_request().
2481 *
2482 * Context:
2483 * queue_lock must be held.
2484 */
2485 void blk_start_request(struct request *req)
2486 {
2487 blk_dequeue_request(req);
2488
2489 /*
2490 * We are now handing the request to the hardware, initialize
2491 * resid_len to full count and add the timeout handler.
2492 */
2493 req->resid_len = blk_rq_bytes(req);
2494 if (unlikely(blk_bidi_rq(req)))
2495 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2496
2497 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2498 blk_add_timer(req);
2499 }
2500 EXPORT_SYMBOL(blk_start_request);
2501
2502 /**
2503 * blk_fetch_request - fetch a request from a request queue
2504 * @q: request queue to fetch a request from
2505 *
2506 * Description:
2507 * Return the request at the top of @q. The request is started on
2508 * return and LLD can start processing it immediately.
2509 *
2510 * Return:
2511 * Pointer to the request at the top of @q if available. Null
2512 * otherwise.
2513 *
2514 * Context:
2515 * queue_lock must be held.
2516 */
2517 struct request *blk_fetch_request(struct request_queue *q)
2518 {
2519 struct request *rq;
2520
2521 rq = blk_peek_request(q);
2522 if (rq)
2523 blk_start_request(rq);
2524 return rq;
2525 }
2526 EXPORT_SYMBOL(blk_fetch_request);
2527
2528 /**
2529 * blk_update_request - Special helper function for request stacking drivers
2530 * @req: the request being processed
2531 * @error: %0 for success, < %0 for error
2532 * @nr_bytes: number of bytes to complete @req
2533 *
2534 * Description:
2535 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2536 * the request structure even if @req doesn't have leftover.
2537 * If @req has leftover, sets it up for the next range of segments.
2538 *
2539 * This special helper function is only for request stacking drivers
2540 * (e.g. request-based dm) so that they can handle partial completion.
2541 * Actual device drivers should use blk_end_request instead.
2542 *
2543 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2544 * %false return from this function.
2545 *
2546 * Return:
2547 * %false - this request doesn't have any more data
2548 * %true - this request has more data
2549 **/
2550 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2551 {
2552 int total_bytes;
2553
2554 trace_block_rq_complete(req->q, req, nr_bytes);
2555
2556 if (!req->bio)
2557 return false;
2558
2559 /*
2560 * For fs requests, rq is just carrier of independent bio's
2561 * and each partial completion should be handled separately.
2562 * Reset per-request error on each partial completion.
2563 *
2564 * TODO: tj: This is too subtle. It would be better to let
2565 * low level drivers do what they see fit.
2566 */
2567 if (req->cmd_type == REQ_TYPE_FS)
2568 req->errors = 0;
2569
2570 if (error && req->cmd_type == REQ_TYPE_FS &&
2571 !(req->cmd_flags & REQ_QUIET)) {
2572 char *error_type;
2573
2574 switch (error) {
2575 case -ENOLINK:
2576 error_type = "recoverable transport";
2577 break;
2578 case -EREMOTEIO:
2579 error_type = "critical target";
2580 break;
2581 case -EBADE:
2582 error_type = "critical nexus";
2583 break;
2584 case -ETIMEDOUT:
2585 error_type = "timeout";
2586 break;
2587 case -ENOSPC:
2588 error_type = "critical space allocation";
2589 break;
2590 case -ENODATA:
2591 error_type = "critical medium";
2592 break;
2593 case -EIO:
2594 default:
2595 error_type = "I/O";
2596 break;
2597 }
2598 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2599 __func__, error_type, req->rq_disk ?
2600 req->rq_disk->disk_name : "?",
2601 (unsigned long long)blk_rq_pos(req));
2602
2603 }
2604
2605 blk_account_io_completion(req, nr_bytes);
2606
2607 total_bytes = 0;
2608 while (req->bio) {
2609 struct bio *bio = req->bio;
2610 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2611
2612 if (bio_bytes == bio->bi_iter.bi_size)
2613 req->bio = bio->bi_next;
2614
2615 req_bio_endio(req, bio, bio_bytes, error);
2616
2617 total_bytes += bio_bytes;
2618 nr_bytes -= bio_bytes;
2619
2620 if (!nr_bytes)
2621 break;
2622 }
2623
2624 /*
2625 * completely done
2626 */
2627 if (!req->bio) {
2628 /*
2629 * Reset counters so that the request stacking driver
2630 * can find how many bytes remain in the request
2631 * later.
2632 */
2633 req->__data_len = 0;
2634 return false;
2635 }
2636
2637 req->__data_len -= total_bytes;
2638
2639 /* update sector only for requests with clear definition of sector */
2640 if (req->cmd_type == REQ_TYPE_FS)
2641 req->__sector += total_bytes >> 9;
2642
2643 /* mixed attributes always follow the first bio */
2644 if (req->cmd_flags & REQ_MIXED_MERGE) {
2645 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2646 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2647 }
2648
2649 /*
2650 * If total number of sectors is less than the first segment
2651 * size, something has gone terribly wrong.
2652 */
2653 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2654 blk_dump_rq_flags(req, "request botched");
2655 req->__data_len = blk_rq_cur_bytes(req);
2656 }
2657
2658 /* recalculate the number of segments */
2659 blk_recalc_rq_segments(req);
2660
2661 return true;
2662 }
2663 EXPORT_SYMBOL_GPL(blk_update_request);
2664
2665 static bool blk_update_bidi_request(struct request *rq, int error,
2666 unsigned int nr_bytes,
2667 unsigned int bidi_bytes)
2668 {
2669 if (blk_update_request(rq, error, nr_bytes))
2670 return true;
2671
2672 /* Bidi request must be completed as a whole */
2673 if (unlikely(blk_bidi_rq(rq)) &&
2674 blk_update_request(rq->next_rq, error, bidi_bytes))
2675 return true;
2676
2677 if (blk_queue_add_random(rq->q))
2678 add_disk_randomness(rq->rq_disk);
2679
2680 return false;
2681 }
2682
2683 /**
2684 * blk_unprep_request - unprepare a request
2685 * @req: the request
2686 *
2687 * This function makes a request ready for complete resubmission (or
2688 * completion). It happens only after all error handling is complete,
2689 * so represents the appropriate moment to deallocate any resources
2690 * that were allocated to the request in the prep_rq_fn. The queue
2691 * lock is held when calling this.
2692 */
2693 void blk_unprep_request(struct request *req)
2694 {
2695 struct request_queue *q = req->q;
2696
2697 req->cmd_flags &= ~REQ_DONTPREP;
2698 if (q->unprep_rq_fn)
2699 q->unprep_rq_fn(q, req);
2700 }
2701 EXPORT_SYMBOL_GPL(blk_unprep_request);
2702
2703 /*
2704 * queue lock must be held
2705 */
2706 void blk_finish_request(struct request *req, int error)
2707 {
2708 if (req->cmd_flags & REQ_QUEUED)
2709 blk_queue_end_tag(req->q, req);
2710
2711 BUG_ON(blk_queued_rq(req));
2712
2713 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2714 laptop_io_completion(&req->q->backing_dev_info);
2715
2716 blk_delete_timer(req);
2717
2718 if (req->cmd_flags & REQ_DONTPREP)
2719 blk_unprep_request(req);
2720
2721 blk_account_io_done(req);
2722
2723 if (req->end_io)
2724 req->end_io(req, error);
2725 else {
2726 if (blk_bidi_rq(req))
2727 __blk_put_request(req->next_rq->q, req->next_rq);
2728
2729 __blk_put_request(req->q, req);
2730 }
2731 }
2732 EXPORT_SYMBOL(blk_finish_request);
2733
2734 /**
2735 * blk_end_bidi_request - Complete a bidi request
2736 * @rq: the request to complete
2737 * @error: %0 for success, < %0 for error
2738 * @nr_bytes: number of bytes to complete @rq
2739 * @bidi_bytes: number of bytes to complete @rq->next_rq
2740 *
2741 * Description:
2742 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2743 * Drivers that supports bidi can safely call this member for any
2744 * type of request, bidi or uni. In the later case @bidi_bytes is
2745 * just ignored.
2746 *
2747 * Return:
2748 * %false - we are done with this request
2749 * %true - still buffers pending for this request
2750 **/
2751 static bool blk_end_bidi_request(struct request *rq, int error,
2752 unsigned int nr_bytes, unsigned int bidi_bytes)
2753 {
2754 struct request_queue *q = rq->q;
2755 unsigned long flags;
2756
2757 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2758 return true;
2759
2760 spin_lock_irqsave(q->queue_lock, flags);
2761 blk_finish_request(rq, error);
2762 spin_unlock_irqrestore(q->queue_lock, flags);
2763
2764 return false;
2765 }
2766
2767 /**
2768 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2769 * @rq: the request to complete
2770 * @error: %0 for success, < %0 for error
2771 * @nr_bytes: number of bytes to complete @rq
2772 * @bidi_bytes: number of bytes to complete @rq->next_rq
2773 *
2774 * Description:
2775 * Identical to blk_end_bidi_request() except that queue lock is
2776 * assumed to be locked on entry and remains so on return.
2777 *
2778 * Return:
2779 * %false - we are done with this request
2780 * %true - still buffers pending for this request
2781 **/
2782 bool __blk_end_bidi_request(struct request *rq, int error,
2783 unsigned int nr_bytes, unsigned int bidi_bytes)
2784 {
2785 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2786 return true;
2787
2788 blk_finish_request(rq, error);
2789
2790 return false;
2791 }
2792
2793 /**
2794 * blk_end_request - Helper function for drivers to complete the request.
2795 * @rq: the request being processed
2796 * @error: %0 for success, < %0 for error
2797 * @nr_bytes: number of bytes to complete
2798 *
2799 * Description:
2800 * Ends I/O on a number of bytes attached to @rq.
2801 * If @rq has leftover, sets it up for the next range of segments.
2802 *
2803 * Return:
2804 * %false - we are done with this request
2805 * %true - still buffers pending for this request
2806 **/
2807 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2808 {
2809 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2810 }
2811 EXPORT_SYMBOL(blk_end_request);
2812
2813 /**
2814 * blk_end_request_all - Helper function for drives to finish the request.
2815 * @rq: the request to finish
2816 * @error: %0 for success, < %0 for error
2817 *
2818 * Description:
2819 * Completely finish @rq.
2820 */
2821 void blk_end_request_all(struct request *rq, int error)
2822 {
2823 bool pending;
2824 unsigned int bidi_bytes = 0;
2825
2826 if (unlikely(blk_bidi_rq(rq)))
2827 bidi_bytes = blk_rq_bytes(rq->next_rq);
2828
2829 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2830 BUG_ON(pending);
2831 }
2832 EXPORT_SYMBOL(blk_end_request_all);
2833
2834 /**
2835 * blk_end_request_cur - Helper function to finish the current request chunk.
2836 * @rq: the request to finish the current chunk for
2837 * @error: %0 for success, < %0 for error
2838 *
2839 * Description:
2840 * Complete the current consecutively mapped chunk from @rq.
2841 *
2842 * Return:
2843 * %false - we are done with this request
2844 * %true - still buffers pending for this request
2845 */
2846 bool blk_end_request_cur(struct request *rq, int error)
2847 {
2848 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2849 }
2850 EXPORT_SYMBOL(blk_end_request_cur);
2851
2852 /**
2853 * blk_end_request_err - Finish a request till the next failure boundary.
2854 * @rq: the request to finish till the next failure boundary for
2855 * @error: must be negative errno
2856 *
2857 * Description:
2858 * Complete @rq till the next failure boundary.
2859 *
2860 * Return:
2861 * %false - we are done with this request
2862 * %true - still buffers pending for this request
2863 */
2864 bool blk_end_request_err(struct request *rq, int error)
2865 {
2866 WARN_ON(error >= 0);
2867 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2868 }
2869 EXPORT_SYMBOL_GPL(blk_end_request_err);
2870
2871 /**
2872 * __blk_end_request - Helper function for drivers to complete the request.
2873 * @rq: the request being processed
2874 * @error: %0 for success, < %0 for error
2875 * @nr_bytes: number of bytes to complete
2876 *
2877 * Description:
2878 * Must be called with queue lock held unlike blk_end_request().
2879 *
2880 * Return:
2881 * %false - we are done with this request
2882 * %true - still buffers pending for this request
2883 **/
2884 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2885 {
2886 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2887 }
2888 EXPORT_SYMBOL(__blk_end_request);
2889
2890 /**
2891 * __blk_end_request_all - Helper function for drives to finish the request.
2892 * @rq: the request to finish
2893 * @error: %0 for success, < %0 for error
2894 *
2895 * Description:
2896 * Completely finish @rq. Must be called with queue lock held.
2897 */
2898 void __blk_end_request_all(struct request *rq, int error)
2899 {
2900 bool pending;
2901 unsigned int bidi_bytes = 0;
2902
2903 if (unlikely(blk_bidi_rq(rq)))
2904 bidi_bytes = blk_rq_bytes(rq->next_rq);
2905
2906 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2907 BUG_ON(pending);
2908 }
2909 EXPORT_SYMBOL(__blk_end_request_all);
2910
2911 /**
2912 * __blk_end_request_cur - Helper function to finish the current request chunk.
2913 * @rq: the request to finish the current chunk for
2914 * @error: %0 for success, < %0 for error
2915 *
2916 * Description:
2917 * Complete the current consecutively mapped chunk from @rq. Must
2918 * be called with queue lock held.
2919 *
2920 * Return:
2921 * %false - we are done with this request
2922 * %true - still buffers pending for this request
2923 */
2924 bool __blk_end_request_cur(struct request *rq, int error)
2925 {
2926 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2927 }
2928 EXPORT_SYMBOL(__blk_end_request_cur);
2929
2930 /**
2931 * __blk_end_request_err - Finish a request till the next failure boundary.
2932 * @rq: the request to finish till the next failure boundary for
2933 * @error: must be negative errno
2934 *
2935 * Description:
2936 * Complete @rq till the next failure boundary. Must be called
2937 * with queue lock held.
2938 *
2939 * Return:
2940 * %false - we are done with this request
2941 * %true - still buffers pending for this request
2942 */
2943 bool __blk_end_request_err(struct request *rq, int error)
2944 {
2945 WARN_ON(error >= 0);
2946 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2947 }
2948 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2949
2950 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2951 struct bio *bio)
2952 {
2953 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2954 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2955
2956 if (bio_has_data(bio))
2957 rq->nr_phys_segments = bio_phys_segments(q, bio);
2958
2959 rq->__data_len = bio->bi_iter.bi_size;
2960 rq->bio = rq->biotail = bio;
2961
2962 if (bio->bi_bdev)
2963 rq->rq_disk = bio->bi_bdev->bd_disk;
2964 }
2965
2966 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2967 /**
2968 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2969 * @rq: the request to be flushed
2970 *
2971 * Description:
2972 * Flush all pages in @rq.
2973 */
2974 void rq_flush_dcache_pages(struct request *rq)
2975 {
2976 struct req_iterator iter;
2977 struct bio_vec bvec;
2978
2979 rq_for_each_segment(bvec, rq, iter)
2980 flush_dcache_page(bvec.bv_page);
2981 }
2982 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2983 #endif
2984
2985 /**
2986 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2987 * @q : the queue of the device being checked
2988 *
2989 * Description:
2990 * Check if underlying low-level drivers of a device are busy.
2991 * If the drivers want to export their busy state, they must set own
2992 * exporting function using blk_queue_lld_busy() first.
2993 *
2994 * Basically, this function is used only by request stacking drivers
2995 * to stop dispatching requests to underlying devices when underlying
2996 * devices are busy. This behavior helps more I/O merging on the queue
2997 * of the request stacking driver and prevents I/O throughput regression
2998 * on burst I/O load.
2999 *
3000 * Return:
3001 * 0 - Not busy (The request stacking driver should dispatch request)
3002 * 1 - Busy (The request stacking driver should stop dispatching request)
3003 */
3004 int blk_lld_busy(struct request_queue *q)
3005 {
3006 if (q->lld_busy_fn)
3007 return q->lld_busy_fn(q);
3008
3009 return 0;
3010 }
3011 EXPORT_SYMBOL_GPL(blk_lld_busy);
3012
3013 /**
3014 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3015 * @rq: the clone request to be cleaned up
3016 *
3017 * Description:
3018 * Free all bios in @rq for a cloned request.
3019 */
3020 void blk_rq_unprep_clone(struct request *rq)
3021 {
3022 struct bio *bio;
3023
3024 while ((bio = rq->bio) != NULL) {
3025 rq->bio = bio->bi_next;
3026
3027 bio_put(bio);
3028 }
3029 }
3030 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3031
3032 /*
3033 * Copy attributes of the original request to the clone request.
3034 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3035 */
3036 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3037 {
3038 dst->cpu = src->cpu;
3039 dst->cmd_flags |= (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
3040 dst->cmd_type = src->cmd_type;
3041 dst->__sector = blk_rq_pos(src);
3042 dst->__data_len = blk_rq_bytes(src);
3043 dst->nr_phys_segments = src->nr_phys_segments;
3044 dst->ioprio = src->ioprio;
3045 dst->extra_len = src->extra_len;
3046 }
3047
3048 /**
3049 * blk_rq_prep_clone - Helper function to setup clone request
3050 * @rq: the request to be setup
3051 * @rq_src: original request to be cloned
3052 * @bs: bio_set that bios for clone are allocated from
3053 * @gfp_mask: memory allocation mask for bio
3054 * @bio_ctr: setup function to be called for each clone bio.
3055 * Returns %0 for success, non %0 for failure.
3056 * @data: private data to be passed to @bio_ctr
3057 *
3058 * Description:
3059 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3060 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3061 * are not copied, and copying such parts is the caller's responsibility.
3062 * Also, pages which the original bios are pointing to are not copied
3063 * and the cloned bios just point same pages.
3064 * So cloned bios must be completed before original bios, which means
3065 * the caller must complete @rq before @rq_src.
3066 */
3067 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3068 struct bio_set *bs, gfp_t gfp_mask,
3069 int (*bio_ctr)(struct bio *, struct bio *, void *),
3070 void *data)
3071 {
3072 struct bio *bio, *bio_src;
3073
3074 if (!bs)
3075 bs = fs_bio_set;
3076
3077 __rq_for_each_bio(bio_src, rq_src) {
3078 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3079 if (!bio)
3080 goto free_and_out;
3081
3082 if (bio_ctr && bio_ctr(bio, bio_src, data))
3083 goto free_and_out;
3084
3085 if (rq->bio) {
3086 rq->biotail->bi_next = bio;
3087 rq->biotail = bio;
3088 } else
3089 rq->bio = rq->biotail = bio;
3090 }
3091
3092 __blk_rq_prep_clone(rq, rq_src);
3093
3094 return 0;
3095
3096 free_and_out:
3097 if (bio)
3098 bio_put(bio);
3099 blk_rq_unprep_clone(rq);
3100
3101 return -ENOMEM;
3102 }
3103 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3104
3105 int kblockd_schedule_work(struct work_struct *work)
3106 {
3107 return queue_work(kblockd_workqueue, work);
3108 }
3109 EXPORT_SYMBOL(kblockd_schedule_work);
3110
3111 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3112 unsigned long delay)
3113 {
3114 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3115 }
3116 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3117
3118 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3119 unsigned long delay)
3120 {
3121 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3122 }
3123 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3124
3125 /**
3126 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3127 * @plug: The &struct blk_plug that needs to be initialized
3128 *
3129 * Description:
3130 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3131 * pending I/O should the task end up blocking between blk_start_plug() and
3132 * blk_finish_plug(). This is important from a performance perspective, but
3133 * also ensures that we don't deadlock. For instance, if the task is blocking
3134 * for a memory allocation, memory reclaim could end up wanting to free a
3135 * page belonging to that request that is currently residing in our private
3136 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3137 * this kind of deadlock.
3138 */
3139 void blk_start_plug(struct blk_plug *plug)
3140 {
3141 struct task_struct *tsk = current;
3142
3143 /*
3144 * If this is a nested plug, don't actually assign it.
3145 */
3146 if (tsk->plug)
3147 return;
3148
3149 INIT_LIST_HEAD(&plug->list);
3150 INIT_LIST_HEAD(&plug->mq_list);
3151 INIT_LIST_HEAD(&plug->cb_list);
3152 /*
3153 * Store ordering should not be needed here, since a potential
3154 * preempt will imply a full memory barrier
3155 */
3156 tsk->plug = plug;
3157 }
3158 EXPORT_SYMBOL(blk_start_plug);
3159
3160 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3161 {
3162 struct request *rqa = container_of(a, struct request, queuelist);
3163 struct request *rqb = container_of(b, struct request, queuelist);
3164
3165 return !(rqa->q < rqb->q ||
3166 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3167 }
3168
3169 /*
3170 * If 'from_schedule' is true, then postpone the dispatch of requests
3171 * until a safe kblockd context. We due this to avoid accidental big
3172 * additional stack usage in driver dispatch, in places where the originally
3173 * plugger did not intend it.
3174 */
3175 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3176 bool from_schedule)
3177 __releases(q->queue_lock)
3178 {
3179 trace_block_unplug(q, depth, !from_schedule);
3180
3181 if (from_schedule)
3182 blk_run_queue_async(q);
3183 else
3184 __blk_run_queue(q);
3185 spin_unlock(q->queue_lock);
3186 }
3187
3188 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3189 {
3190 LIST_HEAD(callbacks);
3191
3192 while (!list_empty(&plug->cb_list)) {
3193 list_splice_init(&plug->cb_list, &callbacks);
3194
3195 while (!list_empty(&callbacks)) {
3196 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3197 struct blk_plug_cb,
3198 list);
3199 list_del(&cb->list);
3200 cb->callback(cb, from_schedule);
3201 }
3202 }
3203 }
3204
3205 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3206 int size)
3207 {
3208 struct blk_plug *plug = current->plug;
3209 struct blk_plug_cb *cb;
3210
3211 if (!plug)
3212 return NULL;
3213
3214 list_for_each_entry(cb, &plug->cb_list, list)
3215 if (cb->callback == unplug && cb->data == data)
3216 return cb;
3217
3218 /* Not currently on the callback list */
3219 BUG_ON(size < sizeof(*cb));
3220 cb = kzalloc(size, GFP_ATOMIC);
3221 if (cb) {
3222 cb->data = data;
3223 cb->callback = unplug;
3224 list_add(&cb->list, &plug->cb_list);
3225 }
3226 return cb;
3227 }
3228 EXPORT_SYMBOL(blk_check_plugged);
3229
3230 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3231 {
3232 struct request_queue *q;
3233 unsigned long flags;
3234 struct request *rq;
3235 LIST_HEAD(list);
3236 unsigned int depth;
3237
3238 flush_plug_callbacks(plug, from_schedule);
3239
3240 if (!list_empty(&plug->mq_list))
3241 blk_mq_flush_plug_list(plug, from_schedule);
3242
3243 if (list_empty(&plug->list))
3244 return;
3245
3246 list_splice_init(&plug->list, &list);
3247
3248 list_sort(NULL, &list, plug_rq_cmp);
3249
3250 q = NULL;
3251 depth = 0;
3252
3253 /*
3254 * Save and disable interrupts here, to avoid doing it for every
3255 * queue lock we have to take.
3256 */
3257 local_irq_save(flags);
3258 while (!list_empty(&list)) {
3259 rq = list_entry_rq(list.next);
3260 list_del_init(&rq->queuelist);
3261 BUG_ON(!rq->q);
3262 if (rq->q != q) {
3263 /*
3264 * This drops the queue lock
3265 */
3266 if (q)
3267 queue_unplugged(q, depth, from_schedule);
3268 q = rq->q;
3269 depth = 0;
3270 spin_lock(q->queue_lock);
3271 }
3272
3273 /*
3274 * Short-circuit if @q is dead
3275 */
3276 if (unlikely(blk_queue_dying(q))) {
3277 __blk_end_request_all(rq, -ENODEV);
3278 continue;
3279 }
3280
3281 /*
3282 * rq is already accounted, so use raw insert
3283 */
3284 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3285 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3286 else
3287 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3288
3289 depth++;
3290 }
3291
3292 /*
3293 * This drops the queue lock
3294 */
3295 if (q)
3296 queue_unplugged(q, depth, from_schedule);
3297
3298 local_irq_restore(flags);
3299 }
3300
3301 void blk_finish_plug(struct blk_plug *plug)
3302 {
3303 if (plug != current->plug)
3304 return;
3305 blk_flush_plug_list(plug, false);
3306
3307 current->plug = NULL;
3308 }
3309 EXPORT_SYMBOL(blk_finish_plug);
3310
3311 bool blk_poll(struct request_queue *q, blk_qc_t cookie)
3312 {
3313 struct blk_plug *plug;
3314 long state;
3315
3316 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
3317 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3318 return false;
3319
3320 plug = current->plug;
3321 if (plug)
3322 blk_flush_plug_list(plug, false);
3323
3324 state = current->state;
3325 while (!need_resched()) {
3326 unsigned int queue_num = blk_qc_t_to_queue_num(cookie);
3327 struct blk_mq_hw_ctx *hctx = q->queue_hw_ctx[queue_num];
3328 int ret;
3329
3330 hctx->poll_invoked++;
3331
3332 ret = q->mq_ops->poll(hctx, blk_qc_t_to_tag(cookie));
3333 if (ret > 0) {
3334 hctx->poll_success++;
3335 set_current_state(TASK_RUNNING);
3336 return true;
3337 }
3338
3339 if (signal_pending_state(state, current))
3340 set_current_state(TASK_RUNNING);
3341
3342 if (current->state == TASK_RUNNING)
3343 return true;
3344 if (ret < 0)
3345 break;
3346 cpu_relax();
3347 }
3348
3349 return false;
3350 }
3351
3352 #ifdef CONFIG_PM
3353 /**
3354 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3355 * @q: the queue of the device
3356 * @dev: the device the queue belongs to
3357 *
3358 * Description:
3359 * Initialize runtime-PM-related fields for @q and start auto suspend for
3360 * @dev. Drivers that want to take advantage of request-based runtime PM
3361 * should call this function after @dev has been initialized, and its
3362 * request queue @q has been allocated, and runtime PM for it can not happen
3363 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3364 * cases, driver should call this function before any I/O has taken place.
3365 *
3366 * This function takes care of setting up using auto suspend for the device,
3367 * the autosuspend delay is set to -1 to make runtime suspend impossible
3368 * until an updated value is either set by user or by driver. Drivers do
3369 * not need to touch other autosuspend settings.
3370 *
3371 * The block layer runtime PM is request based, so only works for drivers
3372 * that use request as their IO unit instead of those directly use bio's.
3373 */
3374 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3375 {
3376 q->dev = dev;
3377 q->rpm_status = RPM_ACTIVE;
3378 pm_runtime_set_autosuspend_delay(q->dev, -1);
3379 pm_runtime_use_autosuspend(q->dev);
3380 }
3381 EXPORT_SYMBOL(blk_pm_runtime_init);
3382
3383 /**
3384 * blk_pre_runtime_suspend - Pre runtime suspend check
3385 * @q: the queue of the device
3386 *
3387 * Description:
3388 * This function will check if runtime suspend is allowed for the device
3389 * by examining if there are any requests pending in the queue. If there
3390 * are requests pending, the device can not be runtime suspended; otherwise,
3391 * the queue's status will be updated to SUSPENDING and the driver can
3392 * proceed to suspend the device.
3393 *
3394 * For the not allowed case, we mark last busy for the device so that
3395 * runtime PM core will try to autosuspend it some time later.
3396 *
3397 * This function should be called near the start of the device's
3398 * runtime_suspend callback.
3399 *
3400 * Return:
3401 * 0 - OK to runtime suspend the device
3402 * -EBUSY - Device should not be runtime suspended
3403 */
3404 int blk_pre_runtime_suspend(struct request_queue *q)
3405 {
3406 int ret = 0;
3407
3408 spin_lock_irq(q->queue_lock);
3409 if (q->nr_pending) {
3410 ret = -EBUSY;
3411 pm_runtime_mark_last_busy(q->dev);
3412 } else {
3413 q->rpm_status = RPM_SUSPENDING;
3414 }
3415 spin_unlock_irq(q->queue_lock);
3416 return ret;
3417 }
3418 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3419
3420 /**
3421 * blk_post_runtime_suspend - Post runtime suspend processing
3422 * @q: the queue of the device
3423 * @err: return value of the device's runtime_suspend function
3424 *
3425 * Description:
3426 * Update the queue's runtime status according to the return value of the
3427 * device's runtime suspend function and mark last busy for the device so
3428 * that PM core will try to auto suspend the device at a later time.
3429 *
3430 * This function should be called near the end of the device's
3431 * runtime_suspend callback.
3432 */
3433 void blk_post_runtime_suspend(struct request_queue *q, int err)
3434 {
3435 spin_lock_irq(q->queue_lock);
3436 if (!err) {
3437 q->rpm_status = RPM_SUSPENDED;
3438 } else {
3439 q->rpm_status = RPM_ACTIVE;
3440 pm_runtime_mark_last_busy(q->dev);
3441 }
3442 spin_unlock_irq(q->queue_lock);
3443 }
3444 EXPORT_SYMBOL(blk_post_runtime_suspend);
3445
3446 /**
3447 * blk_pre_runtime_resume - Pre runtime resume processing
3448 * @q: the queue of the device
3449 *
3450 * Description:
3451 * Update the queue's runtime status to RESUMING in preparation for the
3452 * runtime resume of the device.
3453 *
3454 * This function should be called near the start of the device's
3455 * runtime_resume callback.
3456 */
3457 void blk_pre_runtime_resume(struct request_queue *q)
3458 {
3459 spin_lock_irq(q->queue_lock);
3460 q->rpm_status = RPM_RESUMING;
3461 spin_unlock_irq(q->queue_lock);
3462 }
3463 EXPORT_SYMBOL(blk_pre_runtime_resume);
3464
3465 /**
3466 * blk_post_runtime_resume - Post runtime resume processing
3467 * @q: the queue of the device
3468 * @err: return value of the device's runtime_resume function
3469 *
3470 * Description:
3471 * Update the queue's runtime status according to the return value of the
3472 * device's runtime_resume function. If it is successfully resumed, process
3473 * the requests that are queued into the device's queue when it is resuming
3474 * and then mark last busy and initiate autosuspend for it.
3475 *
3476 * This function should be called near the end of the device's
3477 * runtime_resume callback.
3478 */
3479 void blk_post_runtime_resume(struct request_queue *q, int err)
3480 {
3481 spin_lock_irq(q->queue_lock);
3482 if (!err) {
3483 q->rpm_status = RPM_ACTIVE;
3484 __blk_run_queue(q);
3485 pm_runtime_mark_last_busy(q->dev);
3486 pm_request_autosuspend(q->dev);
3487 } else {
3488 q->rpm_status = RPM_SUSPENDED;
3489 }
3490 spin_unlock_irq(q->queue_lock);
3491 }
3492 EXPORT_SYMBOL(blk_post_runtime_resume);
3493 #endif
3494
3495 int __init blk_dev_init(void)
3496 {
3497 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3498 FIELD_SIZEOF(struct request, cmd_flags));
3499
3500 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3501 kblockd_workqueue = alloc_workqueue("kblockd",
3502 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3503 if (!kblockd_workqueue)
3504 panic("Failed to create kblockd\n");
3505
3506 request_cachep = kmem_cache_create("blkdev_requests",
3507 sizeof(struct request), 0, SLAB_PANIC, NULL);
3508
3509 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
3510 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3511
3512 return 0;
3513 }